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ABSTRACT

Detecting anomalous patterns is essential for quality control in industrial applica-
tions, with state-of-the-art methods relying on large defect-free datasets to model
normal distributions. However, robustness under domain shift, such as changes in
lighting or sensor drift, remains a critical challenge in real-world deployment. An
existing work, Generalized Normality Learning (GNL), addresses domain shifts
by enforcing feature consistency through training-time augmentation, but its re-
liance on prior knowledge of target distributions and access to training data at
inference limits flexibility. To overcome these limitations, we propose a memory
bank-based anomaly detection method that avoids retraining or access to train-
ing data during inference. We improve the robustness to distribution shifts via
distribution alignment based test-time training. Our approach leverages a modi-
fied Sinkhorn distance to align distributions and handle outliers, offering a more
resilient solution for industrial anomaly detection under realistic constraints. Ex-
tensive evaluations on out-of-distribution anomaly detection benchmarks demon-
strate the effectiveness.

1 INTRODUCTION

Detecting anomalous patterns is critical for ensuring quality control in industrial applications. State-
of-the-art methods for industrial anomaly detection often rely on large defect-free training samples
to model the distribution of normal patterns using techniques such as generative models Deng & Li
(2022); Zhang et al. (2023b) or memory banks Roth et al. (2022); Xie et al. (2023); Gu et al. (2023);
Hu et al. (2024). These approaches have achieved remarkable performance on various industrial
anomaly detection datasets, giving the impression that the problem is largely solved. However, one
key issue that remains overlooked is the robustness of these methods, which is vital for real-world
deployment. Among the many challenges to robustness, domain shift—a mismatch between the
data distributions of training and testing sets—is particularly common in industrial settings, arising
from factors like changes in lighting or sensor drift.

A pioneering work, generalized normality learning (GNL)Cao et al. (2023), tackled this issue by
treating anomaly detection under distribution shift as an out-of-distribution (OOD) generalization
problem. GNL aims to improve model generalization to testing data that deviates from the train-
ing distribution. During training, GNL encourages consistency in the intermediate features of
augmented normal samples, ensuring that the model’s representation is less sensitive to shifts in
the data distribution at test time. For inference, GNL utilizes exact feature distribution matching
(EFDM)Zhang et al. (2022) to align testing samples with randomly sampled normal data from the
training set, achieving superior results on corrupted test datasets.

Despite these advancements, we identify two key limitations in the current approach. First, requir-
ing prior knowledge of the target data distribution during training may not be practical. GNL’s
performance can degrade when the distribution shift at test time differs significantly from the aug-
mentations used during training. Second, accessing normal training samples at inference may be
restricted due to privacy concerns or data storage constraints. Thus, a more flexible approach to
industrial anomaly detection is needed. We propose two critical constraints for an effective solu-
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Figure 1: Illustration of pipeline of TTAD. The source domain fitting stage constructs a memory
bank of normal training features, which serves as a reference for anomaly detection. In the test-time
training stage, target data are augmented and aligned with the source memory bank through robust
optimal transport.
tion: i) no retraining or modification of the training process, and ii no access to training data during
inference.

To address these constraints, we build upon memory bank-based anomaly detection methods, which
have shown impressive performance by explicitly modeling the training data distribution. A notable
example, PatchCore Roth et al. (2022), constructs a memory bank of patch-wise image features from
normal training samples, capturing the distribution of normal patterns non-parametrically. At infer-
ence, testing patches are compared with those in the memory bank for anomaly detection. However,
under domain shift, we observe a significant performance drop, attributed to the mismatch between
the memory bank and test samples, as illustrated in Fig. 2. This distribution mismatch increases
the anomaly score for all testing samples, diminishing the ability to distinguish between normal and
anomalous patches. To mitigate this, we propose a test-time training method that adapts to target
data distribution during inference.

Recent test-time domain adaptation methods Su et al. (2022); Liu et al. (2021) have addressed distri-
bution alignment for classification tasks. These methods model both source and target domains with
parameterized distributions, such as Gaussian or mixtures of Gaussians, and minimize the discrep-
ancy using loss functions like KL-Divergence Su et al. (2022; 2024) or moment-based distances Liu
et al. (2021). However, directly applying these objectives in anomaly detection is suboptimal. A
single Gaussian distribution may underfit the data Liu et al. (2021), and while mixtures of Gaussians
offer more flexibility, their KL-Divergence lacks a closed-form solution, making them unsuitable
for test-time training.

Instead, inspired by robust distribution alignment techniques from generative modeling Adler &
Lunz (2018) and domain adaptation Courty et al. (2016), we formulate test-time training as an
optimal transport problem. This formulation poses two challenges: i) computational efficiency, as
the memory bank can contain thousands of samples, requiring a scalable solution, and ii) robustness,
as the target domain may include anomalous patches. To address these challenges, we enhance
the Sinkhorn distance Cuturi (2013) by discretizing the assignment process and augmenting the
target domain data. These improvements lead to more robust distribution alignment, enabling better
generalization of pre-trained anomaly detection models. We refer to the final method Test-Time
Anomaly Detection (TTAD) following the strategy of update encoder network at test-time. An
overview of TTAD is presented in Fig. 1.

Our contributions are summarized as follows.

• We identify the challenge of generalization to out-of-distribution testing in industrial
anomaly detection and introduce a distribution alignment paradigm to improve general-
ization at inference.
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• We enhance optimal transport-based distribution alignment for anomaly detection by dis-
cretizing the assignment process and augmenting the target domain data.

• We establish an extensive benchmark for distribution-shifted industrial anomaly detection,
comparing our approach with state-of-the-art methods.

2 RELATED WORKS

Anomaly Detection: Anomaly Detection (AD) aims to identify samples that deviate significantly
from the norm. Mainstream AD approaches primarily focus on unsupervised settings, utilizing
various techniques to model normal data Ruff et al. (2018); Yao et al. (2023); Roth et al. (2022);
Deng & Li (2022); Xie et al. (2023). One-class classification methods, such as Deep SVDD Ruff
et al. (2018), attempt to represent normal data using support vectors. Reconstruction-based meth-
ods, like PMAD Yao et al. (2023), train models to recreate normal images and detect anomalies
through higher reconstruction errors. Knowledge distillation methods, such as RD4AD Deng &
Li (2022), distill normal patterns from pre-trained models and identify anomalies by detecting dis-
crepancies between the distilled and original features. Additionally, distance-based approaches like
PatchCore Roth et al. (2022) measure the distance between test image embeddings and reference
embeddings from normal training data to detect anomalies. Recently, there has been increasing in-
terest in anomaly detection under distribution shifts during testing. For instance, Cao et al. (2023)
builds on reverse distillation techniques Deng & Li (2022), proposing improvements in model gen-
eralization by augmenting test data with specific transformations. However, these methods assume
that the distribution shift during testing is similar to the augmentations used during training. In con-
trast, our work addresses a more practical scenario, where the distribution shift at test time differs
substantially from training augmentations, and access to normal training samples is not available.

Domain Adaptation: Domain adaptation seeks to address the poor generalization caused by dis-
tribution shifts between training and testing data. Methods such as learning invariant representa-
tions Ganin & Lempitsky (2015) and clustering Tang et al. (2020) have been successful in this area.
However, traditional unsupervised domain adaptation approaches require access to both source and
target domain data, which is impractical in scenarios where access to source data is restricted due to
privacy concerns. This has led to the rise of source-free domain adaptation (SFDA) methods (Liang
et al., 2020; Liu et al., 2021; Yang et al., 2021; Liang et al., 2021; Su et al., 2022; 2024), which
update models using only target domain data in an unsupervised manner, aiming to improve gen-
eralization. Nevertheless, existing SFDA methods are primarily developed for classification tasks,
with little consideration for generalizing to anomaly detection. In this work, we adopt a test-time
training approach to mitigate distribution shifts by aligning distributions between source and target
domains. Specifically, we optimize the optimal transport distance Cuturi (2013) between these dis-
tributions. Optimal transport has been widely studied in domain adaptation Courty et al. (2016); Lee
et al. (2019) and has been extended to handle outliers Balaji et al. (2020); Mukherjee et al. (2021).
Our approach aims to provide a computationally efficient solution that scales well, improving upon
the Sinkhorn distance through discretization and target domain augmentation.

Anomaly Detection under Domain Shift: Anomaly detection under distribution shift has only re-
cently gained attention Cao et al. (2023). Early attempts to address this challenge involved augment-
ing data during the training stage to enhance the model’s robustness Cao et al. (2023), demonstrating
effectiveness in both industrial defect detection and natural OOD (out-of-distribution) images. How-
ever, these approaches rely on the assumption that training can be modified and that prior knowledge
of the distribution shift is available. In this work, we further relax these assumptions by updating the
model only during test time upon observing target data, without modifying the training process. An
alternative approach to handling anomaly detection under distribution shifts involves training from
scratch using noisy target data Jiang et al. (2022); Chen et al. (2022); McIntosh & Albu (2023).
These methods incrementally filter out potential anomalies and learn normal patterns from the re-
maining clean samples. However, we argue that such methods may struggle to generalize when the
noise level in the target distribution is high, limiting their effectiveness in handling severe distribu-
tion shifts.
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3 METHODOLOGY

3.1 PROBLEM FORMULATION

We first formally define the task of unsupervised anomaly detection under distribution shift. W.l.o.g,
we denote the source domain training data as Ds = {xi, yi}i=1···Ns

where all samples are defect-
free. We further denote the target domain testing data as Dt = {xj , yj}j=1···Nt where the labels
are not visible. We further denote the distribution from which samples are drawn as Ds ∼ Ps and
Dt ∼ Pt. For anomaly detection purpose, the label only takes a binary value, i.e. y ∈ {0, 1}
with 1 indicating anomalous. Following the practice of memory bank based anomaly detection
methods Roth et al. (2022), a backbone network zi = f(xi; Θ) ∈ RNp×D extracts features, as Np

patches, from input sample. A memory bank M = C({zi}i=1···Ns×Np
,K) takes an abstraction of

source domain training samples by sampling a core-set C(·,K) of size NM as in Eq. 1. At inference
stage, testing sample features are compared against the memory bank to determine anomaly.

min
M∈Ds

max
zj∈Ds

min
zi∈M

||zi − zj ||, s.t. |M| ≤ NM (1)

The above procedure achieves competitive results for industrial defect identification. Nevertheless,
we witness a significant performance drop when testing data experiences a distribution shift, i.e.
ps ̸= pt. In this work, we aim to address the distribution shift challenge from a distribution align-
ment perspective.

Optimal TransportMoment Matching Robust Sinkhorn Distance

𝒩(𝜇𝑡, Σ𝑡)
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Figure 2: Illustration of distribution alignment via moments matching, optimal transport and finally
our modified robust sinkhorn distance.

3.2 DISTRIBUTION ALIGNMENT FOR IMPROVING ANOMALY DETECTION

We first identify the underlying reason of why anomaly detection model. After revisiting the mech-
anism of memory bank based anomaly detection, we notice the anomaly score for each patch is
obtained as the shortest distance to any samples in the memory bank.

si = max
p∈1···Np

min
mk∈M

||zip −mk||2 (2)

The above way to characterize anomaly score is built upon the assumption that normal sample dis-
tribution is consistent between training and testing data. Therefore, a high anomaly score indicates
anomaly. This assumption no longer holds true when distribution shift exists as the overall distance
between testing patches and memory bank patches are increased, thus diminishing the discriminabil-
ity between normal and anomalies.

To mitigate the distribution shift, recent works on test-time domain adaptation proposed distribu-
tion alignment approaches Su et al. (2022); Liu et al. (2021). The key insights derived suggest that
minimizing the distribution discrepancy between the overall feature distribution of source and target
domains could substantially improve the generalization capability. Specifically, a parametric dis-
tribution, e.g. multi-variate Gaussian Liu et al. (2021) or mixture of Gaussian Su et al. (2022), is
fitted on both source and target domain, denoted as ps(z) and pt(z). A loss function that measures
the discrepancy between ps(z) and pt(z) is employed. For example, Su et al. (2022) introduced

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the KL-Divergence between the two Gaussian distributions for alignment as follows. A closed-form
solution exists and serves as the loss function to optimize upon target domain data.

LDA = DKL(ps||pt) = DKL(N (µs,Σs)||N (µt,Σt)) (3)

Despite the great success in improving the generalization for classification tasks, we argue that such
a vanilla distribution alignment approach is sub-optimal for memory bank based anomaly detection
task due to the following reason. Without knowing the prior information of the distribution, fitting
the model with a single multi-variate Gaussian distribution is prone to underfitting. A mixture of
Gaussian may better fit the complex distribution, however, unluckily there is no closed-form solution
to the KL-divergence between two mixture of Gaussians Hershey & Olsen (2007). Finally, when
the distribution overlap is too small, the gradient of KL-Divergence may be too small, prohibiting
gradient-based optimization. Given the above challenge, we resort to a more stable solution to
distribution alignment via optimal transport.

3.3 DISTRIBUTION ALIGNMENT VIA OPTIMAL TRANSPORT

Inspired by the success of distribution based via optimal transport for unsupervised domain adap-
tation Courty et al. (2017); Damodaran et al. (2018), we propose to use optimal transport (OT)
distance for distribution alignment between M and Dt. Specifically, a cost matrix C ∈ RNtp×NM

is built between target domain patches and memory bank with Cij = ||zi−mj || and Ntp = Nt ·Np.
Assuming uniform weight applied to each sample, the optimal transport is formulated as,

min
γ≥0

Ntp∑
i

NM∑
j

γijCij , s.t.
∑
i

γij =
1

NM
,
∑
j

γij =
1

Ntp
(4)

Solving the above problem, through linear programming, is expensive and an efficient algorithm,
Sinkhorn distance Cuturi (2013), exists that can substantially reduce the computation cost. Specif-
ically, an entropy regularization term is added, giving rise to the following problem. An iterative
algorithm is employed to solve the problem.

min
γ≥0

Ntp∑
i

NM∑
j

γijCij + ϵ
∑
i

∑
j

γij log γij , s.t.
∑
i

γij =
1

NM
,
∑
j

γij =
1

Ntp
(5)

Self-Training Perspective: We further elaborate the distribution alignment from a self-training (ST)
perspective. ST has been demonstrated to be effective for test-time adaptation Su et al. (2024). The
regular routine makes predictions on testing samples and use most confident ones, a.k.a. pseudo
labels, to train network, e.g. optimize cross-entropy loss for classification task. In the realm of
anomaly detection, self-training could translate into encouraging testing patch to be close to the
closest patch in the memory bank. Distribution alignment via optimal transport can be seen as
discovering a global optimal assignment between target patches and memory bank. The assignment
can be seen as the pseudo label and minimizng the Wasserstein distance is equivalent to using the
pseudo label for self-training.

3.4 ROBUST SINKHORN DISTANCE

Solving the optimal transport problem in Eq. 5 yields the assignment γ∗ for each target sample
to source samples. The Sinkhorn distance, LDA =

∑Ntp

i

∑NM

j γ∗
ijCij , could be adopted as the

objective to optimize for distribution alignment. However, we notice a unresolved issue by directly
optimizing the above objective. First, an anomalous patch, indexed by j∗, in the target domain are
always assigned to source patches in the memory bank due to the constraint γij∗ ≥ 0,

∑
i γij∗ =

1
NM

. Minimizing the distance between anomalous patches and memory bank patches will inevitably
diminish the discriminability. To improve the robust of optimal transport for distribution alignment,
we convert the continuous optimal transport assignment into discrete assignment. Fortunately, the
discretization may eliminate weak assignments that often appear on anomalous patches in the target
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domain. Specifically, we follow the rules below to discretize the assignment, resulting in a more
robust distribution alignment loss in Eq. 6. We demonstrate that the above discretization could
substantially reduce the overall assignment between anomalous patches and memory bank patches.

LDA =

Ntp∑
i

NM∑
j

π∗
ijCij , s.t. π∗

ij =

{
1 if j = argmaxj γ

∗
ij , or i = argmaxi γ

∗
ij

0 otherwise (6)

Target Domain Data Augmentation: We apply a batchwise update strategy to facilitate gradi-
ent based update of backbone weights. Wihin each minibatch we further apply data augmentation
T (x) on the target domain data to improve the distribution alignment, D̃t = {T (xj)}j=1···Nt

. The
augmentation simulates the normal data variation, e.g. rotation in multiple of 90◦, contrast, etc. Im-
portantly, the augmentation is agnostic to the corruption (distribution shift) on the target domain and
is only applied at testing stage, in contrast to the training stage augmentation adopted in GNL Cao
et al. (2023). We attribute the effectiveness of test-time target domain augmentation to the following
reasons. First, the augmentation will create a more diverse and smoother distribution. This can help
mitigate the impact of outliers by ”diluting” their influence, making the alignment focus on gen-
eral features rather than outlier-specific characteristics. Moreover, data augmentation can help by
incorporating additional noise into the training process in a controlled way, making the model more
resilient to noise and outliers in the real world. The positive effect is demonstrated by the reduced
discretised assignment.

3.5 OVERALL ALGORITHM

Following the practice of common test-time training strategies, we update the batchnorm affine
parameters, Θbn, with distribution alignment loss. We present the overall algorithm of the proposed
method in Algo. 1.

Algorithm 1 Test-Time Training for Anomaly Detection
1: Input: Pretrained memory bank M, target data Dt, initial encoder network Θ
2: Output: Anomaly scores {si}

# Test-time training on target data
3: for Bt ⊂ Dt do # Collect one minibatch Bt

Augment target minibatch B̃t = T (Bt)

Compute cost matrix C ∈ R|Ds|×|B̃t|

Solve optimal transport plan γ∗ by Eq. 5
Discretize assignment π∗ by Eq. 6
Update model Θbn = Θbn − α∇LDA

Θbn

4: end for
# Evaluate on target data

5: for xi ∈ Dt do
Encode feature with updated model zi = f(xi; Θ

∗)
Per sample anomaly score si = max

p∈1···Np

min
mk∈M

||zip −mk||2
6: end for
7: return si

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Dataset: We evaluate our method on two widely-used 2D industrial anomaly detection datasets,
MVTec Bergmann et al. (2019) and RealIAD Wang et al. (2024), as well as on a 3D dataset, MVTec
3D Bergmann et al. (2021).
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Gaussian Noise ContrastBrightnessDefocus BlurOriginal

Figure 3: Illustrations of the synthesized distribu-
tion shift on MVTec and RealIAD dataset. The
severity level of all corruptions is set to 5. It can
be observed that the difficulty varies significantly
across different corruptions, with contrast being
the most challenging. More examples are shown
in Appendix Fig. 6 and Fig. 7.

MVTec is the most commonly used benchmark
for 2D industrial anomaly detection, compris-
ing 15 object categories, with 60-300 normal
samples for training and 30-400 normal and
anomalous samples for testing. RealIAD is a
newly introduced industrial dataset with 30 ob-
ject categories, each captured from five differ-
ent viewpoints. We follow the single-view ex-
periment setup, utilizing only the top-view im-
ages. Due to the high resolution of the original
images (over 3,000×5,000 pixels), which im-
poses significant computational demands, we
use a downsampled version with a resolution of
1,024×1,024. Illustration of the two 2D dataset
is shown in 3. MVTec 3D consists of 3D scans
that include both geometric surface data and
RGB information. The dataset comprises 10
object categories, with over 200 normal images for training and more than 100 images for testing
per category.

Evaluation Protocol: We simulate commonly seen distribution shift to evaluate the generalization
robustness. For the 2D datasets, MVTec and RealIAD, we follow the corruption generation process
described in Hendrycks & Dietterich (2019), applying four common corruptions, including Gaussian
Noise, Defocus Blur, Contrast, and Brightness, with a severity level of 5 to create distribution-shifted
data. In the 3D dataset, MVTec 3D, we simulate natural distribution shifts by randomly adding
Gaussian noise n ∼ N (0, [1e − 6]2) to the images. For evaluation, we assess performance using
the area under the ROC curve (AUROC), treating anomalies as the positive class for both anomaly
detection and segmentation tasks, following the standard protocol Bergmann et al. (2019).

For the 2D experiments, we use a WRN-50 Zagoruyko & Komodakis (2017) pretrained on ImageNet
Deng et al. (2009) as the backbone, and only fine-tune the BatchNorm parameters during adaptation.
For the 3D experiments, we adopt a PointTransformer Zhao et al. (2021) pretrained on ShapeNet
Chang et al. (2015) as the backbone. The batch size during adaptation for all experiments is set to 10,
with two types of random geometric augmentations (Flipping and Rotation) applied to each sample.
We train for 10, 30, and 1 epochs on the MVTec, MVTec 3D, and RealIAD datasets, respectively.
To be noted, the number of epochs is determined based on the complexity and size of each dataset.
Due to the large size of the RealIAD dataset, we found that one pass of the data was sufficient for the
model to converge. The learning rate is set to 0.003, and the model is optimized using SGD Ruder
(2017) with momentum of 0.9.

Competing Methods: We compare against several baseline methods, covering several state-of-art
industrial AD methods, and three domain adaptation AD methods. These 2D industrial AD methods
including reconstruction-based approaches (ViTAD Zhang et al. (2023a)), embedding-based meth-
ods (CFLOW-AD Gudovskiy et al. (2022)), and knowledge distillation methods (KDAD Salehi
et al. (2021) and RD4AD Deng & Li (2022)). We also evaluated on a unified model (UnIAD You
et al. (2022)), and the effective memory-bank-based method (PatchCore Roth et al. (2022)). We
further adapted test-time training methods for anomaly detection task. In specific, we evaluated
two distribution alignment based test-time training approaches, TTT++ Liu et al. and TTAC Su
et al. (2022), on top of PatchCore. Additionally, the state-of-the-art domain adaptation method for
anomaly detection, GNL Cao et al. (2023), are benchmarked. We allow GNL to re-train with default
data augmentation. For 3D anomaly detection, we also benchmark several hand-crafted features im-
plemented by Bergmann et al. (2021), FPFH Horwitz & Hoshen (2022) and M3DM Wang et al.
(2023). Finally, we evaluate our proposed method, TTAD, on all datasets.

4.2 TEST-TIME TRAINING FOR ANOMALY DETECTION

We first present the anomaly detection results, averaged across all object classes, on both the MVTec
and RealIAD datasets in Table 1. A more detailed results for per-class AUROC are deferred to the
Appendix. From the results, we derive the following key observations:
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i) State-of-the-art anomaly detection methods struggle significantly under distribution shifts, as ev-
idenced by the performance gap when tested on clean versus corrupted target data. For instance,
PatchCore shows a performance drop of 21.46% when exposed to Gaussian noise on the MVTec
dataset. This highlights the vulnerability of these methods to out-of-distribution (OOD) scenar-
ios. ii) Test-time training methods (e.g., TTT++ and TTAC), despite showing strong performance
on classification tasks, fail to deliver comparable results on anomaly detection tasks. In fact, both
TTT++ and TTAC underperform in most cases compared to PatchCore, which performs no adap-
tation. This underperformance can be attributed to the methods’ reliance on modeling complex
distributions with a single Gaussian distribution, leading to underfitting. iii) In contrast, TTAD,
which leverages distribution alignment via optimal transport, demonstrates superior performance in
3 out of 4 types of corruptions, with the sole exception being the ”Contrast” corruption. Notably,
under the Defocus Blur and Brightness corruptions on the MVTec dataset, TTAD’s performance is
only 2% behind the results on source domain. These findings underscore the importance of a well-
calibrated distribution strategy for robust anomaly detection. iv) Lastly, we observe that GNL signif-
icantly outperforms all competing methods under the ”Contrast” corruption scenario. Upon further
investigation, we discovered that GNL employs an ”AutoContrast” augmentation during training,
which inadvertently provides prior knowledge of the target data distribution. This unfair advantage
highlights the importance of evaluating methods under consistent and unbiased conditions.

Table 1: Results of anomaly detection on MVTec and RealIAD datasets. We report the mAU-
ROC(%) averaged across all classes. “Clean” refers to the results on clean testing samples.

MVTec RealIAD

Clean Gauss. Noise Defoc. Blur Bright. Contrast Clean Gauss. Noise Defoc. Blur Bright. Contrast

ViTAD 98.30 63.86 79.82 67.20 53.61 82.70 52.43 73.43 61.15 57.43
KDAD 87.74 74.44 78.79 72.67 44.05 80.23 41.15 31.24 38.31 46.65
RD4AD 98.50 81.03 93.00 90.27 65.08 86.17 56.57 79.54 63.73 57.42
UnIAD 92.50 84.05 79.83 90.03 61.29 83.10 64.17 78.84 69.44 53.95
CFLOW-AD 91.55 59.52 60.54 59.71 51.50 77.00 56.01 62.57 56.47 53.18
PatchCore 98.81 77.34 90.43 91.19 62.72 90.35 60.24 77.02 63.01 50.36

TTT+ 98.81 71.82 71.30 76.17 70.30 90.35 52.07 50.69 44.64 50.73
TTAC 98.81 56.41 82.88 55.34 55.34 90.35 53.93 60.55 54.74 53.15
GNL 97.99 83.75 95.27 92.96 88.20 83.44 62.72 79.57 64.51 62.28
TTAD (Ours) 98.81 89.21 96.75 96.71 85.45 90.35 69.73 83.29 69.55 60.71

In addition to the experiments on 2D data, we also evaluated our method on 3D data by introduc-
ing Gaussian noise as a form of corruption. The results are presented in Table 2. Compared to
standard 2D corruptions, adding Gaussian noise to 3D data introduces a greater challenge. The
geometric structures in 3D data are particularly sensitive to noise, as it disrupts fine details and
depth information, both of which are crucial for effective 3D anomaly detection. Despite these chal-
lenges, our method demonstrates resilience, achieving a notable performance improvement of 1.5%
on PointMAE. This suggests that our approach is capable of effectively managing the complexities
introduced by noise in 3D data, maintaining robust anomaly detection capabilities.

Table 2: Results of anomaly detection on MVTec-3D with per class AUROC(%)
Bagel CableGland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean

Depth GAN 47.5 24.0 49.1 45.9 37.4 36.8 32.4 37.0 35.1 36.5 38.17
Depth AE 33.4 38.6 43.3 47.9 40.7 32.3 42.9 41.6 41.2 38.3 40.02
Depth VM 36.7 32.2 37.4 44.6 40.4 29.2 38.7 29.5 45.3 39.7 37.37
Depth PatchCore 75.8 53.8 64.3 75.5 44.6 48.4 40.8 50.7 56.5 56.6 56.70
Raw (in BTF) 58.4 49.8 44.8 45.7 50.2 33.2 24.7 31.1 44.6 50.4 43.29
HoG (in BTF) 61.2 57.2 33.0 56.9 51.1 41.8 38.4 69.2 50.0 60.6 51.94
SIFT (in BTF) 46.1 42.3 44.1 46.6 38.5 41.9 33.4 55.7 62.4 56.4 46.74
FPFH 49.4 48.0 54.8 37.0 38.8 38.7 36.5 50.7 51.9 49.8 45.56
M3DM 74.1 51.6 73.2 83.2 59.9 58.6 30.0 76.3 86.8 70.8 66.45

TTAD (Ours) 80.2 58.6 73.4 86.4 60.6 51.8 46.6 80.2 83.3 58.5 67.96

4.3 TEST-TIME TRAINING FOR ANOMALY SEGMENTATION

We also evaluate the anomaly segmentation performance on the MVTec and RealIAD dataset, with
the results summarized in Table 3. Detailed results for each class are deferred to the Appendix. For a
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fair comparison, we include only those methods that provide segmentation solutions in their original
papers. As shown in the table, our method consistently achieves superior AUROC across all types
of corruption in the segmentation task. Notably, it surpasses all baseline methods across different
corruptions on MVTec dataset. While RD4AD also performs well under Defocus Blur, our method
maintains an advantage. Moreover, under Brightness and Gaussian Noise corruptions, our approach
outperforms RD4AD by significant margins of 7.25% and 5.61%, respectively. On the RealIAD
dataset, our method slightly lags behind UnIAD under Brightness, while showing a significant lead
in the other three corruption types.

Table 3: Anomaly segmentation results on MVTec and RealIAD datasets. P-mAUROC(%) across
all classes.

MVTec RealIAD

Clean Gauss. Noise Defoc. Blur Brightness Contrast Clean Gauss. Noise Defoc. Blur Brightness Contrast

CFLOW-AD 95.65 70.38 79.19 75.87 50.02 88.60 71.24 91.05 85.14 72.05
UnIAD 95.70 70.02 87.04 90.86 72.72 86.00 87.95 96.26 90.15 80.68
RD4AD 97.80 86.88 96.52 90.83 78.68 89.22 56.52 95.64 76.99 83.08
PatchCore 98.34 87.00 93.34 91.39 71.07 98.10 76.99 96.63 83.49 74.49
TTT++ 98.34 80.31 79.21 79.20 78.86 98.10 59.33 46.15 44.64 47.30
TTAC 98.34 56.77 38.43 82.28 52.59 98.10 52.93 63.37 62.24 50.30

Ours 98.34 94.13 96.53 96.44 90.54 98.10 89.95 98.47 89.02 83.30

Input GT
TTAD
(Ours)

Source Pred.
(Upper Bound)w/o Adapt
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Figure 4: Qualitative results for anomaly segmentation. We
present results for PatchCore without adaptation (w/o Adapt),
RD4AD, TTAD (Ours) and predictions on clean testing sam-
ple as upperbound (Source Pred.). TTAD consistently improves
anomaly localization compared to the baseline (w/o Adapt),
sometimes even approaching the upperbound.

Qualitative Results: We pro-
vide a qualitative comparison of
anomaly segmentation results,
as shown in Fig. 4. We com-
pare our method with Patch-
core without adaptation and
the second-best overall base-
line, RD4AD. The source pre-
dictions serve as reference up-
perbound. RD4AD performs
well under simpler corruptions
like Defocus Blur, achieving
relatively accurate anomaly lo-
calization. However, under
more challenging corruptions
such as Brightness and Con-
trast, it tends to misidentify the
entire background or object as
the anomaly area. In con-
trast, our method shows a signif-
icant improvement compared to
the no-adaptation model, which
lacks segmentation capability,
and demonstrate a strong and consistent performance which is closely approaching the upper bound
results on clean samples.

4.4 ABLATION STUDY

We analyze the effectiveness of proposed methods by investigating distribution alignment method,
assignment method and target data augmentation. The ablation study carried out on MVTec dataset
is presented in Tab. 4. We make the following observations from the results. i) KL-Div Su et al.
(2024) and Moment Matching Liu et al. (2021)-based alignment exhibit the poorest performance
across all corruption types, with particularly low scores in the pixel-wise AUROC, especially un-
der Defocus Blur (e.g., 38.43% for Moment Matching) and Gaussian Noise (56.77% for Moment
Matching). This indicates that these alignment methods are not well-suited for handling complex
distribution shifts in anomaly detection tasks. In contrast, optimal Transport-based alignment con-
sistently outperforms KL-Div and Moment Matching across all corruptions. ii) We further compared
with another way of discrete optimal transport solution, i.e. using Hungarian Method to find linear
assignment between memory bank and target samples. Introducing Hungary Method assignment

9
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for Optimal Transport yields better results compared to no assignment strategy, as seen in the case
of Gaussian Noise. Similar improvements are observed across other corruptions like Defocus Blur
(94.81% vs. 93.31%) and Contrast (75.73% vs. 71.51%). iii) When directly copying the target data
for augmentation, the performance improves further, particularly in pixel-wise AUROC. Applying
data augmentation instead of direct copying results in the best performance overall.

In summary, the best-performing configuration combines Optimal Transport alignment with discrete
assignment and data augmentation, achieving top scores in both instance-level and pixel-wise AU-
ROC across all corruption types. Notably, the Contrast corruption is still posing great challenge
to the method which is explained by the low visibility of defects.In contrast, the KL-Div and Mo-
ment Matching methods consistently underperform, indicating that more sophisticated distribution
alignment techniques, like Optimal Transport, are critical for handling complex distribution shifts in
anomaly detection tasks.

Table 4: Ablation study on MVTec dataset. We report anomaly detection and segmentation AUROC
averaged over all classes (mAUROC & P-mAUROC).

Distribution
Alignment Assignment Target Data Aug.

Gaussian Noise Defocus Blur Brightness Contrast

mAUROC P-mAUROC mAUROC P-mAUROC mAUROC P-mAUROC mAUROC P-mAUROC

- - - 77.34 87.00 90.43 92.34 91.19 91.40 62.72 71.07
KL-Div - - 56.41 56.77 58.27 38.43 82.87 82.28 55.34 52.59

Moment Matching - - 71.82 80.31 71.30 79.21 76.16 79.20 70.30 78.86
OptimalTransport Hungary Method - 83.85 89.31 93.32 96.19 93.82 94.67 71.51 80.56
OptimalTransport discrete - 85.72 93.36 94.81 96.41 94.72 96.32 75.73 85.45
OptimalTransport discrete direct copy 85.76 93.33 94.83 96.44 94.69 96.30 75.79 85.51
OptimalTransport discrete data augment. 89.21 94.07 96.75 97.45 96.71 96.99 84.45 90.45

w/o augmentation direct copy w/ augmentation
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Figure 5: Comparison of anomaly sample assignments
across different augmentation strategies.

Target Data Augmentation: We further
demonstrate the effectiveness of the pro-
posed augmentation method by analyzing
the anomaly sample assignments in the op-
timal transport solutions. As illustrated
in Figure 5, out of 2,090 samples in the
target domain memory bank, the number
of assignments to anomaly samples sig-
nificantly decreased from 123 (5.89%) to
79 (3.78%) when applying our data aug-
mentation strategy. This reduction high-
lights the method’s ability to limit erro-
neous anomaly assignments, thereby en-
hancing the quality of the optimal trans-
port solution.

Additionally, we evaluate the impact of
simply duplicating the target data for aug-
mentation, which led to a slight reduction
in anomaly assignments to 114 (5.45%). We attribute this minor improvement to the larger selection
pool, though this approach fails to smooth the distribution effectively.

5 CONCLUSION

In this work, we addressed a realistic challenge of deploying anomaly detection model to out-of-
distribution testing data. Existing works require modifying training objective and require access
training data during inference. We relaxed these assumptions by proposing a test-time distribu-
tion alignment method to mitigate the distribution shift. In particular, a robust Sinkhorn distance is
adapted from an existing optimal transport problem to improve the resilience to anomalous patches
in the target domain data. We demonstrated the effectiveness on three industrial anomaly detec-
tion datasets. The findings suggest future research should pay more attention to the robustness of
anomaly detection under realistic challenges.
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A APPENDIX

A.1 ILLUSTRATION OF DATASETS

We further illustrate the MVTec and RealIAD datasets in Figure 6 7. In general, we find the Con-
trast corruption is most challenging as differentiating the foreground and background becomes even
impossible. This also aligns with the observation that all methods yield the worst performance on
Contrast corruption.

A.2 FULL EXPERIMENTAL RESULTS

We present the full detection and segmentation results of MVTec and RealIAD dataset in Table 5 6
7 and Figure A.2.
Our method consistently achieves the highest performance across almost all classes in Noise, Defo-
cus Blur and Brightness corruptions, demonstrating a clear advantage in terms of AUROC scores.
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Original Gaussian Noise Defocus Blur Brightness Contrast

Figure 6: Illustrations of the corruptions on MVTec dataset. Severity level of all corruptions are set
to 5.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Original Gaussian Noise Defocus Blur Brightness Contrast

Figure 7: Illustrations of the corruptions on RealIAD dataset. Severity level of all corruptions are
set to 5.
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Although our method falls behind GNL in a few classes under Contrast, it still maintains compet-
itive results overall. It is worth noting that GNL benefits from its own specialized augmentations,
as discussed in the main text. Despite this, our approach continues to deliver robust performance
across all other corruption types and remains highly effective in most classes under Contrast.

Table 5: MVTec per class instance AUROC(%)
Corruption Method bottle cable capsule carpet grid hazelnut leather metal nut pill screw tile toothbrush transistor wood zipper mean

Gauss. Noise

ViTAD 63.90 66.39 82.20 82.14 74.44 69.08 71.83 30.42 60.07 61.60 68.74 53.37 55.43 68.46 49.78 63.86
RD4AD 54.40 97.12 59.26 95.20 89.93 95.90 99.01 74.37 64.59 64.82 89.46 73.65 88.84 96.75 72.17 81.03
KDAD 95.24 90.22 67.93 72.67 38.60 79.39 93.65 82.26 67.95 7.89 85.82 87.50 83.46 72.37 91.60 74.44
UnIAD 95.39 91.52 59.51 98.67 83.20 97.39 93.71 86.21 59.76 57.86 90.22 80.55 90.70 92.63 83.43 84.05
CFLOW-AD 52.50 81.00 46.31 73.11 39.60 70.39 76.97 51.52 52.35 41.81 71.28 51.67 68.87 65.79 49.58 59.52
patchcore 81.59 88.87 49.06 91.49 52.13 95.11 97.28 72.97 52.02 40.44 90.98 73.61 81.92 95.18 97.45 77.34
TTAC 84.13 30.88 48.78 53.45 57.56 51.21 50.85 58.06 46.24 50.19 45.17 83.89 68.25 69.39 48.06 56.41
TTT++ 84.84 71.95 50.10 86.76 52.80 72.50 93.14 72.63 50.35 38.20 88.96 72.22 83.46 95.53 63.87 71.82
GNL 67.06 96.21 64.58 95.26 90.14 97.79 98.95 68.77 63.64 66.12 96.39 95.00 88.12 96.93 71.27 83.75
Ours 93.33 98.18 72.00 97.51 87.89 98.36 98.13 89.59 73.95 69.22 95.78 81.11 91.54 97.02 94.54 89.21

Defoc. Blur

ViTAD 74.78 59.63 90.05 71.02 80.86 95.41 95.45 82.62 85.21 91.00 67.79 89.56 63.33 66.62 84.09 79.83
RD4AD 99.93 87.04 83.26 95.48 93.21 100.00 100.00 98.90 90.63 79.52 93.51 93.60 92.62 99.01 88.25 93.00
KDAD 98.57 82.44 74.31 54.53 42.61 92.39 97.04 78.40 72.80 53.74 91.96 85.56 88.88 76.67 91.94 78.79
UnIAD 99.84 93.29 76.38 97.55 93.31 99.53 100.00 96.67 84.42 92.39 99.42 94.13 99.75 91.01 98.29 94.40
CFLOW-AD 50.56 69.77 53.17 62.72 59.31 92.75 53.12 71.55 56.96 55.28 69.52 50.56 76.00 41.67 45.09 60.54
patchcore 100 89.75 82.53 96.07 74.6 99.46 100 96.53 84.04 56.18 93.54 92.22 96.33 96.75 98.5 90.43
TTAC 48.97 49.81 62.39 55.06 54.30 46.25 67.90 46.38 35.46 99.51 60.79 51.39 58.67 61.32 75.81 58.27
TTT++ 87.94 81.18 45.79 89.13 62.41 73.14 92.83 64.13 37.15 42.18 93.11 72.22 82.83 93.68 51.76 71.30
GNL 100.00 97.19 85.12 97.91 94.99 100.00 100.00 99.85 92.50 81.16 99.71 95.83 95.62 97.54 91.65 95.27
Ours 100.00 94.88 91.18 98.31 96.16 100.00 100.00 98.83 91.08 88.15 96.90 99.72 99.17 98.07 98.74 96.75

Brightness

ViTAD 64.92 67.78 87.75 52.57 52.18 89.53 91.56 56.96 40.08 92.48 25.80 83.45 55.44 71.85 75.63 67.20
RD4AD 99.87 95.99 79.75 98.81 98.34 100.00 100.00 98.94 68.18 59.69 97.71 68.90 95.06 99.70 93.12 90.27
KDAD 80.16 75.71 75.27 72.11 56.81 82.86 87.70 65.64 70.57 80.49 74.64 68.89 81.54 41.58 76.02 72.67
UnIAD 99.76 95.65 67.41 99.59 87.63 99.35 100.00 97.31 79.48 51.30 93.39 81.66 100.00 100.00 97.95 90.03
CFLOW-AD 64.68 69.15 51.85 87.58 49.21 77.93 52.92 51.47 54.94 57.41 85.35 31.11 56.37 55.00 50.63 59.71
patchcore 100.00 94.00 84.80 95.51 96.49 98.75 97.52 98.29 71.6 67.41 92.53 78.33 95.63 98.51 98.40 91.19
TTAC 100 95.16 55.96 92.58 97.74 100 98.68 63.2 40.4 56.1 69.44 78.61 96.62 98.77 99.87 82.88
TTT++ 98.25 87.46 59.99 81.78 92.48 65.79 88.35 86.66 49.95 46.00 87.45 78.61 84.38 81.75 53.62 76.17
GNL 99.32 100.00 97.99 98.74 99.82 100.00 100.00 95.22 81.93 63.48 95.29 99.56 85.78 84.17 93.07 92.96
Ours 100.00 98.41 92.74 99.72 97.33 100.00 100.00 99.56 75.91 96.00 98.59 93.61 99.46 99.82 99.45 96.71

Contrast

ViTAD 33.88 40.14 54.58 45.38 46.27 55.39 55.37 66.16 54.67 80.57 44.08 71.47 54.15 58.91 43.11 53.61
RD4AD 68.38 86.70 57.03 56.92 63.52 73.24 79.19 69.76 29.41 59.24 87.22 59.45 67.57 40.78 77.73 65.08
KDAD 60.56 51.44 36.94 39.85 39.77 65.96 68.40 22.92 47.95 2.20 61.47 33.06 47.79 25.79 56.72 44.05
UnIAD 57.30 57.53 29.75 80.29 64.57 69.57 80.16 74.82 66.39 76.86 64.64 36.38 64.16 65.26 31.69 61.29
CFLOW-AD 57.54 70.52 61.95 53.55 50.46 41.82 50.00 62.46 32.19 52.65 49.96 43.61 62.58 32.94 50.29 51.50
PatchCore 76.98 58.88 55.33 69.10 55.05 71.64 81.28 72.19 39.69 46.61 94.84 47.50 44.04 60.00 67.62 62.72
TTAC 100.00 95.16 55.96 92.58 97.74 100.00 98.68 63.20 40.40 56.10 69.44 78.61 96.62 98.77 99.87 82.88
TTT++ 72.06 84.03 49.90 93.26 48.45 78.25 91.58 70.23 40.21 42.63 86.22 72.22 81.04 86.93 57.54 70.30
GNL 71.67 95.84 78.10 96.03 86.88 99.50 97.35 99.27 74.77 63.58 99.49 95.00 81.12 96.93 87.45 88.20
Ours 93.02 92.82 74.51 89.09 80.87 98.79 87.64 87.59 55.97 73.50 92.71 76.67 86.38 92.54 84.61 84.45

Table 6: RealIAD per class instance AUROC(%)
Gaussian Noise

KDAD RD4AD UnIAD ViTAD CFLOW-AD patchcore TTT++ TTAC GNL Ours
audiojack 55.30 61.60 78.53 51.40 51.23 67.46 50.91 48.67 71.28 79.60
bottle cap 41.52 52.70 69.23 51.26 54.78 52.11 54.44 50.50 54.53 57.49
button battery 42.19 63.40 57.70 69.86 49.78 64.52 56.20 55.74 67.51 72.07
end cap 55.16 51.20 46.08 49.47 58.88 50.90 52.20 42.47 55.99 51.12
eraser 38.26 52.90 66.83 45.67 49.13 50.22 40.60 54.62 52.13 64.23
fire hood 38.03 44.50 65.08 46.19 50.72 51.30 46.94 48.24 45.78 62.55
mint 51.83 47.70 43.50 51.91 50.26 54.67 52.30 49.56 52.93 52.81
mounts 42.29 56.90 65.66 52.32 58.92 58.53 55.85 49.04 61.21 70.93
pcb 33.69 59.10 47.69 47.60 53.46 66.14 46.25 55.15 75.20 72.30
phone battery 38.90 78.20 76.33 73.59 55.82 77.64 55.40 56.09 75.22 82.53
plastic nut 44.09 56.40 66.45 54.15 53.43 55.70 50.02 54.23 58.85 60.90
plastic plug 20.93 53.70 63.62 71.79 36.93 67.69 57.45 65.15 63.80 64.68
porcelain doll 51.79 57.50 62.20 51.28 53.59 55.86 48.04 52.25 54.51 71.02
regulator 45.07 52.20 48.05 49.29 49.56 48.62 45.33 52.93 52.57 54.84
rolled strip base 45.77 64.00 66.33 52.16 54.23 63.07 62.02 68.15 66.20 66.70
sim card set 47.44 67.40 76.45 38.44 55.91 74.79 64.39 72.73 75.99 80.50
switch 26.89 57.60 57.22 53.39 70.14 64.83 57.04 51.51 69.52 72.22
tape 49.34 48.40 72.89 45.95 62.03 58.55 46.55 51.36 60.88 79.55
terminalblock 35.64 53.10 45.14 46.32 55.72 61.83 56.15 61.26 54.28 68.40
toothbrush 29.12 57.30 66.21 64.74 65.67 71.11 46.03 61.69 70.96 82.34
toy 50.13 48.70 61.41 46.73 51.97 47.95 53.22 51.81 47.96 52.50
toy brick 34.26 41.70 75.04 53.54 63.35 72.57 48.64 69.93 51.05 79.04
transistor1 29.92 56.30 70.96 68.11 50.52 47.36 39.91 48.49 71.43 86.29
u block 39.24 50.80 63.54 53.18 57.00 57.91 50.21 52.76 56.77 70.24
usb 30.93 63.00 64.82 53.69 69.61 64.54 47.68 35.22 79.52 78.52
usb adaptor 41.02 55.40 65.14 49.09 51.84 62.03 54.06 52.43 54.52 62.80
vcpill 64.80 60.80 74.73 24.09 56.10 55.16 56.98 46.50 74.77 77.17
wooden beads 39.67 61.60 66.80 55.29 64.42 45.06 50.61 52.09 61.04 54.99
woodstick 45.02 53.70 68.05 47.91 53.96 61.70 54.63 60.52 56.68 64.92
zipper 26.15 69.20 73.29 54.51 71.23 77.23 62.18 46.84 88.42 98.79
mean 41.15 56.57 64.17 52.43 56.01 60.24 52.07 53.93 62.72 69.73
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Brightness
KDAD RD4AD UnIAD ViTAD CFLOW-AD patchcore TTT++ TTAC GNL Ours

audiojack 36.81 85.30 79.88 75.51 65.84 78.25 35.97 38.26 85.90 81.40
bottle cap 66.69 59.00 58.99 68.39 67.96 39.53 13.35 45.08 53.24 59.19
button battery 36.41 80.90 72.60 65.89 67.41 86.40 43.74 57.48 79.87 81.40
end cap 61.49 75.20 75.88 61.79 54.73 67.98 60.83 55.65 70.55 79.62
eraser 44.78 47.30 71.98 41.81 49.77 46.47 54.09 46.23 51.33 52.31
fire hood 34.54 45.00 83.30 65.15 61.64 57.82 43.02 54.44 61.82 52.49
mint 49.79 61.70 56.69 46.79 49.68 65.08 44.42 66.31 51.05 56.66
mounts 31.38 72.70 75.42 56.62 59.27 68.59 59.06 59.45 57.02 73.79
pcb 38.97 78.10 81.46 65.04 46.06 63.62 40.16 66.87 71.90 75.08
phone battery 28.61 77.30 80.39 79.15 50.19 83.22 41.82 86.30 87.18 81.35
plastic nut 30.09 48.30 65.69 72.89 43.18 54.61 46.26 35.56 57.27 49.80
plastic plug 66.79 65.40 72.07 68.09 49.34 46.33 28.91 63.08 73.59 81.73
porcelain doll 69.06 38.50 37.40 26.75 57.35 37.03 53.41 37.11 53.51 35.04
regulator 49.63 43.30 51.35 45.96 40.24 58.43 49.25 45.40 55.49 46.94
rolled strip base 4.21 92.50 60.53 94.84 58.42 78.46 52.58 61.44 72.01 96.35
sim card set 26.78 82.60 80.20 51.79 60.04 70.80 38.19 18.50 89.51 88.46
switch 21.23 92.00 84.75 79.35 68.06 84.91 47.48 86.46 89.45 86.09
tape 47.35 62.50 81.31 49.91 65.89 68.92 33.72 60.25 65.75 75.02
terminalblock 32.67 41.80 46.88 55.97 48.41 53.42 34.05 39.29 46.25 63.94
toothbrush 39.53 41.90 64.97 60.20 62.50 55.31 39.06 62.67 56.06 74.36
toy 50.32 55.60 39.86 54.79 53.30 43.42 49.97 48.32 49.51 53.20
toy brick 39.71 41.10 66.06 37.26 43.57 57.75 43.27 58.55 43.14 64.45
transistor1 54.03 60.30 78.72 51.80 58.85 66.99 43.09 57.70 76.77 81.31
u block 31.16 44.20 59.40 52.05 49.51 61.97 52.99 46.79 36.93 73.78
usb 15.52 87.90 90.63 73.84 60.43 83.26 59.23 38.44 88.92 93.11
usb adaptor 24.30 67.20 74.38 74.19 53.51 65.20 51.89 68.80 64.42 65.49
vcpill 40.30 48.10 64.17 36.81 46.37 54.56 52.02 58.66 55.02 57.37
wooden beads 27.93 52.00 63.42 59.41 45.00 36.51 33.17 35.72 44.92 47.13
woodstick 45.63 65.10 70.15 69.11 62.44 66.48 42.15 66.35 71.33 64.98
zipper 3.52 99.20 94.68 93.39 95.15 88.99 52.04 77.16 75.53 94.77
mean 38.31 63.73 69.44 61.15 56.47 63.01 44.64 54.74 64.51 69.55

Defocus Blur
KDAD RD4AD UnIAD ViTAD CFLOW-AD patchcore TTT++ TTAC GNL Ours

audiojack 18.94 89.00 82.32 85.93 46.51 90.03 28.63 59.79 86.36 89.28
bottle cap 25.74 90.70 84.69 84.12 58.33 81.47 64.59 47.93 71.04 87.60
button battery 58.03 80.00 69.68 67.50 61.96 75.24 41.04 74.67 76.40 76.73
end cap 43.89 67.70 59.89 53.42 48.54 64.02 39.78 60.17 64.22 67.66
eraser 22.77 84.30 87.78 74.03 78.76 87.63 39.07 50.66 71.35 88.38
fire hood 28.46 87.10 85.69 75.41 75.66 86.39 60.45 48.31 88.52 88.43
mint 50.81 51.90 54.25 56.43 52.47 61.01 51.66 58.66 55.34 61.45
mounts 17.12 88.40 84.46 83.43 71.54 83.68 55.00 70.66 67.10 92.08
pcb 38.35 60.00 72.79 75.07 42.28 77.21 53.33 68.09 80.51 88.53
phone battery 21.45 47.80 79.78 84.63 65.25 71.81 30.01 51.67 88.01 83.87
plastic nut 36.17 59.80 69.74 63.67 58.16 65.49 42.42 51.37 73.94 78.30
plastic plug 19.11 86.90 79.39 84.40 76.09 84.12 42.82 81.14 82.04 86.90
porcelain doll 24.59 72.40 67.29 68.61 71.04 67.48 34.97 69.34 73.75 80.66
regulator 33.97 73.50 50.29 45.29 50.42 58.21 55.31 52.45 83.71 70.82
rolled strip base 18.83 99.20 97.18 86.42 64.98 94.15 66.42 41.67 99.16 98.14
sim card set 14.32 90.10 90.50 65.56 74.03 96.98 68.57 70.37 94.20 96.46
switch 23.37 82.70 72.08 79.47 59.98 78.65 48.22 90.81 81.53 80.70
tape 46.45 94.70 97.51 86.27 80.22 96.34 53.92 42.62 93.26 98.18
terminalblock 46.65 89.10 76.19 87.29 50.05 67.10 56.24 74.58 88.07 90.04
toothbrush 26.63 83.70 90.19 81.01 47.88 78.22 60.01 53.34 82.23 83.22
toy 29.41 75.30 65.35 66.59 50.84 57.41 46.41 49.61 68.36 49.14
toy brick 31.91 79.30 84.16 69.73 72.64 81.03 51.48 80.74 80.89 81.13
transistor1 29.63 86.40 84.88 68.55 62.89 64.17 53.83 68.36 73.91 90.70
u block 46.45 64.80 70.21 60.86 59.41 77.22 54.97 50.21 58.00 85.08
usb 21.80 79.60 83.68 80.60 58.96 67.16 45.41 39.80 84.89 82.51
usb adaptor 32.76 71.50 73.35 62.16 62.72 69.32 53.80 71.35 61.19 70.63
vcpill 23.70 91.80 84.53 65.69 78.78 90.93 69.19 89.86 91.01 92.00
wooden beads 19.29 79.80 85.40 73.93 65.49 80.91 51.49 42.77 86.16 82.85
woodstick 30.50 81.70 85.31 70.35 71.88 74.98 51.43 74.68 85.32 78.64
zipper 56.11 96.90 96.60 96.57 59.38 82.25 50.26 52.93 96.62 98.51
mean 31.24 79.54 78.84 73.43 62.57 77.02 50.69 61.29 79.57 83.29
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Contrast
KDAD RD4AD UnIAD ViTAD CFLOW-AD patchcore TTT++ TTAC GNL Ours

audiojack 29.56 61.4 25.78 68.89 53.23 56.31 52.82 43.08 81.06 71
bottle cap 63.32 55.50 65.43 59.96 31.11 52.18 46.00 59.99 55.58 47.7
button battery 67.56 49.70 46.67 57.88 50.32 50.91 55.77 49.41 58.62 56.42
end cap 42.33 59.00 62.99 47.46 44.48 58.70 49.90 43.85 57.72 60.76
eraser 48.42 47.70 38.03 67.34 52.17 46.58 56.19 55.43 54.65 58.15
fire hood 56.24 45.60 52.42 61.99 46.90 46.37 50.36 50.41 56.17 52.87
mint 46.95 40.30 49.72 50.81 44.62 48.16 49.67 55.72 59.65 52.57
mounts 51.75 62.80 39.96 50.18 53.76 50.49 48.84 46.07 55.71 61.19
pcb 43.38 83.10 46.40 55.26 42.35 54.31 59.17 60.93 45.32 64.8
phone battery 24.66 77.10 35.88 56.08 57.19 30.47 54.49 70.54 67.11 51.09
plastic nut 49.12 54.50 58.52 56.99 49.92 49.62 47.47 29.51 56.09 53.35
plastic plug 72.42 55.10 71.50 71.88 63.06 59.55 69.98 77.24 77.1 74.48
porcelain doll 40.93 54.70 57.34 48.58 46.67 57.77 40.92 60.40 69.51 53.31
regulator 39.61 55.40 50.81 55.39 50.27 50.97 54.51 50.76 56.59 58.7
rolled strip base 32.42 66.90 56.57 54.14 51.44 61.27 63.72 73.03 64.83 53.71
sim card set 62.88 46.00 62.67 51.30 79.17 39.38 45.27 87.36 64.52 67.04
switch 46.04 52.20 37.97 47.92 59.11 45.18 50.78 49.15 70.06 47.53
tape 29.75 76.40 82.01 58.92 58.60 51.45 36.27 51.70 83.44 87.46
terminalblock 63.91 46.20 49.97 49.93 66.72 64.56 52.65 41.13 66.25 66.31
toothbrush 69.30 47.70 51.29 57.42 60.75 40.18 42.36 69.07 66.39 62.32
toy 45.27 40.30 45.69 56.76 45.19 53.10 53.01 59.57 52.6 49.25
toy brick 41.71 56.80 56.73 64.43 67.98 56.01 43.97 41.40 67.81 66.65
transistor1 64.33 57.70 53.53 52.76 47.46 41.01 77.42 67.54 49.87 65.77
u block 48.12 49.80 41.59 50.86 52.08 50.14 40.79 49.18 54.51 56.15
usb 42.87 47.20 50.69 52.42 48.41 49.96 43.38 45.61 70.58 60.18
usb adaptor 47.54 56.60 65.62 47.01 47.59 43.78 47.41 43.16 48.31 64.99
vcpill 18.38 73.20 59.67 52.24 40.08 50.05 23.59 27.94 54.56 42.87
wooden beads 56.03 58.90 59.24 57.70 43.49 49.98 51.79 51.18 60.47 57.34
woodstick 51.19 45.60 49.11 60.86 46.40 53.74 46.25 49.49 57.23 61.67
zipper 3.41 99.20 94.74 99.39 94.84 48.73 67.14 34.69 86.23 95.74
mean 46.65 57.42 53.95 57.43 53.18 50.36 50.73 53.15 62.28 60.71

Table 7: MVTec per class pixel AUROC(%)
Method bottle cable capsule carpet grid hazelnut leather metal nut pill screw tile toothbrush transistor wood zipper mean

Gaussian Noise

Patch SVDD 47.42 66.89 27.75 78.95 78.22 82.63 81.76 41.39 52.78 21.52 48.49 19.96 44.19 80.54 57.85 55.36
RD4AD 54.40 97.12 93.68 98.28 97.45 96.00 99.08 63.01 73.49 95.80 91.45 97.25 82.54 88.20 75.5 86.88
CFLOW-AD 67.84 77.17 73.86 73.11 57.56 63.65 72.42 72.07 69.03 84.21 80.63 51.71 90.57 74.17 47.70 70.38
patchcore 84.97 92.74 93.67 95.61 67.76 96.10 97.01 84.51 76.2 88.94 83.48 94.35 84.14 80.10 85.44 87.00
TTT++ 78.44 89.74 88.00 95.41 65.47 81.69 95.66 75.80 55.23 79.79 84.50 94.63 80.61 81.53 58.18 80.31
TTAC 74.87 49.28 43.88 51.21 62.27 58.52 50.46 66.97 48.93 43.78 53.86 75.11 66.29 47.79 58.28 56.77
Ours 95.98 96.47 94.98 97.68 94.2 98.36 98.44 93.77 87.07 95.73 89.25 97.98 90.41 88.19 93.46 94.13

Brightness

Patch SVDD 73.07 54.15 36.05 53.62 46.68 84.51 55.91 75.84 50.08 80.69 57.77 79.17 61.90 49.86 79.03 62.56
RD4AD 98.79 95.92 79.74 99.13 98.31 100.00 100.00 92.31 89.70 61.26 97.74 68.95 87.78 99.75 93.13 90.83
CFLOW-AD 91.94 93.06 90.11 71.76 45.90 75.57 81.91 67.87 75.30 22.99 89.99 74.72 85.61 88.12 83.17 75.87
patchcore 97.20 95.54 95.73 97.57 90.33 97.36 98.10 95.98 85.38 51.14 92.29 97.16 90.60 90.12 96.41 91.39
TTT++ 96.45 92.38 73.95 96.02 65.51 70.36 94.70 93.59 59.08 22.76 90.78 97.52 84.01 80.13 70.79 79.20
TTAC 98.22 96.52 45.60 96.92 91.94 98.04 97.78 75.83 66.99 21.14 74.85 97.52 88.66 87.76 96.48 82.28
Ours 97.69 97.26 96.12 98.77 97.10 98.10 99.02 97.15 89.77 97.09 93.83 98.33 94.99 92.96 98.40 96.44

Defocus Blur

Patch SVDD 80.79 33.55 93.92 35.12 67.48 75.10 46.73 69.72 49.95 63.20 59.98 85.10 74.82 82.21 57.70 65.02
RD4AD 98.30 97.22 94.77 98.30 97.12 98.84 99.47 97.53 97.06 98.50 93.13 98.29 89.87 93.65 95.82 96.52
CFLOW-AD 94.01 93.47 60.77 74.39 62.26 98.08 80.92 92.90 89.12 40.00 80.44 83.58 95.26 70.80 71.85 79.19
patchcore 97.06 96.68 97.54 95.90 75.49 98.55 98.82 94.48 93.17 93.79 89.85 96.80 93.08 89.73 89.21 93.34
TTT++ 80.59 91.83 80.86 94.47 62.72 85.85 94.73 75.88 47.08 69.94 84.54 94.63 73.34 81.31 70.41 79.21
TTAC 40.94 76.34 27.30 65.28 51.07 27.66 24.59 34.94 19.03 8.84 60.01 23.33 62.56 39.07 15.55 38.43
Ours 97.71 97.36 97.98 97.67 94.10 98.64 99.06 95.97 95.05 97.4 93.15 98.34 95.58 92.48 97.44 96.53
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Figure 8: More qualitative segmentation results from MVTec dataset.
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