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Abstract

Modern language models (LMs) pose a new challenge in capability assess-
ment. Static benchmarks inevitably saturate without providing confidence
in the deployment tolerances of LM-based systems, but developers nonethe-
less claim that their models have generalized traits such as reasoning or
open-domain language understanding based on these flawed metrics. The
science and practice of LMs requires a new approach to benchmarking
which measures specific capabilities with dynamic assessments. To be con-
fident in our metrics, we need a new discipline of model metrology—one
which focuses on how to generate benchmarks that predict performance
under deployment. Motivated by our evaluation criteria, we outline how
building a community of model metrology practitioners—one focused on
building tools and studying how to measure system capabilities—is the
best way to meet these needs to and add clarity to the AI discussion.

1 Introduction

Just how good are our current language models? It’s hard to say. Even the latest benchmarks
are not scalable, relevant, or durable enough to predict performance in real-world settings.

Although engineering (Saka et al., 2024; Goyal et al., 2024), research (Bommasani et al.,
2021; Bai et al., 2022), and policy (Cihon, 2019; NIST, 2023) decisions are grounded in the
supposed capabilities of Al systems—particularly language models (Tolan et al., 2021; NIST,
2022)—even experts disagree about the nature (Li et al., 2023; Morris et al., 2023) and extent
(Jumelet & Hupkes, 2018; Bender & Koller, 2020; Park et al., 2022) of these capabilities.

Most LM breakthroughs are judged either through aggregate performance on narrow benchmarks
(Achiam et al., 2023) or one-off manual analyses (Bubeck et al., 2023). These assessments then
inform conversations around scaling (Hoffmann et al., 2022), risk (Falco et al., 2021), and
deployability. Popular static benchmarks inevitably saturate (Beyer et al., 2020; Ott et al.,
2022) as each consecutive generation of models over-optimizes for performance on its
evaluation sets—a process exacerbated by those datasets contaminating future training
data—without resolving fundamental impasses over the nature of LMs or usefully informing
their deployment. We need benchmark practices that yield meaningful observations.

The emergence of a new discipline: from homemade microscopes to optical metrology

In 1609, Galileo Galilei built one of the first optical telescopes. When he turned it
around, Galileo found that he could also observe very small objects close up—and
so microscopy was born (Singer, 1914). For centuries, these tools were built by the
same scientists using them to make fundamental discoveries (La Berge, 1999).

Eventually, the expertise required to design the precise tools to advance science
outstripped scientists” glassworking skills. By the 20th century, large teams of
specialists built orbital space telescopes (Leverington, 2012) and microscopes became
mass-manufactured commodities (Davidson & Abramowitz, 2002). The science and
engineering of measurement tools have coalesced into specialized disciplines.

Corresponding authors: saxon@ucsb.edu, nsaphra@fas.harvard.edu


mailto:saxon@ucsb.edu
mailto:nsaphra@fas.harvard.edu

Published as a conference paper at COLM 2024

At present, our LM evaluation practices resemble the state of astronomy and microbiology
in the early 17th century—the same community analyzing the object of study (models)
is also building the tools for that analysis (benchmarks). We believe that LMs require an
independent professional and scientific community dedicated to building analytic tools just
as microscope and telescope building have. Just as metrology—the science of measurement—
coalesced from a useful skill for natural scientists into an independent discipline, we call for
formalizing model evaluation research into a new field, model metrology.

First, we enumerate fundamental problems in language model assessment (Section 2).
Popular benchmarks wrongheadedly attempt to measure generalized capabilities, a poorly
defined goal (§2.1), distracting us from capturing real-world utility (§2.2). These issues and
others, such as static benchmark saturation, are widely recognized, but have gone unsolved
due to cultural disconnects between model builders, evaluators, and real-world users (§2.3).

From there we identify critical qualities that useful and concrete benchmarks should have
(Section 3)—constrained settings, dynamic examples, and plug-and-play deployability—to
motivate our proposals for rectifying the aforementioned issues, leading into our discussion
of how a dedicated model metrology community is the way to provide them (Section 4).

Model metrologists can serve as a bridge between scientists, practitioners, and users (§4.1)
and build benchmarks that meet our desiderata (§4.2). Within their field they will share
knowledge, techniques, tooling, and theory (§4.3) to enable rigorous critique and auditing
of other metrologists” work (§4.4), and advance the overall rigor of Al science. But how can
we build the model metrology field?

Section 5 introduces possible first steps, identifying existing disparate communities of
domain-specific proto-metrologists and discussing how they may be organized into a unified
community (§5.1). By soliciting real-world measurement needs (§5.2) and engaging with Al
subfields that need better measurement practices (§5.3), the field can naturally grow.

Section 6 concludes by noting the role metrology can play in high-level discussions around
the fundamental nature of Al (§6.1), and how Al researchers—like the astronomers, phyi-
cists, and biologists who came before them—might transition model metrology from an
exploratory science, to a formal field, to finally, a mature engineering discipline (§6.2).

2 Problems with current benchmarks for LMs

While benchmarks have long driven Al progress, they are now used to support increas-
ingly grandiose claims. When research communities believe that “solving” a benchmark
represents core progress toward generalized intelligence, interest and investment naturally
follow. Raji et al. (2021) document how the common task framework—public contests between
systems assessed on common train and test sets (Donoho, 2017)—enabled advancements in
concrete and tightly-scoped problems such as automatic speech recognition and machine
translation, but has since been inappropriately extended to claim generalized capabilities in
pretrained vision (Russakovsky et al., 2015) and language (Wang et al., 2019) models.

Current language modeling practices have shifted from training and testing on specific
benchmark datasets to testing models in a zero-shot setting. Consequently, many researchers
assume that because LMs aren’t deliberately trained on task-specific train sets (Ge et al., 2023;
Bai et al., 2024), performance on these benchmarks is stronger evidence of general capability
than for fine-tuned models (Piantadosi & Hill, 2022; Mitchell & Krakauer, 2023). Though
these assumptions are controversial—evidenced by the remarkably divergent perspectives
of NLP and Al researchers (Michael et al., 2023)—the glamour of the promise of general
intelligence has carried claims of generalized intelligence to a credulous public (Neri &
Cozman, 2020), driving anxieties over Al risk (Ambartsoumean & Yampolskiy, 2023).

These attempts to assess general capabilities address a legitimate need: evaluation is impor-
tant for guiding advances and comparing models (Phillips et al., 2000). Because modern
LMs are used as everything systems, we may naturally wish to characterize their general capa-
bilities (Morris et al., 2023). However, when attempting to assess general capabilities, evaluations
neither capture general competency nor predict performance on many downstream applications.
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On the wrasse fish & the pitfalls of generalized capabilities

As the apocryphal Einstein quote goes, “if you judge a fish by its ability to climb a
tree, it will live its whole life believing that it is stupid” (O'Toole, 2017).

Ironically, there is at least one example of fish intelligence outpacing primates, namely
the economic puzzles solved in labs by the cleaner wrasse, a symbiotic species that
lives in coral reefs and feeds on the parasites of larger fish. The fish are given meal
options which should be eaten in a particular order due to variable reliability, and
they find the optimal solution faster than capuchins, chimpanzees, orangutans, and
even one researcher’s four-year-old daughter (Salwiczek et al., 2012).

The wrasse evolved to preferentially treat regular customers over reef visitors, track-
ing clientele across thousands of daily parasite cleanings (Gibson & Barnes, 2000).
An artificial “wrassebot” would be ready to deploy only when it exhibits game
theoretically-optimal strategies and “machiavellian” (Bshary, 2011) manipulations of
clientele—but there’s no need to solve grade school math problems or translate text.

2.1 Generalized capabilities are hard to define and contentious.

Narrow LM capability benchmarks are often derived either from tests for humans—e.g.,
GSMSK (Cobbe et al., 2021) and MMLU (Hendrycks et al., 2021)—or from existing constrained
benchmarks for specific engineering problems in natural language processing such as question
answering (Ho et al., 2023) or entailment recognition (Bowman et al., 2015). Performance
on these benchmarks often predicts performance on similar test sets on the same task, to
the degree that a violation of this expectation can be evidence of test-set contamination
(Paster, 2023; Jain et al., 2024, fig. 5). However, claims regarding the real-world reliability of
these systems are often unsupported (Liao et al., 2021). We believe these benchmarks cannot
characterize broader capabilities, even when aggregated.

Critics of generalized capabilities benchmarks note that they lack construct validity—strong
evidence that any evaluation represents a capability (O’Leary-Kelly & Vokurka, 1998) that
they claim to measure (Davis, 2023). This discordance between metrics and resulting
claims was already present for fine-tuned model evaluation (Raji et al., 2021) but has since
worsened, as LM developers and their allies claim generalized intelligence (Bubeck et al.,
2023), often based on a huge set of limited benchmark scores (Fei et al., 2022; Achiam et al.,
2023). Similar claims are made for more specific abstract capabilities when researchers
attribute benchmark performance to faculties like abstract reasoning (Yasunaga et al., 2021),
language understanding (Moore, 2022), or common sense knowledge (Zhao et al., 2023b).

We are at an impasse. Though these claims of generality are contested (Murty et al., 2023),
they are hard to conclusively disprove. Bender & Koller (2020) argue axiomatically that
understanding cannot be acquired through the LM objective. Poor generalization across
time (Lazaridou et al., 2021), tasks (Yang et al., 2022), and heuristics (Singhal et al., 2023)
have also been provided as empirical counterarguments to LM capability claims. Given that
humans struggle to even evaluate intelligence in other animals (De Waal, 2016), how can we
assess slippery abstract notions like reasoning (Manning, 2022) in Al systems?

2.2 Benchmarks can aim for generality—or they can be valid and useful.

When benchmarks claim to test abstract capabilities, critics often question whether that
capability is necessary or just sufficient for their solution (Potts, 2020). To substantiate a
capability claim, a task must require said capability, but it may be impossible to prove that
relationship. After all, both a studious human scholar and an answer key achieve 100%
accuracy on an exam, but a piece of paper clearly does not possess the scholar’s intelligence.

Consider a developer of a real-world application based on an LM, which we dub builder-
consumers. For a builder-consumer, a useful benchmark must simply test if a system—
regardless of abstract capabilities—is performant on their task. Meaningfully representing
the deployment setting makes a benchmark ecologically valid (De Vries et al., 2020).
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Are generality and ecological validity fundamentally in tension? Recent efforts to unify
these goals such as HELM (Liang et al., 2023) provide a large collection of scores by har-
vesting existing benchmarks divided into specific scenarios (e.g., news domain tasks). By
contextualizing these tasks within categories—and providing disaggregated scores over
them—they aim to preserve task-level construct validity (Liao & Xiao, 2023) while capturing
a “holistic” view of an LM’s capabilities. Though many of these tasks may have construct
validity, these holistic evaluation attempts do not capture generality—each benchmark
represents a tiny view of a broader “task universe” (Liao et al., 2021). Ecological validity
is particularly problematic when discussing “AGI-level” capabilities (Morris et al., 2023),
though discussing the credibility of those notions is not central here.

Most model consumers are developing applications that rely on predictable LM behavior
and therefore need to evaluate consistent, constrained capabilities for their domain. How-
ever, developers such as OpenAl (Achiam et al., 2023), Anthropic (Anthropic, 2023), and
Google (Team et al., 2023; 2024) instead continue to focus on the same MMLU, GSM8K, and
HumankEval test suites rather than on application-specific tests. These platforms provide
APT access to these models as a paid service, so why aren’t they benchmarking customer-relevant
capabilities? Maybe they are convinced that general intelligence is quantifiable by these
benchmarks. Perhaps the deeper issue is that building bespoke evaluations is hard, and the
domains are innumerable—will a collection of constrained tests ever be large enough to
placate critics? Do scientists have a role to play in producing these gap-closing evaluations?

2.3  We know existing benchmarks are flawed. Why do we keep using them?

These criticisms are not novel—indeed, they’re commonly expressed sentiments. Regardless,
these flawed benchmarks remain dominant. Saturation is broadly acknowledged as a prob-
lem whose mechanisms present a fundamental challenge to benchmark validity. GSMS8K,
long used to assess mathematical reasoning, is fully saturated for “frontier” models—GPT-
4 achieves near-100% accuracy with prompting and decoding tricks (Zhou et al., 2024a).
We know models overfit even to hidden (but static) test sets (Gorman & Bedrick, 2019).
We know that the long tail of incomprehensibly large pretraining datasets (Mitchell et al.,
2022; Elazar et al., 2023) inevitably enables answer memorization (Alzahrani et al., 2024)
or heuristic learning (Poliak et al., 2018; McCoy et al., 2019; Wang et al., 2021; Saxon et al.,
2023) through similar examples (Peng et al., 2023; Kandpal et al., 2023). Poor construct
validity is widely noted (Jacobs & Wallach, 2021), as is the futility of measuring generalized
capabilities (Casares et al., 2022). So why do we still rely on these benchmarks? Perhaps:

1. Misalignment of interest/incentives for researchers and needs of users.
2. Fundamental difficulties in building benchmarks that meet our desiderata.
3. The allure of general intelligence attracts public, media, and investor attention.

As long as the LM community is the primary benchmark building community, these prob-
lems will persist. The incentives for academic researchers building benchmarks is ‘impact,’
as measured through citations and public use (Kang et al., 2023), and primary incentive for
industrial actors is to demonstrate the superiority of their latest product. Unsurprisingly,
‘top benchmarks’ from a small number of elite institutions have become primary measures of
Al progress (Koch et al., 2021). In the short term, a carefully-scoped and rigorously designed
benchmark is as impactful as a well-hyped but soon-to-saturate one—but the former is
much harder to make than the latter. The development of best practices for benchmark
building cannot rely on the incentives of scientific machine learning research.

3 Qualities of useful, concrete benchmarks

The problems above can only be solved if we abandon general metrics when making deployment
decisions. Why study the wrasse fish’s intelligence outside of the reef?

We need a benchmarking culture and practice that empowers consumers to specify their
desired constraints and generate their own benchmarks. Model producers should track progress
by these scenario-driven evaluations. Good LM capability evaluations are:
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Constrained. Benchmarks that characterize model behavior on a concrete task where
domain experts can describe the boundaries a good system should stay within are constrained.
Often, concrete problems can be defined in terms of verifiable rules. Given these boundaries
as an objective, issues of scenario innumerability and ecological validity become much more
tractable, as we can rely on domain expert understanding of real-world inputs.

Dynamic. A fixed dataset is easily memorized. To avoid stale metrics, we prefer dynamically
generated test simulations where performance is measured by task-specific constraints.

Plug-and-play. Benchmark generating processes must be plug-and-play, i.e., run easily
using customer-specific models or constraints. Expensive, one-off benchmarks are unlikely
to foster open academic discourse—or provide value to downstream developers—and
human preferences are expensive to gather and difficult to replicate. Accessible evaluation
setups will entice domain experts to apply and even publish their constraints.

These desiderata are mutually reinforcing and enabled by abandoning generality and centering
the needs of real-world builder-consumers and end users. Because model developers and
Al researchers usually aim to improve general capabilities, focused real-world evaluation
must instead rely on dedicated practitioners, i.e. metrologists.

4 The promise of a model metrology community

In this section, we explain how and why a dedicated discipline of model metrology can
resolve the aforementioned issues, producing benchmarks that meet our desiderata and
improve the state of LM production, use, and analysis. We lay out the benefits a dedicated
metrology community would bring, the types of problems it would enable better solutions
to, the research and engineering activities metrologists might undertake, and the cultural
changes in broader Al science it would effect, discussing existing relevant work throughout.

4.1 A dedicated community can better connect researchers, developers, and users.

Given their role in spurring investment, flawed benchmarks and metrics lead researchers to
waste time and effort developing methods that are ill-suited to any real-world application
(Hoyle et al., 2021). Currently, LM benchmarking is disengaged from builder-consumers
(Yang et al., 2023) and model-based service end-users (Xiao et al., 2024). Model metrology
requires social change in both scientific and product communities to mitigate this disengage-
ment. Even if tools and methods existed that could convert user constraints into quality
dynamic benchmarks (see §4.2), enabling prospective LM-based application developers to
successfully capture their use case in specifications may still be a challenge.

For example, consider the Air Canada chatbot incident. A Canadian court found Air Canada
liable for paying a customer a nonexistent, off-policy bereavement discount promised by
an LM-based customer service agent (Melnick, 2024). This agent, presumably using a GPT-
based model, failed to adhere to policy—thereby failing as a customer service agent—despite
GPT-3.5’s near state-of-the-art performance on a massive suite of generalized benchmarks.

This incident might be described as the underlying LM lacking several different abstract
capabilities. Perhaps the agent failed at rule-following, if the rules for bereavement discounts
was specified somewhere in the system prompt context. Perhaps the agent failed in common-
sense reasoning, if this specific policy wasn’t explicitly provided but the list of all allowable
discounts was. Regardless of the source of the error, it is unlikely that this specific failure
case could have been predicted through generalized benchmark results.

However, a builder-consumer developing customer service agents could have tested for
failures like this, but currently lacks the tooling to do so. Within the customer service
agent domain, common sense entails not making promises that violate policy. A developer
could manually enumerate every line of the policy, probing the agent for examples where
it would fail. Model developers aren’t thinking what abstract capability failures mean in
diverse domains, but domain experts who will use the models know what their needs are. Model
metrologist-developed methods will enable builder-consumers to plug their own constraints
in to generate ecologically valid benchmarks for their specific task.



Published as a conference paper at COLM 2024

4.2 Metrologists will produce targeted dynamic benchmarks for complex problems.

How might a dedicated community build evaluations that meet our desiderata? Let’s
consider the Air Canada incident. Suppose a developer had a concrete list of rules for a
customer service agent to follow, including not promising off-policy transactions. How do
we use such rules to dynamically evaluate an LM for this constrained domain?

One technique could be to leverage an adversarial LM as a source of variation, generating
many test cases attacking the task-domain constraints. In our airline customer service
example, an LM could be prompted to generate role-play scenarios of various challenging
customers: a child pranking the system, a client who struggles with technology, a jailbreaker
looking for a big discount, or a panicked and angry stranded traveler.

Model outputs conditioned on these adversarial test dialogs could be judged deterministi-
cally against policy constraints, detecting issues like diversion from company policy. Even
though the evaluation is dynamic, no human evaluator needs to manually enumerate all
edge cases, as an expert has already fixed the deterministic rules. This style of evaluation
exists—within the silo of LM security research (Shayegani et al., 2024; Zhu et al., 2023)—a
metrology community would further its development, dissemination, and deployment.

Evaluation scenarios like this one are possible with current technology, as LM adversaries
have been already been used for stress testing and assessment (Chan et al., 2024). There
is mounting evidence that, using reversal, LMs can generate exemplars that they can’t
correctly respond to (Berglund et al., 2023; West et al., 2023). Given well-scoped constraints,
model outputs can be evaluated deterministically, e.g., using variation between minimal
pairs (Ribeiro et al., 2020) or fulfillment of a set of requirements (Hu et al., 2023), rather than
using arbitrary and opaque LM-judgements of dubious reliability (Oh et al., 2024).

Though we have proposed a dynamic evaluation pipeline for one constrained setting, we
are not claiming to have described the best way to produce a strong benchmark-generating
process for all settings. Concerted research is necessary to develop best practices for metrol-
ogy. Professional model metrologists will have to be competent at developing, formalizing,
and sharing insights from disparate benchmark efforts for the benefit of the field.

4.3 Model metrologists will establish shared knowledge & techniques.

Even as we develop increasingly sophisticated evaluation methods, our community lacks
consensus on their validity and best practices for their use. Metrics that use automatic scores
from reference-similarity (Kocmi & Federmann, 2023) or correctness (Wang et al., 2023a;
Mizumoto & Eguchi, 2023) are hotly debated (Chiang & Lee, 2023). For metrologists to use
a technique with confidence, they need community consensus on its efficacy. We need:

Shared framings of abstract capabilities across concrete settings. Although abstract
capabilities like “reasoning,” “understanding,” or “rule-following” are ill-defined and
unquantifiable in general, they can be used to frame desired behavior and edge cases to
avoid in constrained settings. For example, the apparent lack of rule-following exhibited
in the Air Canada incident suggests that constraint-based adversarial agent testing may
uncover failure modes in a customer service chat bot setting. Techniques developed in
pursuit of that evaluation could probably be leveraged for many other rule-following
problems in other constrained settings. Transfer of this knowledge would be facilitated by
having dedicated metrologists—rather than customer service chat bot developers—building
and promoting these constrained evaluations. By comparing the results of a method
deployed across disparate settings, metrologists will guide further tool development.

Evidence Centered Benchmark Design (ECBD) (Liu et al., 2024) is an example of proto-
metrology work toward this direction. They lay out a framework for assessing whether a
benchmark actually captures a desired (often abstract) capability through analysis of specific
“test items” within a target application context. Effort in using a standardized framework to
describe a capability in one domain may transfer to another, and through the accumulation
of evidence on how these framings perform in the wild, metrologists will develop a more
sophisticated vocabulary to develop the practice of model measurement and assessment.
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A shift from observations to theories and science. The Al community is sharing ob-
servations about LMs too fast for any one researcher to follow. Without replication and
meta-analyses, scientists cannot determine which observations expose meaningful patterns
and which represent random idiosyncrasies. For example, the evidence connecting bench-
marks on various domains is weak (Fergusson et al., 2023). Although different math tests
are usefully correlated (Paster, 2023) and small test sets of under 100 samples estimate
on large static multi-task benchmarks (Polo et al., 2024), the future of these approaches
remains uncertain. Can we predict the limits of this generalization? Will it hold for new
classes of models? Will it hold for dynamic benchmarking or constraint-based benchmarks?
A dedicated discipline could synthesize the growing evaluation literature by replicating,
analyzing, and eventually canonizing findings into useful theories of metrology.

The luminiferous aether & advances in science driven by surprising measurements

When 17th century physicists first proposed that light is a wave, they posited that it
must travel through a physical medium, which they dubbed the luminiferous aether.
As the earth moves through space, the theory predicted that an aether wind would be
observed, making the speed of light on earth different in different directions.

However, the aether remained unobservable until the late 19th century invention
of the interferometer, an instrument to measure light interference patterns. The
Michelson-Morley experiment, intended to demonstrate the direction of the aether
wind by comparing the speed of light in orthogonal directions, failed to find any
differences. Enabled by advances in measurement technology, this “most famous
failed experiment” (Blum & Lototsky, 2006) revolutionized 20th century physics,
ultimately giving rise to relativity and quantum theory (Shankland, 1964).

By producing new measurement tools, model metrologists can not only validate existing
models but drive LM science as a whole. As in other sciences, better measurements can
precipitate questions that our current scientific paradigms are not yet capable of asking
(Kuhn, 1962). For example, improved metrics can enable more sophisticated testing of
scaling laws (Schaeffer et al., 2024) and discover associations between specific capabilities
and error types. While it is impossible to predict what future paradigm shifts will look
like, we are confident that surprising yet high-confidence observations—which metrology
is intended to enable—will have an important role to play.

Quality benchmark-building tools. In the long term, metrologists should aim to develop
tooling for automated benchmark generation by domain experts who are not necessarily
evaluation experts, as discussed above. This will require technical innovations such as
methods to expand a high-level task description into a set of exemplars, or prompting
an LM to behave adversarially against a task-specific LM system. Among other tools,
metrologists must develop prompting techniques that test the boundaries of rule-following
in one setting (e.g., customer service) and generalize better to other settings (e.g., planning
navigation). These concretely motivated—but generalized—techniques would be more
appropriate than those explicitly designed for reasoning assessment. Perhaps the best way
to test rule-following is to monitor agents interacting with simulated situations. Proper
evaluation, however, requires both creativity and broad knowledge. Metrologists could
stress-test chat bots by eliciting interactive personae by prompting (Cheng et al., 2023).

Task Me Anything (Zhang et al., 2024) is a recent example of work toward automated
evaluation that is accessible out-of-the-box to non-experts. The authors propose a technique
to build a multimodal LM evaluation set to answer specific queries about language model
capabilities such as “which model is best at counting objects?” by selecting samples from
existing static benchmarks. Techniques such as this coupled with sample generation strate-
gies could be shared between metrologists across application domains in combination with
other tools such as automated sample generation to build better dynamic benchmarks.

While some tasks are well-suited for constraint-based evaluation, for others (such as gen-
eral purpose chat agents) the target is human preference. The gold standard for human
preference evaluation in interactive LM applications are competitive interactive evaluations
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such as Chatbot Arena (Chiang et al., 2024) where multiple systems are compared head-to-
head on genuine human-generated queries. Although “chat agents” are not a particularly
constrained domain, these evaluations do capture genuine human preference dynamically.
Unfortunately, they are expensive to run and inconsistent, as any new system will be run
head-to-head against all other models on new human interactions that must be collected
over time. In light of these shortcomings LM-as-a-judge techniques have been proposed,
where an evaluator language model is used as a proxy for human preference feedback
(Zheng et al., 2023). Metrologists might expand this technique beyond chat bot evaluation.

4.4 Metrology culture prioritizes data work, methodological rigor, and proactive criticism.

Despite its importance, data work is devalued in Al research communities compared to
more glamorous theoretical, empirical, and modeling work (Sambasivan et al., 2021). Even
without a cultural shift in Al research, a metrology-focused community should center data
and benchmarking work as first-class contributions.

Recent existing work has promoted rigor in benchmarking by identifying model cheating on
benchmarks (Chen et al., 2024), finding errors in dynamic benchmark generators (Saxon et al.,
2024a), and producing meta-metrics to find benchmark failure modes (Saxon et al., 2024b).
However, these efforts are reactively responding to flawed work, rather than proactively
identifying best practices for capability measurement. A metrology community should
aspire to be the latter.

5 How do we build the model metrology discipline?

Having established the motivation, purpose, and necessity of the dedicated discipline of
model metrology, we now discuss ways we might build the field. Because an evaluation
discipline is not part of the existing language modeling community’s culture—including
among model consumers—metrology can only be built alongside substantial social change.

5.1 Uniting proto-metrology communities

Many ML, NLP, and Al conferences already hold benchmarks and evaluation tracks. Work
on metric development and benchmarking best practices has regularly appears at ICLR (Lu
et al.,, 2024), *ACL (Maynez et al., 2023), CVPR (Xu et al., 2022), and NeurIPS (Zhang et al,,
2023). These researchers are effectively proto-metrologists establishing foundations for this
field. As a starting point, current and aspiring metrology researchers should be familiar
with these pioneering works. Workshops and evaluation-focused venues could facilitate
cross-engagement between aspiring metrologists and ultimately provide an intellectual
home. For inspiration, we look to existing communities of proto-metrologists concentrated
in domain-specific venues (Saphra et al., 2024).

The machine translation (MT) community has invested considerably in rigorous benchmarks
and metrics. The Conference on Machine Translation (WMT) (Kocmi et al., 2023) has run
shared tasks that simultaneously benchmark translation systems and translation quality metrics
since 2006 (Bojar et al., 2016). With buy-in from both academic and industrial researchers
developing MT systems, the annual WMT shared task evaluates MT systems and metrics on
new language pairs and domains every year. In so doing, the MT community continually
refreshes their measurement practices as the field advances. Those MT researchers focused
primarily on building quality evaluation metrics are effectively MT metrologists already.

Similarly, the Generation, Evaluation & Metrics (GEM) Workshops (Gehrmann et al., 2023),
focused on advancing and evaluating text generation systems for specific tasks like data-
to-text and summarization, are another good example of a proto-metrology community.
Alongside shared tasks on building these text generation systems, they emphasize research
on metrics for evaluating generated text against gold references to better compare com-
peting submissions. Their GEM benchmark was an early attempt at building a protocol
for living text generation assessment where new tasks and metrics could be slotted into a
comprehensive benchmark over time (Gehrmann et al., 2021).
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Strong proto-metrology work is continuously being published—both within these commu-
nities and at larger venues—yet knowledge transfer between these proto-metrologists is
scattershot. Topic modeling researchers have assessed how different topic model quality
metrics vary considerably across corpus domains (Hoyle et al., 2021), yet despite its general
transferability, this finding is confined to the topic modeling community. Text-to-image
researchers have invented intricate ways to generate directed graphs of requirements to
check prompt-image faithfulness (Cho et al., 2023), yet outside this community, these tech-
niques have not disseminated. The move from annual static competitions (Harman, 1993)
to dynamic, modular packages (Thakur et al., 2021) has greatly advanced the practical
state-of-the-art in information retrieval—but researchers outside IR may be unaware.

Right now we effectively rely on happy accidents to spread evaluation knowledge across
these disciplinary barriers. By organizing this work not as “ [domain]’s evaluation research”
but as core model metrology research applied to [domain], we can render this knowledge transfer
routine. Model metrology venues should bring the culture of WMT and GEM to evaluation
writ large, so lessons from all these domains can be shared—to start we should collect and
promote these disparate threads of capability measurement research as a cohesive whole.

5.2 Soliciting novel constraints and edge cases to benchmark

A model metrology community must be built by engaging with domain experts and model
consumers. Metrology practitioners can use case studies such as the Air Canada incident
as starting points to experiment with constrained benchmark-generating systems, but ulti-
mately useful constraints can only be provided by domain experts who know the boundaries of
their tasks. Academic metrologists and metrology venues should actively solicit specifica-
tions for new tasks. These expert-designed settings could be framed as shared tasks or even
as concrete evaluation bounties. While we expect that industry and nonprofit customers
developing LM-based applications will happily contribute their constraint specifications, as
they stand to benefit most when their needs are prioritized by model training institutions,
incentivizing academic researchers to invest in this work may prove challenging.

After all, data-focused conferences such as LREC already publish specialized training and
test sets for constrained-domain tasks—but our academic incentive structures based on
‘prestige” and technical ‘novelty” devalue these venues compared to general Al venues
like NeurIPS. A metrology community may effect sociological change toward valuing this
grounded and concrete work by providing opportunities for genuine technical novelty
(eg., benchmark generating processes) alongside crucial data work on builder-consumer-
relevant constraints. Practical model metrology will probably emerge as a profitable industry
where consultants operate similarly to penetration testing teams in information security,
customizing stress tests for each scenario based on their broad knowledge of evaluation.

5.3 Engaging with related fields

At its start, model metrology draws on the evaluation work already taking place in many do-
mains of machine learning, artificial intelligence, and natural language processing research.
Though organizing this work in a cohesive community has many benefits, model metrology
will only succeed if it continues to closely engage with its parent communities—but those
communities stand to benefit from a stronger metrology culture as well.

Empirical research requires measurable dependent variables. Beyond building better bench-
marks, model metrologists will be well-positioned to build ecologically valid observational
tools to inject rigor into capabilities-focused empirical research. In particular, we anticipate
black-box model analysis (Belinkov et al., 2023), human-computer interaction (Liu et al.,
2023), robustness (Zhong & Wang, 2023), and interpretability (Rauker et al., 2023) research
will benefit from engagement with metrologists.

While it is widely accepted that model metrics improve at larger scales, the metrics chosen
are often critiqued. Scaling laws have been claimed on LM loss (Hoffmann et al., 2022), static
benchmark performance (Srivastava et al., 2023), or—in the extreme case—a completely
decontextualized y-axis simply labeled “intelligence” (Anthropic, 2023), yet these metrics
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cannot fully support popular claims about scaling laws in general intelligence or practical
utility. A different test set and metric can elicit inverse (McKenzie et al., 2023) and U-shaped
scaling curves (Wei et al., 2023) with respect to model size, demonstrating a need for serious
discussion of measurement methodology led by metrologists.

6 Conclusions

The time has come for disparate threads of research in LM benchmarking and evaluation
scattered across many domains to coalesce into a cohesive model metrology community.

Investments into techniques to build constrained, dynamic, and plug-and-play evaluations
to end user or builder-consumer specifications will enable more granular and concrete
model evaluation. Adoption of these granular evaluations at scale will enable model makers
more holistically argue for the utility of their LMs over competitors.

A community focused on these best practices for measurement and assessment will in turn
be able to leverage this knowledge to identify new experimental directions into deeper
model capabilities. If successful, the agenda will operationalize many areas of interest
within Al including alignment, fairness, common sense, knowledge, and reasoning. These
nebulous objectives can be freed from the innumerability and construct validity issues they
acquire when treated as generalized open-domain capabilities.

Metrology will produce real-world applicable evaluation techniques to help LM users make
informed decisions and help model developers track incremental progress. We believe
grounded progress benchmarks will also improve public discourse around AL

When benchmarks attempt to simultaneously track core scientific progress and product
effectiveness, they fail to achieve either. A dedicated evaluation discipline will be able to
make great evaluations for each goal with shared methodology.

6.1 Model metrology & the artificial general intelligence (AGI) discussion

Present benchmarking culture suffers from conflicting efforts to practically compare mod-
els and to produce evidence in debates about AGI. Despite many high-profile cases of
proven benchmark contamination, AGI optimists continue to equate improvement on static
benchmarks with increases in robust intelligence. In their framing, critics are “moving the
goalposts” by dismissing newly saturated benchmarks. Meanwhile, skeptics spin underper-
formance on a specific benchmark as evidence that a target capability is impossible for LMs.
As each benchmark saturates, the cycle of hype and deflation continues and little is learned.

We believe our vision for metrology is useful as it directly gets at a core reason most people
actually care about the AGI: the promise of making drop-in replacements for humans in spe-
cific jobs. If this really is what we care about, why not measure it directly? Constrained and
ecologically valid benchmarking can finally decouple practical evaluation from ideological
arguments about AGL

A culture of model metrology will hopefully drive everyone to make weaker statements about
intrinsic model capabilities grounded in quantifiable real-world capacities. These evaluation
experts can promote a healthier, calmer public-facing discourse around Al

6.2 The end game: model assessment without a model metrologist

In the best-case scenario, the model metrology agenda succeeds by building a mature
engineering discipline and making standardized off-the-shelf benchmark-generating pro-
cesses a commodity. Our proposal is modeled on the history of microscope manufacture.
For most applications requiring a microscope, the exact desired instrument is already
mass-produced. For truly niche applications (e.g., assessing semiconductor deformation)
custom-built metrology solutions are still needed (Houghton et al., 2016). One day, LM
consumers should likewise meet their measurement needs out-of-the-box without hiring a
metrologist. This independence is the ultimate goal of a model metrology discipline.
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Limitations (and rebuttals)

You overlooked existing dynamic/constrained/construct valid benchmark examples!
Current automatically-generated benchmarks are largely confined to toy problems of limited
interest to practitioners. For games like chess (Feng et al., 2023) and reasoning and planning
problems from block worlds (Valmeekam et al., 2022; Stechly et al., 2024), test examples
can be generated and evaluated deterministically. Programming is a notable exception—
it is commercially relevant, deterministically evaluable, and test examples are relatively
easy to dynamically generate (Allamanis et al., 2024). However, even for programming,
benchmarks over fixed problem sets (e.g.,, HumanEval (Chen et al., 2021)) reign supreme.
Clearly further emphasis on the necesity of dynamic benchmarking is needed here. Dynamic
evaluations of LM coding capabilities such as LiveCodeBench (Jain et al., 2024) do source
real coding problems from the internet, but this approach is difficult to transfer to other
domains. Metrologists will create more dynamic benchmarks reflecting real applications.

As for constrained and ecologically valid benchmark examples we didn’t discuss, WildBench
(Lin et al., 2024)—a static benchmark built atop exemplars collected from WildChat (Zhao
et al., 2023a)—is one rare example of a benchmark that truly is representative of its target
distribution of real user dialogue. However, it still is static, and chat agents writ large are
not a very constrained domain. This is the reason that the LMSys benchmarks fail to meet
all our desiderata (Chiang et al., 2024). Furthermore, the actual users testing these systems
are largely LM enthusiasts or researchers themselves—this strains the ecological validity of
most arena-style benchmarks.

LMs evaluating LMs? How can a system measure capabilities we don’t know it has?
There are risks to relying on the target of analysis to self-verify. After all, how can we use
a model to measure its own capabilities (or those of similar models)? One solution is to
expand out a set of objectively verifiable characteristics with an LM, checked externally.

Preliminary evidence suggests that even GPT-4 fails to match human annotator performance
in open-domain claim verification (Wang et al., 2023b). If we prompt a model to generate
sentences, then ask GPT-4 to evaluate the generated text, how can we trust that GPT-4's
judgements capture anything meaningful? These LM judgements are also problematic for
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evaluation because they are not even comparable, as different models produce substantially
different outcomes (Zhou et al., 2024b).

Reflections on trusting trust

7”7

Ken Thompson'’s Turing award acceptance speech, “Reflections on Trusting Trust
(Thompson, 1984), details how he hid a backdoor Trojan horse in early source ver-
sions of a C compiler. Because the compiler was bootstrapped, i.e., new versions
of a compiler were compiled by the previous version, this backdoor was nearly
impossible to detect or remove without being aware of its introduction.

The backdoor was included even in versions of the compiler binary built from source
code without the backdoor, as long as that source was compiled using a binary
descended from Thompson’s modified code. His discovery, shocking in 1984, seems
almost mundane today: If any part of a complex system is compromised, the entire system
is compromised. For modern automated metrics employing blackbox language models
for their own evaluation, verification, and even training, we must view each element
as potentially compromised by the flaws in proprietary models.

Even dynamic benchmarks will go stale Living benchmarks based on arbitrary rules
can be gamed by exploiting the idiosyncracies of the supervising model and discrepancies
in the simulation environment. We have no visibility into the decision processes and
therefore no real guarantees of its validity (Oh et al., 2024). Therefore, developing a living
metrology community is crucial. Researchers and practitioners will need to refresh their
benchmark generators with new methods. Where generative techniques become obviated,
breakthroughs in measurement can occur.
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