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Abstract
Understanding the macroscopic characteristics
of biological complexes demands precision and
specificity in statistical ensemble modeling. One
of the primary challenges in this domain lies in
sampling from particular subsets of the state-
space, driven either by existing structural knowl-
edge or specific areas of interest within the state-
space. We propose a method that enables sam-
pling from distributions that rigorously adhere
to arbitrary sets of geometric constraints in Eu-
clidean spaces. This is achieved by integrat-
ing a constraint projection operator within the
well-regarded architecture of Denoising Diffu-
sion Probabilistic Models, a framework founded
in generative modeling and probabilistic infer-
ence. The significance of this work becomes
apparent, for instance, in the context of deep
learning-based drug design, where it is imper-
ative to maintain specific molecular profile in-
teractions to realize the desired therapeutic out-
comes and guarantee safety.

1. Introduction
Infinitesimal Dynamics in classical mechanics is com-
monly formalized by Lagrangians. By solving for function-
als that extremize the Lagrangian one obtains equations of
motion. In molecular systems, e.g. Molecular Dynamics,
the EOM are: M d2x

dt2 = −∇U −
∑
a λa∇σa, where M is

the diagonal mass matrix, x the cartesian coordinates, t is
time, andU is the potential energy. The σa are a set of holo-
nomic constraints and λa are the Lagrange multiplier coef-
ficients. To generalize from holonomic to nonholonomic
constraints, one can use slack variables to transform the
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latter into the first.

Starting with zx, zh = f(x, h) = [x(0), h(0)] +∫ 1

0
ϕ(x(t), h(t))dt with z being a latent vector sampled

from Gaussians and the indexes x and h indicate the la-
tent variables associated to the coordinates of each particle
and the vector embedding of each particle, ϕ is the parame-
terized transformation defined by a equivariant graph neu-
ral network. This defines a Neural ODE [Che+18] which
generalizes to Denoising Diffusion Probabilistic Models
[HJA20]. This form of transformation has the same in-
finitesimal nature as our previous EOM which makes it ac-
ceptable to apply sets of constraints via Langrange’s Mul-
tipliers, analogous to solving our EOM and thus one can
insure the continual satisfaction of a set of constraints us-
ing the Shake algorithm from Molecular Dynamics.

The study of constrained dynamics in Molecular Dynamics
and Machine Learning, has traditionally focused on mostly
linear constraints: e.g. removing high-frequency oscilla-
tions by constraining bond distances in the first and in-
painting in the latter by thresholding certain pixel values
to predetermined values. From a high level these can be
seen as linear constraint problems as the constrained subset
affects the unconstrained subset to minimal degrees. In ad-
dition, our task is more challenging as different constraints
induce different geometric topological structures, such that
some sets of distance constraints can determine uniquely
the solution, and small modifications in the constraints may
lead to vast changes in the solution set.

The problem we hope to model are non-linear constraints
where constrained subsets of atoms determine the uncon-
strained subset to a high degree. We argue these types of
non-linear constraints are important in the field of gener-
ative drug development where generated molecules must
satisfy certain structural or analytic properties a priori.
Take for instance, the optimization of lead molecules which
is crucial at the final stages of drug development pipeline
where off target interactions are attempted to be minimized.
Since these off-target reactions can often be described by
structural or analytic properties, then we can generate pre-
cisely molecules that satisfy a constraint profile of the tar-
get of interest, while specifying the subspace of generated
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molecules to not lie within the subspace of off-target inter-
action profiles.

In the following, we will give a summary of the Shake al-
gorithm and segments of the equivariant normalaizing flow
necessary to elaborate on how to combine them. Next,
it will be elaborated that the spaces of latent embeddings
and output samples are generally of very different nature,
and constraints defined in one space will not necessarily be
useful in the other. We suggest a continuous transforma-
tion of the constraints such that they are always satisfied
in the latent space, and become more restrictive throughout
the integration. Lastly, we show simple examples where
complex constraints are satisfied within small molecules.
We leave to future work the study of this methodology to
larger systems, and more application based studies. Our ap-
proach builds a fruitful junction where probabilistic infer-
ence, structured data representation, and generative model-
ing meet, while emphasizing the necessity to encode do-
main knowledge effectively in these settings, offering a
way to formally verify the distributions from which sam-
ples are drawn.

2. Previous Research
Generative models of graphs have been a subject of inter-
est in recent years. A number of different approaches have
been proposed in the literature. [HN19] generates valid
Euclidean distance matrices ensuring the resulting molec-
ular structures are physically realistic which are then re-
constructed in 3D space. In [Noé+19], Boltzmann Genera-
tors sample equilibrium states of many-body systems with
deep learning, useful for generating molecular configura-
tions that obey thermodynamics distributions.

[SHW21] proposed Equivariant Graph Neural Networks,
which can be applied to model molecules and pro-
teins while ensuring that their predictions are consis-
tent under different orientations and permutations of the
molecule.[Hoo+23] further extended the concept to the dif-
fusion process for 3D molecule generation. [Cor+23] ap-
plied similar methodologies to diffusion models on protein
ligand complexes, and [Jin+23] devise a method of protein
generation models that diffuse over harmonic potentials.

The Shake algorithm, described in a parallelized fashion
by [ERH11], enforces linear constraints on molecular dy-
namics simulations of chemicals and biomolecules. This
algorithm is conventionally used in simulations to get rid of
high frequency motions, i.e. those seen in bonds between
atoms.

3. Constrained Generative Processes
3.1. Geometric Constraints in Shake

First, we define the constraint functions for the pairwise
distance (not necessarily between bonded atoms), bond an-
gle, and dihedral angle.

σdij = (dij − dij,0)
2
= 0 (1)

σθijk = (θijk − θijk,0)
2
= 0 (2)

σψijkl
= (ψijkl − ψijkl,0)

2
= 0 (3)

These constraint functions compare the current pairwise
distance, bond angle, and dihedral angle with their target
values, and the goal is to minimize the difference. We
can additionally create nonholonomic constraints via slack
variables. For example, we can add a slack variable y ≥ 0
and define dj as the boundary of a nonholonomic con-
straint. Then, we can express the constraint as:

σa := ||xaj−xak||22−dj ≤ 0 → ||xaj−xak||22−dj+y = 0.

Next, modify the constraint matrix in the Shake algorithm
to include pairwise distance, bond angle, and dihedral an-
gle constraints seen in equation 4, where ij, ijk, and ijkl
sum over the pairwise, bond angles, and torsion constraints
indicating the number of atoms in each type of constraint
type. The constraint matrix now accounts for the pairwise
distance, bond angle, and dihedral angle constraints by in-
cluding their second-order derivatives with respect to the
Cartesian coordinates by including their contributions to
the Lagrange multipliers. After solving for the Lagrange
multipliers, update the coordinates using the adjusted coor-
dinate set equation like before. It is also possible to try to
optimize the coordinates via other optimization algorithms
like ADAM or SGD.

In this section, we discuss the methods needed to under-
stand how constraints can be represented, and define a
novel diffusion process which projects the dynamics onto
the submanifold defined by arbitrary sets of geometric con-
straints.

3.2. Shake Algorithm

The Shake algorithm takes as input a set of coordinates x of
a molecular system and a set of constraints σ. At each time
step the coordinates are updated according to the equations
of motion (EOM) at hand (without constraint terms) and
subsequently are corrected. In general, the EOM will lead
to dynamics that do not satisfy the constraints, and thus this
correction is mandatory.

Assuming masses of all the particles and delta time are unit
we have the following equation for updating xi iteratively
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A
(n−1)
αβ =

∂2U

∂xα∂xβ
+
∑
ij

λ(n−1)dij
∂2σdij
∂xα∂xβ

+
∑
ijk

λ(n−1)θijk
∂2σθijk
∂xα∂xβ

+
∑
ijkl

λ(n−1)ψijkl
∂2σψijkl

∂xα∂xβ
(4)

until the constraints are satisfied.

x
(n)
i = x

(n−1)
i −

∑
b

λ
(n−1)
b ∇σb(xi) (5)

where x(n)i is the updated coordinate after n iterations of
satisfying constraints at each time step, xi is the initial co-
ordinates at each time step, and λ(n−1)

b is the lagrange mul-
tiplier for each constraint σa. The equation to solve at each
iteration of each time step is∑

β

λ
(n−1)
β A

(n−1)
αβ = σα(x

(n−1)
i ) (6)

with

A
(n−1)
αβ = ∇σα(x(n−1)

i )∇σβ(xi). (7)

The matrix A
(n−1)
αβ is a symmetric matrix that describes

how changes in particle positions affect both potential en-
ergy and constraint violations. The elements of the matrix
are given by:

A
(n−1)
αβ =

∂2U

∂xα∂xβ
+

Nc∑
k=1

λ
(n−1)
k

∂2σk
∂xα∂xβ

(8)

where Nc is the number of constraints. The matrix A(n−1)
αβ

is used to solve for the Lagrange multipliers λ(n)β , which
are then used to adjust particle positions.

3.3. Constraint-Induced Diffusion Process

Suppose we want to incorporate a constraint, such as a dis-
tance constraint between two atoms. Let’s denote this con-
straint by f(x) = 0 for simplicity. We can modify the
diffusion process to satisfy this constraint by projecting the
noise term onto the nullspace of the gradient of the con-
straint function, analagous to the A matrix in Shake. This
gives us:

dx =
√
2D(I −∇f(x)(∇f(x))T )dB −D∇ log pt(x)dt

where D is the diffusion constant, B is a standard Brow-
nian motion, and ∇ log pt(x) is the gradient of the log-
probability density, which is equivalent to the negative of
the potential energy function of the system. Here, I is the
identity matrix, and ∇f(x)(∇f(x))T is the outer product
of the gradient of the constraint function, which represents

the direction in which the constraint is changing. This pro-
jection ensures that the noise term does not push the system
out of the constraint-satisfying space.

The covariance matrix of the perturbed Gaussian distri-
bution of the denoising process can be understood for-
mally using the Schur complement method, available in
the Appendix. The key takeaway is the relation between
constraints and correlations via projecting out the con-
straints in the Covariance matrix of a Multivariate Gaus-
sian. This modified covariance matrix then defines the per-
turbed Gaussian distribution from which we can sample at
each time step of the diffusion process. This is a good ap-
proximation when the constraints are nearly linear or when
the changes in the variables are small. One note is that in
if the projection operator is non-linear than the the process
is no longer Gaussian, but since we deal with linearized
constraints, or small changes at each time step, this is neg-
ligible as seen in the original Shake formalism. However,
the Schur Complement method gives a more general for-
malism to ensure Gaussian-ness.

3.4. Constraints as Correlations

Consider, for instance, a scenario involving pairwise dis-
tance constraints between a set of variables denoted as d =
dij , where dij signifies the distance separating variables i
and j. These constraints can be mathematically expressed
through the set of functions Cij(ϵ) = ||ϵi − ϵj || − dij =
0, which is applicable to all corresponding variable pairs
(i, j) ∈ d, influencing the samples drawn from a Multi-
variate Normal distribution.

The introduction of these geometric constraints essentially
interrelates variables that were initially independent in the
Gaussian distribution. In order to comprehend the implica-
tions of these constraints, the covariance matrix Σ′ of the
perturbed distribution p′(ϵ′) is worth examining:

Σ′ = Eϵ′∼p′ [ϵ
′(ϵ′)T ]− Eϵ′∼p′ [ϵ

′]Eϵ′∼p′ [ϵ
′]T , (9)

Here, the expectations are calculated over the perturbed
distribution. The covariance matrix Σ′ elucidates the cor-
relations among variables that emerge as a result of the ge-
ometric constraints.

Importantly, these correlations, which are encoded within
the covariance matrix of a multivariate Gaussian distribu-
tion, represent the constraints in the distribution. This pro-
vides a way to naturally incorporate constraint-based infor-
mation into the model.
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Algorithm 1 Pseudo-Code for Training

t ∼ U(0, T ), ϵ ∼ N(0, I)
Subtract center of gravity of coordinates from ϵ: ϵ̂ =
[ϵ(x), 0]− [x, 0]
Compute zt = αt[x, h] + σtϵ̂
Update zt → x+ ϵs, where ϵs = Shake(zt)− αtx
Compute ϵ′s = Shake(φ(zt) + zt)− zt
Minimize Lc = |ϵs − ϵ′s|22

3.5. Training and Sampling Algorithms

3.5.1. TRAINING PROCESS

During training, in Algorithm 2, we first sample a time
step t and noise vector ϵ from uniform and Gaussian dis-
tributions respectively. Then subtract the center of gravity
from the noise vector to ensure that it lies on a zero center
of gravity subspace. Then compute the latent variable zt
by scaling and adding the input coordinates [x, h] with the
noise vector. Finally, minimize the difference between the
estimated noise vector and output of the neural network to
optimize EDM. For each molecule between 5 and 15 con-
straints are sampled from x for each batch element. The
constraints are uniformly sampled from the pairs, triples,
and quadruplets of the atom set of each molecule. This
adds an extra layer of complexity due to the constraint dis-
tribution which we need to sample from the true data dis-
tribution.

3.5.2. GENERATIVE PROCESS

In this generative process, we first sample a latent variable
zT from a Gaussian distribution. Then iterate backwards
through time and sample noise vectors ϵ at each step. Sub-
tract the center of gravity of the coordinates from the noise
vector to ensure that it lies on a zero center of gravity sub-
space. Then compute the latent variable zs by scaling and
adding the input coordinates with the noise vector and pre-
vious latent variable. Finally, sample the input coordinates
[x, h] from a conditional distribution given the initial latent
variable z0. The Shake algorithm enforces the constraints,
as in training, at each sampling step during generation.

4. Experiments
In the experimental section of our study, we evaluate our
proposed method by generating molecules with cyclic con-
straints in Figure 1. The cyclic constraints impose specific
geometric relationships among atoms in a molecule, such
as the bond distances, bond angles, and torsional angles,
which are essential for maintaining the chemical stability
and physical plausibility of the generated molecules.

During the training phase, constraints are sampled from

the dataset. This approach encourages the model to learn
the distribution of constraints inherent in the training data,
which reduces the Kullback-Leibler (KL) divergence be-
tween the data distribution and the model distribution.
Consequently, the KL divergence during training is always
minimized, promoting the model to generate molecules that
closely resemble those in the training set.

For the practical implementation of this training procedure,
we began with a pre-trained model provided by Welling et
al.Our methodology then fine-tuned this pre-existing model
using our constraint projection method. Due to time con-
siderations and simplicity, our training and experiments fo-
cused on molecules consisting of 21 atoms.

5. Discussion
Our method serves as a potent tool for incorporating com-
plex constraints in denoising diffusion processes, specifi-
cally when dealing with multi-constraint specifications. Its
iterative nature allows it to address nonlinear constraint
problems and extends the power of denoising diffusion
probabilistic models to work with constraints. Thus al-
lowing these models to leverage the structure inherent in
many physical systems. Indeed, many of these systems
come with prior structural knowledge, including geomet-
ric information like distances, torsions, bond angles, and
generalizeable to other piece-wise polynomial terms. Such
information can significantly enhance the training process
and enable explicit sampling of subsets of the state space.

Although constraints can guide generation towards more
physically plausible structures, there can be potential insta-
bility in the generation process. This instability may orig-
inate from discrepancies between constraints used during
training and those applied during generation. It underlines
the need for further work to establish robust training pro-
cedures that align more closely with the generation con-
straints. Especially, with application focused studies like
generating peptides or ligands with specific interaction pro-
files.

Though the language of our work is steeped in the seman-
tics of Molecular Generation, the way we use geometric
constraints to guide sampling mirrors a more general need
of generative models in ML, which must navigate complex,
structured probability spaces.

Further exploration could include adapting our methodol-
ogy to discern constraints intrinsically or applying it to op-
timization processes like gradient-based learning and po-
tentially lead to more efficient or robust learning algo-
rithms.
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Figure 1: Molecules generated with 6 atom cyclic constraints between 1.3-1.5 Angstroms each with bounds of .1 Angstrom.
Atom types are generated as well, so we can not arbitrarily encode constraints between specific types of atoms in our current
implementation, but this will be possible in further developments.
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6. Appendix A: Generalized Schur
Complement for Multiple Constraints

To obtain a generalized approach of Schur Complement for
multiple distance constraints, let’s consider a set ofM pair-
wise constraints between atoms. We can express each con-
straint as a function of the positions of the corresponding
atoms:

fm(xi,xj) = ||xi − xj ||2 − d2ij = 0, m = 1, 2, . . . ,M,
(10)

where dij is the distance constraint between atoms i and j.

To incorporate all the constraints, we can form the com-
bined gradient and Hessian matrices by stacking the corre-
sponding matrices for each constraint:

∇f =
[
∇f1 ∇f2

... ∇fM
]
, (11)

∇2f =
[
∇2f1 ∇2f2

... ∇2fM

]
. (12)

To project the Gaussian distribution with the original co-
variance matrix Σ onto the space of distance constraints,
we can use the following generalized Schur complement:

Σ′ = Σ−Σ∇2fT (∇2fΣ∇2fT )−1∇2fΣ. (13)

While the Schur complement method can be implemented
iteratively for non-linear systems, it is computationally in-
tensive due to the inversion of the Hessian matrix. How-
ever, it serves as an excellent theoretical tool, providing a
precise representation of how constraints can be formally
incorporated into the diffusion process. On the other hand,
the Schur complement method provides a direct way to
project the covariance matrix of the atomic positions onto
the space that satisfies the distance constraints. It essen-
tially modifies the covariance matrix in a way that embeds
the constraints, without needing to adjust the atomic posi-
tions. This approach formally modifies the probability dis-
tribution of interest, and may be more useful for theoretic
insight.

7. Appendix C: Nonholonomic Constraints
We are more interested in nonholonomic constraints where
each constraint has possibly a lower and upper bound.
As we mentioned earlier, by adding a slack variable one
can translate the nonholonomic constraints to holonomic
ones. To formalize this, one sees that a constraint having a
lower and upper bound will either be completely satisfied
or fail to satisfy a single boundary. Thus, we only have to

consider at most one holonomic constraint at each call to
Shake meaning each constraint with a lower and upper
bound may be replaced by a lower, upper, or no bound for
each call.

To calculate the slack variable y from σjk :=
∥xli − xlj∥ − djk which is ≤ or ≥ 0, one has

y =

{
max(0, ||xli − xlj || − dujk), if ≤
max(0, dljk − ||xli − xlj ||), if ≥ (14)

where djk is the lower or upper bound in case of nonholo-
nomic constriants and the defined constraint value for holo-
nomic constraints.

In the generative process, we define the initial values of djk
such that the constraints have little effects. The constraints
are then linearly interpolated throughout the ODE until the
predetermined boundary values of djk are reached.

8. Appendix B: Incorporation of Logical
Operators in Geometric Constraints

The application of logical operators such as’AND’, ’OR’
and ’NOT’ within geometric constraints enables a more
flexible and representative modeling of physical and chem-
ical systems. Real-world scenarios frequently require the
satisfaction of multiple constraints following complex log-
ical rules. Below, we detail the basic implementation of
’OR’ and ’NOT’ logical operators within the geometric
constraints of our diffusion process while noting that the
’AND’ operator is the basis of the formalism:

8.1. ’OR’ Logic

The ’OR’ condition necessitates that at least one of two (or
more) constraints be met. Let’s denote two constraint func-
tions as f1(x) and f2(x). The ’OR’ logic can be integrated
by constructing a composite constraint function that is sat-
isfied when any of its constituent constraints is met. We
can express this as:

g(x) = min(f1(x), f2(x)) (15)

In this case, if either f1(x) = 0 or f2(x) = 0 (or both),
g(x) = 0, thereby meeting the ’OR’ condition. Alterna-
tively, we can employ a product of the constraints:

g(x) = f1(x) · f2(x) (16)

If either f1(x) = 0 or f2(x) = 0 (or both), g(x) = 0, again
adhering to the ’OR’ logic. This method requires that both
f1(x) and f2(x) are always non-negative.
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8.2. ’NOT’ Logic

The ”NOT” operator in the context of geometric constraints
could be defined using the following equations. Let’s say
we have a constraint f(x) = 0. We want to define a NOT
operator for this constraint. We can then define ”NOT f(x)”
as regions where f(x) does not equal zero, which can be
represented with two inequality constraints which can be
combined via the ’OR’ operator to designate the ’NOT’ op-
erator.

We denote ϵ as a small positive number, then ”NOT f(x)”
can be represented as:

g1(x) = f(x) + ϵ < 0 (17)

g2(x) = f(x)− ϵ > 0 (18)

In the equations above, we have defined two regions (when
f(x) is smaller than −ϵ and larger than ϵ) where ”NOT
f(x)” is true, thus defining a NOT operator for our con-
straints. Note that these regions depend on the choice of
ϵ.


