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Abstract

Existing large language models (LLM) show
disparate capability across different languages.
Their performances on non-English tasks are
often much worse than on English tasks. In
this paper, we explore to extrapolate LLM’s
English ability to non-English by building se-
mantic alignment across languages. We start
from targeting individual languages by per-
forming bilingual multi-task instruction-tuning,
ie. tuning LLM with bilingual translation
task and bilingual instruction-following task.
Then we formulate underlying scaling laws
to quantify the impact of scaling up trans-
lation data and providing insights for devis-
ing multilingual instruction-tuning strategies,
e.g., optimizing multilingual data allocation.
Experiment results show that our alignment-
enhanced LLMs significantly outperforms the
English-dominated instruction-tuned counter-
part on both translation task and other zero-shot
non-English tasks, e.g., question answering,
knowledge infilling and summarization. Our
optimized data allocation also assists LLM in
achieving better multilingual performance com-
pared to uniform allocation. Further analysis
on representation space and response content
reveals additional evidence of the established
language alignment.

1 Introduction

The language ability of LLMs is often imbalanced
across languages (Zhu et al., 2023; Huang et al.,
2023; Qi et al., 2023), because both the pre-training
corpus (Blevins and Zettlemoyer, 2022) and the
instruction-tuning data (Wang et al., 2023) are
English-dominated. As a result, LLMs usually per-
form poorly on non-English languages, especially
on languages that are dissimilar to English (Bang
et al., 2023; Huang et al., 2023).

Previously, there have been some attempts to
enhance LLMs’ non-English abilities by contin-
ued pre-training with large scale monolingual cor-
pus (Cui et al., 2023; Yang et al., 2023). However,

further learning a language may require large scale
data and computing.

In this paper, our objective is to enhance the
proficiency of off-the-shelf LLMs on non-English
languages in a more efficient manner. Specifi-
cally, we explore to extrapolate LLM’s English
ability to non-English languages. For this goal, we
present a multi-task training recipe, which com-
bines translation task and instruction-following
task during instruction-tuning. Intuitively, the trans-
lation tasks stimulate the semantic alignment be-
tween languages and combining it with multilin-
gual parallel instruction-following task encourages
LLMs to execute non-English instructions based
on its understanding of English.

At first, we target individual languages by per-
forming bilingual instruction-tuning (as depicted
on the left side of Figure 1) and formulate underly-
ing scaling laws to investigate the impact of scaling
up translation data. Guided by these scaling laws,
we perform multilingual instruction-tuning with
mixed resources (illustrated on the right side of Fig-
ure 1). Since we observe that more translation data
usually contributes to improved alignment, com-
bining all available resources for instruction-tuning
becomes the most straightforward approach to ob-
tain a powerful multilingual LLM. If we consider
a practical scenario where instruction-tuning have
to be performed under a fixed data budget, we also
devise a multilingual data allocation method by for-
mulating the problem as constrained non-linear pro-
gramming based on the established scaling laws.

In the experiments, we use both LLaMA-
7B (Touvron et al., 2023) and Pythia-6.9B (Bi-
derman et al., 2023) as the pre-trained LLM
and evaluate them on six challenging target lan-
guages. Experiment results on several multilingual
benchmarks (FLORES-101, XQUAD, MLQA,
MLAMA, XLSUM) show that our alignment-
enhanced LLM outperforms its English-dominated
instruction-tuned counterpart by a large margin. On
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Figure 1: Illustration of our devised training recipes: bilingual instruction-tuning and multilingual instruction-tuning.
We perform bilingual instruction-tuning by tuning pre-trained LLM with both bilingual instruction-following task
and bilingual translation task. Guided by the scaling law in bilingual instruction-tuning, we perform multilingual

instruction-tuning with mixed resources.

the translation task, our LLM has become a profi-
cient translator, achieving a COMET score of 85.
On other non-English zero-shot tasks, such as ques-
tion answering, knowledge infilling and summa-
rization, our model also achieves significant perfor-
mance enhancements. In the resource-constrained
setting, our optimized data allocation yields higher
multilingual performance than the uniform alloca-
tion, showing a practical usage of the established
scaling laws. Further analysis on response content
and representation space reveals that our model has
a tendency to generate non-English response based
on its English memory and multilingual semantic
space appears to align within the middle layers,
demonstrating the effectiveness of our method.

The main contribution of this paper can be sum-
marized as:

* We present a multi-task training recipe to elicit
pre-trained LLM’s non-English capability.

* We formulate the scaling law in bilingual
instruction-tuning, providing insight for mul-
tilingual instruction-tuning, e.g., we devise a
novel data allocation algorithm based on the
established scaling law.

» Extensive experiment results on multilingual
benchmarks show that our training recipe can
greatly improves LLM’s non-English capabil-
ities.

2 Related Work

Instruction-tuning LLM to unlock its poten-
tial Although pre-trained LLMs memorizes vast
amounts of knowledge, they often struggle to fol-
low human instructions accurately (Ouyang et al.,
2022). Therefore, Wei et al. (2022) propose
instruction-tuning to teach LLM to follow human
instruction and align its behavior closely with hu-
man expectations. Subsequently, numerous en-

deavors have been dedicated to this fine-tuning
approach to unlock the potential of LLMs, such
as step-by-step reasoning (Kim et al., 2023), story
generation (Du and Chilton, 2023), tabular predic-
tion (Slack and Singh, 2023). In this paper, we
focus on elicit LLM’s non-English ability through
instruction-tuning.

Improving LLM’s non-English performance
Extensive empirical evidence has shown that there
is a large gap between LLM’s English and non-
English performance (Huang et al., 2023; Qin et al.,
2023). To improve LLM’s non-English perfor-
mance, a straightforward idea is to continued pre-
train LLLM with non-English corpus (Cui et al.,
2023; Nguyen et al., 2023). However, this approach
requires large scale monolingual corpus and com-
puting. In contrast, we focus on the instruction-
tuning stage and explore a more efficient manner,
which shares the same spirit with some work con-
ducted during the same period (Chen et al., 2023;
Li et al., 2023). Compared to concurrent studies,
we go beyond showing the value of non-English
instruction data; we also present the advantages
of incorporating the translation task to enhance
LLM’s non-English performance.

3 Eliciting LLM’s non-English Ability

This section introduces our training methodol-
ogy. We start by introducing bilingual instruction-
tuning (§3.1), a technique aimed at empowering
LLM for specific non-English languages. Follow-
ing this, we formulate the scaling law in bilingual
instruction-tuning to quantify the impact of scaling
up translation data (§3.2). Lastly, we draw insights
from these scaling laws to perform multilingual
instruction-tuning (§3.3).



3.1 Bilingual Instruction-tuning

When we target a specific non-English language,
our multi-task training framework consists of bilin-
gual translation task and bilingual instruction-
following task.

Translation task Intuitively, translation data is
an invaluable resource for learning semantic align-
ment, which is, however, often overlooked in con-
current multilingual instruction-tuning research. In
our training framework, we incorporate machine
translation as an auxiliary task to teach LLM to
semantically align English and non-English lan-
guages. Specifically, we position English and non-
English text on the source and target sides of the
translation data, respectively. This implementation
can not only enhance LLM’s proficiency in non-
English generation, but also inherently encourage
LLM to generate non-English content based on its
understanding of English.

Instruction-following task It has been found
that training LLLM with diverse instructions can
greatly improves LLM’s performance on under-
standing (even unseen) instructions and aligning
LLM’s behavior with human expectations. Conse-
quently, we also incorporate this approach into our
framework. Given that commonly-used instruction-
following datasets are almost in English, we trans-
late the English dataset into the target language us-
ing a machine translation engine. During training,
we utilize both the English and non-English ver-
sion to establish a bilingual instruction-following
task, which simultaneously elicit LLM’s English
and non-English capabilities. Combining it with
translation task further encourage the extrapolation
of LLM’s English capabilities towards non-English
languages.

Training Details In the end, we combine multi-
task data into a training set D for instruction-tuning.
To unify the data format, we also pair each trans-
lation data with a translation instruction. The final
training objective can be written as:

.1
arg min —
D 2

¢ (T, X,Y}eD

—logpy(Y|T, X)

T denotes a task instruction that describes the task
requirement. X represents the optional input se-
quence and Y is the desired output for the given
task. @ denotes learnable parameters of the LLLM.

3.2 Scaling Law Formulation

The volume of translation data is an important vari-
able in our instruction-tuning. Hence, prior to ex-
tending our approach to a multilingual setting, we
strive to understand the effect of varying the size
of translation data on language alignment.

Specifically, we employ bilingual translation per-
formance as a measure of semantic alignment. To
quantify the relationship between translation per-
formance S and translation data scale X', we formu-
late the scaling law based on following insights: (1)
The upper bound of S is 100, representing the max-
imum score achievable by most translation quality
metrics. (2) The translation performance generally
enhances as the scale of translation data expands.
(3) Languages that are less similar to English re-
quire a larger amount of translation data to achieve
alignment compared to languages more similar to
English. After exploring various possible formula-
tions, we present the best-performing formulation
as follows:

S=g(X)=100—a-(y-X)°

where vy € (0, 1) represents the language similarity
between the target language and English, which can
be pre-calculated with a parallel corpora through
amethod ! introduced by Pan et al. (2021). Using
a set of observed data points {(S, X)}, the value
of o and § can be determined through non-linear
least squares 2.

In the subsequent subsection, we will illustrate
how we utilize the established scaling laws as
guidance to devise multilingual instruction-tuning
strategies.

3.3 Multilingual Instruction-tuning

Although bilingual instruction-tuning is effective,
serving customized LLLMs for each language can
be costly. Now we take a step further and inves-
tigate multilingual instruction-tuning. In this sce-
nario, our multi-task training framework encom-
passes multilingual translation task and multilin-
gual instruction-following task, also making multi-
lingual data allocation a crucial aspect to consider.

!Specifically, we use pre-trained LLM to encode parallel
data and obtain sentence representations by averaging the out-
puts from the final layer. Then we use English representations
to retrieve non-English sentences. Consequently, a retrieval
score is assigned based on the ranking of the target sentence
in the retrieval results. By averaging all retrieval scores, we
can calculate the language similarity.

2https: //en.wikipedia.org/wiki/Non-linear_
least_squares


https://en.wikipedia.org/wiki/Non-linear_least_squares
https://en.wikipedia.org/wiki/Non-linear_least_squares

Task Dataset Arabic  Greek Hindi  Turkish  Vietnamese Chinese
. WIKIMATRIX 999.8k  620.8k 231.5k  477.7k 1073.8k 786.5k
Translation
NEWSCOMMENTARY  97.4k - 2.8k - - 126.0k
Instruction-following ALPACA 52.0k 52.0k 52.0k 52.0k 52.0k 52.0k

Table 1: Statistics of our applied training dataset.

Resource-rich setting Given that the scaling law
function is monotonically increasing, it suggests
that semantic alignment can continually improve
with the use of more translation data. Consequently,
if no data budget is specified, combining all avail-
able resources for instruction-tuning becomes a
direct and effective approach to maximize multilin-
gual performance.

Resource-constrained setting A potential con-
cern of using all available resources for tuning is
the huge computational cost it incurs. Therefore,
we also explore a practical scenario where we as-
sume that there is a fixed data budget for the multi-
lingual translation data being used. To achieve the
optimal data combination in this scenario, we pro-
pose to formulate data allocation as a constrained
non-linear programming problem based on our es-
tablished scaling law. The objective of this pro-
gramming problem is to maximize the average mul-
tilingual translation performance:

1 n
max — Z g(é‘(,-), S.t. Z X, =C,
n
i=1 =1

where 0 < X, <A™ i=1,2,3---n.

(D

In this equation, n denotes the number of consid-
ered languages and the data budget constraint limits
the total amount of translation data to a predefined
budget C'. X/"%* denotes the maximum number
of available translation data for language ¢. This
constrained nonlinear optimization can be solved
with sequential least squares programming .

4 Experiment Setting

Pre-trained LLM We take LLaMA-7B (Tou-
vron et al., 2023) and Pythia-6.9B (Biderman et al.,
2023) as the pre-trained LLM and consider six tar-
get languages that LLM usually struggle to deal
with: Arabic (Ar), Greek (El), Hindi (Hi), Turkish
(Tr), Vietnamese (Vi) and Chinese (Zh).

3h'ctps ://en.wikipedia.org/wiki/Sequential_
quadratic_programming

Instruction tuning details For translation data,
we use publicly available parallel corpora, WIKI-
MATRIX* (Schwenk et al., 2021) and NEWSCOM-
MENTARY? (Tiedemann, 2012), which are more ac-
cessible and scalable compared to high-cost expert-
annotated translation data (Jiao et al., 2023). For
multilingual general task instruction data, we incor-
porate ALPACA dataset (Taori et al., 2023), which
consists of 52k English questions and correspond-
ing response, and we obtain its foreign version with
an advanced machine translation engine ®. The
statistics of the datasets are presented in Table 1.
We use stanford_alpaca’ as the code base.

Evaluation Dataset We use five multilingual
benchmarks to assess LLM’s non-English per-
formance, spanning several downstream tasks.
FLORES-101 (Goyal et al., 2022) evaluates trans-
lation performance. MLQA (Lewis et al., 2020)
and XQUAD (Artetxe et al., 2020), both question
answering tasks, require the model to reason over
the provided context and respond to the posed ques-
tion. MLAMA (Kassner et al., 2021) assesses the
multilingual knowledge contained in the model.
XLSUM (Hasan et al., 2021) evaluates the model’s
summarization capabilities.

Evaluation Metrics For translation tasks, we
use COMET (Rei et al., 2020), calculated by
wmt22-comet-da model. For question answer-
ing and knowledge infilling task, we report exact-
matching accuracy. For summarization task, we
report ROUGE score (Lin, 2004).

5 Main Results

In this section, we present our main experiment re-
sults, show the effectiveness of our training recipes
and introduce our findings.

4https://opus.nlpl.eu/News—Commentary.php

5ht’cps://github.com/1°acebookresearch/LASER/
tree/main/tasks/WikiMatrix

®We employ Alibaba Translate for the translation pro-
cess, which has strong translation capabilities (https://www.
alibabacloud.com/product/machine-translation).

"https://github.com/tatsu-1lab/stanford_alpaca
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Flores-101 En-X (COMET)

[LLaMA-7B] Hi Tr Zh Vi Ar Avg.
+ English Instruction Task 39.5 43.1 437 533 427 46.9 44.9
+ Bilingual Instruction Task 433 (+3.8) 59.5(+16.4) 64.5(+20.8) 69.7(+164) 68.7(+26.0) 66.0(+19.1) 62.0 (+17.1)
— + Bilingual Translation Task ~ 78.4 (+38.9) 87.1 (+44.0) 87.2(+43.5) 87.2(+33.9) 87.8(+45.1) 86.6 (+39.7) 85.7 (+40.9)
[Pythia-6.9B]| Hi Tr Zh Vi Ar Avg.
+ English Instruction Task 39.8 533 553 61.5 57.5 51.3 53.1
+ Bilingual Instruction Task 39.5(-0.3) 57.5(+4.2) 679 (+12.6) 67.6(+6.1) 67.7(+102) 594 (+8.1)  59.9 (+6.8)
— + Bilingual Translation Task ~ 76.0 (+36.2) 85.8 (+32.5) 87.8 (+32.5) 85.9(+24.4) 87.3(+29.8) 85.8(+34.5) 84.8(+31.7)
MLQA (Accuracy)
[LLaMA-7B] Hi Tr Zh Vi Ar Avg.
+ English Instruction Task 13.7 - 26.7 34.1 16.1 22.7
+ Bilingual Instruction Task 35.1 (+21.4) - 48.0 (+21.3) 50.1 (+16.0) 33.1 (+17.0) 41.6 (+18.9)
— + Bilingual Translation Task ~ 42.3 (+28.6) - 51.8 (+25.1) 50.8 (+16.7) 37.0 (+20.9) 45.5 (+22.8)
[Pythia-6.9B] Hi Tr Zh Vi Ar Avg.
+ English Instruction Task 6.8 - 18.0 25.5 9.4 14.9
+ Bilingual Instruction Task 30.6 (+23.8) - 39.1 (+21.1) 37.8(+12.3) 27.0(+17.6) 33.6 (+18.7)
— + Bilingual Translation Task ~ 33.8 (+27.0) - 42.7 (+24.7)  45.1 (+19.6) 31.9 (+22.5) 38.4 (+23.5)
XQUAD (Accuracy)
[LLaMA-7B] Hi Tr Zh Vi Ar Avg.
+ English Instruction Task 15.5 36.7 31.7 31.8 36.7 14.9 27.9
+ Bilingual Instruction Task 37.8 (+22.3) 54.5(+17.8) 48.0(+16.3) 51.7(+19.9) 54.5(+17.8) 39.0 (+24.1) 47.6 (+19.7)
— + Bilingual Translation Task ~ 44.0 (+28.5) 509 (+14.2) 44.1 (+12.4) 549 (+23.1) 509 (+14.2) 38.8(+23.9) 47.3(+194)
[Pythia-6.9B]| Hi Tr Zh Vi Ar Avg.
+ English Instruction Task 10.1 29.4 16.9 22.0 274 8.8 19.1
+ Bilingual Instruction Task 293 (+19.2) 324 (+#3.0) 39.2(+223) 40.2(+18.2) 41.5(+14.1) 303 (+21.5) 35.5(+16.4)
— + Bilingual Translation Task ~ 33.3 (+23.2) 44.7 (+15.3) 43.7 (+26.8) 44.3 (+22.3) 47.6 (+20.2) 34.1 (+25.3) 41.3(+22.2)
mLAMA (Accuracy)
[LLaMA-7B] Hi Tr Zh Vi Ar Avg.
+ English Instruction Task 0.9 6.1 45 22 12 2.6
+ Bilingual Instruction Task 3.7 (+2.8) 11.2 (+5.1) 8.1 (+7.5) 16.9 (+12.4) 17.5(+15.3) 18.0 (+16.8) 12.6 (+10.0)
— + Bilingual Translation Task 6.7 (+5.8) 18.8 (+12.7) 124 (+11.8) 22.4(+17.9) 29.2(+27.0) 189 (+17.7) 18.1 (+15.5)
[Pythia-6.9B] Hi Tr Zh Vi Ar Avg.
+ English Instruction Task 0.3 4.5 0.5 4.7 0.3 1.9
+ Bilingual Instruction Task 1.7 (+1.4) 6.0 (+1.5) 2.9 (+1.6) 132 (+12.7) 143 (49.6) 2.3 (+2.0) 6.7 (+4.8)
— + Bilingual Translation Task 1.5 (+1.2) 7.3 (+2.8) 3.6 (+2.3) 14.2 (+13.7)  15.6 (+10.9) 3.1 (+2.8) 7.6 (+5.7)
XLSum (ROUGE)
[LLaMA-7B] Hi Tr Zh Vi Ar Avg.
+ English Instruction-task 13.9 29.7 9.0 32.3 15.2 20.0
+ Bilingual Instruction Task 27.0 (+13.1)  33.7 (+4.0) 255 (+16.5)  34.1(+1.8) 41.5(+26.3) 324 (+12.3)
< + Bilingual Translation Task ~ 30.6 (+16.7)  37.4 (+7.7) 28.3(+19.3) 32.1(-0.2) 40.2(+25.0) 33.7 (+13.7)
[Pythia-6.9B]| Hi Tr Zh Vi Ar Avg.
+ English Instruction Task 21.8 38.3 13.1 36.7 17.3 254
+ Bilingual Instruction Task 455 (+23.7)  46.5 (+8.2) 37.4 (+24.3) 478 (+11.1) 484 (+31.1) 451 (+19.7)
— + Bilingual Translation Task ~ 44.7 (+22.9)  46.0 (+7.7) 28.6 (+15.5) 46.0(+9.3) 47.3(+30.0) 42.5(+17.1)

Table 2: Effects of bilingual instruction-tuning, i.e. tuning LLM with both bilingual instruction-following task and
bilingual translation task. Bold text denotes the highest score across different training strategies. The number in the
bracket denotes the performance improvement over the baseline approach.

5.1 Results on Bilingual Instruction-tuning

Bilingual instruction-tuning yields great im-
provement on non-English performance Ta-
ble 2 presents the comparison results between our
bilingual instruction-tuning method and the base-
line approach, which tunes LLM with English-
dominated instruction-following task (original Al-
paca dataset). It is obvious that the baseline ap-
proach fails to fully harness the LLM’s capabilities
in non-English languages. Bilingual instruction-
tuning significantly enhances LLM’s performance
on non-English tasks, yielding an average accuracy
improvement of 4.8% to 23.5% on question an-

swering and knowledge infilling tasks, and yielding
an average ROUGE improvement of 12.3 to 19.7,
where both the bilingual instruction-following and
translation tasks contributing to this improvement.
Notably, the added translation task not only aug-
ments the model’s performance in translation, it
also leads to performance improvements in other
zero-shot tasks, demonstrating the value of this
auxiliary task.

Scaling up translation data usually lifts non-
English performance Now we show the impact
of scaling up translation data and provide insight
for subsequent multilingual instruction-tuning. Fig-
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Figure 2: The relationship between translation data scale and downstream task performance. On the left subfigure,
our designed formulation (the dashdotted line) well fits with the trend and the scaling laws are listed on the figure.
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Figure 3: Multilingual performance of LLMs that are instruction-tuned with different strategies.

ure 2 illustrates our empirical results on LLaMA-
7B. Incorporating more translation data usually re-
sults in improved performance on both translation
task and other zero-shot tasks. After fitting our
designed formulation to these observed points, we
can see that the scaling law (the dashdotted line
in the left subfigure) well represents the trend and
describe the quantified relationship between trans-
lation performance and translation data scale. Be-
sides, we can also interpret from the scaling curve
that the rate of improvement in semantic alignment
appears to diminish as the volume of translation
data increases. Therefore it would be an interesting
problem to investigate how to achieve the largest
marginal effect in multilingual data allocation.

5.2 Results on Multilingual Instruction-tuning

Multilingual instruction tuning can simultane-
ously enhance LLM’s capabilities across several
non-English languages Building on our previ-
ous analysis of scaling laws, if there’s no specific
data budget, combining all available resources for

instruction-tuning stands out as an intuitive strategy
to maximize multilingual performance. Figure 3
displays experiment results on LLaMA-7B. Our
multilingual LLM achieves performance on par
with LLMs fine-tuned with bilingual data for indi-
vidual languages, which also outperforms the base-
line system in non-English tasks by a large margin.
In terms of English tasks, our training method does
not lead to severe catastrophic forgetting. How-
ever, we also notice that our approach has not yet
completely closed the performance gap between
English and non-English tasks, which continues to
be an open challenge.

In resource-constrained setting, we can leverage
the formulated scaling laws to achieve the opti-
mal data allocation In this setting, we assume
a fixed data budget for the multilingual transla-
tion being used, for example, a 1.2M data budget.
Table 3 presents the comparison results between
the uniform allocation and our optimized alloca-
tion. Given that our optimization objective (Equa-
tion 1) aims to maximize multilingual translation
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Figure 4: Visualization analysis on the representation space of LLMs that are instruction-tuned with different
strategies. For English instruction-tuned model, representations of different languages always stay apart from
bottom layers to top layers. In contrast, we observe representation overlap in our multilingual model, especially in
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Translation Data Allocation ‘ Multilingual Tasks

Ar El Hi Tr Vi Zh Flores-COMET  Flores-BLEURT Flroes-BLEU
200,000 200,000 200,000 200,000 200,000 200,000 84.22 69.73 33.81
183,539 189,556 234,233 242,263 175,985 174,422 | 84.70%(+0.48) 70.42%(+0.69) 34.40%(+0.59)

Ar El Hi Tr Vi Zh MLQA XQUAD mLAMA
200,000 200,000 200,000 200,000 200,000 200,000 43.2 46.9 18.1
183,539 189,556 234,233 242263 175,985 174,422 44.6*(+1.4) 49.2* (+2.3) 159 (-2.2)

Table 3: Comparison results between our optimized allocation and uniform allocation under a 1.2M data budget. We
report averaged multilingual performance for downstream tasks. The number in the bracket denotes the performance
gap between the two data allocation strategies. The annotation “*” indicates that the improvement is significant
(p<0.05).
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average performance in question answering, but
a lower average performance in knowledge infill-
ing. We can also explain the insight behind our
allocation algorithm here: as different languages
demonstrate unique scaling laws, it implies that the
performance gain achieved at the same scale can
differ, as characterized by varying gradients (Fig-
ure 5). Consequently, when the total data volume
is limited, our method allocate resources preferen-
tially to languages with steeper gradients, such as
Hindi and Turkish. In contrast, uniform allocation
overlooks these differences.
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Figure 5: The left figure illustrates the changes in data
allocation as the total data budget varies, while the right
figure shows the gradient changes of different language
scaling law functions. In the left figure, when the line
becomes straight, it indicates that the data for that lan-
guage has been completely used up.

6 Analysis

performance evaluated by COMET, our method
does significantly outperform the uniform alloca-
tion on the COMET metric. The improvement on
other translation metrics, BLEURT and BLEU, is
also significant. On zero-shot tasks, the results are
mixed, our optimized allocation yields a higher

Visualization results show that multilingual se-
mantic space becomes aligned in the middle
layers of our model To gain a deeper under-
standing of the effects of our tuning method, we
conduct a comparison between the representa-
tion space of our alignment-enhanced multilin-



English instruction |

Chinese instruction

[Instruction]
Choose three adjectives to describe a street

[Output]

Busy, vibrant, and lively. e

[Output]
Ai#HEAF £ . (Bustling, vibrant and beautiful.)

[Instruction]
®¥H A B R E — KA

[Instruction]
What values does a democratic society strive to uphold?

[Output]

A democratic society strives to uphold values such as
freedom, equality, justice, and human rights. It is com-
mitted to upholding the right of all citizens to participate
in decision-making and to be treated with respect and
dignity. It also seeks to promote freedom of speech and
thought, as well as the rule of law.

[Output]

REAEE N EFHRNERBIEIAEGE . FF . TP FHAS .
AGRE . AEZRPARES . RIALGTRAGESH I G
B, AR T B dAERERGAA . (The values that democratic
societies strive to uphold include individual liberty, equality, freedom of
speech and religion, security of the person, just laws, and human dignity.
Democratic societies also promote respect for diversity and inclusion, as
well as the rights to freedom of expression and collective decision-making.)

[Instruction]
R EALSF 7 3P AR 4 E A2

Table 4: Two representative cases where our mulitlingual model makes similar response when given instructions in
different languages. The gray text in the bracket denotes the English meaning of the Chinese response.

Stage FLORES-101 MLQA XQUAD mLAMA XLSum

g COMET Accuracy  Accuracy Accuracy ROUGE
Continued Pretraining 78.7 47.9 50.7 36.8 27.6
Bilingual Instruction-tuning 87.2 51.8 54.9 224 28.3

Table 5: Effects of using parallel data at different stages. Bold text denotes the highest score along the column.

gual model and the unaligned counterpart. Specif-
ically, we use them to encode multilingual paral-
lel data from FLORES-101 dataset and visualize
dimension-reduced representations across various
layer, from bottom to top, in Figure 4. For the
baseline model, the representations of different lan-
guages always stay apart across layers. In contrast,
our model demonstrates an overlap of represen-
tations, particularly noticeable within the middle
layers. This overlap serves as additional evidence
that our multilingual instruction-tuning establish
better language alignment.

The alignment-enhanced LLM shows the ten-
dency to respond multilingual instructions ac-
cording to its English memory During exper-
iments, we discover that our multilingual LLM
shows the tendency to respond multilingual instruc-
tions according to its English memory. Table 4
shows two representative cases where our multilin-
gual model produces similar response when given
instructions in different languages.

The value of translation data is beyond expos-
ing more non-English tokens to LLM For ab-
lation study, instead of using parallel data during
instruction-tuning, we use the Chinese part of the
English-Chinese translation data as monolingual
corpus for continued pre-training and then only use
bilingual instruction-following task for instruction-

tuning (denoted as “continued pretraining” in Ta-
ble 5). Experimental results show that bilingual
instruction-tuning exhibits better performance on
all tasks except knowledge infilling, indicating
that the benefits of parallel data for the model are
not solely derived from exposing it to more non-
English data, but also from aligning languages.

7 Conclusion

This paper aims at extrapolating pre-trained large
language models to non-English by strengthening
semantic alignment across languages. Specifically,
we explore two multi-task training recipe: bilingual
instruction-tuning and multilingual instruction-
tuning, which both incorporates translation task
as an important auxiliary task. Moreover, we for-
mulate the scaling law of bilingual instruction-
tuning and provide guidance for performing mul-
tilingual instruction-tuning, e.g., optimizing mul-
tilingual data allocation. Experiment results on
several multilingual benchmarks show that our de-
vised training strategies effectively enhance pre-
trained LLM’s non-English proficiency even these
target languages share little alphabet with English.
Overall, our approach and findings illuminate the
potential for developing more potent LL.Ms for non-
English languages.



Limitation

A limitation of our work is that we do not extend
vocabulary for target non-English languages. The
effect is dual. Our approach does not require a
large-scale non-English corpus to learn embedding
of extended tokens. But on the other hand, since
LLaMA usually tokenizes non-English tokens to
bytes, our model is slower in encoding and de-
coding non-English sequence than those models
equipped with extended vocabulary. We leave the
exploration on vocabulary manipulation as our fu-
ture work.
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A Details of Our Instruction-tuning

For each experiment, we instruction-tune LLaMA’s
full parameters for 3 epoch on 8 x A100. The learn-
ing rate is set as 2e-5 and batch size is set as 128.
For training acceleration, we adopt FSDP training
strategy (Zhao et al., 2023).

B Our Used Prompts for Downstream
Tasks

We report our used prompts (English version) in
Table 6. For monolingual non-English tasks, i.e.
MLQA, XQUAD, MLAMA, XLSUM, we apply
language-specific prompt (a foreign version of the
English prompt in Table 6) when evaluating LLM’s
performance on the target language. For machine
translation tasks, FLORES-101, we only use En-
glish instruction for multilingual translation in our
experiments.

C Used Scientific Artifacts

Below lists scientific artifacts that are used in our
work. For the sake of ethic, our use of these arti-
facts is consistent with their intended use.

» Stanford Alpaca (Apache-2.0 license), a
project that aims to build and share an
instruction-following LLaMA model.

* Transformers (Apache-2.0 license), a frame-
work that provides thousands of pretrained
models to perform tasks on different modali-
ties such as text, vision, and audio.
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Task Dataset Prompt

Answer the question according to the paragraph in a few words.
Context: <context>

Question Answering MLQA, XQUAD Question: <question>
Answer:
Knowledge Infilling MLAMA Please write an answer that can be filled in [MASK].
Summarize this article.
Summarization XLSUM Article: <article>
Summary:
Machine Translation FLORES-101 Translate the following sentences from <SRC> to <TGT>.

Table 6: Our used prompts for downstream tasks. “<context>”, “<question>”, “<article>” are placeholders for input

’

information. “<SRC>" and “<TGT>" represent the placeholder for source and target language name in English.
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