
Extrapolating Large Language Models to Non-English
by Aligning Languages

Anonymous ACL submission

Abstract
Existing large language models (LLM) show001
disparate capability across different languages.002
Their performances on non-English tasks are003
often much worse than on English tasks. In004
this paper, we explore to extrapolate LLM’s005
English ability to non-English by building se-006
mantic alignment across languages. We start007
from targeting individual languages by per-008
forming bilingual multi-task instruction-tuning,009
i.e. tuning LLM with bilingual translation010
task and bilingual instruction-following task.011
Then we formulate underlying scaling laws012
to quantify the impact of scaling up trans-013
lation data and providing insights for devis-014
ing multilingual instruction-tuning strategies,015
e.g., optimizing multilingual data allocation.016
Experiment results show that our alignment-017
enhanced LLMs significantly outperforms the018
English-dominated instruction-tuned counter-019
part on both translation task and other zero-shot020
non-English tasks, e.g., question answering,021
knowledge infilling and summarization. Our022
optimized data allocation also assists LLM in023
achieving better multilingual performance com-024
pared to uniform allocation. Further analysis025
on representation space and response content026
reveals additional evidence of the established027
language alignment.028

1 Introduction029

The language ability of LLMs is often imbalanced030

across languages (Zhu et al., 2023; Huang et al.,031

2023; Qi et al., 2023), because both the pre-training032

corpus (Blevins and Zettlemoyer, 2022) and the033

instruction-tuning data (Wang et al., 2023) are034

English-dominated. As a result, LLMs usually per-035

form poorly on non-English languages, especially036

on languages that are dissimilar to English (Bang037

et al., 2023; Huang et al., 2023).038

Previously, there have been some attempts to039

enhance LLMs’ non-English abilities by contin-040

ued pre-training with large scale monolingual cor-041

pus (Cui et al., 2023; Yang et al., 2023). However,042

further learning a language may require large scale 043

data and computing. 044

In this paper, our objective is to enhance the 045

proficiency of off-the-shelf LLMs on non-English 046

languages in a more efficient manner. Specifi- 047

cally, we explore to extrapolate LLM’s English 048

ability to non-English languages. For this goal, we 049

present a multi-task training recipe, which com- 050

bines translation task and instruction-following 051

task during instruction-tuning. Intuitively, the trans- 052

lation tasks stimulate the semantic alignment be- 053

tween languages and combining it with multilin- 054

gual parallel instruction-following task encourages 055

LLMs to execute non-English instructions based 056

on its understanding of English. 057

At first, we target individual languages by per- 058

forming bilingual instruction-tuning (as depicted 059

on the left side of Figure 1) and formulate underly- 060

ing scaling laws to investigate the impact of scaling 061

up translation data. Guided by these scaling laws, 062

we perform multilingual instruction-tuning with 063

mixed resources (illustrated on the right side of Fig- 064

ure 1). Since we observe that more translation data 065

usually contributes to improved alignment, com- 066

bining all available resources for instruction-tuning 067

becomes the most straightforward approach to ob- 068

tain a powerful multilingual LLM. If we consider 069

a practical scenario where instruction-tuning have 070

to be performed under a fixed data budget, we also 071

devise a multilingual data allocation method by for- 072

mulating the problem as constrained non-linear pro- 073

gramming based on the established scaling laws. 074

In the experiments, we use both LLaMA- 075

7B (Touvron et al., 2023) and Pythia-6.9B (Bi- 076

derman et al., 2023) as the pre-trained LLM 077

and evaluate them on six challenging target lan- 078

guages. Experiment results on several multilingual 079

benchmarks (FLORES-101, XQUAD, MLQA, 080

MLAMA, XLSUM) show that our alignment- 081

enhanced LLM outperforms its English-dominated 082

instruction-tuned counterpart by a large margin. On 083
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[Instruction] Analyze the tone of the following sentences.

[Output] The tone of the sentences is angry and accusatory.

[Input] I am so upset with you right now.

[Instruction] 分析下⾯句⼦的语⽓
[Input] 我现在对你很⽣⽓
[Output] 句⼦的语⽓充满愤怒和指责

[Instruction] Translate the following sentences from English to Chinese.
[Input] Bulgaria will have its first geostationary communications satellite.
[Output] 保加利亚将拥有第⼀颗对地静⽌通信卫星

Chinese-LLMPre-trained LLM Multilingual-LLM
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Optimizing  
Data Allocation 
with Scaling Laws

Multilingual Instruction-following Task

Multilingual Translation Task

English-Chinese

English-Greek

English-Vietenamese

English-Arabic

English-Turkish

English-Hindi

English Chinese Arabic Greek

Turkish Vietenamese Hindi

Pre-trained LLM

Figure 1: Illustration of our devised training recipes: bilingual instruction-tuning and multilingual instruction-tuning.
We perform bilingual instruction-tuning by tuning pre-trained LLM with both bilingual instruction-following task
and bilingual translation task. Guided by the scaling law in bilingual instruction-tuning, we perform multilingual
instruction-tuning with mixed resources.

the translation task, our LLM has become a profi-084

cient translator, achieving a COMET score of 85.085

On other non-English zero-shot tasks, such as ques-086

tion answering, knowledge infilling and summa-087

rization, our model also achieves significant perfor-088

mance enhancements. In the resource-constrained089

setting, our optimized data allocation yields higher090

multilingual performance than the uniform alloca-091

tion, showing a practical usage of the established092

scaling laws. Further analysis on response content093

and representation space reveals that our model has094

a tendency to generate non-English response based095

on its English memory and multilingual semantic096

space appears to align within the middle layers,097

demonstrating the effectiveness of our method.098

The main contribution of this paper can be sum-099

marized as:100

• We present a multi-task training recipe to elicit101

pre-trained LLM’s non-English capability.102

• We formulate the scaling law in bilingual103

instruction-tuning, providing insight for mul-104

tilingual instruction-tuning, e.g., we devise a105

novel data allocation algorithm based on the106

established scaling law.107

• Extensive experiment results on multilingual108

benchmarks show that our training recipe can109

greatly improves LLM’s non-English capabil-110

ities.111

2 Related Work112

Instruction-tuning LLM to unlock its poten-113

tial Although pre-trained LLMs memorizes vast114

amounts of knowledge, they often struggle to fol-115

low human instructions accurately (Ouyang et al.,116

2022). Therefore, Wei et al. (2022) propose117

instruction-tuning to teach LLM to follow human118

instruction and align its behavior closely with hu-119

man expectations. Subsequently, numerous en-120

deavors have been dedicated to this fine-tuning 121

approach to unlock the potential of LLMs, such 122

as step-by-step reasoning (Kim et al., 2023), story 123

generation (Du and Chilton, 2023), tabular predic- 124

tion (Slack and Singh, 2023). In this paper, we 125

focus on elicit LLM’s non-English ability through 126

instruction-tuning. 127

Improving LLM’s non-English performance 128

Extensive empirical evidence has shown that there 129

is a large gap between LLM’s English and non- 130

English performance (Huang et al., 2023; Qin et al., 131

2023). To improve LLM’s non-English perfor- 132

mance, a straightforward idea is to continued pre- 133

train LLM with non-English corpus (Cui et al., 134

2023; Nguyen et al., 2023). However, this approach 135

requires large scale monolingual corpus and com- 136

puting. In contrast, we focus on the instruction- 137

tuning stage and explore a more efficient manner, 138

which shares the same spirit with some work con- 139

ducted during the same period (Chen et al., 2023; 140

Li et al., 2023). Compared to concurrent studies, 141

we go beyond showing the value of non-English 142

instruction data; we also present the advantages 143

of incorporating the translation task to enhance 144

LLM’s non-English performance. 145

3 Eliciting LLM’s non-English Ability 146

This section introduces our training methodol- 147

ogy. We start by introducing bilingual instruction- 148

tuning (§3.1), a technique aimed at empowering 149

LLM for specific non-English languages. Follow- 150

ing this, we formulate the scaling law in bilingual 151

instruction-tuning to quantify the impact of scaling 152

up translation data (§3.2). Lastly, we draw insights 153

from these scaling laws to perform multilingual 154

instruction-tuning (§3.3). 155
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3.1 Bilingual Instruction-tuning156

When we target a specific non-English language,157

our multi-task training framework consists of bilin-158

gual translation task and bilingual instruction-159

following task.160

Translation task Intuitively, translation data is161

an invaluable resource for learning semantic align-162

ment, which is, however, often overlooked in con-163

current multilingual instruction-tuning research. In164

our training framework, we incorporate machine165

translation as an auxiliary task to teach LLM to166

semantically align English and non-English lan-167

guages. Specifically, we position English and non-168

English text on the source and target sides of the169

translation data, respectively. This implementation170

can not only enhance LLM’s proficiency in non-171

English generation, but also inherently encourage172

LLM to generate non-English content based on its173

understanding of English.174

Instruction-following task It has been found175

that training LLM with diverse instructions can176

greatly improves LLM’s performance on under-177

standing (even unseen) instructions and aligning178

LLM’s behavior with human expectations. Conse-179

quently, we also incorporate this approach into our180

framework. Given that commonly-used instruction-181

following datasets are almost in English, we trans-182

late the English dataset into the target language us-183

ing a machine translation engine. During training,184

we utilize both the English and non-English ver-185

sion to establish a bilingual instruction-following186

task, which simultaneously elicit LLM’s English187

and non-English capabilities. Combining it with188

translation task further encourage the extrapolation189

of LLM’s English capabilities towards non-English190

languages.191

Training Details In the end, we combine multi-192

task data into a training set D for instruction-tuning.193

To unify the data format, we also pair each trans-194

lation data with a translation instruction. The final195

training objective can be written as:196

argmin
θ

1

|D|
∑

{T,X,Y }∈D

− log pθ(Y |T,X)197

T denotes a task instruction that describes the task198

requirement. X represents the optional input se-199

quence and Y is the desired output for the given200

task. θ denotes learnable parameters of the LLM.201

3.2 Scaling Law Formulation 202

The volume of translation data is an important vari- 203

able in our instruction-tuning. Hence, prior to ex- 204

tending our approach to a multilingual setting, we 205

strive to understand the effect of varying the size 206

of translation data on language alignment. 207

Specifically, we employ bilingual translation per- 208

formance as a measure of semantic alignment. To 209

quantify the relationship between translation per- 210

formance S and translation data scale X , we formu- 211

late the scaling law based on following insights: (1) 212

The upper bound of S is 100, representing the max- 213

imum score achievable by most translation quality 214

metrics. (2) The translation performance generally 215

enhances as the scale of translation data expands. 216

(3) Languages that are less similar to English re- 217

quire a larger amount of translation data to achieve 218

alignment compared to languages more similar to 219

English. After exploring various possible formula- 220

tions, we present the best-performing formulation 221

as follows: 222

S = g(X ) = 100− α · (γ · X )−β 223

where γ ∈ (0, 1) represents the language similarity 224

between the target language and English, which can 225

be pre-calculated with a parallel corpora through 226

a method 1 introduced by Pan et al. (2021). Using 227

a set of observed data points {(S,X )}, the value 228

of α and β can be determined through non-linear 229

least squares 2. 230

In the subsequent subsection, we will illustrate 231

how we utilize the established scaling laws as 232

guidance to devise multilingual instruction-tuning 233

strategies. 234

3.3 Multilingual Instruction-tuning 235

Although bilingual instruction-tuning is effective, 236

serving customized LLMs for each language can 237

be costly. Now we take a step further and inves- 238

tigate multilingual instruction-tuning. In this sce- 239

nario, our multi-task training framework encom- 240

passes multilingual translation task and multilin- 241

gual instruction-following task, also making multi- 242

lingual data allocation a crucial aspect to consider. 243

1Specifically, we use pre-trained LLM to encode parallel
data and obtain sentence representations by averaging the out-
puts from the final layer. Then we use English representations
to retrieve non-English sentences. Consequently, a retrieval
score is assigned based on the ranking of the target sentence
in the retrieval results. By averaging all retrieval scores, we
can calculate the language similarity.

2https://en.wikipedia.org/wiki/Non-linear_
least_squares
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Task Dataset Arabic Greek Hindi Turkish Vietnamese Chinese

Translation
WIKIMATRIX 999.8k 620.8k 231.5k 477.7k 1073.8k 786.5k

NEWSCOMMENTARY 97.4k - 2.8k - - 126.0k

Instruction-following ALPACA 52.0k 52.0k 52.0k 52.0k 52.0k 52.0k

Table 1: Statistics of our applied training dataset.

Resource-rich setting Given that the scaling law244

function is monotonically increasing, it suggests245

that semantic alignment can continually improve246

with the use of more translation data. Consequently,247

if no data budget is specified, combining all avail-248

able resources for instruction-tuning becomes a249

direct and effective approach to maximize multilin-250

gual performance.251

Resource-constrained setting A potential con-252

cern of using all available resources for tuning is253

the huge computational cost it incurs. Therefore,254

we also explore a practical scenario where we as-255

sume that there is a fixed data budget for the multi-256

lingual translation data being used. To achieve the257

optimal data combination in this scenario, we pro-258

pose to formulate data allocation as a constrained259

non-linear programming problem based on our es-260

tablished scaling law. The objective of this pro-261

gramming problem is to maximize the average mul-262

tilingual translation performance:263

max
1

n

n∑
i=1

g(Xi), s.t.
n∑

i=1

Xi = C,

where 0 ≤ Xi ≤ Xmax
i , i = 1, 2, 3 · · ·n.

(1)264

In this equation, n denotes the number of consid-265

ered languages and the data budget constraint limits266

the total amount of translation data to a predefined267

budget C. Xmax
i denotes the maximum number268

of available translation data for language i. This269

constrained nonlinear optimization can be solved270

with sequential least squares programming 3.271

4 Experiment Setting272

Pre-trained LLM We take LLaMA-7B (Tou-273

vron et al., 2023) and Pythia-6.9B (Biderman et al.,274

2023) as the pre-trained LLM and consider six tar-275

get languages that LLM usually struggle to deal276

with: Arabic (Ar), Greek (El), Hindi (Hi), Turkish277

(Tr), Vietnamese (Vi) and Chinese (Zh).278

3https://en.wikipedia.org/wiki/Sequential_
quadratic_programming

Instruction tuning details For translation data, 279

we use publicly available parallel corpora, WIKI- 280

MATRIX4 (Schwenk et al., 2021) and NEWSCOM- 281

MENTARY5 (Tiedemann, 2012), which are more ac- 282

cessible and scalable compared to high-cost expert- 283

annotated translation data (Jiao et al., 2023). For 284

multilingual general task instruction data, we incor- 285

porate ALPACA dataset (Taori et al., 2023), which 286

consists of 52k English questions and correspond- 287

ing response, and we obtain its foreign version with 288

an advanced machine translation engine 6. The 289

statistics of the datasets are presented in Table 1. 290

We use stanford_alpaca7 as the code base. 291

Evaluation Dataset We use five multilingual 292

benchmarks to assess LLM’s non-English per- 293

formance, spanning several downstream tasks. 294

FLORES-101 (Goyal et al., 2022) evaluates trans- 295

lation performance. MLQA (Lewis et al., 2020) 296

and XQUAD (Artetxe et al., 2020), both question 297

answering tasks, require the model to reason over 298

the provided context and respond to the posed ques- 299

tion. MLAMA (Kassner et al., 2021) assesses the 300

multilingual knowledge contained in the model. 301

XLSUM (Hasan et al., 2021) evaluates the model’s 302

summarization capabilities. 303

Evaluation Metrics For translation tasks, we 304

use COMET (Rei et al., 2020), calculated by 305

wmt22-comet-da model. For question answer- 306

ing and knowledge infilling task, we report exact- 307

matching accuracy. For summarization task, we 308

report ROUGE score (Lin, 2004). 309

5 Main Results 310

In this section, we present our main experiment re- 311

sults, show the effectiveness of our training recipes 312

and introduce our findings. 313

4https://opus.nlpl.eu/News-Commentary.php
5https://github.com/facebookresearch/LASER/

tree/main/tasks/WikiMatrix
6We employ Alibaba Translate for the translation pro-

cess, which has strong translation capabilities (https://www.
alibabacloud.com/product/machine-translation).

7https://github.com/tatsu-lab/stanford_alpaca

4

https://en.wikipedia.org/wiki/Sequential_quadratic_programming
https://en.wikipedia.org/wiki/Sequential_quadratic_programming
https://opus.nlpl.eu/News-Commentary.php
https://github.com/facebookresearch/LASER/tree/main/tasks/WikiMatrix
https://github.com/facebookresearch/LASER/tree/main/tasks/WikiMatrix
https://www.alibabacloud.com/product/machine-translation
https://www.alibabacloud.com/product/machine-translation
https://github.com/tatsu-lab/stanford_alpaca


Flores-101 En-X (COMET)
[LLaMA-7B] Hi Tr El Zh Vi Ar Avg.

+ English Instruction Task 39.5 43.1 43.7 53.3 42.7 46.9 44.9
+ Bilingual Instruction Task 43.3 (+3.8) 59.5 (+16.4) 64.5 (+20.8) 69.7 (+16.4) 68.7 (+26.0) 66.0 (+19.1) 62.0 (+17.1)
↪→ + Bilingual Translation Task 78.4 (+38.9) 87.1 (+44.0) 87.2 (+43.5) 87.2 (+33.9) 87.8 (+45.1) 86.6 (+39.7) 85.7 (+40.9)

[Pythia-6.9B] Hi Tr El Zh Vi Ar Avg.
+ English Instruction Task 39.8 53.3 55.3 61.5 57.5 51.3 53.1
+ Bilingual Instruction Task 39.5 (-0.3) 57.5 (+4.2) 67.9 (+12.6) 67.6 (+6.1) 67.7 (+10.2) 59.4 (+8.1) 59.9 (+6.8)
↪→ + Bilingual Translation Task 76.0 (+36.2) 85.8 (+32.5) 87.8 (+32.5) 85.9 (+24.4) 87.3 (+29.8) 85.8 (+34.5) 84.8 (+31.7)

MLQA (Accuracy)
[LLaMA-7B] Hi Tr El Zh Vi Ar Avg.

+ English Instruction Task 13.7 - - 26.7 34.1 16.1 22.7
+ Bilingual Instruction Task 35.1 (+21.4) - - 48.0 (+21.3) 50.1 (+16.0) 33.1 (+17.0) 41.6 (+18.9)
↪→ + Bilingual Translation Task 42.3 (+28.6) - - 51.8 (+25.1) 50.8 (+16.7) 37.0 (+20.9) 45.5 (+22.8)

[Pythia-6.9B] Hi Tr El Zh Vi Ar Avg.
+ English Instruction Task 6.8 - - 18.0 25.5 9.4 14.9
+ Bilingual Instruction Task 30.6 (+23.8) - - 39.1 (+21.1) 37.8 (+12.3) 27.0 (+17.6) 33.6 (+18.7)
↪→ + Bilingual Translation Task 33.8 (+27.0) - - 42.7 (+24.7) 45.1 (+19.6) 31.9 (+22.5) 38.4 (+23.5)

XQUAD (Accuracy)
[LLaMA-7B] Hi Tr El Zh Vi Ar Avg.

+ English Instruction Task 15.5 36.7 31.7 31.8 36.7 14.9 27.9
+ Bilingual Instruction Task 37.8 (+22.3) 54.5 (+17.8) 48.0 (+16.3) 51.7 (+19.9) 54.5 (+17.8) 39.0 (+24.1) 47.6 (+19.7)
↪→ + Bilingual Translation Task 44.0 (+28.5) 50.9 (+14.2) 44.1 (+12.4) 54.9 (+23.1) 50.9 (+14.2) 38.8 (+23.9) 47.3 (+19.4)

[Pythia-6.9B] Hi Tr El Zh Vi Ar Avg.
+ English Instruction Task 10.1 29.4 16.9 22.0 27.4 8.8 19.1
+ Bilingual Instruction Task 29.3 (+19.2) 32.4 (+3.0) 39.2 (+22.3) 40.2 (+18.2) 41.5 (+14.1) 30.3 (+21.5) 35.5 (+16.4)
↪→ + Bilingual Translation Task 33.3 (+23.2) 44.7 (+15.3) 43.7 (+26.8) 44.3 (+22.3) 47.6 (+20.2) 34.1 (+25.3) 41.3 (+22.2)

mLAMA (Accuracy)
[LLaMA-7B] Hi Tr El Zh Vi Ar Avg.

+ English Instruction Task 0.9 6.1 0.6 4.5 2.2 1.2 2.6
+ Bilingual Instruction Task 3.7 (+2.8) 11.2 (+5.1) 8.1 (+7.5) 16.9 (+12.4) 17.5 (+15.3) 18.0 (+16.8) 12.6 (+10.0)
↪→ + Bilingual Translation Task 6.7 (+5.8) 18.8 (+12.7) 12.4 (+11.8) 22.4 (+17.9) 29.2 (+27.0) 18.9 (+17.7) 18.1 (+15.5)

[Pythia-6.9B] Hi Tr El Zh Vi Ar Avg.
+ English Instruction Task 0.3 4.5 1.3 0.5 4.7 0.3 1.9
+ Bilingual Instruction Task 1.7 (+1.4) 6.0 (+1.5) 2.9 (+1.6) 13.2 (+12.7) 14.3 (+9.6) 2.3 (+2.0) 6.7 (+4.8)
↪→ + Bilingual Translation Task 1.5 (+1.2) 7.3 (+2.8) 3.6 (+2.3) 14.2 (+13.7) 15.6 (+10.9) 3.1 (+2.8) 7.6 (+5.7)

XLSum (ROUGE)
[LLaMA-7B] Hi Tr El Zh Vi Ar Avg.

+ English Instruction-task 13.9 29.7 - 9.0 32.3 15.2 20.0
+ Bilingual Instruction Task 27.0 (+13.1) 33.7 (+4.0) - 25.5 (+16.5) 34.1 (+1.8) 41.5 (+26.3) 32.4 (+12.3)
↪→ + Bilingual Translation Task 30.6 (+16.7) 37.4 (+7.7) - 28.3 (+19.3) 32.1 (-0.2) 40.2 (+25.0) 33.7 (+13.7)

[Pythia-6.9B] Hi Tr El Zh Vi Ar Avg.
+ English Instruction Task 21.8 38.3 - 13.1 36.7 17.3 25.4
+ Bilingual Instruction Task 45.5 (+23.7) 46.5 (+8.2) - 37.4 (+24.3) 47.8 (+11.1) 48.4 (+31.1) 45.1 (+19.7)
↪→ + Bilingual Translation Task 44.7 (+22.9) 46.0 (+7.7) - 28.6 (+15.5) 46.0 (+9.3) 47.3 (+30.0) 42.5 (+17.1)

Table 2: Effects of bilingual instruction-tuning, i.e. tuning LLM with both bilingual instruction-following task and
bilingual translation task. Bold text denotes the highest score across different training strategies. The number in the
bracket denotes the performance improvement over the baseline approach.

5.1 Results on Bilingual Instruction-tuning314

Bilingual instruction-tuning yields great im-315

provement on non-English performance Ta-316

ble 2 presents the comparison results between our317

bilingual instruction-tuning method and the base-318

line approach, which tunes LLM with English-319

dominated instruction-following task (original Al-320

paca dataset). It is obvious that the baseline ap-321

proach fails to fully harness the LLM’s capabilities322

in non-English languages. Bilingual instruction-323

tuning significantly enhances LLM’s performance324

on non-English tasks, yielding an average accuracy325

improvement of 4.8% to 23.5% on question an-326

swering and knowledge infilling tasks, and yielding 327

an average ROUGE improvement of 12.3 to 19.7, 328

where both the bilingual instruction-following and 329

translation tasks contributing to this improvement. 330

Notably, the added translation task not only aug- 331

ments the model’s performance in translation, it 332

also leads to performance improvements in other 333

zero-shot tasks, demonstrating the value of this 334

auxiliary task. 335

Scaling up translation data usually lifts non- 336

English performance Now we show the impact 337

of scaling up translation data and provide insight 338

for subsequent multilingual instruction-tuning. Fig- 339
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Figure 2: The relationship between translation data scale and downstream task performance. On the left subfigure,
our designed formulation (the dashdotted line) well fits with the trend and the scaling laws are listed on the figure.

Figure 3: Multilingual performance of LLMs that are instruction-tuned with different strategies.

ure 2 illustrates our empirical results on LLaMA-340

7B. Incorporating more translation data usually re-341

sults in improved performance on both translation342

task and other zero-shot tasks. After fitting our343

designed formulation to these observed points, we344

can see that the scaling law (the dashdotted line345

in the left subfigure) well represents the trend and346

describe the quantified relationship between trans-347

lation performance and translation data scale. Be-348

sides, we can also interpret from the scaling curve349

that the rate of improvement in semantic alignment350

appears to diminish as the volume of translation351

data increases. Therefore it would be an interesting352

problem to investigate how to achieve the largest353

marginal effect in multilingual data allocation.354

5.2 Results on Multilingual Instruction-tuning355

Multilingual instruction tuning can simultane-356

ously enhance LLM’s capabilities across several357

non-English languages Building on our previ-358

ous analysis of scaling laws, if there’s no specific359

data budget, combining all available resources for360

instruction-tuning stands out as an intuitive strategy 361

to maximize multilingual performance. Figure 3 362

displays experiment results on LLaMA-7B. Our 363

multilingual LLM achieves performance on par 364

with LLMs fine-tuned with bilingual data for indi- 365

vidual languages, which also outperforms the base- 366

line system in non-English tasks by a large margin. 367

In terms of English tasks, our training method does 368

not lead to severe catastrophic forgetting. How- 369

ever, we also notice that our approach has not yet 370

completely closed the performance gap between 371

English and non-English tasks, which continues to 372

be an open challenge. 373

In resource-constrained setting, we can leverage 374

the formulated scaling laws to achieve the opti- 375

mal data allocation In this setting, we assume 376

a fixed data budget for the multilingual transla- 377

tion being used, for example, a 1.2M data budget. 378

Table 3 presents the comparison results between 379

the uniform allocation and our optimized alloca- 380

tion. Given that our optimization objective (Equa- 381

tion 1) aims to maximize multilingual translation 382
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Figure 4: Visualization analysis on the representation space of LLMs that are instruction-tuned with different
strategies. For English instruction-tuned model, representations of different languages always stay apart from
bottom layers to top layers. In contrast, we observe representation overlap in our multilingual model, especially in
middle layers.

Translation Data Allocation Multilingual Tasks

Ar El Hi Tr Vi Zh Flores-COMET Flores-BLEURT Flroes-BLEU
200,000 200,000 200,000 200,000 200,000 200,000 84.22 69.73 33.81
183,539 189,556 234,233 242,263 175,985 174,422 84.70∗(+0.48) 70.42∗(+0.69) 34.40∗(+0.59)

Ar El Hi Tr Vi Zh MLQA XQUAD mLAMA
200,000 200,000 200,000 200,000 200,000 200,000 43.2 46.9 18.1
183,539 189,556 234,233 242,263 175,985 174,422 44.6∗(+1.4) 49.2∗ (+2.3) 15.9 (-2.2)

Table 3: Comparison results between our optimized allocation and uniform allocation under a 1.2M data budget. We
report averaged multilingual performance for downstream tasks. The number in the bracket denotes the performance
gap between the two data allocation strategies. The annotation “*” indicates that the improvement is significant
(p<0.05).

Figure 5: The left figure illustrates the changes in data
allocation as the total data budget varies, while the right
figure shows the gradient changes of different language
scaling law functions. In the left figure, when the line
becomes straight, it indicates that the data for that lan-
guage has been completely used up.

performance evaluated by COMET, our method383

does significantly outperform the uniform alloca-384

tion on the COMET metric. The improvement on385

other translation metrics, BLEURT and BLEU, is386

also significant. On zero-shot tasks, the results are387

mixed, our optimized allocation yields a higher388

average performance in question answering, but 389

a lower average performance in knowledge infill- 390

ing. We can also explain the insight behind our 391

allocation algorithm here: as different languages 392

demonstrate unique scaling laws, it implies that the 393

performance gain achieved at the same scale can 394

differ, as characterized by varying gradients (Fig- 395

ure 5). Consequently, when the total data volume 396

is limited, our method allocate resources preferen- 397

tially to languages with steeper gradients, such as 398

Hindi and Turkish. In contrast, uniform allocation 399

overlooks these differences. 400

6 Analysis 401

Visualization results show that multilingual se- 402

mantic space becomes aligned in the middle 403

layers of our model To gain a deeper under- 404

standing of the effects of our tuning method, we 405

conduct a comparison between the representa- 406

tion space of our alignment-enhanced multilin- 407
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English instruction Chinese instruction

[Instruction] [Instruction]
Choose three adjectives to describe a street 选择三个形容词来描述一条街道

[Output] [Output]
Busy, vibrant, and lively. 繁华、充满活力和美丽。(Bustling, vibrant and beautiful.)

[Instruction] [Instruction]
What values does a democratic society strive to uphold? 民主社会努力维护哪些价值观?

[Output] [Output]
A democratic society strives to uphold values such as
freedom, equality, justice, and human rights. It is com-
mitted to upholding the right of all citizens to participate
in decision-making and to be treated with respect and
dignity. It also seeks to promote freedom of speech and
thought, as well as the rule of law.

民主社会努力维护的价值观包括个人自由、平等、言论和宗教自由、
人身安全、公正法律和人类尊严。民主社会还促进尊重多样性和包
容性，以及言论自由和集体决策的权利。(The values that democratic
societies strive to uphold include individual liberty, equality, freedom of
speech and religion, security of the person, just laws, and human dignity.
Democratic societies also promote respect for diversity and inclusion, as
well as the rights to freedom of expression and collective decision-making.)

Table 4: Two representative cases where our mulitlingual model makes similar response when given instructions in
different languages. The gray text in the bracket denotes the English meaning of the Chinese response.

Stage FLORES-101 MLQA XQUAD mLAMA XLSum
COMET Accuracy Accuracy Accuracy ROUGE

Continued Pretraining 78.7 47.9 50.7 36.8 27.6
Bilingual Instruction-tuning 87.2 51.8 54.9 22.4 28.3

Table 5: Effects of using parallel data at different stages. Bold text denotes the highest score along the column.

gual model and the unaligned counterpart. Specif-408

ically, we use them to encode multilingual paral-409

lel data from FLORES-101 dataset and visualize410

dimension-reduced representations across various411

layer, from bottom to top, in Figure 4. For the412

baseline model, the representations of different lan-413

guages always stay apart across layers. In contrast,414

our model demonstrates an overlap of represen-415

tations, particularly noticeable within the middle416

layers. This overlap serves as additional evidence417

that our multilingual instruction-tuning establish418

better language alignment.419

The alignment-enhanced LLM shows the ten-420

dency to respond multilingual instructions ac-421

cording to its English memory During exper-422

iments, we discover that our multilingual LLM423

shows the tendency to respond multilingual instruc-424

tions according to its English memory. Table 4425

shows two representative cases where our multilin-426

gual model produces similar response when given427

instructions in different languages.428

The value of translation data is beyond expos-429

ing more non-English tokens to LLM For ab-430

lation study, instead of using parallel data during431

instruction-tuning, we use the Chinese part of the432

English-Chinese translation data as monolingual433

corpus for continued pre-training and then only use434

bilingual instruction-following task for instruction-435

tuning (denoted as “continued pretraining” in Ta- 436

ble 5). Experimental results show that bilingual 437

instruction-tuning exhibits better performance on 438

all tasks except knowledge infilling, indicating 439

that the benefits of parallel data for the model are 440

not solely derived from exposing it to more non- 441

English data, but also from aligning languages. 442

7 Conclusion 443

This paper aims at extrapolating pre-trained large 444

language models to non-English by strengthening 445

semantic alignment across languages. Specifically, 446

we explore two multi-task training recipe: bilingual 447

instruction-tuning and multilingual instruction- 448

tuning, which both incorporates translation task 449

as an important auxiliary task. Moreover, we for- 450

mulate the scaling law of bilingual instruction- 451

tuning and provide guidance for performing mul- 452

tilingual instruction-tuning, e.g., optimizing mul- 453

tilingual data allocation. Experiment results on 454

several multilingual benchmarks show that our de- 455

vised training strategies effectively enhance pre- 456

trained LLM’s non-English proficiency even these 457

target languages share little alphabet with English. 458

Overall, our approach and findings illuminate the 459

potential for developing more potent LLMs for non- 460

English languages. 461
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Limitation462

A limitation of our work is that we do not extend463

vocabulary for target non-English languages. The464

effect is dual. Our approach does not require a465

large-scale non-English corpus to learn embedding466

of extended tokens. But on the other hand, since467

LLaMA usually tokenizes non-English tokens to468

bytes, our model is slower in encoding and de-469

coding non-English sequence than those models470

equipped with extended vocabulary. We leave the471

exploration on vocabulary manipulation as our fu-472

ture work.473
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A Details of Our Instruction-tuning635

For each experiment, we instruction-tune LLaMA’s636

full parameters for 3 epoch on 8×A100. The learn-637

ing rate is set as 2e-5 and batch size is set as 128.638

For training acceleration, we adopt FSDP training639

strategy (Zhao et al., 2023).640

B Our Used Prompts for Downstream641

Tasks642

We report our used prompts (English version) in643

Table 6. For monolingual non-English tasks, i.e.644

MLQA, XQUAD, MLAMA, XLSUM, we apply645

language-specific prompt (a foreign version of the646

English prompt in Table 6) when evaluating LLM’s647

performance on the target language. For machine648

translation tasks, FLORES-101, we only use En-649

glish instruction for multilingual translation in our650

experiments.651

C Used Scientific Artifacts652

Below lists scientific artifacts that are used in our653

work. For the sake of ethic, our use of these arti-654

facts is consistent with their intended use.655

• Stanford Alpaca (Apache-2.0 license), a656

project that aims to build and share an657

instruction-following LLaMA model.658

• Transformers (Apache-2.0 license), a frame-659

work that provides thousands of pretrained660

models to perform tasks on different modali-661

ties such as text, vision, and audio.662
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Task Dataset Prompt

Question Answering MLQA, XQUAD

Answer the question according to the paragraph in a few words.
Context: <context>
Question: <question>
Answer:

Knowledge Infilling MLAMA Please write an answer that can be filled in [MASK].

Summarization XLSUM

Summarize this article.
Article: <article>
Summary:

Machine Translation FLORES-101 Translate the following sentences from <SRC> to <TGT>.

Table 6: Our used prompts for downstream tasks. “<context>”, “<question>”, “<article>” are placeholders for input
information. “<SRC>” and “<TGT>” represent the placeholder for source and target language name in English.
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