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Abstract

The development of realistic agent-based simulator (ABS) remains a challenging
task, mainly due to the sequential and dynamic nature of such a multi-agent system
(MAS). To fill this gap, this work proposes a metric to distinguish between real
and synthetic multi-agent systems; The metric evaluation depends on the live inter-
action between the experimental (Exp) autonomous agent and background (BG)
agent(s), explicitly accounting for the systems’ sequential and dynamic nature.
Specifically, we propose to characterize the system/environment by studying the
effect of a sequence of BG agents’ responses to the environment state evolution,
and we take such effects’ differences as MAS distance metric; The effect esti-
mation is cast as a causal inference problem since the environment evolution is
confounded with the previous environment state. Importantly, we propose the
Interactive Agent-Guided Simulation (INTAGS) framework to build a realistic
simulator by optimizing over this novel metric. To adapt to any environment with
interactive sequential decision making agents, INTAGS formulates the simulator
as a stochastic policy in reinforcement learning. Moreover, INTAGS utilizes the
policy gradient update to bypass differentiating the proposed metric such that it
can support non-differentiable operations of multi-agent environments. Through
extensive experiments, we demonstrate the effectiveness of INTAGS on an equity
stock market simulation example.

1 Introduction
In various applications involving multi-agent system (MAS), training or testing an autonomous
agent (experimental agent) that analyzes the current state of the system and responds promptly is
a crucial task. Such a task oftentimes relies on live interaction with the environment, be it real or
synthetic, to account for the responses of other interactive agents in the environment (background
agents) to the experimental agent’s action. In particular, in the financial domain, algorithmic trading
(AT) should have access to a live environment with other market participants to construct and test
trading strategies [Pardo, 2011, Balch et al., 2019]. The live interaction overcomes the limitation of
traditional offline methods using historical replays, which fails to capture the dynamic nature of the
environment and its reactivity [Coletta et al., 2023a]. However, interaction with the real environment
is typically expensive, unsafe, and rarely feasible for research purposes, especially in the automotive
or financial domain. As a result, the most prevalent approach to develop an experimental agent is
through the interaction with a generative model, i.e., agent-based simulator (ABS), aiming to emulate
the real environment, i.e., background agents’ behaviors.
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Figure 1: Illustration in the market simulation application, where the environment consists of
background (BG) agents/traders and the exchange. We show how the experimental (Exp) agent
(following policy π) interact with the BG agents (following policy pθ in simulation, or preal in
reality) in the environment (left) and the INTAGS training framework (right). As in real MAS,
within the t-th step, the BG agents act τt times, between consecutive actions of the Exp agent.

Classic ABS are mostly parametric, and based on explicit rules that the agents need to follow. For
instance, under the context of traffic simulation, there is parametric ABS built upon strict rules/laws
that the drivers (i.e., agents) must obey [Quinlan et al., 2010]. However, such rules do not account for
irrational or irregular human actions, and they cannot be easily summarized in complex environments,
such as financial markets. This complexity motivates the need for advanced machine learning
techniques to train non-parametric ABS which can capture those rules from real-world data. Focusing
on the financial domain, conditional Generative Adversarial Networks (GANs) [Goodfellow et al.,
2014] are among the most popular approach for market simulation (see Appendix A for related work).
Specifically, the state-of-the-art (SOTA) approach is a conditional Wasserstein GAN (cWGAN)
trained on market replay, which was recently proposed by Li et al. [2020], Coletta et al. [2021, 2022].
To the best of our understanding, the success of cWGAN as SOTA in market simulation comes from
its adaption to this specific application: By conditioning on the market input, cWGAN captures
historical dependence and attempts to adapt to the sequential nature of trading activities (or rather, the
interactions within the MAS). Additionally, cWGAN uses Wasserstein distance as the discriminator
(or metric) to allow synthetic data that is unseen in the historical real market, potentially improving
its generalization ability to account for complex market dynamics.

However, the aforementioned adaptions are still not able to completely capture the whole market
dynamics. First, cWGAN only considers sequential trading activities/interactions locally. Specifically,
cWGAN cuts the sequence of state-action pairs of the background agents into independent pieces.
That is to say, cWGAN considers the local dependencies (i.e., the pairs (S,A); please refer to
Section 2 for rigorous definitions of notations) of the whole sequential structure as shown in the
left panel of Figure 1. Thus, cWGAN-based ABS is merely a generative model that completely
ignores the dependency/progression of those sequential pairs. The second pitfall of cWGAN is its
poor generalization ability, which comes from the offline training on replays: although cWGAN
is able to generate (output) unseen states it may not respond realistically when an external agent
acts aggressively, creating unseen (input) market states [Coletta et al., 2023a]. During training,
cWGAN is conditioned mostly on historical states, with unknown performance when conditioned
on states with different data distributions. The cWGAN’s response (which shapes the simulated
market) to those unseen states may become unrealistic. Therefore, it is crucial to introduce external
experimental agents and consider the live/online interaction between experimental and background
agents during the training. To the knowledge of the author, even though there are many recent efforts
on GAN-based market simulators (to be reviewed in Appendix A), they did not go beyond either the
classic local metric or offline training on replays, and a satisfying quantitative metric that adapts to
the sequential, complex, and dynamic natures of the trading market is largely missing [Bouchaud
et al., 2018, Vyetrenko et al., 2020]. As a result, it remains a challenging task to train ABS that
generates realistic market data.

In this work, we address the aforementioned issues by proposing a distance metric between real and
synthetic multi-agent systems that accounts for the sequential and dynamic nature of the MAS. Based
on this novel metric, we develop an online training framework, named Interactive Agent-Guided
Simulation (INTAGS). INTAGS only requires offline interactions/replays of the real-world experimen-
tal agent with the real environment, and thus will not interfere with the real-world production system;
The framework is online because the objective function, or rather the proposed distance metric, is
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obtained through the online/live interaction of the real-world experimental agent with the synthetic
environment. Specifically, we propose to characterize the underlying environment by the causal effect
[Rubin, 1974] from the experimental agent’s action to environment state evolution, since such an
effect is a result of a sequence of background agents’ (which uniquely characterize the environment)
responses to the experimental agent’s action; We take the difference between the causal effects under
real and synthetic environments as our MAS distance metric. Inspired by SeqGAN [Yu et al., 2017],
we formulate the generator network as a stochastic policy to account for the sequential nature of the
MAS. Moreover, by leveraging the Policy Gradient Theorem [Sutton et al., 1999], INTAGS mini-
mizes our proposed metric without differentiating the metric, since its evaluation typically involves
non-differentiable operations, such as order deletion in our market simulation application. We conduct
extensive experiments to study the market simulation application, showing our INTAGS can generate
much more realistic market data compared with the cWGAN-based simulator. This improvement
could, in turn, facilitate the use of sample inefficient reinforcement learning (RL) approaches for
trading strategy construction, reducing “time-period bias” and the unrealistic reactivity of the existing
cWGAN simulator. Although our experiments specifically focus on simulating financial markets, our
proposed INTAGS can be applied in all environments with interacting agents, including language
generation [Bai et al., 2022] and traffic simulation [Suo et al., 2021].

2 Problem Set-up
We formulate the agents’ interactions as a Markov Decision Process, in which the experimental (Exp)
agent interacts with the environment (Env), which is characterized by the background (BG) agent(s),
to adapt its strategy based on the dynamic feedback from the Env. The Exp agent can be rule-based,
or trained by online reinforcement learning, enabling the Exp agent to make informed decisions
sequentially in response to changing Env conditions.

Experimental agent. Denote the state space by S̃ , action space by Ã, and a reward function by R. At
each discrete time step t ∈ {1, . . . , T}, where T is a finite time horizon, the Exp agent observes the
state st−1 ∈ S̃ , and takes action at ∈ Ã according to its policy π; this action can incur an immediate
reward R(st−1, at) and push the environment to the next state st as the BG agents respond to at.

Background agent. To distinguish the (synthetic) BG agent from the Exp agent, we denote the input
to the BG agent as S ∈ S, and output action as A ∈ A; Here, A = Gθ(z|S), z ∼ N(0,1), where
we parameterize Gθ as a NN with network parameter θ; Indeed, the BG agent follows the underlying
stochastic policy:

A ∼ pθ(·|S). (1)
The goal is to train a NN to emulate the real BG agents, ensuring that the simulated environment
with a NN-based BG agent closely matches reality. See Figure 1 for an illustration of the interaction
between the Exp agent and BG agent(s).

Terminologies. The NN-based BG agent can be viewed as “one agent representing all real BG agents
in the world”; Following idea of the world model [Schmidhuber, 2015] and world agent [Coletta et al.,
2021], we name this NN-based BG agent by world BG agent and the simulated/synthetic interactive
environment with world BG agent by world Env. The interactive environment with real BG agents
is referred to as real Env. In what follows, we will use the terms “simulator/generator”, “world BG
agent (policy)”, and“world Env” interchangeably; Similarly, we use the terms “reality”, “real BG
agents”, and “real Env” interchangeably.

Data. We use an ordered list T to denote the collection of states and actions when the Exp agent π
interacts with the Env, and we name the collected data during (or after) this interaction as rollout.
Specifically, take the world Env as an example (which is illustrated in Figure 1), the partial rollout
that ends at time step t ∈ {1, . . . , T} is:

T 1:t
π,θ = {s0, . . . , st−1, at, (S

1
t , A

1
t ), . . . , (S

τt
t , Aτt

t )}.
In particular, the prefix that determines the last sequential action Aτt

t of the BG agent is

T̃ 1:t
π,θ =

{
s0, . . . , st−1, at, (S

1
t , A

1
t ), . . . , (S

τt−1
t , Aτt−1

t ), Sτt
t

}
.

3 Proposed Metric
In this section, we formally define the unique characteristic of the Env, through a feedback f , after
the interaction of a fixed Exp agent π with the corresponding Env. Thus, the generator training can be
done by minimizing the chosen feedback’s difference between the world Env and the real Env.
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3.1 Formulation
For Exp agent with policy π, the feedback can be obtained through its interaction with the Env, be it
real or synthetic. Given the complete rollout T 1:T

π,θ under the world Env, the feedback is denoted by
f(T 1:T

π,θ ), which can be understood as a realization of random variable f(π, pθ) shown in Figure 1,
where the randomness comes from the stochastic policy pθ (1). Similarly, we use subscript real to
denote the feedback under real Env, i.e., f(T 1:T

π,real), which can be viewed as a realization of random
variable f(π, preal).

Given f , our proposed market distance metric, which is highlighted in red in Figure 1 and will be
used to train the world BG agent, is defined as:

Df (θ) = d̂
({

f(T 1:T
i,π,θ), i = 1, . . . , N

}
,
{
f(T 1:T

j,π,real), j = 1, . . . , N ′}), (2)

where T 1:T
i,π,θ’s and T 1:T

j,π,real’s are the complete rollouts under the world Env and real Env, respectively.
Here, d̂ represents an empirical estimate of a distance metric between probability distributions. A
popular example is Maximum Mean Discrepancy (MMD) [Gretton et al., 2012]. Please see further
details, including a graphical illustration of the evaluation of Df (see Figure 5) and the expression of
an unbiased estimate of MMD in Appendix B.2.

3.2 Numerical evidence
We use numerical evidence to select feedback f and empirical probability distance metric
d̂. The experiments are conducted under the stock market simulation setting and please find
complete details of the configurations in Appendix D.1. We start with the most straightfor-
ward candidate feedback — the end-of-rollout cumulative reward of the Exp agent, denoted
by EpisodeReward — and plot its empirical distribution under world and real markets in
the first row of Figure 2. We can observe that: for a sufficiently large number of rollouts

Figure 2: The distribution of feed-
back (top: Episode Reward; bottom:
Mkt2NextReturn) under multiple rollouts
(from left to right: 5, 10, 100) under real
(orange) and world (blue) markets. The ideal
feedback should have different empirical dis-
tributions under the real and world markets
with few rollouts. Thus, Mkt2NextReturn
is better, which can differentiate markets
with 5 rollouts (bottom left panel).

(N = 100, the last column in the first row of Fig-
ure 2), both visual evidence and quantitative met-
ric MMD support EpisodeReward’s effective-
ness in differentiating markets. However, taking
N = 100 incurs unreasonably high computational
cost — as shown in Algorithm 1, N MC rollouts
(step 7) are needed T × b times for each iteration
in generator training (see further discussion on
complexity at the end of this paper). Given the
constraint on N , with a limited number of roll-
outs, it is difficult to differentiate two markets (as
shown in the first two columns in the first row of
Figure 2), rendering EpisodeReward undesir-
able for training generator.

Based on the above analysis, we propose two “ax-
ioms” that f must satisfy: (Ax1) Separability — f
must be able to differentiate markets in the sense
that f ’s under different markets should be very dif-
ferent; (Ax2) Fast convergence — f should have
its distribution quickly “converge” to the final state
so that only a few rollouts are needed during the generator training. Indeed, EpisodeReward
ignores the market dynamics encoded in the time series data collected during the interaction (just as
the classic local metric does), and this might explain why the “convergence” w.r.t. number of rollouts
is not fast enough, resulting in inefficient data usage and information loss. Since the main difference
between the real and world markets comes from the BG agents, the feedback should depend on the
BG agents. As illustrated in Figure 1, the effect from AT agent action at to next state st reflects how
BG agents respond to at, and thus the resulting feedback can characterize the BG agents (and thus
the market). To be more precise, we consider the action “placing market order” since market orders
are more frequently seen than limit orders; The stylized fact we consider as the next-step state is
market return, which is better (in the sense of the aforementioned 2 axioms) than other candidates
including spread, imbalance, etc.; For brevity, we name this feedback as Mkt2NextReturn.

Causal effect as f . The estimation of Mkt2NextReturn can be cast as a causal/treatment effect
estimation problem [Rubin, 1974], as st−1 acts as a common cause (or rather, confounder) of both

4



action at (i.e., treatment) and next state st (i.e., observed outcome). To adjust for confounding,
we apply an inverse probability weighted estimator for Mkt2NextReturn. In the second row of
Figure 2, we report the empirical distribution of estimated Mkt2NextReturn against increasing
rollout number, from which we can observe that with only 5 rollouts the empirical distributions are
very different from each other (also verified by MMD) and they are fairly close to the “convergence
state” at 100 rollouts. Thus, we choose Mkt2NextReturn as f that can differentiate markets with
a small number of rollouts.

To train generator by minimizing Df (2), d̂ should also be properly chosen such that Df meets
(Ax1) and (Ax2). To ensure that the good separation shown in the second row of Figure 2 is not
a result of certain random seeds, we perform bootstrap to quantify the uncertainty: For rollout
number N ∈ {2, 3, 5, 7, 10, 20, 30, 40, 50}, we select N rollouts from 200 rollouts and repeat this

Figure 3: The mean and 90% CI trajec-
tory of our metric: d̂ is MMD estima-
tor, and f is EpisodeReward (left) or
Mkt2NextReturn (right). The ideal met-
ric should be large (or small) under dif-
ferent (or same) markets with few rollouts,
reaffirming our finding from Figure 2 that
Mkt2NextReturn is a better option.

procedure 50 times to obtain 50 MMDs; We
plot the mean and 5% - 95% envelope, i.e., 90%
bootstrap confidence interval (CI), trajectory of
those MMDs against N when the two markets
are different (or identical) in Figure 3. Addition-
ally, we report result for EpisodeReward as f
for comparison. We can observe that MMDs
under the same market (red) are significantly
smaller than that under different markets (blue)
when N exceeds 5, verifying Df ’s effectiveness
when choosing Mkt2NextReturn as f and
MMD as d̂ to differentiate markets. On the con-
trary, such a pattern can only be observed for
large enough N (around 30) when we consider
EpisodeReward as f .

4 Generator Training
Formulation. Here, we introduce INTAGS that trains the world BG agent by minimizing interactive
agent-based distance metric Df (2). However, the major challenge is that the non-differentiable Df

renders commonly seen empirical methods, e.g., back-propagation, for gradient descent (GD) infeasi-
ble. To handle this issue, one popular approach is proposed in SeqGAN work, which reformulated
the generator as a stochastic RL policy and performed Policy Gradient update [Sutton et al., 1999].
Fortunately, INTAGS’s problem formulation aligns with SeqGAN’s in the sense that the world BG
agent generates actions sequentially, and the interactive agent-based metric evaluation occurs only at
the end of the interaction2. Thus, the simulator training is formulated as:

θ = argmin
θ
L(θ) =

∑
A∈A

pθ(A|Sτ1
1 )Qf (T̃ 1:1

π,θ , A),

where the input to world BG agent Sτ1
1 is the last element in the rollout T̃ 1:1

θ , and Qf is the state-
action value function, i.e., the cumulative expected cost conditioned on start state T̃ 1:1

θ and action A
following the stochastic policy pθ (1). The value function Qf is chosen to be our metric Df (2) with
complete rollouts, assuming all intermediate costs are zeros. To be precise, at the intermediate stage
of the interaction (say at t-th step), Qf can be estimated through N Monte Carlo (MC) simulations to
finish the interaction, referred to as MC rollouts:

Qf (T̃ 1:t
π,θ , A) = d̂

(
f(T MC

π,θ ), f(T π,real)
)
,

where f(T MC
π,θ ) is the collection of feedbacks from N MC rollouts with prefix T̃ 1:t

π,θ ∪ {A}, i.e.,

f(T MC
π,θ ) =

{
f
(
T 1:T,MC
i,π,θ

)
: T̃ 1:t

π,θ∪{A} ⊂ T
1:T,MC
i,π,θ , i = 1, . . . , N

}
, (3)

and f(T π,real) is the collection of feedbacks from N ′ complete rollouts under the real Env, i.e.,

f(T π,real) =
{
f
(
T 1:T
j,π,real

)
, j = 1, . . . , N ′} . (4)

2Evaluating f and Df using partial rollout is feasible, but will lead to insufficient data for the feedback
estimation and metric evaluation, resulting in a less favorable metric that cannot differentiate markets.
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The Policy Gradient Theorem gives a closed-form expression of the gradient of the objective function
L with respect to (w.r.t.) parameter θ without differentiating interactive agent-based Qf , i.e.,

∇θL(θ) =
T∑

t=1

ET̃ 1:t
π,θ

[ ∑
At∈A

∇θpθ (At|Sτt
t ) ·Qf

(
T̃ 1:t
π,θ , At

)]
,

where Sτt
t is the last element of T̃ 1:t

π,θ . Next, the likelihood-ratio technique [Glynn, 1990] is invoked
to obtain an unbiased empirical estimate of the gradient, i.e.,

∇θL(θ) ≃
T∑

t=1

EAt∼pθ(·|S
τt
t )

[
∇θ log pθ (At|Sτt

t ) ·Qf

(
T̃ 1:t
π,θ , At

)]
,

where T̃ 1:1
θ ⊂ · · · ⊂ T̃ 1:T

π,θ all come from a complete rollout T 1:T
π,θ under world Env pθ. The

expectation in the last line of the above equation can be approximated via sample average. See
Appendix B for further details of the training of INTAGS, including practical implementation in
Algorithm 1 and a graphical illustration of how to back-propagate to obtain the gradient in Figure 6.

Performance improvement. Lastly, we use numerical evidence to demonstrate the effectiveness of
INTAGS. Specifically, we name the application of INTAGS under the context of market simulation
as Algorithmic Trading-guided Market Simulator (ATMS). We evaluate the simulator performance
with not only our novel metric but also visualizing certain stylized fact time series Bouchaud et al.
[2018], Li et al. [2020]. To demonstrate the effectiveness of our ATMS, we visualize the stylized
fact volume at first 10-levels from 10AM to 11AM over 12 independent trials in Figure 4. We can
observe that, during the ATMS training, volume at first 10-levels is “increasingly similar” (in terms
of magnitude and matching demand-supply) to reality while our AT-based metric is minimized.

Figure 4: Effectiveness of ATMS, which is the application of our INTAGS in finance. We report
volume at first 10-levels. The ATMS can generate market data that is “increasingly” similar to
reality while minimizing our AT-based metric.

5 Conclusion and Discussion
This work proposes a MAS distance metric, on which we build INTAGS online training framework.
The effectiveness is demonstrated by the market simulation application, reaffirming our claim that
incorporating the agents’ live interactions is of vital importance for simulating environments with
interactive agents. Our experiments demonstrate the potential of INTAGS in real production; As
illustrated in Figure 1, INTAGS only needs a fixed collection of real feedback f(T π,real) (4), i.e.,
historical reply. Thus, the deployment of our INTAGS, such as ATMS in market simulation, does
not interfere the real production. However, since INTAGS’s deployment requires the Exp agent to
take real-world strategy, which typically targets very complex tasks on a large time horizon T , one
potential limitation is the computational complexity: Each update of parameter θ in Algorithm 1
requires O(NbT ) interactions, resulting in O(NbT 2) steps. Luckily, the complexity can be reduced
to O(NbT0T ) by approximating the gradient as:

∇θL ≃
T0∑
t=1

Ex∼pθ(·|Sτt
t )

[
∇θ log pθ (At|Sτt

t )Qf

(
T̃ 1:t
π,θ , At

)]
.

This is because T0 (and b) determines how many BG agent actions are sampled and penalized, and
thus can be treated as batch-size in stochastic GD; This makes T0 a tunable hyperparameter; By
carefully tuning T0 (and b; see the hyperparameter selection in Appendix D.1), we can finish the
INTAGS training within a reasonable time frame (around 2 hours) using Amazon Web Services
(r6i.24xlarge, 96 CPUs, 768 GiB memory). In practice, after proper selection of N 3, b, T0, the
complexity is merely linear w.r.t. the horizon T , which is determined by the real tasks.

3N controls how well the estimated metric Qf is, and it has already been tuned by experiments — We want
to find the smallest N to meet Ax2 and guarantee an effective metric (i.e., the estimated Qf can differentiate
simulated and real Envs).
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Disclaimer

This paper was prepared for informational purposes by the Artificial Intelligence Research group
of JPMorgan Chase & Co. and its affiliates (“JP Morgan”), and is not a product of the Research
Department of JP Morgan. JP Morgan makes no representation and warranty whatsoever and
disclaims all liability, for the completeness, accuracy or reliability of the information contained herein.
This document is not intended as investment research or investment advice, or a recommendation,
offer or solicitation for the purchase or sale of any security, financial instrument, financial product or
service, or to be used in any way for evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or to any person, if such solicitation under
such jurisdiction or to such person would be unlawful.
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Appendix of “INTAGS: Interactive Agent-Guided Simulation”

A Extended Literature Survey

Here, we extend our literature survey to more relevant topics.

Stock market data simulation. One particular application of interest is Limit Order Book (LOB)
stock market simulation, a field initially studied via Interactive Agent-Based Simulation [Macal
and North, 2005] that models and simulates interactions among background agents, i.e., market
participants. Presently, the SOTA parametric approach is Agent-Based Interactive Discrete Event
Simulation (ABIDES) [Byrd et al., 2020, Amrouni et al., 2021]. As mentioned earlier, the adaption
to the unique characteristics of the underlying application is crucial to the success of generative
models. However, oftentimes it would be too difficult to explicitly describe those rules, especially for
trading activities, leading to the application of advanced machine learning techniques to summarize
those rules from data. Under the context of LOB market simulation, precisely specifying the type
(momentum agents, value agents, noise agents, etc.) and quantity of background agents to emulate
real multi-agent systems is rather challenging, let alone the fact that agents’ identities are missing for
the MAS calibration [Coletta et al., 2023b]. Thus, there is an increasing amount of work replacing
parametric models with easy-to-tune neural networks (NNs) to effectively capture the trading market’s
complex dynamics, offering a more flexible and scalable framework for training a generative model
to capture the complex market dynamics. Notably, Stock-GAN [Li et al., 2020] utilized cWGAN
to generate limit orders; Later, Coletta et al. [2021, 2022] extended Stock-GAN and introduced the
concept of a world agent, which can not only place limit and market orders but also cancel and
replace orders.

The aforementioned GAN-based approaches explored various NN architectures, trying to adapt to
the corresponding applications, but none of them went beyond the classic local loss that directly
penalizes the action of background agents (i.e., the output of the generator) for given input market
state — one exception is Shi et al. [2019], where they studied the customer/agent policy, i.e., how to
place BUY orders in the e-commerce market, with RL, and leveraged adversarial imitation learning
[Ho and Ermon, 2016, Torabi et al., 2018] that replaced the critic in GAN with the agent reward.
On one hand, as the generative model tries to capture the policy of the BG agents, it is natural to
use RL or imitation learning (IL). In the same spirit of our adaptation of SeqGAN, Shi et al. [2019]
used IL for generator training to account for the sequential nature of the market. However, to the
best of our knowledge, Shi et al. [2019] seems to be the only attempt along the direction of IL for
market simulation. On the other hand, as we will see later, using the reward directly as the loss cannot
capture the causal relationship that can discriminate between real and synthetic markets. Additionally,
Shi et al. [2019] has limitations as it can only place one type of order.

Generative models in finance. Training experimental agents usually involves interaction with
the real market, which is often impractical. To create a suitable market for the experimental agent,
generative models representing all background agents are needed and have gained prominence in
finance, with GAN being a particularly popular choice. To the knowledge of the author, this line
of research traces back to Kumar et al. [2018], Shi et al. [2019], who adapted GAN to generate
BUY orders in e-commerce markets. Notably, GAN has been utilized to model more complex stock
markets and simulate various types of stock market data, including transaction event time [Xiao et al.,
2017, 2018], price [Zhang et al., 2019, Wiese et al., 2020, Koshiyama et al., 2021], and even orders
[Li et al., 2020, Coletta et al., 2021, 2022].

Generative models for RL. Our proposed INTAGS is closely related to RL: On one hand, the
generator is formulated as a stochastic RL policy and trained via policy gradient. On the other hand,
the downstream task — the Exp agent — can be done by RL. In literature, reinforcement learning and
generative models have been traditionally considered separate fields until some recent developments
reveal their promising connections. One notable application involves leveraging generative models
in RL training, particularly relevant in the context of optimal execution tasks in financial markets.
Indeed, it is a popular approach to study financial tasks with an interactive simulator: For example,
Karpe et al. [2020] trained RL agent to perform optimal execution tasks by interacting with parametric
market simulator ABIDES [Byrd et al., 2020, Amrouni et al., 2021] such that the training process
captures real-world dynamics, enabling agents to grasp the consequences of their actions on the
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responses of other market participants; Kuo et al. [2021], Koshiyama et al. [2021] trained agents
to perform downstream financial tasks with the help of a conditional GAN-based market simulator.
One notable work studying the connection between GAN and RL is Ho and Ermon [2016], which
proposed to mimic the expert policy from instances by inverse RL (IRL) followed by RL; They
theoretically proved that explicitly learning of the cost function in the IRL could be bypassed, which
enabled end-to-end learning of the policy from the expert policy instances. Moreover, the resulting
imitation learning problem takes a GAN formulation, bridging RL and GAN from a very novel
perspective. Other contributions in this direction include Finn et al. [2016], Fu et al. [2017], who
formulated IRL as GAN problem.

RL for Generative models. As pointed out by Yu et al. [2017], Shi et al. [2019] as well as our
work, the generator can be formulated as the (RL) agent policy, and therefore imitation learning can
be used for market simulation, which opens up more possibilities in this area (i.e., market simulation).
However, it is difficult to train adversarial imitation learning models in practice since careful reward
augmentation [Bhattacharyya et al., 2019] and curriculum design [Behbahani et al., 2019] are needed
in practice, and this might explain why GAN is still the most popular approach for market simulation.
We refer readers to Torabi et al. [2019] for a recent survey on imitation learning. On the other hand,
as most GAN-based simulators, Ho and Ermon [2016] also used the classic loss function and this is
the key difference from our work: the proposed interactive agent-based environment distance metric
and the derived training framework — INTAGS — are the main contribution of our work. Another
seemingly closely related work in this direction is Ruiz et al. [2019], who studied the classification
problem in the presence of limited real data via a classifier trained on generative models. They
claimed to leverage RL to help with the GAN training. However, as pointed out by the reviewer, even
though the feedback from evaluating the classifier on the real data can help improve the generative
model, there is no clear state and action space definition nor sequential decision-making, rendering
the claim of reformulating the GAN training as RL less convincing. Other works that leveraged RL
to help with the GAN training include: Sarmad et al. [2019], who proposed to use RL to control the
input to generators in the GAN, and Tian et al. [2020], who proposed to use RL to help search for the
optimal GAN architecture. However, non of those works leverage sequential agents’ interactions to
develop a metric for the training of a generative model, which is the key difference between our work
and those existing works.

B Additional Details of INTAGS

B.1 Causal effect estimation for feedback

One of our main contributions is the novel interactive agent-based MAS metric, which compares the
discrepancy of the feedback (empirical) distributions under different environments. The feedback is
defined over a longer sequential state-action-next state chain, compared to the previous state-action
pair used in classic cWGAN. By considering a longer chain, our metric considers and introduces a
much more complex sequential dependency.

To understand what is the complex sequential dependency, let us first recall one proposed feedback
in the market simulation application: the Mkt2NextReturn; That is, the feedback is the causal
effect from Exp AT agent placing market (BUY) order to the next market return. However, at time
step t, the market evolution st is not only the result of Exp AT agent’s action at and the BG agents’
responses Aj

t ’s, but also correlated to previous market return st−1 — this is the additional sequential
dependency introduced by our feedback; in the classic setting, the BG agents’ state-action pairs
(Sj

t , A
j
t )’s have very clear and simple dependency that action Aj

t only depends on the input market
state Sj

t .

Next, let us elaborate on why introducing such additional sequential dependency poses a challenge in
feedback estimation. Again let us consider feedback Mkt2NextReturn in the market simulation;
To estimate f from collected sequential observations, one can select the time steps where at =
placing market order and take the average of corresponding st’s as the estimator. To be precise, the
naive estimator of feedback f , i.e., the causal effect from Exp agent action to the next state, say j-th
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element of the state vector, is defined as

fnaive =
1

#{t : at = placing market order}

T∑
t=1

st(j)1{at=placing market order},

where # denotes the cardinality of a set, st(j) is the j-th element of the state vector (e.g., return),
and 1 is the indicator function.

The problem of the above naive estimator is the selection bias, i.e., the selected sub-population is
not representative enough of the whole population, making the average effect estimator above a
biased one; To understand this, let us consider a very simple example, where we want to study the
effect of carrying a lighter to developing lung cancer: If the effect from smoking, which acts as a
common cause to both carrying a lighter and developing lung cancer, is not considered, a false causal
conclusion (which is indeed just correlation) that carrying a lighter will result in lung cancer will be
made. Under the potential outcome framework by Rubin [1974], the causal effect estimation from
the treatment variable to the outcome variable needs to take into account the effect of pre-treatment
covariates, called potential confounders.

There are two solutions: (Apch1) One naive approach is to manually break the correlation between
st−1 and at; In the market simulation, we can use zero-intelligent Exp AT agent that aggressively or
randomly place orders; However, as we mentioned in our discussion (see Section 5), the deployment
of INTAGS needs the Exp agent to be the real one in the production system and therefore it is unlikely
that such an Exp agent is zero-intelligent. (Apch2) One very popular approach to estimate causal
effect from observational data is to leverage inverse probability weighted (IPW) estimator [Horvitz
and Thompson, 1952] to adjust for the potential confounders; The high-level idea is to adjust the
weight of each selected sample such that the re-weighted sub-population is the same with the whole
population in theory, addressing the issue of selection bias. To be precise, we denote the propensity
score, which is the probability of “receiving treatment”, as

e(s) = P(a = placing market order | state = s) = π(s, a),

where π is the policy of the Exp agent (or AT agent in our market simulation application). The IPW
estimator of feedback f is defined as:

fIPW =
1

#{t : at = placing market order}

T∑
t=1

st(j)1{at=placing market order}

ê(st−1)
,

where ê denotes the estimated propensity score (typically through logistic regression). In practice, to
ensure estimates ê’s are not overly small, they are typically clipped using a certain threshold (denoted
by PSthres), i.e., ê← max{ê,PSthres}.

B.2 Value function evaluation

The value function Qf estimation relies on N ′ feedbacks from the real Env and N feedbacks obtained
by performing N complete rollouts under the world Env. As illustrated in Figure 5, the interaction

Figure 5: Illustration of the calculation of our proposed interactive agent-based distance metric.

under real Env to obtain the feedback only needs to be performed offline; During the training of the
world BG agent policy/generator network in Algorithm 1, the interaction under world Env and the
network parameter update are performed iteratively.
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In this work, the probability distribution distance metrics we consider are MMD, ED, and EMD.
Other discrepancy metrics such as Kullback–Leibler divergence and Jensen–Shannon divergence are
less favorable as we can observe the supports of two empirical probability distributions are different
in Figures 2, 10 and 9 (especially when the number of rollouts is small).

Given two sets of samples {f1, . . . , fN} and {g1, . . . , gN ′}, an unbiased estimator of MMD can be
obtained through the following U-statistic:

d̂
(
{f1, . . . , fN}, {g1, . . . , gN ′}

)
=

∑
i ̸=j k(fi, fj)

N(N − 1)
+

∑
i ̸=j k(gi, gj)

N ′(N ′ − 1)
−

2
∑

i,j k(fi, gj)

NN ′ ,

where k(·, ·) is the user-specified kernel function. Popular choices include Gaussian kernel with
bandwidth parameter σ > 0, k(f1, g1) = exp{∥f1 − g1∥22/(2σ2)}, where ∥f1 − g1∥2 represents the
Euclidean distance.

In addition, the empirical estimate of Energy Distance is as follows:

d̂ED({f1, . . . , fN}, {g1, . . . , gN ′}) =
∑

i ̸=j ∥fi − fj∥22
N(N − 1)

+

∑
i ̸=j ∥gi − gj∥22
N ′(N ′ − 1)

−
2
∑

i,j ∥fi − gj∥22
NN ′ ,

It is worthwhile noting that ED is a special case of MMD with linear kernel; Indeed, their equivalence
has already been established [Sejdinovic et al., 2013]. Lastly, the estimation of Earth Mover’s Distance
is done by a popular built-in implementation in wasserstein_distance in scipy.stats;
we omit further details as EMD is a less favorable d̂ choice according to our empirical evidence.

B.3 Density estimation

Here, since the generator network Gθ is a deterministic transformation, we apply kernel density
estimation (KDE) to obtain the induced density function pθ; We choose KDE since it enjoys a
closed-form and differentiable solution. In our experiment, we use a Gaussian RBF kernel with a
bandwidth parameter selected by the median heuristic (which is referred to as adaptive bandwidth).
Note that using KDE in the objective function is not novel in literature, and there exists work that
proposed to include the bandwidth as a learn-able parameter during the optimization [Gomez-Alanis
et al., 2020], which is referred to as optimized bandwidth. Alternatively, one can choose a fixed
bandwidth parameter in KDE; Here, since the bandwidth choice is not a major contribution in our
work, we leave the performance of those bandwidth choices (i.e., adaptive, fixed or optimized; this
work takes the adaptive one) as future development and the user can freely choose among them during
the implementation.

B.4 Training algorithm

In this part, we present the algorithm for training INTAGS. Before that, we give the derivation of the
gradient as follows:

∇θL(θ) ≃
T∑

t=1

∑
At∈A

∇θpθ (At|Sτt
t ) ·Qf

(
T̃ 1:t
π,θ , At

)

=

T∑
t=1

∑
At∈A

pθ (At|Sτt
t )∇θ log pθ (At|Sτt

t ) ·Qf

(
T̃ 1:t
π,θ , At

)

=

T∑
t=1

EAt∼pθ(·|S
τt
t )

[
∇θ log pθ (At|Sτt

t ) ·Qf

(
T̃ 1:t
π,θ , At

)]
.

Moreover, we use graphical illustration to show how to perform Algorithm 1 in practice. In particular,
we illustrate the forward pass and back-propagation to obtain the gradient in Figure 6.
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Algorithm 1 Training of Interactive Agent-guided Simulation

Input: Exp agent π, feedback f(T π,real) (4), empirical probability distance d̂, learning rate r, time
horizon T , batch size b, rollout number N .

1: while convergence not achieved do
2: Perform a complete rollout following pθ: T 1:T

π,θ .
3: for t = 1 to T do
4: Given prefix T̃ 1:t

θ = {. . . , Sτt
t } ⊂ T 1:T

π,θ , sample: At,1, . . . , At,b ∼ pθ(·|Sτt
t ).

5: for k = 1 to b do
6: Finish N MC rollouts with prefix T̃ 1:t

θ ∪ {At,k} following pθ: T MC
π,θ (3).

7: Compute: Qt,k
f = d̂

(
f(T MC

π,θ ), f(T π,real)
)
.

8: end for
9: end for

10: θ ← θ − r
∑T

t=1
1
b

∑b
k=1 Q

t,k
f ∇θ log pθ (At,k|Sτt

t ) .
11: end while
12: return θ

Figure 6: Illustration of Algorithm 1 — the forward-backward pass and and the gradient evaluation.

C Additional Background Knowledge of Market Simulation Experiment

In financial markets, traders buy (bid) and sell (ask) financial assets based on the available market
information, aiming to make a profit. The buy and sell trades/orders are processed through a matching
engine, also known as an exchange, that operates under specific rules (typically “first in first out”).
The most common orders are market orders and limit orders: Market orders are executed immediately
at the prevailing bid or ask price, whereas limit orders set an upper (or lower) price threshold for a
buy (or sell) order, and thus may not be (immediately) executed until there is a matching counterparty.
As illustrated in Figure 7, the LOB [Gould et al., 2013] organizes and displays outstanding (i.e.,
unexecuted) limit orders, providing insights into market conditions and liquidity; Its statistical
properties, called stylized facts [Cont, 2001, Vyetrenko et al., 2020], such as mid-price and spread,
can help traders with informed decision-making. One fundamental problem in financial modeling is
algorithmic trading (AT), where an algorithmic agent replaces human traders such that it can analyze
large volumes of market data, identify patterns, and execute orders at high speeds. Meanwhile, the
market responds to the Exp agent’s actions in the way that other participants, i.e., BG agents, adjust
their strategies and place orders accordingly. This Exp agent can be designed/trained to perform a
variety of tasks, e.g., optimal execution, etc.
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Figure 7: The LOB structure for a specific assert.

C.1 Limit order book

LOB dynamics. We begin with introducing the dynamics of LOB, as shown in Figure 8; We
illustrate this dynamics of the LOB with three cases:

• Case 1: A buy market order with volume 25 arrives, leading to 25 shares of order executed
on ask side based on price and order arrive time. The execution price will be the ask price,
and the resulting LOB market will have mid-price and spread shifted to $93.5 and $3.

• Case 2: A buy limit order with price $98 and volume 25 arrives. As $98 exceeds the current
ask price (i.e., $94), the incoming will be executed at the ask price. The resulting LOB
market will be exactly the same with case 1.

• Case 3: A but limit order with price $93 and volume 10 arrives. Since there will be no
matching counterparty on the ask side, this order will be placed in LOB, resulting in LOB
market mid-price and spread shift to $93.5 and $1.

Figure 8: Illustration of the dynamics of LOB.

Stylized facts. Next, we define stylized facts used in this work following the notation in Coletta
et al. [2022]. We denote pia(t), v

i
a(t), p

i
b(t), v

i
b(t) as the price and volume at i-th level of the LOB, at

time t, for ask and bid respectively. For example, in the starting state of the LOB (left panel) shown
in Figure 8, p1a(t) = $94 and p1b(t) = $92. The depth of a limit order with price threshold p(t) is
defined as

d(t) =

{
p1b(t)− p(t), If side = bid,
p1a(t) + p(t), otherwise.

The stylized facts used here are:
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• Mid-price, average of ask price and bid price, i.e.,

m(t) =
p1a(t) + p1b(t)

2
.

• Return and price impact:

r(t1, t2) = log
m(t1)

m(t2)
.

Typically the return at time t is defined as r(t, t−1); our “price impact” is defined as r(t, 0),
which measures the return w.r.t. to the beginning of our market scenario.

• Spread:
δ(t) = p1a(t)− p1b(t).

• Volume imbalance, the demand and supply inequality within the first n-levels, i.e.,

In(t) =

∑n
j=1 v

j
b(t)∑n

j=1 v
j
b(t) + vja(t)

. (5)

• Absolute volume within the first n-levels:

V n(t) =

n∑
j=1

vjb(t) + vja(t).

In particular, the bid (or buy) and ask (or sell) volumes within the first n-levels are defined
as

V n
b (t) =

n∑
j=1

vjb(t), V n
a (t) =

n∑
j=1

vja(t). (6)

C.2 Optimal execution and reinforcement learning

One most famous framework for optimal execution (or optimized trade execution), where the goal
is to sell a target share of stocks within a finite time horizon, would be the Almgren–Chriss Model
[Almgren and Chriss, 2001], where the market dynamics takes a parametric form, leading to a
“pre-planned strategy that does not depend on real-time market conditions” [Hambly et al., 2021].
To address this issue, Nevmyvaka et al. [2006] first applied RL in the optimal execution problem.
However, their RL training used (historic) real data, in which there will be no responses from other
traders. [Karpe et al., 2020] leveraged the parametric market simulator ABIDES [Byrd et al., 2020,
Amrouni et al., 2021] to generate training data to address this issue. On the contrary, Patel [2018] did
consider multiple agents in the RL. For recent advancements in this direction, we refer readers to a
nice survey by Hambly et al. [2021] (see Section 4.2 therein).

Reinforcement learning for optimal execution. In the aforementioned optimal execution task,
e.g., acquiring q0 shares of one particular asset within T , the objective function of finding the optimal
policy π⋆ via online RL problem is:

π⋆ = argmax
π

Eπ

[
T∑

t=1

γt−1R(st−1, at)− PqT

]
,

where γ ∈ [0, 1] is the discount factor that determines the importance of future rewards, Eπ denotes
the expectation over trajectories generated by policy π, qT ≥ 0 denotes amount of unfulfilled shares
to meet the target q0 at the end of rollout, and P > 0 is the penalty per unfulfilled share.

Rule-based policy, such as aggressively placing q0 market orders at the first step, is feasible, but will
greatly impact the market and result in sub-optimal profit; Indeed, interacting with the market by
executing orders will change the market dynamics, and therefore executing (small) orders sequentially
according to the currently observed state is a more sensible strategy.
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Deep Q-Network. One popular approach to find the optimal policy for optimal execution is to
optimize the action-value function, i.e., the Q-function, which represents the expected cumulative
discounted reward starting from state s, taking action a, and following a particular policy. The optimal
Q-function, defined as Q̃⋆(s, a) = maxπ Eπ[

∑T
k=t γ

k−tR(sk−1, ak) | s = st, a = at], obeys the
Bellman equation:

Q̃⋆(s, a) = Eπ

[
R(s, a) + γmax

a′∈ ˜̃A
Q̃⋆ (s′, a′) |s, a

]
,

where a′ is the next-state after agent takes action a at state s. When the state and action spaces are
discrete, one can estimate the optimal Q-function by iteratively updating the Q-values as follows:

Q̃i+1(s, a)← Q̃i(s, a) + α

(
R(s, a) + γmax

a′∈Ã
Q̃i(s

′, a′)− Q̃i(s, a)

)
,

where α is the learning rate that controls the weight given to new information. According to
Sutton and Barto [2018], this value iteration algorithm converges to the optimal solution, i.e.,
Q̃i(s, a) → Q̃⋆(s, a) as i → ∞. In practice, especially when dealing with high-dimensional or
continuous state spaces, the Q-function is often approximated using a Deep Q-Network (DQN),
i.e., Q̃(s, a; θ̃) ≈ Q̃⋆(s, a), where a deep NN parameterized by parameter θ̃ is used to represent the
Q-function, enabling generalization to unseen states [Mnih et al., 2013]. The DQN is trained by
minimizing the following objective function (typically via gradient-based method):

L̃(θ̃) = E

[(
R(s, a) + γmax

a′∈Ã
Q̃(s′, a′; θ̃)− Q̃(s, a; θ̃)

)2
]
.

C.3 Baseline Simulator: Conditional Wasserstein GAN

Despite the success of variational autoencoder (VAE) [Sohn et al., 2015] under many other contexts,
the most popular machine learning approach for generating market data is still GAN. Conditional
GAN (cGAN) [Mirza and Osindero, 2014] extends the standard GAN [Goodfellow et al., 2014]
framework by incorporating conditional information. The generator network, which acts like a trading
agent, Gθ takes random noise input z and a conditional variable S to produce synthetic orders A
(i.e., random sample z is generated from a prior distribution, such as Gaussian distribution, and then
transformed by Gθ to “match” the true distribution). The discriminator network D estimates the
probability that an order is real by considering both the generated order Gθ(z|S) and the true order
A along with the corresponding conditional variable S. The training of a cGAN involves optimizing
a min-max objective function:

min
θ

max
D

EA|S∼preal [logD(A|S)] + Ez∼pz
[log(1−D(Gθ(z|S)))],

where preal represents the real data distribution and pz represents the prior noise distribution, and S
represents the feature/input that cGAN will condition on.

Even though there have been modern machine learning techniques adapted to generative models
under various specific domains, such as imitation learning for traffic simulation to test self-driving
algorithms [Suo et al., 2021], such adaption for LOB stock market simulation is largely missing until
Li et al. [2020], Coletta et al. [2021, 2022], who leveraged cWGANs to train a NN-based world
BG agent that places realistic orders based on relevant market information. By utilizing a cWGAN,
the world BG agent can learn from the simulated market data, improving its trading strategies in
response to the dynamic market. In particular, Coletta et al. [2021] used Wasserstein distance as the
discriminator, i.e., they adopted Wasserstein GAN [Arjovsky et al., 2017]:

min
θ

max
w∈W

EA|S∼preal [fw(A|S)]− Ez∼pz
[fw (Gθ(z|S))] ,

where fw is the discriminator and the function Gθ is the generator. They used gradient descent w.r.t.
w and θ iteratively to optimize the objective. Additionally, there exist methods to calibrate ABIDES
with advanced machine learning techniques such as GAN [Storchan et al., 2021, Shi and Cartlidge,
2023], the mainstream market simulator is still based on GAN due to its superior performance;
another main reason is that the agent identity information is missing is real market data, making it
difficult to calibrate the parametric market simulator.
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D Additional Experimental Details of Algorithmic Trading-guided Market
Simulation

D.1 Training details

Configuration. As we do not have access to real trading data, we consider a state-of-art parametric
simulator as the real Env, where it is easier to obtain the “ground truth”; The goal of our experiments
is to provide a proof-of-concept and support the generalization to the real market. In particular, we
take ABIDES [Byrd et al., 2020] with explicitly specified/parametric BG agents as “reality”. Using
ABIDES data we train our simulated world BG agent. The Exp agent is chosen as the AT agent that
performs the optimal execution task, aiming to acquire a fixed share of a single asset within a fixed
time horizon while minimizing the transaction cost. To improve simulator resilience under unseen
and rare market states [Coletta et al., 2023a], the AT agent places aggressive orders. Its input includes
private state (current time and remaining shares) and market state (such as spread). The world BG
agent takes the market state from the past five steps as input [Coletta et al., 2022].

In our experiment, the configuration of the optimal execution task is: time horizon T = 10, parent
order size q0 = 50. For the AT agent performing this task, the private state at time step t for the
AT agent is normalized elapsed time t/T , remaining shares to acquire normalized by total parent
order size q0, and their difference; The market state consists of imbalance ((5) with all levels and
n = 5), spread, price impact, and direction feature. The action space Ã = {0, 1, 2}, where 0 stands
for executing fixed size Market Order, 1 stands for executing fixed size (10 shares) Limit Order, and
2 stands for action hold (i.e., no action). In our experiments, the external agent to places orders
aggressively such that the world BG agent is able to encounter diverse market states. Additionally,
this eases the implementation burden as rollout using this simple rule-based AT agent (instead of
NN-based agent) can be performed in parallel easily, which leads to reduced computational cost. In
particular, we choose an aggressive agent which continues to place limit orders until the parent order
is fulfilled, which results in T = 5 in practice. The parametric BG agents’ (treated as “reality” in the
experiment) configuration is: one Exchange Agent, two Adaptive Market Maker Agents, 100 Value
Agents, 25 Momentum Agents, and 5000 Noise Agents; Please see Byrd et al. [2020], Amrouni et al.
[2021] for additional details on the parametric market simulator ABIDES4.

Training hyperparameters. As mentioned previously, the complete rollout number is chosen as
N = 5 such that the feedback’s empirical distribution under the world BG agent market is sufficiently
different from that of the “real market”. To ensure rollouts under the “real market” will not incur
extreme feedbacks, we conduct N ′ = 100 offline rollouts to construct the feedback collection under
world market. As T0 and b together act like the batch-size, we consider grid search over T0 ∈ {3, 4, 5}
and b ∈ {3, 5}. By this grid search, we choose the combination with the smallest (proposed) metric,
which is

• T0 = 5 and b = 3 for Mkt2NextReturn, which corresponds to the results in Figure 4
and the second column in Figures 14, 15, 16 and 17.

• T0 = 5 and b = 3 for Mkt2NextPriceImpact, which corresponds to the results in the
forth column in Figures 14, 15, 16 and 17.

To compare the results of Mkt2NextReturn with EpisodeReward, we use the same hyperpa-
rameter setting for EpisodeReward, i.e.,

• T0 = 5 and b = 3 for EpisodeReward, which corresponds to the results in the third
column in Figures 14, 15, 16 and 17. The corresponding AT-based metric is optimized from
0.7156 to 0.6176.

Additionally, to further demonstrate of the effectiveness of our AT-based metric and ATMS, we
consider

• T0 = 2 and b = 5 for Mkt2NextReturn, which corresponds to the results in Figure 13.

The initial learning rate r is chosen to be 10−9, which decreases by half every 10 iteration. There
are in total 100 iterations and based on the decrease of learning rate they are divided into 10 epochs

4Available at https://github.com/jpmorganchase/abides-jpmc-public
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(each with 10 iterations). We use the cWGAN network parameter trained on AINV market reply data
(which is different from the “real” market) as the warm-start/initialization when we train ATMS.

D.2 Additional results for other feedback candidates

In Figure 9, we present the empirical distribution of other feedback candidates. Interestingly, when
utilizing various stylized facts, with the exception of price impact, as the next state, we observe a
similar pattern to EpisodeReward. This similarity renders these alternatives unfavorable choices in
our proposed ATMS and might suggest that those stylized facts are less representative of the market. It
is important to mention that we observe a similar pattern of the results for Mkt2NextPriceImpact
(shown in the last row of Figure 9) to that of our ideal candidate Mkt2NextReturn (shown in the
second row of Figure 2 in the main text of the paper). Therefore, Mkt2NextPriceImpact is
another candidate that can be readily used to train/improve the world BG agent.

Furthermore, we report the results of Mkt2Reward in Figure 10, which show similar patterns
to EpisodeReward, providing strong evidence to support our claim that Mkt2Reward solely
depends on the current LOB status and the exchange rule, and thus cannot represent the BG agents.

D.3 Additional results for other d̂ candidates

In addition to the result for MMD depicted in Figure 3, we present the outcomes for Energy Distance
and Earth Mover’s Distance in Figure 11. In the first row where f is chosen as EpisodeReward,
we can see the resulting market distance metric’s behavior is reasonable in the sense that the metric is
closer to zero when comparing two identical markets (indicated by the orange line, “Real vs Real”).
However, the metric performs poorly to differentiate markets as we cannot see the pattern that blue
line is significantly larger than the orange one with small rollout number (as shown in right panel in
Figure 3).

From the second row in Figure 11, where Mkt2NextReturn is chosen as f , it is surprising to find
that the metric’s behavior appears unreasonable as the metric between different markets is smaller
than that when two markets are identical. The above observations indicate that the corresponding
metrics may not be suitable for capturing the dissimilarity (or similarity) between different markets
accurately, and therefore ED and EMD are less favorable candidates for the subsequent simulator
training.

For completeness and to provide further insights into their unsuitability (for subsequent training
of ATMS), we also include the results for MMD, ED, and EMD when choosing Mkt2Reward as
feedback f in Figure 12. These additional results serve as direct evidence highlighting the undesirable
characteristics of these metrics in the context of our ATMS. The findings reinforce the significance of
developing and employing a specialized distance metric, as we propose, to effectively evaluate the
distance between financial markets, ensuring the reliability of our ATMS.

D.4 Additional evidence for the effectiveness of ATMS

To further establish the reliability of our proposed ATMS, we conduct additional experiments to
investigate the impact of randomness and training hyperparameters on its effectiveness. In Figure 13,
we present the results obtained using a different random seed and distinct training hyperparameters.
Remarkably, we observe a similar pattern to the findings depicted in Figure 4. This consistency across
different experimental setups strongly suggests that the effectiveness demonstrated in Figure 4 is not
solely attributed to randomness but indeed indicative of the superior performance of our proposed
ATMS. These findings reinforce the credibility and practical applicability of our ATMS, affirming its
capability to consistently generate realistic market data regardless of varying random initialization
and training conditions.

D.5 Comparison with cWGAN baseline

Next, we show that our ATMS outperforms existing cWGAN baseline [Coletta et al., 2022]; See
Appendix C.3 for further details. Interestingly, we find that the stylized facts are not only similar
to the target market but also show more balanced BUY and SELL volumes. While the cWGAN
training can be biased towards one direction Coletta et al. [2023a], our novel approach seems to

20



Figure 9: The empirical distribution of additional causal effect feedback candidates
(from top to bottom, we report Mkt2NextSpread, Mkt2NextImbalances(5),
Mkt2NextImbalances(All), Mkt2NextDirection, and Mkt2NextPriceImpact)
when performing multiple (from left to right: 5, 10, 100) rollouts using AT agent under real (orange)
or world BG agent (blue) markets. Again, the idea feedback should be able to differentiate different
markets with only a few rollouts, making the Mkt2NextPriceImpact the most ideal candidate
in this figure.
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Figure 10: The distribution of Mkt2Rewardwhen performing multiple (from left to right: 5, 10, 100)
rollouts using AT agent under real (orange) or world BG agent (blue) markets. Apparently, when there
are only around 5 rollouts, Mkt2Reward as f cannot faithfully differentiate the markets, making it a
poor candidate. This reaffirms our claim the the feedback must depend on the underlying BG agents.

Figure 11: The mean and 5− 95% envelop trajectory (over 50 bootstrap trials) against increasing
number of rollouts of our proposed market distance metric with feedbacks EpisodeReward (top)
and Mkt2NextReturn (bottom), and d̂ chosen to be ED (left) and EMD (right). The above results
all indicate poor f and d̂ combinations that cannot be used for INTAGS (or ATMS) training.

Figure 12: The mean and 5− 95% envelop trajectory (over 50 bootstrap trials) against increasing
number of rollouts of our proposed market distance metric with feedback Mkt2Reward, and d̂
chosen to be MMD (left), ED (middle) and EMD (right). Similarly, the above results all indicate poor
f and d̂ combinations that cannot be used for INTAGS (or ATMS) training.

22



Figure 13: Effectiveness evaluation of our proposed ATMS with different random seeds and training
hyperparameters. The consistent pattern across experiments reaffirms the robustness of ATMS in
generating realistic market data.

Figure 14: Comparison of stylized fact time series between our ATMS and cWGAN baseline.
The top panel in the second column is exactly the third panel in Figure 4, where ATMS optimizes
the resemblance of Mkt2NextReward to reality and generates the most realistic volume at
first 10-levels in terms of supply-demand match and the magnitude. Meanwhile, optimizing
the resemblance of Mkt2NextPriceImpact (the fourth column) leads to improved match of
cumulative number of executed profile to reality.

provide a more fair metric and avoid such biases. Thus we could mitigate the weakness shown in
Coletta et al. [2023a], where a fairly simple, yet effective, strategy can exploit such biases, and turn
the BUY/SELL unbalance into a profit. Indeed, as illustrated in Figure 1, unlike classic local loss
that directly penalizes the world BG agent’s actions A

(j)
t ’s for given inputs S

(j)
t ’s, our proposed

metric penalizes the AT agent input st for given previous step’s AT agent action at. As a result,
by considering that AT agent input (or state) s contains numerous stylized facts characterizing the
market, ATMS that minimizes our metric can produce stylized facts much closer to reality compared
to the cWGAN baseline.

Specifically, we report the results of our proposed ATMS with different feedback choices in Figure 14.
It is interesting to observe that using different f ’s leads to improved similarity to reality for different
stylized facts: From the first row of Figure 14, we can see ATMS with Mkt2NextReturn as f
(second column in the figure) yields volume at first 10-levels most similar to reality in the sense that
the supply and demand match with each other just like the real market, and their magnitudes are
the most more similar to reality; Indeed, using Mkt2NextReturn as f when training ATMS can
lead to the best match of volume at first n-levels in the LOB (n ∈ {1, 5}) to reality as evidenced
in Figure 15. Although ATMS with Mkt2NextPriceImpact as f yields very different volume
at first 10-levels from reality, it does achieve improved similarity compared to the initialization
(see the first panel in Figure 4) in terms of matching supply-demand. From the second row of
Figure 14, we can observe that ATMS with Mkt2NextPriceImpact as f (fourth column in the
figure) can yield the best cumulative number of executed profile: The improvement compared to
Mkt2NextReturn is evident, whose BUY is significantly larger than SELL; Compared to cWGAN
baseline, it correctly captures not only the magnitudes of SELL and BUY but also the pattern that
BUY is slightly larger than SELL. In addition, the third column in Figure 14 serves as “direct
evidence” that EpisodeReward is not appropriate for training ATMS, reaffirming our previous
claims. For completeness, we also report results for other stylized facts (e.g., spread) in Figures 16
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and 17, from which we can observe that there is still a gap between simulated and real markets, and
neither our ATMS nor cWGAN can generate market data with those stylized facts similar to reality.
All of the above results show that our ATMS with properly chosen feedback (or rather, the application
of our INTAGS to trading markets) can generate much more realistic data compared to the cWGAN
baseline.

Lastly, we report results of volume at first n-levels in the LOB for n ∈ {1, 5} in Figure 15, from
which we can observe: our proposed approach is behaving similarly to cWGAN baseline for n = 1
case, and they both do not fully capture the real market dynamics; For n = 5 case, the patterns are
fairly similar to that of n = 10 case shown in Figure 14, reaffirming our claims above.

Figure 15: Comparison of volume at first n-levels in the LOB for n ∈ {1, 5} among different
simulated markets (specified on top of each panel). We can observe that neither our ATMS nor
the cWGAN baseline can correctly capture the volume at the first level whereas our ATMS with
Mkt2NextReturn can correctly capture the volume at the first 5-levels (just as shown in Figure 14).

Additionally, to demonstrate that our proposed ATMS does not lead to performance degradation by
exhibiting significantly different behavior from the real market in terms of other stylized facts, we
present results for those additional stylized facts in Figures 16 and 17, from which we can observe
that it is evident that the behaviors of both our ATMS and cWGAN baseline are pretty different from
reality. Nevertheless, we can observe from Figure 16 that our ATMS have better variance matching
to reality compared to the cWGAN baseline for depth and spread, even though all of them do not
correctly capture the magnitude.
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Figure 16: Comparison of additional stylized facts (top: depth; bottom: spread) among different
simulated markets (specified on top of each panel). We can observe that our ATMS with various
feedback choices can better capture the variance of those stylized facts in real market compared to
the cWGAN baseline.

Figure 17: Comparison of other stylized facts (top: time to first fill; bottom: in-volume per minute)
among different simulated markets (specified on top of each panel). We can observe that neither our
ATMS nor the cWGAN baseline can correctly capture those stylized facts in real market, suggesting
future work to further improve the market simulator.
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