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ABSTRACT

Zero-shot anomaly detection (ZSAD) requires detection models trained using aux-
iliary data to detect anomalies without any training sample in a target dataset. It
is a crucial task when training data is not accessible due to various concerns, e.g.,
data privacy, yet it is challenging since the models need to generalize to anoma-
lies across different domains where the appearance of foreground objects, abnor-
mal regions, and background features, such as defects/tumors on different prod-
ucts/organs, can vary significantly. Recently large pre-trained vision-language
models (VLMs), such as CLIP, have demonstrated strong zero-shot recognition
ability in various vision tasks, including anomaly detection. However, their ZSAD
performance is weak since the VLMs focus more on modeling the class semantics
of the foreground objects rather than the abnormality/normality in the images.
In this paper we introduce a novel approach, namely AnomalyCLIP, to adapt
CLIP for accurate ZSAD across different domains. The key insight of Anoma-
lyCLIP is to learn object-agnostic text prompts that capture generic normality and
abnormality in an image regardless of its foreground objects. This allows our
model to focus on the abnormal image regions rather than the object semantics,
enabling generalized normality and abnormality recognition on diverse types of
objects. Large-scale experiments on 17 real-world anomaly detection datasets
show that AnomalyCLIP achieves superior zero-shot performance of detecting
and segmenting anomalies in datasets of highly diverse class semantics from vari-
ous defect inspection and medical imaging domains. Code will be made available
at https://github.com/zqhang/AnomalyCLIP.

1 INTRODUCTION

Anomaly detection (AD) has been widely applied in various applications, such as industrial defect
inspection (Bergmann et al., 2019; 2020; Liznerski et al., 2020; Pang et al., 2021a; Roth et al., 2022;
Huang et al., 2022; Mou et al., 2022; Chen et al., 2022; You et al., 2022; Ding et al., 2022; Reiss &
Hoshen, 2023; Xie et al., 2023; Zhou et al., 2023; Cao et al., 2023) and medical image analysis (Pang
et al., 2021a; Tian et al., 2021; Fernando et al., 2021; Qin et al., 2022; Ding et al., 2022; Liu et al.,
2023; Tian et al., 2023). Existing AD approaches typically assume that training examples in a target
application domain are available for learning the detection models (Pang et al., 2021b; Ruff et al.,
2021). However, this assumption may not hold in various scenarios, such as i) when accessing
training data violates data privacy policies (e.g., to protect the sensitive information of patients),
or ii) when the target domain does not have relevant training data (e.g., inspecting defects in a
manufacturing line of new products). Zero-shot anomaly detection (ZSAD) is an emerging task for
AD in such scenarios, to which the aforementioned AD approaches are not viable, as it requires
detection models to detect anomalies without any training sample in a target dataset.

Since anomalies from different application scenarios typically have substantial variations in their
visual appearance, foreground objects, and background features, e.g., defects on the surface of one
product vs. that on the other products, lesions/tumors on different organs, or industrial defects
vs. tumors/lesions in medical images, detection models with strong generalization ability w.r.t.
such variations are needed for accurate ZSAD. Recently large pre-trained vision-language models
(VLMs) (Radford et al., 2021; Kirillov et al., 2023) have demonstrated strong zero-shot recognition
ability in various vision tasks, including anomaly detection (Jeong et al., 2023). Particularly, being
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Figure 1: Comparison of ZSAD results on (b) test data using (c) original text prompts in CLIP
(Radford et al., 2021), (d) tailored text prompts for AD in WinCLIP (Jeong et al., 2023), (e) learnable
text prompts for general vision tasks in CoOp (Zhou et al., 2022a), and (f) object-agnostic text
prompts in our AnomalyCLIP. (a) presents a set of auxiliary data we can use to learn the text prompts.
The results are obtained by measuring the similarity between text prompt embeddings and image
embeddings. The ground-truth anomaly regions are circled in red in (a) and (b). (c), (d), and (e)
suffer from poor generalization across different domains, while our AnomalyCLIP in (f) can well
generalize to anomalies in diverse types of objects from different domains.
pre-trained using millions/billions of image-text pairs, CLIP (Radford et al., 2021) has been applied
to empower various downstream tasks (Zhou et al., 2022b; Rao et al., 2022; Khattak et al., 2023;
Sain et al., 2023) with its strong generalization capability. WinCLIP (Jeong et al., 2023) is a seminal
work in the ZSAD line, which designs a large number of artificial text prompts to exploit the CLIP’s
generalizability for ZSAD. However, the VLMs such as CLIP are primarily trained to align with the
class semantics of foreground objects rather than the abnormality/normality in the images, and as a
result, their generalization in understanding the visual abnormality/normality is restricted, leading to
weak ZSAD performance. Further, the current prompting approaches, using either manually defined
text prompts (Jeong et al., 2023) or learnable prompts (Sun et al., 2022; Zhou et al., 2022a), often
result in prompt embeddings that opt for global features for effective object semantic alignment
(Zhong et al., 2022; Wu et al., 2023), failing to capture the abnormality that often manifests in
fine-grained, local features, as shown in Fig. 1d and Fig. 1e.

In this paper we introduce a novel approach, namely AnomalyCLIP, to adapt CLIP for accurate
ZSAD across different domains. AnomalyCLIP aims to learn object-agnostic text prompts that
capture generic normality and abnormality in an image regardless of its foreground objects. It first
devises a simple yet universally-effective learnable prompt template for the two general classes –
normality and abnormality – and then utilizes both image-level and pixel-level loss functions to
learn the generic normality and abnormality globally and locally in our prompt embeddings using
auxiliary data. This allows our model to focus on the abnormal image regions rather the object
semantics, enabling remarkable zero-shot capability of recognizing the abnormality that has similar
abnormal patterns to those in auxiliary data. As shown in Fig. 1a and Fig. 1b, the foreground
object semantics can be completely different in the fine-tuning auxiliary data and target data, but
the anomaly patterns remain similar, e.g., scratches on metal nuts and plates, the misplacement of
transistors and PCB, tumors/lesions on various organ surfaces, etc. Text prompt embeddings in
CLIP fail to generalize across different domains, as illustrated in Fig. 1c, but object-agnostic prompt
embeddings learned by AnomalyCLIP can effectively generalize to recognize the abnormality across
different domain images in Fig. 1f. In summary, this paper makes the following main contributions.

• We reveal for the first time that learning object-agnostic text prompts of normality and
abnormality is a simple yet effective approach for accurate ZSAD. Compared to current
text prompting approaches that are primarily designed for object semantic alignment (Zhou
et al., 2022b; Jeong et al., 2023), our text prompt embeddings model semantics of generic
abnormality and normality, allowing object-agnostic, generalized ZSAD performance.

• We then introduce a novel ZSAD approach, called AnomalyCLIP, in which we utilize an
object-agnostic prompt template and a glocal abnormality loss function (i.e., a combination
of global and local loss functions) to learn the generic abnormality and normality prompts
using auxiliary data. In doing so, AnomalyCLIP largely simplifies the prompt design and
can effectively apply to different domains without requiring any change on its learned two
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Figure 2: Overview of AnomalyCLIP. To adapt CLIP to ZSAD, AnomalyCLIP introduces object-
agnostic text prompt templates to capture generic normality and abnormality regardless of the object
semantics. Then, we introduce glocal context optimization to incorporate global and fine-grained
anomaly semantics into object-agnostic text prompt learning. Finally, textual prompt tuning and
DPAM are used to enable the prompt learning in the textual and local visual spaces of CLIP.

prompts, contrasting to existing methods like WinCLIP whose effectiveness relies heavily
on extensive engineering on hundreds of manually defined prompts.

• Comprehensive experiments on 17 datasets from various industrial and medical domains
demonstrate that AnomalyCLIP achieves superior ZSAD performance of detecting and
segmenting anomalies in datasets of highly diverse class semantics from defect inspection
and medical imaging domains.

2 PRELIMINARY
CLIP consists of a text encoder and visual encoder denoted as T (·) and F (·), respectively. Both
encoders are mainstream multi-layer networks such as ViT (Vaswani et al., 2017; Dosovitskiy et al.,
2020). Using text prompts is a typical way to achieve the embeddings of different classes for zero-
shot recognition. Particularly, a text prompt template G with the class name c can be passed through
T (·) to obtain its corresponding textual embedding gc ∈ RD. The text prompt template commonly
used in CLIP looks like A photo of a [cls], where [cls] represents the target class name.
Then F (·) encodes an image xi to derive visual representations, where the class token fi ∈ RD

is treated as its visual embedding (global visual embedding), and patch tokens fm
i ∈ RH×W×D

are referred to as local visual embeddings. CLIP performs zero-shot recognition by measuring the
similarity between textual and visual embeddings. In specific, given a target class set C and an image
xi, CLIP predicts the probability of xi belonging to c as follows:

p(y = c|xi) = P (gc, fi) =
exp(< gc, fi > /τ)∑
c∈C exp(< gc, fi >)/τ)

, (1)

where τ is a temperature hyperparameter, and the operator < ·, · > represents the computation of co-
sine similarity. Unlike many vision tasks that involve many objects and use the name of the objects as
the class name [cls], we posit that performing ZSAD tasks using CLIP should be object-agnostic,
so we propose to design two classes of text prompts (i.e., normality and abnormality) and compute
the possibility of these two classes according to Eq. 1. We denote the probability of being abnormal
P (ga, fi) as the anomaly score. The computation is extended from global visual embeddings to local
visual embeddings to derive the corresponding segmentation maps Sn ∈ RH×W and Sa ∈ RH×W ,
where each entry (j, k) are computed as P (gn, f

m(j,k)
i ) and P (ga, f

m(j,k)
i ).

3 ANOMALYCLIP: OBJECT-AGNOSTIC PROMPT LEARNING
3.1 APPROACH OVERVIEW

In this paper, we propose AnomalyCLIP to adapt CLIP to ZSAD via object-agnostic prompt learn-
ing. As shown in Fig. 2, AnomalyCLIP first introduces object-agnostic text prompt templates, where
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we design two generic object-agnostic text prompt templates of gn and ga to learn generalized em-
bedding for the normality and abnormality classes, respectively (see Sec. 3.2). To learn such generic
text prompt templates, we introduce global and local context optimization to incorporate global and
fine-grained anomaly semantics into object-agnostic textual embedding learning. In addition, tex-
tual prompt tuning and DPAM are used to support the learning in the textual and local visual spaces
of CLIP. Finally, we integrate the multiple intermediate layers to provide more local visual details.
During training, all modules are jointly optimized by the combination of global and local context
optimization. During inference, we quantify the misalignment of textual and global/local visual
embeddings to obtain the anomaly score and anomaly score map, respectively (see Sec. 3.3).

3.2 OBJECT-AGNOSTIC TEXT PROMPT DESIGN

Commonly used text prompt templates in CLIP, like A photo of a [cls], primarily focus
on object semantics. Consequently, they fail to generate textual embeddings that capture anomaly
and normal semantics to query corresponding visual embeddings. To support the learning of
anomaly-discriminative textual embeddings, we aim to incorporate prior anomaly semantics into
text prompt templates. A trivial solution is to design the templates with specific anomaly types, such
as A photo of a [cls] with scratches. However, the pattern of anomaly is typically
unknown and diverse, so it is practically difficult to list all possible anomaly types. Therefore, it
is important to define text prompt templates with generic anomaly semantics. For this purpose, we
can adopt the text damaged [cls] to cover comprehensive anomaly semantics, facilitating the
detection of diverse defects such as scratches and holes. Nevertheless, utilizing such text prompt
templates poses challenges in generating generic anomaly-discriminating textual embeddings. This
is because CLIP’s original pre-training focuses on aligning with object semantics instead of the ab-
normality and normality within images. To address this limitation, we can introduce learnable text
prompt templates and tune the prompts using auxiliary AD-relevant data. During the fine-tuning
process, these learnable templates can incorporate both broad and detailed anomaly semantics, re-
sulting in textual embeddings that are more discriminative between normality and abnormality. This
helps avoid the need for manually defined text prompt templates that require extensive engineer-
ing (Jeong et al., 2023). These text prompts are referred to as object-aware text prompt templates
and defined as follows:

gn = [V1][V2] . . . [VE ][cls]

ga = [W1][W2] . . . [WE ][damaged][cls],

where [V ]i and [W ]i (i ∈ {1, . . . , E}) are learnable word embeddings in normality and abnormality
text prompt templates, respectively.

ZSAD tasks require models to detect anomalies in previously unseen target datasets. These datasets
often exhibit significant variations in object semantics among different objects, like various defects
on one product vs. another, or discrepancies between industrial defects and medical imaging tu-
mors. However, despite these substantial differences in object semantics, the underlying anomaly
patterns could be similar. For instance, anomalies like scratches on metal nuts and plates, or the
misplacement of transistors and PCB, as well as tumors on the surface of various organs, can share
similar anomaly patterns. We hypothesize that the key of accurate ZSAD is to identify these generic
anomaly patterns regardless of the varying semantics of different objects. Therefore, the inclusion of
object semantics in object-aware text prompt templates is often unnecessary for ZSAD. It can even
hinder the detection of anomalies in classes that have not been seen during the learning process.
More importantly, excluding the object semantics from text prompt templates allows learnable text
prompt templates to focus on capturing the characteristics of anomalies themselves, rather than the
objects. Motivated by this, we introduce object-agnostic prompt learning, with the aim to capture
generic normality and abnormality within images regardless of the object semantics. Different from
object-aware text prompt templates, as shown below, the object-agnostic text prompt templates
replace the class name in gn and ga with object, blocking out the class semantics of objects:

gn = [V1][V2] . . . [VE ][object]

ga = [W1][W2] . . . [WE ][damaged][object].

This design empowers the object-agnostic text prompt template to learn the shared patterns of dif-
ferent anomalies. As a result, the generated textual embeddings are more generic and capable of
identifying anomalies across diverse objects and different domains. Further, this prompt design is
versatile and can be applied to different target domains without any modification, e.g., requiring no
knowledge about the object name or anomaly types in a target dataset.
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3.3 LEARNING GENERIC ABNORMALITY AND NORMALITY PROMPTS

Glocal context optimization To effectively learn the object-agnostic text prompts, we devise a
joint optimization approach that enables the normality and abnormality prompt learning from both
global and local perspectives, namely global and local context optimization. The global context op-
timization aims to enforce that our object-agnostic textual embeddings are matched with the global
visual embeddings of images of diverse objects. This helps effectively capture the normal/abnormal
semantics from a global feature perspective. The local context optimization is introduced to enable
object-agnostic text prompts to concentrate on fine-grained, local abnormal regions from M inter-
mediate layers of the visual encoder, in addition to the global normal/abnormal features. Formally,
let M be the set of intermediate layers used (i.e., M = |M|), our text prompts are learned by
minimizing the following glocal loss function:

Ltotal = Lglobal + λ
∑

Mc∈M LMc

local, (2)

where λ is a hyperparameter to balance the global and local losses. Lglobal is a cross-entropy loss
that matches the cosine similarity between the object-agnostic textual embeddings and visual embed-
dings of normal/abnormal images from auxiliary data. Let S ∈ RHimage×Wimage be the ground-truth
segmentation mask, with Sjk = 1 if the pixel is as an anomaly and Sjk = 0 otherwise, then we have

S
(j,k)
n,Mc

= P (gn, f
m(j,k)
i,Mc

), S
(j,k)
a,Mc

= P (ga, f
m(j,k)
i,Mc

), where j ∈ [1, H], k ∈ [1,W ]

Llocal = Focal(Up([Sn,Mc , Sa,Mc ]), S) +Dice(Up(Sn,Mc), I − S) +Dice(Up(Sa,Mc), S),

where Focal(·, ·) and Dice(·, ·) denote a focal loss (Lin et al., 2017) and a Dice loss (Li et al., 2019)
respectively. The operators Up(·) and [·, ·] represent the unsampling and concatenation along with
the channel, and I represents the full-one matrix. Since the anomalous regions are typically smaller
than the normal ones, we use focal loss to address the imbalance problem. Furthermore, to ensure
that the model establishes an accurate decision boundary, we employ the Dice loss to measure the
overlaps between the predicted segmentation Up(Sn,Mc

)/Up(Sa,Mc
) and the ground truth mask.

Refinement of the textual space To facilitate the learning of a more discriminative textual space
via Eq. 2, inspired by Jia et al. (2022) and Khattak et al. (2023), we introduce text prompt tuning to
refine the original textual space of CLIP by adding additional learnable token embeddings into its
text encoder. Specifically, we first attach randomly initialized learnable token embeddings t′m into
Tm, the m-th layer of the frozen CLIP text encoder. Then, we concatenate t′m and the original token
embeddings tm along the dimension of the channel, and forward them to Tm to get the corresponding
r′m+1 and tm+1. To ensure proper calibration, we discard the obtained r′m+1 and initialize new
learnable token embeddings t′m+1. Note that even though the output r′m+1 is discarded, the updated
gradients can still be backpropagated to optimize the learnable tokens t′m due to the self-attention
mechanism. We repeat this operation until we reach the designated layer M ′. During fine-tuning,
these learnable token embeddings are optimized to refine the original textual space. More details
see Appendix D.
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Figure 3: DPAM visualization.

Refinement of the local visual space Since the visual
encoder of CLIP is originally pre-trained to align global
object semantics, the contrastive loss used in CLIP makes
the visual encoder produce a representative global em-
bedding for class recognition. Through the self-attention
mechanism, the attention map in the visual encoder fo-
cuses on the specific tokens highlighted within the red
rectangle in Fig 3b. Although these tokens may contribute
to global object recognition, they disrupt the local visual
semantics, which directly hinders the effective learning of
the fine-grained abnormality in our object-agnostic text
prompts (Li et al., 2023b). We found empirically that a
diagonally prominent attention map helps reduce the disturbance from other tokens, leading to im-
proved local visual semantics. Therefore, we propose a mechanism called Diagonally Prominent
Attention Map to refine the local visual space, with the visual encoder kept frozen during training.
To this end, we replace the original Q-K attention in the visual encoder with diagonally prominent
attention, such as Q-Q, K-K, and V -V self-attention schemes. As demonstrated in Fig.3c, Fig.3d,
and Fig. 3e, the refined DPAM attention maps are more diagonally prominent, resulting in sub-
stantially improved segmentation maps in both original CLIP and our AnomalyCLIP. Compared to
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CLIP that is based on global features and manually defined text prompts, the text prompts learned by
AnomalyCLIP are more fine-grained, enabling substantially more accurate alignment between the
normality/abnormality prompt embeddings and the local visual embeddings across four different
self-attention schemes. This, in turn, allows AnomalyCLIP to generate accurate Sn and Sa for the
joint optimization in Eq. 2. Unless otherwise specified, AnomalyCLIP utilizes V -V self-attention
due to its superior overall performance. The performance of different self-attention mechanisms is
analyzed in Sec. D. We also provide a detailed explanation about DPAM in Appendix C.

Training and Inference During training, AnomalyCLIP minimizes the loss in Eq. 2 using an
auxiliary AD-related dataset. As for inference, given a test image xi, we use the similarity score
P (ga, fi) as the image-level anomaly score, with the anomaly score leaning toward one when the
anomaly textual embedding ga is aligned with global visual embedding fi. For pixel-wise pre-
dictions, we merge the segmentation Sn,Mc

and Sa,Mc
of all selected intermediate layers, fol-

lowed by an interpolation and smoothing operation. Formally, our anomaly score map Map ∈
RHimage×Wimage is computed as Map = Gσ(

∑
Mc∈M( 12 (I−Up(Sn,Mc))+

1
2Up(Sa,Mc))), where

Gσ represents a Gaussian filter, and σ controls smoothing.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets and Evaluation Metrics We conducted extensive experiments on 17 publicly available
datasets, covering various industrial inspection scenarios and medical imaging domains (including
photography, endoscopy, and radiology) to evaluate the performance of AnomalyCLIP. In industrial
inspection, we consider MVTec AD (Bergmann et al., 2019), VisA (Zou et al., 2022), MPDD (Jezek
et al., 2021), BTAD (Mishra et al., 2021), SDD (Tabernik et al., 2020), DAGM (Wieler & Hahn,
2007), and DTD-Synthetic (Aota et al., 2023). In medical imaging, we consider skin cancer de-
tection dataset ISIC (Gutman et al., 2016), colon polyp detection datasets CVC-ClinicDB (Bernal
et al., 2015), CVC-ColonDB (Tajbakhsh et al., 2015), Kvasir (Jha et al., 2020), and Endo (Hicks
et al., 2021), thyroid nodule detection dataset TN3k (Gong et al., 2021), brain tumor detection
datasets HeadCT (Salehi et al., 2021), BrainMRI (Salehi et al., 2021), Br35H (Hamada., 2020), and
COVID-19 detection dataset COVID-19 (Chowdhury et al., 2020; Rahman et al., 2021). The SOTA
competing methods include CLIP (Radford et al., 2021), CLIP-AC (Radford et al., 2021), Win-
CLIP (Jeong et al., 2023), VAND (Chen et al., 2023), and CoOp (Zhou et al., 2022b). We provide
more details about the methods and data pre-processing in Appendix A. The anomaly detection per-
formance is evaluated using the Area Under the Receiver Operating Characteristic Curve (AUROC).
Additionally, average precision (AP) for anomaly detection and AUPRO (Bergmann et al., 2020) for
anomaly segmentation are also used to provide more in-depth analysis of the performance.

Implementation details We use the publicly available CLIP model1 (VIT-L/14@336px) as our
backbone. Model parameters of CLIP are all frozen. The length of learnable word embeddings E is
set to 12. The learnable token embeddings are attached to the first 9 layers of the text encoder for
refining the textual space, and their length in each layer is set to 4. We fine-tune AnomalyCLIP using
the test data on MVTec AD and evaluate the ZSAD performance on other datasets. As for MVTec
AD, we fine-tune AomalyCLIP on the test data of VisA. We report dataset-level results, which are
averaged across their respective sub-datasets. All experiments are conducted in PyTorch-2.0.0 with
a single NVIDIA RTX 3090 24GB GPU. More details can be found in Appendix A.

4.2 MAIN RESULTS

ZSAD performance on diverse industrial inspection domains Table 1 shows the ZSAD results
of AnomalyCLIP with five competing methods over seven industrial defect datasets of very different
foreground objects, background, and/or anomaly types. AnomalyCLIP achieves superior ZSAD per-
formance across the datasets, substantially outperforming the other five methods in most datasets.
The weak performance of CLIP and CLIP-AC can be attributed to CLIP’s original pre-training,
which focuses on aligning object semantics rather than anomaly semantics. By using manually
defined text prompts, WinCLIP and VAND achieve better results. Alternatively, CoOp adopts learn-
able prompts to learn the global anomaly semantics. However, those prompts focus on the global
feature and ignore the fine-grained local anomaly semantics, leading to their poor performance on
anomaly segmentation. To adapt CLIP to ZSAD, AnomalyCLIP learns object-agnostic text prompts
to focus on learning the generic abnormality/normality using global and local context optimization,

1https://github.com/mlfoundations/open clip

6



Published as a conference paper at ICLR 2024

Table 1: ZSAD performance comparison on industrial domain. The best performance is highlighted
in red, and the second-best is highlighted in blue. † denotes results taken from original papers.

Task Category Datasets |C| CLIP CLIP-AC WinCLIP VAND CoOp AnomalyCLIP

Image-level
(AUROC, AP)

Obj &texture MVTec AD 15 (74.1, 87.6) (71.5, 86.4) (91.8, 96.5)† (86.1, 93.5)† (88.8, 94.8) (91.5, 96.2)

Obj

VisA 12 (66.4, 71.5) (65.0, 70.1) (78.1, 81.2)† (78.0, 81.4)† (62.8, 68.1) (82.1, 85.4)
MPDD 6 (54.3, 65.4) (56.2, 66.0) (63.6, 69.9) (73.0, 80.2) (55.1, 64.2) (77.0, 82.0)
BTAD 3 (34.5, 52.5) (51.0, 62.1) (68.2, 70.9) (73.6, 68.6) (66.8, 77.4) (88.3, 87.3)
SDD 1 (65.7, 45.2) (65.2, 45.7) (84.3, 77.4) (79.8, 71.4) (74.9, 65.1) (84.7, 80.0)

Texture DAGM 10 (79.6, 59.0) (82.5, 63.7) (91.8, 79.5) (94.4, 83.8) (87.5, 74.6) (97.5, 92.3)
DTD-Synthetic 12 (71.6, 85.7) (66.8, 83.2) (93.2, 92.6) (86.4, 95.0) (-, -) (93.5, 97.0)

Pixel-level
(AUROC, PRO)

Obj &texture MVTec AD 15 (38.4, 11.3) (38.2, 11.6) (85.1, 64.6)† (87.6, 44.0)† (33.3, 6.7) (91.1, 81.4)

Obj

VisA 12 (46.6, 14.8) (47.8, 17.3) (79.6, 56.8)† (94.2, 86.8)† (24.2, 3.8) (95.5, 87.0)
MPDD 6 (62.1, 33.0) (58.7, 29.1) (76.4, 48.9) (94.1, 83.2) (15.4, 2.3) (96.5, 88.7)
BTAD 3 (30.6, 4.4) (32.8, 8.3) (72.7, 27.3) (60.8, 25.0) (28.6, 3.8) (94.2, 74.8)
SDD 1 (39.0, 8.9) (32.5, 5.8) (68.8, 24.2) (79.8, 65.1) (28.9, 7.1) (90.6, 67.8)

Texture DAGM 10 (28.2, 2.9) (32.7, 4.8) (87.6, 65.7) (82.4, 66.2) (17.5, 2.1) (95.6, 91.0)
DTD-Synthetic 12 (33.9, 12.5) (23.7, 5.5) (83.9, 57.8) (95.3, 86.9) (-, -) (97.9, 92.3)

Table 2: ZSAD performance comparison on medical domain. The best performance is highlighted
in red, and the second-best is highlighted in blue. Note that the image-level medical AD datasets do
not contain segmentation ground truth, so the pixel-level medical AD datasets are different from the
image-level datasets.

Task Category Datasets |C| CLIP CLIP-AC WinCLIP VAND CoOp AnomalyCLIP

Image-level
(AUROC, AP)

Brain
HeadCT 1 (56.5, 58.4) (60.0, 60.7) (81.8, 80.2) (89.1, 89.4) (78.4, 78.8) (93.4, 91.6)

BrainMRI 1 (73.9, 81.7) (80.6, 86.4) (86.6, 91.5) (89.3, 90.9) (61.3, 44.9) (90.3, 92.2)
Br35H 1 (78.4, 78.8) (82.7, 81.3) (80.5, 82.2) (93.1, 92.9) (86.0, 87.5) (94.6, 94.7)

Chest COVID-19 1 (73.7, 42.4) (75.0, 45.9) (66.4, 42.9) (15.5, 8.5) (25.3, 9.2) (80.1, 58.7)

Pixel-level
(AUROC, PRO)

Skin ISIC 1 (33.1, 5.8) (36.0, 7.7) (83.3, 55.1) (89.4, 77.2) (51.7, 15.9) (89.7, 78.4)

Colon

CVC-ColonDB 1 (49.5, 15.8) (49.5, 11.5) (70.3,32.5) (78.4, 64.6) (40.5, 2.6) (81.9, 71.3)
CVC-ClinicDB 1 (47.5, 18.9) (48.5, 12.6) (51.2,13.8) (80.5, 60.7) (34.8, 2.4) (82.9, 67.8)

Kvasir 1 (44.6, 17.7) (45.0, 16.8) (69.7, 24.5) (75.0, 36.2) (44.1, 3.5) (78.9, 45.6)
Endo 1 (45.2, 15.9) (46.6, 12.6) (68.2, 28.3) (81.9, 54.9) (40.6, 3.9) (84.1, 63.6)

Thyroid TN3K 1 (42.3, 7.3) (35.6, 5.2) (70.7, 39.8) (73.6, 37.8) (34.0, 9.5) (81.5, 50.4)

enabling the modeling of both global and local abnormality/normality. Our resulting prompts can
also generalize to different datasets from various domains. To provide more intuitive results, we
visualize the anomaly segmentation results of AnomalyCLIP, VAND, and WinCLIP across differ-
ent datasets in Fig. 4. Compared to VAND and WinCLIP, AnomalyCLIP can perform much more
accurate segmentation for the defects from different industrial inspection domains.

Generalization from defect datasets to diverse medical domain datasets To evaluate the gen-
eralization ability of our model, we further examine the ZSAD performance of AnomalyCLIP on
10 medical image datasets of different organs across different imaging devices. Table 2 shows the
results, where learning-based methods, including AnomalyCLIP, VAND and CoOp, are all tuned
using MVTec AD data. It is remarkable that methods like AnomalyCLIP and VAND obtain promis-
ing ZSAD performance on various medical image datasets, even though they are tuned using a
defect detection dataset. Among all these methods, AnomalyCLIP is the best performer due to its
strong generalization brought by object-agnostic prompt learning. As illustrated in Fig. 4, Anoma-
lyCLIP can accurately detect various types of anomalies in diverse medical images, such as skin
cancer regions in photography images, colon polyps in endoscopy images, thyroid nodules in ultra-
sound images, and brain tumors in MRI images, having substantially better performance in locating
the abnormal lesion/tumor regions than the other two methods WinCLIP and VAND. This again
demonstrates the superior ZSAD performance of AnomalyCLIP in datasets of highly diverse object
semantics from medical imaging domains.

Can we obtain better ZSAD performance if fine-tuned using medical image data? Comparing
the promising performance in industrial datasets, AnomalyCLIP presents a relatively low perfor-
mance in medical datasets. This is partly due to the impact of auxiliary data used in our prompt
learning. So, then we examine whether the ZSAD performance on medical images can be improved
if the prompt learning is trained on an auxiliary medical dataset. One challenge is that there are
no available large 2D medical datasets that include both image-level and pixel-level annotations for
our training. To address this issue, we create such a dataset based on ColonDB (More details see
Appendix A), and then optimize the prompts in AnomalyCLIP and VAND using this dataset and
evaluate their performance on the medical image datasets. The results are presented in Table 3.
AnomalyCLIP and VAND largely improve their detection and segmentation performance compared
to that fine-tuned on MVTec AD, especially for the colon polyp-related datasets such as CVC-
ClincDB, Kvasir, and Endo (note that these datasets are all from different domains compared to the
fine-tuning ColonDB dataset). AnomalyCLIP also exhibits performance improvement in detecting
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brain tumors in datasets such as HeadCT, BrainMRI, and Br35H. This is attributed to the visual
similarities between colon polyps and brain tumors. Conversely, the symptom of the colon polyp
differs significantly from that of diseased skin or chest, leading to performance degradation in ISIC
and COVID-19. Overall, compared to VAND, AnomalyCLIP performs consistently better across all
datasets of anomaly detection and segmentation.

Medical domain

Skin Colon Thyroid Brain

Ours

VAND

WinCLIP

Ground
Truth

Industrial domain

Tile Screw Capsule Metal plate

Figure 4: Segmentation visualization.

Table 3: ZSAD performance on medi-
cal iamges when fine-tuned by medical
image datasets.

Category Datasets VAND AnomalyCLIP
Classification

Brain
HeadCT (89.1, 89.4) (93.5, 95.1)

BrainMRI (89.3, 90.9) (95.5, 97.2)
Br35H (93.1, 92.9) (97.9, 98.0)

Chest COVID-19 (15.5, 8.5) (70.9, 33.7)
Segmentation

Skin ISIC (58.8, 31.2) (83.0, 63.8)

Colon
CVC-ClinicDB (89.4, 82.3) (92.4, 82.9)

Kvasir (87.6, 39.3) (92.5, 61.5)
Endo (88.5, 81.9) (93.2, 84.8)

Thyroid TN3K (60.5, 16.8) (79.2, 47.0)
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Figure 5: Performance gain of using object-agnostic
prompts compared to object-aware prompts.

Object-agnostic vs. object-aware
prompt learning To study the ef-
fectiveness of object-agnostic prompt
learning in AnomalyCLIP, we com-
pare AnomalyCLIP with its vari-
ant that uses an object-aware prompt
template. The performance gain
of AnomalyCLIP to its object-aware
prompt learning variant is shown in
Fig. 5, where positive values indicate
our object-agnostic prompt templates
are better than the object-aware one.
It is clear that our object-agnostic
prompt learning performs much better than, or on par with, the object-aware version in both image-
level and pixel-level anomaly detection. This indicates that having object-agnostic prompts helps
better learn the generic abnormality and normality in images, as the object semantics are often not
helpful, or can even become noisy features, for the ZSAD task.
4.3 ABLATION STUDY

Module ablation We first validate the effectiveness of different high-level modules of our Anoma-
lyCLIP, including DPAM (T1), object-agnostic text prompts (T2), added learnable tokens in text
encoders (T3), and multi-layer visual encoder features (T4). As shown in Table 4, each module
contributes to the remarkable performance of AnomalyCLIP. DPAM improves the segmentation
performance by enhancing local visual semantics (T1). Object-agnostic text prompts focus on the
abnormality/normality within images instead of the object semantics, allowing AnomalyCLIP to de-
tect anomalies in diverse unseen objects. Therefore, introducing object-agnostic text prompts (T2)
significantly improves AnomalyCLIP. Furthermore, text prompt tuning (T3) also brings performance
improvement via the refinement of original textual space. Finally, T4 integrates multi-layer visual
semantics to provide more visual details, which further promotes the performance of ZSAD.
Context optimization Next we examine key modules in detail. The object-agnostic prompt learn-
ing is the most effective module, and it is driven by our glocal context optimization, so we consider
two different optimization terms, local and global losses, in Eq. 2. The results are shown in Table 5.
Both global and local context optimization contribute to the superiority of AnomalyCLIP. Global
context optimization helps to capture global anomaly semantics, thus enabling more accurate image-
level detection. Compared to global context optimization, local context optimization incorporates

Table 4: Module ablation.

Module MVTec AD VisA
Pixel-level Image-level Pixel-level Image-level

Base (46.8, 15.4) (66.3, 83.3) (47.9, 17.1) (54.4, 61.7)
+T1 (68.4, 47.4) (66.3, 83.3) (54.8, 32.7) (54.4, 61.7)
+T2 (89.5, 81.2) (90.8, 96.0) (95.0, 85.3) (81.7, 85.2)
+T3 (90.0, 81.1) (91.0, 96.1) (95.2, 86.0) (81.9, 85.2)
+T4 (91.1, 81.4) (91.5, 96.2) (95.5, 87.0) (82.1, 85.4)

Table 5: Context optimization ablation.

Local. Global. MVTec AD VisA
Pixel-level Image-level Pixel-level Image-level

✗ ✗ (71.7, 57.7) (68.8, 85.8) (74.7, 62.1) (61.1, 69.1)
✗ ✓ (80.3, 77.8) (89.9, 95.4) (86.6, 78.1) (82.2, 84.9)
✓ ✗ (91.0, 80.4) (89.9, 96.0) (95.2, 86.5) (79.5, 83.2)
✓ ✓ (91.1, 81.4) (91.5, 96.2) (95.5, 87.0) (82.1, 85.4)
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Figure 6: DPAM component ablation.

local anomaly semantics, which improves pixel-level performance and complements image-level
performance. By synthesizing these two optimization strategies, AnomalyCLIP generally achieves
better performance than using them individually.

DPAM strategy ablation AnomalyCLIP uses V -V self-attention by default. Here we study the
effectiveness of using two other DPAM strategies, including Q-Q and K-K self-attention, result-
ing in two AnomalyCLIP variants, namely AnomalyCLIPqq and AnomalyCLIPkk. The compari-
son results are presented in Fig. 6. AnomalyCLIPqq achieves similar segmentation capabilities as
AnomalyCLIP but suffers from degradation in detecting image-level anomalies. Conversely, while
AnomalyCLIPkk performs well in anomaly classification, its segmentation performance is less ef-
fective than AnomalyCLIP and AnomalyCLIPqq . The V -V self-attention is generally recommended
in AnomalyCLIP. Detailed analysis of DPAM can be seen in Appendix C.

5 RELATED WORK

Zero-shot anomaly detection ZSAD relies on the model’s strong transferability to handle un-
seen anomalies (Aota et al., 2023). CLIP-AD (Liznerski et al., 2022) and ZOC (Esmaeilpour et al.,
2022) are early studies in utilizing CLIP for ZSAD, but they mainly focus on the anomaly classi-
fication task. ACR (Li et al., 2023a) requires tuning on target-domain-relevant auxiliary data for
ZSAD on different target datasets, while AnomalyCLIP can be applied to different datasets after it
is trained on one general dataset. A very recent approach WinCLIP (Jeong et al., 2023) presents
a seminal work that leverages CLIP for zero-shot classification and segmentation. It uses a large
number of hand-crafted text prompts and involves multiple forward passes of image patches for
anomaly segmentation. To tackle this inefficiency, VAND (Chen et al., 2023) introduces learnable
linear projection techniques to enhance the modeling of local visual semantics. However, these ap-
proaches suffer from insufficiently generalized textual prompt embeddings, which degrades their
performance in identifying anomalies associated with various unseen object semantics. Anomaly-
CLIP utilizes only two object-agnostic learnable text prompts to optimize the generic text prompts
of abnormality and normality, and it can obtain segmentation results with just a single forward pass.
AnomalyGPT (Gu et al., 2023) is a concurrent work in utilizing foundation models for AD, but it is
designed for unsupervised/few-shot AD with manually crafted prompts.

Prompt learning Rather than resorting to full network fine-tuning, prompt learning emerges as a
parameter-efficient alternative to achieve satisfactory results (Sun et al., 2022; Zhou et al., 2022a;
Khattak et al., 2023; Kim et al., 2023). CoOp (Zhou et al., 2022b) introduces learnable text prompts
for few-shot classification. On this basis, DenseCLIP (Rao et al., 2022) extends prompt learning
to dense prediction tasks with an extra image decoder. Instead, AnomalyCLIP proposes object-
agnostic prompt learning for anomaly detection, blocking out the potential adverse impact of the
diverse object semantics on anomaly detection. Benefiting from the glocal context optimization,
AnomalyCLIP can capture local anomaly semantics such that we can simultaneously perform clas-
sification and segmentation tasks without an additional decoder network like Rao et al. (2022).

6 CONCLUSION

In this paper, we tackle a challenging yet significant area of anomaly detection, ZSAD, in which
there is no available data in the target dataset for training. We propose AnomalyCLIP to improve the
weak generalization performance of CLIP for ZSAD. We introduce object-agnostic prompt learn-
ing to learn generic abnormality/normality text prompts for generalized ZSAD on image datasets of
diverse foreground objects. Further, to incorporate global and local anomaly semantics into Anoma-
lyCLIP, we devise a joint global and local context optimization to optimize the object-agnostic
text prompts. Extensive experimental results on 17 public datasets demonstrate that AnomalyCLIP
achieves superior ZSAD performance.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility and completeness of this paper, we have included an Appendix consist-
ing of five main sections. In Appendix A, we provide more implementation details of AnomalyCLIP,
as well as the reproduction of other baseline methods. Appendix B provides key statistics about the
datasets used in our experiments and the implementation of the auxiliary medical dataset for prompt
tuning. Appendix D supplements the main paper with additional results and ablations. Further vi-
sualizations of similarity scores and maps are detailed in Appendix E. Additionally, the main paper
presents only the average performance in each dataset that contains a number of data subsets, for
which we present their fine-grained detection results in Appendix F. Our code will be made publicly
accessible once the paper is accepted.
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Marius Kloft, Thomas G Dietterich, and Klaus-Robert Müller. A unifying review of deep and
shallow anomaly detection. Proceedings of the IEEE, 109(5):756–795, 2021.

Aneeshan Sain, Ayan Kumar Bhunia, Pinaki Nath Chowdhury, Subhadeep Koley, Tao Xiang, and
Yi-Zhe Song. Clip for all things zero-shot sketch-based image retrieval, fine-grained or not.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
2765–2775, 2023.

Mohammadreza Salehi, Niousha Sadjadi, Soroosh Baselizadeh, Mohammad H Rohban, and
Hamid R Rabiee. Multiresolution knowledge distillation for anomaly detection. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 14902–14912,
2021.

Ximeng Sun, Ping Hu, and Kate Saenko. Dualcoop: Fast adaptation to multi-label recognition
with limited annotations. Advances in Neural Information Processing Systems, 35:30569–30582,
2022.
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A IMPLEMENTATION DETAILS AND BASELINES

A.1 IMPLEMENTATION DETAILS

In this paper, we use the publicly available CLIP model (VIT-L/14@336px) as our backbone.
Model parameters of CLIP are all frozen. The length of learnable text prompts M is set to 12. These
trainable text tokens are attached to the first 9 layers of the text encoder, and each text token has a
length of 4. We fine-tune AnomalyCLIP on the test data on MVTec AD and test the performance
for other datasets. As for MVTec AD, we fine-tune AomalyCLIP on test data on VisA. To provide
adequate visual details, we extract local visual embeddings vi

m from the 6-th, 12-th, 18-th, and 24-th
layers of the visual encoder. Starting from the 6-th layer, we apply DPAM to the architecture of the
visual encoder according to Sec. 3.3. Additionally, we set the balanced weight λ to 1 in our loss
function. The input images are resized to a size of 518 with batch size 8, and we use the Adam
optimizer (Kingma & Ba, 2014) with a learning rate of 0.001 to update model parameters. During
testing, we apply a Gaussian filter with σ = 4 to smooth the anomaly score map. The epoch is 15
for all experiments, which are performed in PyTorch-2.0.0 with a single NVIDIA RTX 3090 24GB
GPU.

A.2 BASELINES

To demonstrate the superiority of Anomlay-CLIP, we compare AnomlayCLIP with broad SOTA
baselines. Implementation and reproduction details are given as follows:

• CLIP (Radford et al., 2021). CLIP is a powerful zero-shot classification method.
To perform the anomaly detection task, we use two classes of text prompt templates
A photo of a normal [cls] and A photo of an anomalous [cls],
where cls denotes the target class name. The anomaly score is computed according to
Eq. 1. As for anomaly segmentation, we extend the above computation to local visual
embedding to derive the segmentation.

• CLIP-AC (Radford et al., 2021). Different from CLIP, CLIP-AC employs an ensemble of
text prompt templates that are recommended for ImageNet dataset (Radford et al., 2021).
We average the generated textual embeddings of normal and anomaly classes respectively,
and compute the probability and segmentation in the same way as CLIP.

• WinCLIP (Jeong et al., 2023). WinCLIP is a SOTA ZSAD method. They design a large
set of hand-crafted text prompt templates specific to anomaly detection and use a window
scaling strategy to obtain anomaly segmentation. All parameters are kept the same as in
their paper.

• VAND (Chen et al., 2023). VAND is an improved version of WinCLIP. They first adjust
the text prompt templates and then introduce learnable linear projections to improve local
visual semantics to derive more accurate segmentation. All parameters are kept the same
as in their paper.
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Table 6: Key statistics on the datasets used.

Dataset Category Modalities |C| Normal and
anomalous samples Usage

MVTec AD Obj &texture Photography 15 (467, 1258) Industrial defect detection
VisA

Obj

Photography 12 (962, 1200) Industrial defect detection
MPDD Photography 6 (176, 282) Industrial defect detection
BTAD Photography 3 (451, 290) Industrial defect detection
SDD Photography 1 (181, 74) Industrial defect detection

DAGM Texture Photography 10 (6996, 1054) Industrial defect detection
DTD-Synthetic Photography 12 (357, 947) Industrial defect detection

ISIC Skin Photography 1 (0, 379) Skin cancer detection
CVC-ClinicDB Endoscopy 1 (0, 612) Colon polyp detection
CVC-ColonDB Endoscopy 1 (0, 380) Colon polyp detection

Kvasir Endoscopy 1 (0, 1000) Colon polyp detection
Endo Endoscopy 1 (0, 200) Colon polyp detection

TN3K Thyroid Radiology
(Utralsound) 1 (0, 614) Thyroid nodule detection

HeadCT

Brain

Radiology
(CT) 1 (100, 100) Brain tumor detection

BrainMRI Radiology
(MRI) 1 (98, 155) Brain tumor detection

Br35H Radiology
(MRI) 1 (1500, 1500) Brain tumor detection

COVID-19 Chest Radiology
(X-ray) 1 (1341, 219) COVID-19 detection

• CoOp (Zhou et al., 2022b). CoOp is a representative method for prompt learning. To
adapt CoOp to ZSAD, we replace its learnable text prompt templates [V1][V2]...[VN ][cls]
with normality and abnormality text prompt templates, where Vi is the learnable word em-
beddings. The normality text prompt template is defined as [V1][V2]...[VN ][normal][cls],
and the abnormality one is defined as [V1][V2]...[VN ][anomalous][cls]. Anomaly proba-
bilities and segmentation are obtained in the same way as for AnomalyCLIP. All parameters
are kept the same as in their paper.

B DATASET

More dataset details In this paper, we conduct extensive experiments on 17 public datasets span-
ning two domains and three modalities to validate the effectiveness of our methods. Since we just
use the test data of Datasets, we present the relevant information of their test sets in Table 6. We
apply the default normalization of OpenCLIP to all datasets. After normalization, we resize the
images to a resolution of (518, 518) to obtain an appropriate visual feature map resolution. It should
be noted that the original image size of SDD has a width of 500 and a height ranging from 1,240 to
1,270. Before processing, we vertically divide the original 500 × 1,250 image into two images and
assign pixel-wise annotations to each image.

Fine-tuning medical dataset We cannot find publicly available 2D medical AD datasets that in-
clude both category labels and segmentation ground truths simultaneously. To fill the blank, in this
paper, we create such a medical dataset by combining two existing 2D medical datasets. Particularly,
we use the colon polyp detection dataset ColonDB (Tajbakhsh et al., 2015) to provide pixel-level an-
notations. Meanwhile, considering the normal samples in the same domain, we choose the test split
of Endo classification dataset (Hicks et al., 2021) to combine with ColonDB. As a result, the new
medical dataset contains 163 normal samples and 380 anomaly samples, supporting both anomaly
classification and segmentation tasks.
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C DETAILED ANALYSIS OF DPAM

Since the visual encoder of CLIP is originally pre-trained to align global object semantics, such as cat
and dog, the contrastive loss used in CLIP makes the visual encoder produce a representative global
embedding for recognizing semantic classes. Through the self-attention mechanism, the attention
map in the visual encoder focuses on the specific tokens highlighted within the red rectangle in
Fig. 3b. Although these tokens may contribute to global object recognition, they disrupt the local
visual semantics, which directly hinders the effective learning of the fine-grained abnormality in our
object-agnostic text prompts. For segmentation purposes, it’s crucial for the visual feature map to
emphasize the surrounding context to capture more local visual semantics.
Formally, let aij be an attention score in the attention score matrix, where i, j ∈ [1, h×w], then the
i-th output of Q-K attention can be written as:

Attention(Q,K, V )i = softmax

(
qiK

⊤
√
D

)
V =

n∑
j=1

aijvj

n∑
j=1

aij

, aij = e
qik

⊤
j√
D .

Note that vectors (i.e., qi, ki, vi) are represented as row vectors. Attention(Q,K, V )i can be re-
garded as the weighted average of vj using aij as the weight. Assuming that the original attention
map focuses on the specific tokens at index m, it is clear that qi only produces the large attention
score with km in all kj . Therefore, aim is the largest score among other aij so Attention(Q,K, V )i
is dominated by vm, which causes the local visual embedding at index i to be disturbed by the lo-
cal visual embedding at index m. In Figure 3(b), the attention score map presents vertical activa-
tion and suggests that every qi produces a large attention score with km. In such a case, several
Attention(Q,K, V )i is dominated by vm and results in weak anomaly segmentation in Figure 3(b)
even though vm may be important for original class recognition. Some prior studies (Rao et al.,
2022; Gu et al., 2023) use an additional decoder to recover the local visual semantics. In this paper,
we directly use local visual embeddings for segmentation and point out that an ideal attention map
for local visual semantics should exhibit a more pronounced diagonal pattern. For this purpose,
DPAM is proposed to replace the original Q-K attention with analogous components, including
Q-Q, K-K, and V -V self-attention. Therefore, aij is changed into:

aqqij = e
qiq

⊤
j√
D , akkij = e

kik
⊤
j√
D , avvij = e

viv
⊤
j√
D .

This modification ensures that qi, ki, and vi hold significant weight in forming
Attention(Q,Q, V )i, Attention(K,K, V )i, and Attention(V, V, V )i, thereby preserving
local visual semantics. As a result, the produced attention maps exhibit a more diagonal prominence
compared to the original Q-K attention, leading to improved performance in anomaly segmen-
tation, as shown in Fig.3c, Fig.3d, and Fig. 3e. However, since Q and K consist of the original
attention map, other important tokens at index n for class recognition within themselves may also
produce relatively large scores (ain) (e.g., qi has strong relevance with qn besides qi) to disturb
Attention(Q,Q, V )i and Attention(K,K, V )i Fig.3c and Fig.3d. In contrast to Q-Q and K-K,
V -V does not participate in computing the original attention map, reducing the unexpected bias
to different tokens in V for the purpose of anomaly segmentation. Therefore, vi does not produce
a large weight (aij) with vj and generates a larger weight (aii) to form Attention(V, V, V )i,
preserving more information of vi and experiencing diagonally prominent attention map (minimal
disturbance), as depicted in Fig. 3e. This is the reason why V -V achieves the best results.

D ADDITIONAL RESULTS AND ABLATIONS

Module ablation by removing modules. We dive into the effectiveness of each module in
AnomalyCLIP in Table 7. We test the contribution of one module by removing one module and
maintaining the rest module.

1. The effectiveness of DPAM (T1). When we remove DPAM, the results show a decrease
from 91.1% AUROC to 87.9% AUROC in pixel-level performance and from 91.5% AU-
ROC to 80.7% AUROC in image-level performance. This performance decline indicates
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Table 7: Study on the effect of each module. T1: DPAM, T2: Object-agnostic prompt learning, T3:
Textual prompt tuning, and T4: Integration of multi-scale local visual feature.

T1 T2 T3 T4 MVTec AD VisA
Pixel-level Image-level Pixel-level Image-level

✓ ✓ ✓ ✓ (91.1, 81.4) (91.5, 96.2) (95.5, 87.0) (82.1, 85.4)
✗ ✓ ✓ ✓ (87.9, 80.0) (80.7, 89.5) (91.9, 84.9) (73.0, 77.7)
✓ ✗ ✓ ✓ (84.3, 75.3) (65.6, 85.3) (89.5, 83.2) (68.1, 72.9)
✓ ✓ ✗ ✓ (90.6, 80.5) (90.4, 95.3) (94.5, 85.6) (81.6, 85.1)
✓ ✓ ✓ ✗ (90.0, 81.1) (91.0, 96.1) (95.2, 86.0) (81.9, 85.2)

Table 8: The study of computation overhead among baselines.

Methods Training time
per epoch (min) FPS Performance (VisA)

Pixel-level Image-level
CLIP - 13.23 (46.6, 14.8) (66.4, 71.5)

WinCLIP - 1.20 (79.6, 56.8) (78.1, 81.2)
VAND 13.56 min 9.23 (94.2, 86.8) (78.0, 81.4)
CoOp 12.25 min 12.75 (24.2, 3.8) (62.8, 68.1)

AnomalyCLIP 13.71 min 8.92 (95.5, 87.0) (82.1, 85.4)
AnomalyCLIP without DPAM 12.98 min 10.21 (91.9, 84.9) (73.0, 77.7)

the importance of DPAM, which enhances local visual semantics by modifying the atten-
tion mechanism. However, the decrease in performance at the image level is more pro-
nounced than that at the pixel level. This discrepancy is attributed to the fact that the total
loss places greater emphasis on local context optimization, driven by a larger local loss
compared to the case with DPAM.

2. The effectiveness of object-agnostic prompt learning (T2). Excluding object-agnostic
prompt learning makes AnomalyCLIP suffer from the huge performance gap (i.e., 91.1%
AUROC to 84.3% AUROC in pixel-level and 91.5% AUROC to 65.6% AUROC in image-
level). This performance decline illustrates that the object-agnostic text prompt template
plays a significant role in improving the performance of AnomalyCLIP at both pixel and
image levels.

3. The effectiveness of textual prompt tuning (T3). When removing textual prompt tuning, the
performance of AnomalyCLIP declines from 91.1% AUROC to 90.6% AUROC in pixel-
level performance and from 91.5% AUROC to 90.4% AUROC in image-level performance.
This demonstrates the importance of adapting original textual space by adding learnable
textual tokens in the text encoder.

4. The effectiveness of the integration of multi-layer local visual semantics (T4). When re-
moving multi-layer local visual semantics, the outcomes reveal a decrease from 91.1%
AUROC to 90.0% AUROC in pixel-level performance and from 91.5% AUROC to 91.0%
AUROC in image-level performance. This performance decline indicates the importance
of incorporating multi-layer local visual semantics.

Study of computation overhead In addition to performance, computation overhead is also an
important metric to evaluate the model. Therefore, we assess the time taken during training (train-
ing time per epoch) and the inference speed (frames per second, FPS). For a fair comparison, all
experiments are conducted in a single 3090 NVIDIA RTX 3090 24GB GPU, and the GPU is kept
free before evaluation. In Table 8, AnomalyCLIP takes 13.71 min per epoch on MVTec AD (The
total number of samples is 1725) and only requires a total of 15 epochs for the whole fine-tuning.
Once AnomalyCLIP finishes fine-tuning, AnomalyCLIP can be applied to different datasets and do-
mains without additional training. We also compare AnomalyCLIP with other baselines that need
auxiliary data (i.e., CoOp and VAND). The minimum training time per epoch is 12.25 min of CoOp,
and hence the training time taken is similar for fine-tuning methods. As for inference speed, CLIP
achieves the 13.23 FPS. However, it suffers from weak detection performance. Although WinCLIP
achieves better performance, WinCLIP has only 1.2 FPS because it needs multiple forward image
patches to derive the segmentation. AnomalyCLIP outperforms WinCLIP and obtains 8.92 FPS.

We also evaluated the computation overhead of DPAM separately. In Table 8, without DPAM,
AnomalyCLIP takes 12.98 min to train per epoch. Compared to the 13.71 min for AnomalyCLIP
with DPAM, we observe that introducing DPAM does not significantly increase the time complexity.
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(a) Successful case of de-
tecting scratch-like defects.

(b) Failure case of detect-
ing scratch-like defects.

(c) Successful case of de-
tecting color stain.

(d) Failure case of detect-
ing color stain

Figure 7: Analysis for successful and failure cases.

Table 9: Study on the effect of shared and unshared learnable word embeddings.

MVTec AD VisA
Pixel-level Image-level Pixel-level Image-level

Shared (90.5, 80.1) (90.9, 95.2) (95.0, 86.4) (81.5, 84.4)
Unshared (91.1, 81.4) (91.5, 96.2) (95.5, 87.0) (82.1, 85.4)

This is attributed to the fact that DPAM only creates the two paths during the computation of the
attention map and is frozen during fine-tuning, thereby avoiding the computationally expensive pro-
cess of gradient computation. Meanwhile, DPAM also does not result in large computation overhead
during inference: AnomalyCLIP w/ DPAM gets 8.92 FPS vs. 10.21 FPS for w/o using DPAM.

Discussion of successful and failure case Although AnomalyCLIP achieves superior results in
ZSAD, we find that there still exist some potential failures. In Fig. 7a, AnomalyCLIP accurately
detects scratch-like patterns on the product, even when they typically appear in the texture. How-
ever, false detection occurs when scratch-like patterns are situated in the background, as depicted in
Fig. 7b. Meanwhile, we also show the color stain pattern. As shown in Fig. 7c, AnomalyCLIP suc-
cessfully detects the color stain, which exhibits subtle visual differences from the detected entities.
However, AnomalyCLIP may face challenges when the normal region displays patterns that are in-
distinguishable to the naked eye from anomalies. For instance, in skin cancer detection, the normal
regions falsely detected as anomalies are actually visually similar to the disease region in Fig. 7c.
Also, the stain interference in the background is also a problem. These failure cases illustrate the
importance of mitigating background interference and achieving fine-grained discrimination, espe-
cially in cases of visually similar abnormalities. Exploring these challenges for enhancing ZSAD is
a valuable direction for future research.

Study on the effect of shared and unshared learnable word embeddings As presented in Ta-
ble 9, when sharing the learnable word embeddings of gn and ga, AnomalyCLIP achieves 90.5%
AUROC in pixel level and 90.9% in image-level on MVTec AD and 95.0% AUROC in pixel level
and 81.5% AUROC in image level on VisA. The results show that AnomalyCLIP without sharing
also works well for ZSAD and the efficiency of our object-agnostic prompt learning. However, the
shared prompt performs slightly worse than the unshared prompts (used in the original paper). The
performance decrease is 0.6%AUROC and 0.6%AUROC in image level on MVTec AD and Visa,
and 0.5%AUROC and 0.6%AUROC in pixel level. We believe that the separate learning for these
two prompts helps discriminate the generic normality and abnormality because when we share the
parameters of Vi and Wi, the learned semantics of normal and anomaly may be confused.

Study on the effect of local visual features Here, we examine the impact of various types of
local visual semantics. We explore two ensemble methods, namely AnomalyCLIPensemble1 and
AnomalyCLIPensemble2, involving the ensemble of Q-Q, K-K, and V -V and the ensemble of Q-
K, Q-Q, K-K, and V -V , respectively. In addition to Q-K and V -V features, we average the
logit output of different features for the ensemble. As shown in Table 10, AnomalyCLIPensemble1

shows performance improvement by leveraging the advantages of three DPAM features. How-
ever, while AnomalyCLIPensemble2 outperforms the Q-K feature version, it experiences a perfor-
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Table 10: Study on the effect of local visual features.

Module MVTec AD VisA
Pixel-level Image-level Pixel-level Image-level

Q-K (87.9, 80.0) (80.7, 89.5) (91.9, 84.9) (73.0, 77.7)
V-V (91.1, 81.4) (91.5, 96.2) (95.5, 87.0) (82.1, 85.4 )

Q-Q, K-K, V-V (ensemble) (91.2, 83.3) (91.4, 96.1) (95.8, 87.6) (82.3, 85.7)
Q-K, Q-Q, K-K, V-V(ensemble) (90.7, 80.5) (90.8, 96.0) (94.9, 86.6) (80.7, 83.7)

mance decrease compared to V -V from 91.1%AUROC to 90.7%AUROC and 91.5%AUROC to
90.8%AUROC on MVTec AD. There is also a decline from 95.5%AUROC to 94.9%AUROC and
82.1%AUROC to 80.7%AUROC on VisA. The decline in performance upon adding Q-K features to
AnomalyCLIPensemble1 suggests that the Q-K feature fails to provide valid local visual semantics to
facilitate ZSAD. Note that the original CLIP exploits Q-K features and gets the weak segmentation
performance. The seemingly good pixel-level performance of Q-K in AnomalyCLIP is attributed
to local optimization, where the object-agnostic prompt helps alleviate the disrupted local visual
semantics of Q-K.

Table 11: Ablation on the effect of the Focal and Dice loss.

Focal loss Dice loss MVTec AD VisA
Pixel-level Image-level Pixel-level Image-level

✗ ✗ (80.3, 77.8) (89.9, 95.4) (86.6, 78.1) (82.2, 84.9)
✗ ✓ (87.2, 78.6) (89.5, 95.2) (90.1, 79.8) (81.8, 85.2)
✓ ✗ (90.6, 78.1) (91.0, 96.0) (94.9, 86.1) (81.2, 84.6)
✓ ✓ (91.1, 81.4) (91.5, 96.2) (95.5, 87.0) (82.1, 85.4)

Focal and Dice loss ablation Focal and Dice loss play a crucial role in optimizing local context.
They are introduced to empower object-agnostic text prompts to focus on fine-grained, local ab-
normal regions from intermediate layers of the visual encoder. As mentioned in Section 3.2, Focal
loss addresses the imbalance between anomaly and normal pixels, typically caused by the smaller
size of anomalous regions. Meanwhile, Dice loss aims to precisely constrain the anomaly boundary
by measuring the overlap between the predicted segmentation (Sn/Sa) and the ground truth mask.
To provide a more comprehensive analysis, we have included an ablation study on Focal and Dice
loss in Table 11. Compared to scenarios without local context optimization, Dice loss improves the
pixel-level and image-level performance from 80.3%AUROC to 87.2%AUROC and 86.6%AUROC
to 90.1%AUROC in pixel level on MVTec AD and VisA. Focal loss also brings the performance
gain of 10.3%AUROC and 8.3%AUROC. Combining Focal and Dice loss, AnomalyCLIP achieves
the best results (i.e., 91.1%AUROC and 95.5%AUROC). Note that the global context optimization
is always used during the ablation, since we need at least one loss function to drive the optimization.

Table 12: Comparison of ZSAD performance between AnomalyCLIP and SOTA full-shot methods.
The best performance is highlighted in red, and the second-best is highlighted in blue.

Task Category Datasets |C| AnomalyCLIP PatchCore RD4AD

Image-level
(AUROC, AP)

Obj &texture MVTec AD 15 (91.5, 96.2) (99.0, 99.7) (98.7, 99.4)

Obj

VisA 12 (82.1, 85.4) (94.6, 95.9) (95.3, 95.7)
MPDD 6 (77.0, 82.0) (94.1, 96.3) (91.6, 93.8)
BTAD 3 (88.3, 87.3) (93.2, 98.6) (93.8, 96.8)
SDD 1 (84.7, 80.0) (64.9, 48.3) (86.8, 81.3)

Texture DAGM 10 (97.5, 92.3) (92.7, 81.3) (92.9, 79.1)

Pixel-level
(AUROC, PRO)

Obj &texture MVTec AD 15 (91.1, 81.4) (98.1, 92.8) (97.8, 93.6)

Obj

VisA 12 (95.5, 87.0) (98.5, 92.2) (98.4, 91.2)
MPDD 6 (96.5, 88.7) (98.8, 94.9) (98.4, 95.2)
BTAD 3 (94.2, 74.8) (97.4, 74.4) (97.5, 75.1)
SDD 1 (90.6, 67.8) (87.9, 46.3) (92.2, 72.0)

Texture DAGM 10 (95.6, 91.0) (95.9, 87.9) (96.8, 91.9)

Comparison with SOTA full-shot methods In this section, we are interested in the performance
gap between AnomalyCLIP and the recently published SOTA full-shot methods, such as Patch-
Core (Roth et al., 2022) and RD4AD (Deng & Li, 2022). Since some datasets do not provide normal
training data, we conduct experiments on six public datasets. As shown in Table 12, AnomalyCLIP
achieves comparable anomaly detection and segmentation performance compared to PatchCore and
RD4AD, and it even outperforms them in some datasets. This illustrates that the generic prompt
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Figure 8: Hyparameter analysis. (a)E ablation. (b) M ablation. (c)L ablation (d)N ablation.
Pixel/image-level (AUPRO, AP) performances are shown on the left and right sides of each subplot,
respectively.

embeddings empower AnomalyCLIP to effectively capture the normality and abnormality so that
AnomalyCLIP can surpass the performance boundary decided by the training data.

Refinement of the textual space A representative embedding is not only decided by the well-
designed text prompt, it also depends on the appropriate textual space. During fine-tuning, randomly
initialized learnable token embeddings are introduced in the text encoder to refine the textual space
for the adaption to AD. To control the degree of refining the textual space, we choose to insert the
learnable token embeddings into the text encoder from its bottom to the top layer. In particular, the
trainable and original tokens are denoted as t′m and tm, respectively, where m represents the layer of
the text encoder. To integrate the original textual representations, for the layer m, we concatenate t′m
and tm along the dimension of the channel and then forward them into Tm to get r′m+1 and tm+1.
Due to the self-attention mechanism, the output of tm+1 contains the information of t′m. In order
to provide adequate calibration, we discard the obtained r′m+1 and initialize new learnable token
embeddings t′m+1. Through this operation, t′m+1 further refines textual representations of the layer
m+1. We repeat this operation until we reach the designated layer M ′. This procedure is given by:

[r′m+1, tm+1] = Tm([t′m, tm])

[r′m+2, tm+2] = Tm+1([t
′
m+1, tm+1]) (3)

. . .

tM ′+1 = TM ′(tM ′),

where the operator [·, ·] represents the concatenation along the channel.

Hyparameter analysis We study the length of learnable text prompts E, depth of learnable token
embeddings M , length of learnable token embeddings M , and number of used layers in visual
encoder N . As shown in Fig. 8b, we observe that the detection and segmentation performance
initially improves with an increase in the value of E. However, within the range of lengths from 12 to
16, we notice a decline in performance, which suggests that excessively long learnable text prompts
could involve redundant information. Therefore, an appropriate value for E, such as E = 12, is
beneficial to accurate learning of object-agnostic text prompts. Besides, we also investigate the depth
of the attached learnable token embeddings in Fig. 8b. The degree of refining of the initial text space
becomes more pronounced as the depth increases, enabling more discriminative textual embeddings
for normal and anomaly. However, the performance drops when the refinement is excessive and
impairs the generalization of AnomlayCLIP, as seen in the case when M equals 9. After selecting
the depth, we proceed to investigate the influence of the length of learnable token embeddings. As
illustrated in Fig. 8c, we find that the length of token embeddings also involves a similar tradeoff
between the model generalization and calibration of textual space in Fig. 8d. AnomalyCLIP achieves
the overall performance gain when we provide the most local visual semantics (N = 4).
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Table 13: Ablation on the robustness of the abnormality-related token in our prompt template on
industrial defect datasets.

Task Category Datasets damaged anomalous flawed defective blemished

Image-level
(AUROC, AP)

Obj &texture MVTec AD (91.5, 96.2) (91.4, 96.2) (91.3, 96.2) (91.4, 96.2) (91.5, 96.2)

Obj

VisA (82.1, 85.4) (80.7, 84.5) (80.7, 84.5) (80.9, 84.6) (80.7, 84.5)
MPDD (77.0, 82.0) (78.0, 83.9) (77.9, 83.6) (77.8, 83.5) (78.6. 84.1)
BTAD (88.3, 87.3) (84.8, 86.7) (85.2, 87.4) (84.8, 86.2) (85.9, 67.1)
SDD (84.7, 80.0) (82.3, 76.3) (82.6, 76.8) (82.8, 77.2) (82.7, 77.0)

Texture DAGM (97.5, 92.3) (97.7, 92.6) (97.5, 92.4) (97.5, 92.3) (97.5, 92.4)
DTD-Synthetic (93.5, 97.0) (93.3, 96.9) (93.2, 96.9) (93.4, 97.0) (93.5, 97.0)

Pixel-level
(AUROC, PRO)

Obj &texture MVTec AD (91.1, 81.4) (91.0, 81.4) (90.7, 81.4) (91.0, 81.7) (90.9, 81.2)

Obj

VisA (95.5, 87.0) (95.5, 86.5) (95.5, 86.5) (95.5, 86.2) (95.6, 86.5)
MPDD (96.5, 88.7) (96.6, 88.7) (96.7, 89.0) (96.7, 89.2) (96.6, 88.8)
BTAD (94.2, 74.8) (94.3, 74.3) (94.4, 75.1) (94.3, 75.2) (94.3, 73.7)
SDD (90.6, 67.8) (89.6, 66.8) (89.5, 66.5) (89.5, 64.8) (89.6, 64.6)

Texture DAGM (95.6, 91.0) (95.6, 91.2) (95.6, 91.3) (95.5, 90.9) (95.6, 90.9)
DTD-Synthetic (97.9, 92.3) (97.9, 92.3) (97.9, 92.1) (97.9, 92.5) (97.9, 92.2)
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Figure 9: Object ablation.

Prompt template ablation Here, we study the robustness of AnomalyCLIP to prior anomaly
semantics in the object-agnostic text prompt template. We replace damaged in the object-agnostic
text prompt with other words having similar anomaly semantics, such as anomalous, flawed,
defective, blemished. The results are presented in Table 13 and Table 14. The steady results
indicate that AnomalyCLIP is not sensitive to the prior anomaly semantics introduced by the object-
agnostic text prompt template.

Object ablation To investigate what the object-agnostic text prompts have learned, we replace
object in object-agnostic text prompts with specific target [cls], resulting in AnomalyCLIPre.
In Fig. 9, AnomalyCLIPre still performs well in ZSAD, even as we block out the object seman-
tics during fine-tuning. This suggests that the knowledge learned by object-agnostic text prompts
is the underlying anomaly patterns, allowing them to provide discriminative textual embeddings
even when specific object semantics are incorporated. Furthermore, compared to AnomalyCLIP,
AnomalyCLIPre shows a performance decay, which can be attributed to the inclusion of redun-
dant/noisy object semantics. These results once again demonstrate the generalization ability of
object-agnostic prompt learning.

Table 14: Ablation on the robustness of the abnormality-related token in our prompt template on
medical image datasets.

Task Category Datasets damaged anomalous flawed defective blemished

Image-level
(AUROC, AP)

Brain
HeadCT (93.4, 91.6) (93.1, 90.6) (93.3, 90.8) (93.5, 91.0) (93.8, 91.5)

BrainMRI (90.3, 92.2) (87.8, 90.4) (87.7, 90.0) (88.3, 90.5) (88.6, 90.7)
Br35H (94.6, 94.7) (93.1, 93.0) (92.9, 92.8) (93.1, 93.0) (93.2, 93.1)

Chest COVID-19 (80.1, 58.7) (80.0, 58.5) (80.2, 58.8) (80.6, 59.0) (82.1, 61.4)

Pixel-level
(AUROC, PRO)

Skin ISIC (89.7, 78.4) (90.1, 80.1) (90.1, 80.1) (90.4, 81.0) (90.2, 80.6)

Colon

CVC-ColonDB (81.9, 71.3) (82.2, 71.5) (82.3, 71.6) (82.1, 71.1) (82.2, 71.5)
CVC-ClinicDB (82.9, 67.8) (83.0, 68.1) (83.1, 68.4) (82.9, 67.9) (83.1, 68.2)

Kvasir (78.9, 45.6) (79.4, 45.1) (79.4, 45.2) (79.3, 44.9) (79.5, 45.8)
Endo (84.1, 63.6) (84.3, 63.5) (84.2, 63.5) (84.2, 62.9) (84.3, 63.4)

Thyroid TN3K (81.5, 50.4) (81.5, 51.7) (81.3, 50.9) (81.3, 50.3) (81.6, 51.1)
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E VISUALIZATION

Similarity score between textual and visual embeddings. We present visualizations of the sim-
ilarity scores generated by both CLIP and AnomalyCLIP. These visualizations aim to provide an
intuitive illustration of the effective adaptation made by AnomalyCLIP in comparison to CLIP. As
shown in Fig. 10 and Fig. 11, we present the similarity score of CLIP on MVTec AD and VisA. The
normal and anomaly scores are severely overlapped. Further, the range of scores is centered at 0.5.
These show that the textual and visual space of CLIP originally aligned for object semantics are not
desired for ZSAD. Also, we visualize the similarity scores of AnomalyCLIP in Fig. 12 and Fig. 13.
Compared to CLIP, there is a significant overlap between the scores assigned to normal and anomaly
instances, and at the same time, the score range is considerably wider. These results indicate that
AnomalyCLIP achieves a significant improvement in adapting CLIP to ZSAD.

Anomaly score map for different datasets. In addition to the similarity score for anomaly clas-
sification, we also visualize the anomaly score maps to present the strong anomaly segmentation
ability of AnomalyCLIP. Specifically, we visualize the industrial object class: hazelnut, pill, and
screw from MVTec AD; candle, chewinggum, capsule, cashew, pcb, and pip fryum from Visa;
bracket, metal plate, and tube from MPDD. We also visualize the industrial texture: grid, leather,
carpet, tile, wood, and zipper. In addition, we visualize the segmentation in medical domain across
photography, endoscopy, and radiology images: skin cancer detection from ISIC; thyroid nodule
detection from TN3K; colon polyp detection from Kvasir; brain tumor detection from Br35H.
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Figure 10: Similarity scores of CLIP on MVTec AD. Each sub-figure represents the visualization of
one object.

F FINE-GRAINED ZSAD PERFORMANCE

In this section, we present the fine-grained data subset-level ZSAD performance in details.
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Table 15: Fine-grained data-subset-wise performance comparison (AUROC) for anomaly segmen-
tation on MVTec AD.

Object name CLIP CLIP-AC WinCLIP VAND CoOp AnomalyCLIP
Carpet 11.5 10.7 95.4 98.4 6.7 98.8
Bottle 17.5 23.3 89.5 83.4 23.1 90.4

Hazelnut 25.2 34.0 94.3 96.1 30.2 97.1
Leather 9.9 5.6 96.7 99.1 11.7 98.6
Cable 37.4 37.5 77.0 72.3 49.7 78.9

Capsule 50.9 49.1 86.9 92.0 35.5 95.8
Grid 8.7 11.9 82.2 95.8 7.8 97.3
Pill 55.8 60.8 80.0 76.2 46.5 92

Transistor 51.1 48.5 74.7 62.4 50.1 71
Metal nut 43.9 53.6 61.0 65.4 49.3 74.4

Screw 80.1 76.4 89.6 97.8 17.0 97.5
Toothbrush 36.3 35.0 86.9 95.8 64.9 91.9

Zipper 51.5 44.7 91.6 91.1 33.4 91.4
Tile 49.9 39.1 77.6 92.7 41.7 94.6

Wood 45.7 42.4 93.4 95.8 31.4 96.5
Mean 38.4 38.2 85.1 87.6 33.3 91.1

Table 16: Fine-grained data-subset-wise performance comparison (PRO) for anomaly segmentation
on MVTec AD.

Object name CLIP CLIP-AC WinCLIP VAND CoOp AnomalyCLIP
Carpet 2.9 1.9 84.1 48.5 0.5 90.1
Bottle 1.4 4.9 76.4 45.6 4.5 80.9

Hazelnut 2.8 9.4 81.6 70.3 4.7 92.4
Leather 0.2 0.0 91.1 72.4 1.8 92.2
Cable 7.3 6.9 42.9 25.7 12.2 64.4

Capsule 13.2 14.9 62.1 51.3 5.7 87.2
Grid 0.9 2.4 57.0 31.6 1.0 75.6
Pill 6.0 8.2 65.0 65.4 3.2 88.2

Transistor 15.3 11.2 43.4 21.3 9.3 58.1
Metal nut 2.9 10.3 31.8 38.4 7.0 71.0

Screw 57.8 56.2 68.5 67.1 6.4 88.0
Toothbrush 5.8 5.2 67.7 54.5 16.6 88.5

Zipper 17.7 15.2 71.7 10.7 11.6 65.3
Tile 21.5 16.3 51.2 26.7 10.1 87.6

Wood 13.7 10.3 74.1 31.1 5.1 91.2
Mean 11.3 11.6 64.6 44.0 6.7 81.4

Table 17: Fine-grained data-subset-wise performance comparison (AUROC) for anomaly classifica-
tion on MVTec AD.

Object name CLIP CLIP-AC WinCLIP VAND CoOp AnomalyCLIP
Carpet 96 93.1 100.0 99.5 99.9 100.0
Bottle 45.9 46.1 99.2 92.0 87.7 89.3

Hazelnut 88.7 91.1 93.9 89.6 93.5 97.2
Leather 99.4 99.5 100.0 99.7 99.9 99.8
Cable 58.1 46.6 86.5 88.4 56.7 69.8

Capsule 71.4 68.8 72.9 79.9 81.1 89.9
Grid 72.5 63.7 98.8 86.3 94.7 97.0
Pill 73.6 73.8 79.1 80.5 78.6 81.8

Transistor 48.8 51.2 88.0 80.8 92.2 92.8
Metal nut 62.8 63.4 97.1 68.4 85.3 93.6

Screw 78.2 66.7 83.3 84.9 88.9 81.1
Toothbrush 73.3 89.2 88.0 53.8 77.5 84.7

Zipper 60.1 36.1 91.5 89.6 98.8 98.5
Tile 88.5 89.0 100.0 99.9 99.7 100.0

Wood 94 94.9 99.4 99.0 97.7 96.8
Mean 74.1 71.5 91.8 86.1 88.8 91.5
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Table 18: Fine-grained data-subset-wise performance comparison (AP) on for anomaly classification
MVTec AD.

Object name CLIP CLIP-AC WinCLIP VAND CoOp AnomalyCLIP
Carpet 98.8 97.8 100.0 99.8 100.0 100.0
Bottle 78.9 79.8 99.8 97.7 96.4 97.0

Hazelnut 94.6 95.9 96.9 94.8 96.7 98.6
Leather 99.8 99.8 100.0 99.9 100.0 99.9
Cable 70.8 64.3 91.2 93.1 69.4 81.4

Capsule 92.1 90.9 91.5 95.5 95.7 97.9
Grid 87.1 83.9 99.6 94.9 98.1 99.1
Pill 93.4 93.6 95.7 96.0 94.2 95.4

Transistor 48.1 49.9 87.1 77.5 90.2 90.6
Metal nut 87.7 89.2 99.3 91.9 96.3 98.5

Screw 91.4 86.6 93.1 93.6 96.2 92.5
Toothbrush 90.7 96.0 95.6 71.5 90.4 93.7

Zipper 87.4 73.9 97.5 97.1 99.7 99.6
Tile 95.9 96.2 100.0 100.0 99.9 100.0

Wood 97.9 98.3 99.8 99.7 99.4 99.2
Mean 87.6 86.4 96.5 93.5 94.8 96.2

Table 19: Fine-grained data-subset-wise performance comparison (AUROC) for anomaly segmen-
tation on VisA.

Object name CLIP CLIP-AC WinCLIP VAND CoOp AnomalyCLIP
Candle 33.6 50.0 88.9 97.8 16.3 98.8

Capsules 56.8 61.5 81.6 97.5 47.5 95.0
Cashew 64.5 62.5 84.7 86.0 32.5 93.8

Chewinggum 43.0 56.5 93.3 99.5 3.4 99.3
Fryum 45.6 62.7 88.5 92.0 21.7 94.6

Macaroni1 20.3 22.9 70.9 98.8 36.8 98.3
Macaroni2 37.7 28.8 59.3 97.8 27.5 97.6

Pcb1 57.8 51.6 61.2 92.7 19.8 94.1
Pcb2 34.7 38.4 71.6 89.7 22.9 92.4
Pcb3 54.6 44.6 85.3 88.4 18.0 88.4
Pcb4 52.1 49.9 94.4 94.6 14.0 95.7

Pipe fryum 58.7 44.7 75.4 96.0 29.2 98.2
Mean 46.6 47.8 79.6 94.2 24.2 95.5

Table 20: Fine-grained data-subset-wise performance comparison (PRO) for anomaly segmentation
on VisA.

Object name CLIP CLIP-AC WinCLIP VAND CoOp AnomalyCLIP
Candle 3.6 6.0 83.5 92.5 1.1 96.2

Capsules 15.8 22.4 35.3 86.7 18.4 78.5
Cashew 9.6 10.9 76.4 91.7 1.7 91.6

Chewinggum 17.8 30.2 70.4 87.3 0.1 91.2
Fryum 12.1 29.3 77.4 89.7 2.6 86.8

Macaroni1 8.1 13.4 34.3 93.2 18.1 89.8
Macaroni2 20.9 18.4 21.4 82.3 2.7 84.2

Pcb1 11.7 12.5 26.3 87.5 0.1 81.7
Pcb2 12.8 13.9 37.2 75.6 0.7 78.9
Pcb3 31.7 23.6 56.1 77.8 0.0 77.1
Pcb4 17.1 20.3 80.4 86.8 0.0 91.3

Pipe fryum 16.7 6.0 82.3 90.9 0.6 96.8
Mean 14.8 17.3 56.8 86.8 3.8 87.0

Table 21: Fine-grained data-subset-wise performance comparison (AUROC) for anomaly classifica-
tion on VisA.

Object name CLIP CLIP-AC WinCLIP VAND CoOp AnomalyCLIP
Candle 37.9 33.0 95.4 83.8 46.2 79.3

Capsules 69.7 75.3 85.0 61.2 77.2 81.5
Cashew 69.1 72.7 92.1 87.3 75.7 76.3

Chewinggum 77.5 76.9 96.5 96.4 84.9 97.4
Fryum 67.2 60.9 80.3 94.3 80.0 93.0

Macaroni1 64.4 67.4 76.2 71.6 53.6 87.2
Macaroni2 65 65.7 63.7 64.6 66.5 73.4

Pcb1 54.9 43.9 73.6 53.4 24.7 85.4
Pcb2 62.6 59.5 51.2 71.8 44.6 62.2
Pcb3 52.2 49.0 73.4 66.8 54.4 62.7
Pcb4 87.7 89.0 79.6 95.0 66.0 93.9

Pipe fryum 88.8 86.4 69.7 89.9 80.1 92.4
Mean 66.4 65.0 78.1 78.0 62.8 82.1
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Table 22: Fine-grained data-subset-wise performance comparison (AP) for anomaly classification
on VisA.

Object name CLIP CLIP-AC WinCLIP VAND CoOp AnomalyCLIP
Candle 42.9 40.0 95.8 86.9 52.9 81.1

Capsules 81.0 84.3 90.9 74.3 85.3 88.7
Cashew 83.4 86.1 96.4 94.1 87.1 89.4

Chewinggum 90.4 90.2 98.6 98.4 93.1 98.9
Fryum 82.0 76.6 90.1 97.2 90.2 96.8

Macaroni1 56.8 58.7 75.8 70.9 52.3 86.0
Macaroni2 65.0 65.8 60.3 63.2 62.2 72.1

Pcb1 56.9 48.4 78.4 57.2 36.0 87.0
Pcb2 63.2 59.8 49.2 73.8 47.3 64.3
Pcb3 53.0 47.6 76.5 70.7 54.8 70.0
Pcb4 88.0 90.6 77.7 95.1 66.3 94.4

Pipe fryum 94.6 93.7 82.3 94.8 89.7 96.3
Mean 71.5 70.1 81.2 81.4 68.1 85.4

Table 23: Fine-grained data-subset-wise performance comparison (AUROC) for anomaly segmen-
tation on MPDD.

Object name CLIP CLIP-AC WinCLIP VAND CoOp AnomalyCLIP
Bracket black 85.3 86.4 57.8 96.3 9.3 95.7
Bracket brown 26.9 31.5 72.2 86.2 20.2 94.4
Bracket white 83.5 77.4 79.5 99.0 8.3 99.8

Connector 56.5 52.9 79.0 90.6 7.6 97.2
Metal plate 64.3 52.5 92.6 93.1 14.1 93.8

Tubes 56.4 51.5 77.6 99.1 33.2 98.1
Mean 62.1 58.7 76.4 94.1 15.4 96.5

Table 24: Fine-grained data-subset-wise performance comparison (PRO) for anomaly segmentation
on MPDD.

Object name CLIP CLIP-AC WinCLIP VAND CoOp AnomalyCLIP
Bracket black 62.6 58.9 43 89.7 1.5 85.2
Bracket brown 2.8 4.0 25.0 70.3 0.4 77.7
Bracket white 47.9 41.6 57.6 93.1 0.0 98.8

Connector 22.8 20.2 44.6 74.5 0.0 89.8
Metal plate 31.5 27.0 78.2 74.5 0.2 86.9

Tubes 30.4 22.9 44.7 96.9 11.5 93.6
Mean 33.0 29.1 48.9 83.2 2.3 88.7

Table 25: Fine-grained data-subset-wise performance comparison (AUROC) for anomaly classifica-
tion on MPDD.

Object name CLIP CLIP-AC WinCLIP VAND CoOp AnomalyCLIP
Bracket black 32.4 32.8 41.5 66.1 36.9 67.3
Bracket brown 50.9 57.9 48.6 64.0 43.9 62.2
Bracket white 45.4 42.6 40.2 79.6 48.9 64.9

Connector 75 76.2 79.3 78.8 38.3 86.9
Metal plate 34.9 54.8 93.4 53.8 77.0 85.2

Tubes 87.3 72.8 78.7 95.9 85.4 95.5
Mean 54.3 56.2 63.6 73.0 55.1 77.0

Table 26: Fine-grained data-subset-wise performance comparison (AP) for anomaly classification
on MPDD.

Object name CLIP CLIP-AC WinCLIP VAND CoOp AnomalyCLIP
Bracket black 47.8 48.6 56.9 71.7 50.0 72.9
Bracket brown 66.2 72.0 69.5 79.0 65.7 80.8
Bracket white 51.2 47.3 45.1 82.3 57.5 68.5

Connector 62.2 61.4 61.3 71.8 26.4 76.8
Metal plate 70.6 78.5 97.6 78.3 92.0 94.7

Tubes 94.4 88.2 89.1 98.1 93.6 98.1
Mean 65.4 66.0 69.9 80.2 64.2 82.0
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Figure 11: Similarity scores of CLIP on VisA. Each sub-figure represents the visualization of one
object.
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Figure 12: Similarity scores of AnomalyCLIP on MVTec AD. Each sub-figure represents the visu-
alization of one object.
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Figure 13: Similarity scores of AnomalyCLIP on VisA. Each sub-figure represents the visualization
of one object.

Figure 14: Anomaly score maps for the data subset, hazelnut, in MVTec AD. The first row rep-
resents the input, and we circle the anomaly regions in the second row. The last row presents the
segmentation results from AnomalyCLIP.

Figure 15: Anomaly score maps for the data subset, pill, in MVTec AD. The first row represents the
input, and we circle the anomaly regions in the second row. The last row presents the segmentation
results from AnomalyCLIP.
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Figure 16: Anomaly score maps for the data subset, metal nut, in MVTec AD. The first row rep-
resents the input, and we circle the anomaly regions in the second row. The last row presents the
segmentation results from AnomalyCLIP.

Figure 17: Anomaly score maps for the data subset, capsule, in MVTec AD. The first row represents
the input, and we circle the anomaly regions in the second row. The last row presents the segmenta-
tion results from AnomalyCLIP.

Figure 18: Anomaly score maps for the data subset, screw, in MVTec AD. The first row represents
the input, and we circle the anomaly regions in the second row. The last row presents the segmenta-
tion results from AnomalyCLIP.

Figure 19: Anomaly score maps for the data subset candle. The first row represents the input, and
we circle the anomaly regions in the second row. The last row presents the segmentation results
from AnomalyCLIP.
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Figure 20: Anomaly score maps for the data subset chewinggum. The first row represents the input,
and we circle the anomaly regions in the second row. The last row presents the segmentation results
from AnomalyCLIP.

Figure 21: Anomaly score maps for the data subset capusle. The first row represents the input, and
we circle the anomaly regions in the second row. The last row presents the segmentation results
from AnomalyCLIP.

Figure 22: Anomaly score maps for the data subset cashew. The first row represents the input, and
we circle the anomaly regions in the second row. The last row presents the segmentation results
from AnomalyCLIP.

Figure 23: Anomaly score maps for the data subset pcb. The first row represents the input, and we
circle the anomaly regions in the second row. The last row presents the segmentation results from
AnomalyCLIP.
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Figure 24: Anomaly score maps for the data subset pip fryum. The first row represents the input,
and we circle the anomaly regions in the second row. The last row presents the segmentation results
from AnomalyCLIP.

Figure 25: Similarity scores for the data subset bracket. The first row represents the input, and we
circle the anomaly regions in the second row. The last row presents the segmentation results from
AnomalyCLIP.

Figure 26: Anomaly score maps for the data subset metal plate. The first row represents the input,
and we circle the anomaly regions in the second row. The last row presents the segmentation results
from AnomalyCLIP.

Figure 27: Anomaly score maps for the data subset tube. The first row represents the input, and we
circle the anomaly regions in the second row. The last row presents the segmentation results from
AnomalyCLIP.
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Figure 28: Anomaly score maps for the data subset grid. The first row represents the input, and we
circle the anomaly regions in the second row. The last row presents the segmentation results from
AnomalyCLIP.

Figure 29: Anomaly score maps for the data subset leather. The first row represents the input, and
we circle the anomaly regions in the second row. The last row presents the segmentation results
from AnomalyCLIP.

Figure 30: Anomaly score maps for the data subset carpet. The first row represents the input, and we
circle the anomaly regions in the second row. The last row presents the segmentation results from
AnomalyCLIP.

Figure 31: Anomaly score maps for the data subset tile. The first row represents the input, and we
circle the anomaly regions in the second row. The last row presents the segmentation results from
AnomalyCLIP.
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Figure 32: Anomaly score maps for the data subset wood. The first row represents the input, and we
circle the anomaly regions in the second row. The last row presents the segmentation results from
AnomalyCLIP.

Figure 33: Anomaly score maps for the data subset zipper. The first row represents the input, and we
circle the anomaly regions in the second row. The last row presents the segmentation results from
AnomalyCLIP.

Figure 34: Similarity scores for the data subset skin.

Figure 35: Anomaly score maps for the data subset thyroid. The first row represents the input, and
we circle the anomaly regions in the second row. The last row presents the segmentation results
from AnomalyCLIP.
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Figure 36: Anomaly score maps for the data subset colon. The first row represents the input, and we
circle the anomaly regions in the second row. The last row presents the segmentation results from
AnomalyCLIP.

Figure 37: Anomaly score maps for the data subset brain. The first row represents the input, and we
circle the anomaly regions in the second row. The last row presents the segmentation results from
AnomalyCLIP.
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