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ABSTRACT

Multilingual LLMs are rapidly emerging, accompanied by claims of supporting an
ever-increasing number of languages. However, significant gaps remain between
their performance in English and in other languages. Due to the limited quan-
tity and quality of low-resource language data, independently improving these
languages is a tough route. A natural alternative is to transfer the capabilities
learned in English to low-resource languages. Parallel corpora play a key role
in such transfer, and some prior works have conducted empirical studies. Yet,
which types of parallel corpora contribute most effectively to cross-lingual trans-
fer has not been systematically explored. To address this, we propose ParaRater,
a corpus selection method designed to identify the most valuable English data to
be translated into target languages, thereby constructing high-quality parallel cor-
pora that efficiently boost performance in those languages. ParaRater leverages
meta-learning to directly align corpus selection with model performance on native
target-language data. It further employs a two-stage filtering process to pinpoint
data that is only effective when both language versions appear in training—i.e.,
truly impactful parallel corpora. We demonstrate the effectiveness of this approach
across multiple languages and provide detailed qualitative analyses, offering new
insights into cross-lingual transfer in large language models. Our rater, datasets,
and code are all released open-source. Our code and data are anonymously open
athttps://anonymous.4open.science/r/dVgzLmtrwFae—8676.

1 INTRODUCTION

Multilingual large language models (LLMs) are rapidly proliferating, touting support for an expand-
ing array of languages. Gemma 3 (Team et al.l |2025) offers support for over 140 languages, and
Qwen 3 (Yang et al., [2025) expands its predecessor’s capabilities by supporting 119 languages and
dialects. On closed-source models, GPT-5 || and Claude-4 || also demonstrate broad multilingual
coverage. Despite these advances, significant performance gaps persist between English and other
languages—especially low-resource ones (Han et al.|[2025)). Methods for improving LLMs’ perfor-
mance in non-English languages mainly fall into two directions: one is to independently enhance
target-language ability by increasing the quantity and quality of its training data (Zhao et al.| 2025
Dou et al., 2025)), and the other is to leverage the abundance of high-quality English data to transfer
English capabilities to other languages (Shen et al.l [2025} [Fujii et al.| [2024; |Lu et al., 2023 |Qorib
et al.l [2025)).

What remains unexplored is a fundamental research problem: which types of parallel corpora truly
drive cross-lingual transfer in LLMs, and how can we systematically identify them? Using parallel
corpora to train models for cross-lingual transfer is a mainstream approach. Existing approaches
typically treat all parallel data as equally useful, relying on heuristics or post-training adaptation,
with benefits observed mostly in translation tasks. However, existing work has been largely empir-
ical, focusing mainly on the post-training stage, with the primary benefits of parallel data observed
in translation tasks. There has been little systematic investigation into how to select parallel corpora
or how they influence broader general-purpose language capabilities. Furthermore, not all parallel
corpora contribute in the same way—some English texts improve target-language performance even
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when used alone, while others only exert impact when paired with their translations. Disentangling
this distinction is crucial: only the latter represents the “core” of parallel corpora that genuinely
induces transfer. This motivates us to design a principled framework to automatically identify and
exploit the most impactful subsets for efficient multilingual pretraining.

To address these challenges, we propose ParaRater, which employs a meta-learning framework to
directly align the impact of parallel corpora with LLMs’ performance on a validation set. The goal
of ParaRater is to identify the subset of parallel data that truly drives cross-lingual transfer—what
we term the core of the parallel corpus. We define the core of the parallel corpus as the portion of
source-language data that can only provide positive impact on the target language when paired with
its translated counterpart. For example, in the case of English-Chinese, we aim to identify the most
valuable English documents that can enhance an LLM’s Chinese ability. These documents have
little effect on improving Chinese performance when included alone in training, but once translated
into Chinese and added as parallel data, their original English versions begin to contribute positively
to Chinese capability.

To achieve this goal, we design a two-stage strategy to filter the core of the parallel corpus. Each
stage employs a rater that assigns importance weights to documents with respect to their contribution
in the target language. In the first stage, the rater selects documents that receive high weights in
both the source and target languages. In the second stage, the target-language versions of these
documents are removed from the training data, and the rater then identifies the subset of source-
language documents whose weights drop significantly—these constitute the core documents. These
documents represent the portion of parallel data that truly exerts its effect in a parallel manner, as
opposed to pseudo-parallel data that exists in parallel form but whose benefits stem solely from the
monolingual side. With this approach, we can make more efficient use of parallel data—for example,
by extracting the core subset from existing parallel corpora, or by selecting high-value subsets of
English data to be translated for constructing new parallel corpora. To control for confounding
factors, we conduct experiments by pretraining 1.2B-parameter LLMs from scratch on multiple
bilingual pairs. The results show that ParaRater significantly outperforms strong baselines. We
further provide detailed analyses and case studies of the selected data, offering new perspectives on
cross-lingual transfer in LLMs. To summarize, our contributions are as follows:

* We propose ParaRater, which leverages meta-learning and a two-stage strategy to disentan-
gle the effective components of parallel data from pseudo-parallel data, providing a more
efficient way to exploit parallel corpora.

* We construct the ParaCore training set, consisting of core parallel data between English and
several other languages, which significantly improves LLM performance in non-English
languages.

* We develop ParaTool, a meta-learning framework for training parallel-data selectors, which
enables convenient identification of the most valuable data for cross-lingual transfer across
arbitrary languages and datasets.

* We conduct controlled experiments on multiple bilingual pairs using clean parallel data,
and provide both qualitative and quantitative analyses that reveal the role of parallel corpora
in LLM pretraining, offering valuable insights into cross-lingual transfer.

2 RELATED WORK

Cross-lingual Capability Transferring with Parallel Corpus Because the amount of high-
quality data in non-English languages is significantly smaller than in English, and increasing the
proportion of low-resource language data often leads to a decline in English performance, many
studies have resorted to using parallel corpora to enhance LLM capabilities in low-resource lan-
guages. Although some studies have explored the impact of parallel corpora, the field is still far
from being well-documented. |Shen et al.| (2025) introduce a method to scale multilingual LLMs
by leveraging multi-way parallel corpora, aligning previously unaligned models through systematic
parallel data utilization. [Fujii et al.| (2024) explore continual pre-training for cross-lingual adap-
tation, showing that targeted additional training can substantially enhance Japanese capabilities in
multilingual LLMs. Lu et al.| (2023) propose TRIP, a triangular document-level pretraining strategy
that accelerates multilingual pretraining by exploiting parallel data triplets at the document level.
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Qorib et al.| (2025) demonstrate that systematically incorporating parallel corpora into training im-
proves the multilingual capabilities of LLMs across diverse languages. These studies confine their
exploration of parallel data either to the post-training stage or to its impact on translation capabil-
ities. Yet the pretraining stage is the most critical phase for shaping multilingual competence in
LLMs, and to the best of our knowledge, no prior work has systematically examined the influence
of parallel corpora on LLMs’ general capabilities in pretraining phase.

Data Curating Selecting high-quality subsets from raw corpora for pretraining is a crucial step
in determining LLM performance. The main approaches include heuristic rule-based filtering and
LLM-as-judge methods. Heuristic filtering removes duplicates, overly short, or toxic texts using
regular-expression matching (Laurencon et al., 2023} Weber et al., [2024; [Penedo et al.| 2023}, |Sol-
daini et al., 2024), or applies simple classifiers based on features such as perplexity or text type
for selection(Chowdhery et al.| |2022; [Touvron et al., |2023a; Xie et al., 2023} IMuennighoff et al.,
2023)). However, such methods are limited in generalizability and accuracy, and in recent years,
LLM-as-judge approaches for text classification or quality assessment have become the mainstream.
QuRating (Wettig et al., 2024)) trains a model to evaluate texts along dimensions like writing style,
expertise, facts/trivia, and educational value. FineWeb-Edu (Penedo et al., 2024)) filters data with
an LLM-based educational quality classifier trained on synthetic annotations from Llama-3. FIRE
(Xu et al.;|2025)) aligns diverse data quality raters and introduce a progressive data selection scheme.
MuRating (Chen et al., [2025) combines multiple English raters via pairwise comparisons to train a
unified rater. Although these methods can filter corpora along more sophisticated dimensions than
heuristic rules, the signals used to train the raters are still grounded in human-predefined criteria.
DataRater (Calian et al.| 2025)) trains a rater model to score training samples directly aligning with
the effectiveness in LLM pretraining, using meta-learning method. Inspired by this, we adopt a
meta-learning approach to investigate the effectiveness of parallel corpora in LLM pretraining, and
train raters to perform data selection.

3  PRELIMINARY: DATA SELECTION WITH META-LEARNING

Using meta-learning for data selection primarily involves training a rater that assigns scores to data,
with the selected subset then used for model pretraining; the optimization objective is to minimize
the loss of the pretrained model on a given test dataset.

Given a training corpus Dyin, a rater model 12, is used to score the documents d € Dyin. A language
model My is trained with the curated data and a loss function {. The gradient of the language model
in a step ¢ is defined as:

1 n
gt = 5;v91(di;et), (1

where d; € R, (Dyain) is a batch of documents selected by the rater at step t. After T steps, the
optimized parameters are obtained, which is denoted as

0" = O(Ryy(Dyain))-

The optimized language model is then evaluated by a loss on a given test dataset L(6;; Dies). The
optimization objective of the rater R is:

7]* = arg Hlnin L(G(Rn (Dtrain)); Dtest) 2

The task is to filter a predefined size of subset D’, where the documents in it are with high effective-
ness in pretraining the language model.

4 PARARATER

Unlike typical data selection tasks, the goal of ParaRater is to identify the high-value subset from
source data to construct target-language corpora, thereby forming parallel data. The key difference
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is that we not only aim to identify the portion of the corpus that contributes to improving the target-
language capability, but also to disentangle the bilingual dependency within that portion.

In Section 1] we first formulate the problem of parallel data selection and present the overall
optimization objective. Since directly optimizing this objective is computationally infeasible, in
Section[f-2) we approximate it using a two-stage procedure. In the first stage, we identify documents
in the parallel corpus that provide benefits in both languages. In the second stage, we keep only
the source-language documents and remove their target-language counterparts, then compare the
scoring differences between the two raters across the two stages to identify the core of parallel
data—the documents whose bilingual coupling is the strongest.

4.1 PARALLEL CORPUS FILTERING PROBLEM

Given a training dataset in the source language D, and a test dataset Dy in the target language, the
rater selects a high-value subset of pre-determined size

ds; = R(D;).

After the selection, d; is used to build its target language version d;, forming the parallel corpus. A
language model is then optimized on the developed parallel corpus. We rewrite Eq. [T]as

9= Vol(ds Udy;0), 3)

where we omit the step annotation for simplicity. Following the approach in section [3] we use the
Eq. 2] to optimize the rater, with the R(D;) replaced by d, U d;.

However, this objective does not guarantee that the constructed subset achieves the highest effi-
ciency for language capability transfer. Parallel corpus that can drive effective cross-lingual transfer
should manifest in the way that the two language versions of the same data mutually influence their
effectiveness during model training. What we seek is to identify cases where the combination of
two languages produces high value when they appear together, rather than data that is already highly
valuable in a monolingual setting. Therefore, we need to introduce additional constraints. The final
optimization objective for the rater is then as follows:

7 = argmin (L(e(ds Udy)) — L(6(d, U d;)), )

where d; denotes the target-language counterpart that is mismatched with dy and dj satisfies
L(6(d:)) = L(6(d})), i.e., d} is of equal quality to d;. We omit the explicit dependence of L on
Diest- In this objective, the selected subset of source corpus only contributes to the language model
performance when the model is jointly trained on the subset and its target-language counterpart.

4.2 DUAL-RATER CROSS FILTERING

Since the selection from the corpus is a discrete sampling process, directly optimizing Eq. d]is a non-
deterministic polynomial-time hard problem. Inspired by DataRater (Calian et al.,[2025)), we instead
optimize the rater by assigning continuous weight values to batches of training samples. Moreover,
directly optimizing Eq. [ would require maintaining multiple language models and computing their
gradients simultaneously, which is computationally sophisticated. Therefore, we adopt a two-stage
strategy, optimizing two raters to cross-filter the data as an approximation. Figure[T]depicts the two
stages.

Stage 1: High-Value Bilingual Subset Selection At this stage, we train rater R, to optimize the
first term of Eq. ] in order to select the documents that get high rank in language model pretraining
in both languages. Here we have

71 = arg min (L(@(ds U dt)),
n

where d; and d; represent a coarse-grained filtering of ds and d;. In practice, we first construct
parallel data D, in the target language from the source language data D,. Then, the language model
is trained on this parallel corpus and the rater meta-learns from the loss L of the language model
parameters on the test set Dy as the optimization objective. We then use the trained rater to score
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Figure 1: ParaRater training process. In Stage 1, Rater 1 is trained to select the top-performing
documents in both languages. Using the scores from Rater 1, we then reorganize the parallel corpus
by deliberately mismatching the top documents from the two languages. In Stage 2, Rater 2 is
trained on this mismatched data to identify the source-language documents whose rankings drop
once their target-language counterparts are removed. These documents—and their corresponding
target-language versions—constitute the most valuable parallel data for pretraining.

D, and D; independently, and select the samples that rank high in both languages. In summary, at
this stage, we performed a standard meta-learning procedure to filter out high-quality data from a
training set that is composed entirely of parallel corpora, based on the model’s performance in the
target language.

Stage 2: Low-Value Monolingual Source Language Subset Selection In the previous stage, al-
though we successfully identified bilingual data that are highly valuable for improving performance
in the target language, this does not necessarily imply effective language capability transfer—the
language model may develop its capabilities independently in each language. The essence of par-
allel data lies in enabling interoperability: when the model learns knowledge in one language, that
knowledge should interact with its understanding of the same content in the other language. For
example, if learning a particular Chinese document improves the model’s performance in Chinese,
then learning the English version of that document should likewise bring improvements. In the
context of rater meta-learning, this is reflected by the rater’s score for the English document being
influenced by the presence of its corresponding Chinese counterpart.

At this stage, our goal is to identify source-language data that improves model performance only
when its target-language counterpart is also present. To do this, we start with the source-language
documents that ranked highly in both languages in the previous stage. We then construct a new
training set by combining:

* these high-ranking source documents,
* high-ranking target-language documents that are not parallel to them, and

* a small subset of low-ranking source documents (as a comparison group).

Using this mixture, we meta-learn a second rater and examine how the rankings of the high-scoring
source documents change. If a document’s ranking drops substantially, it indicates that the docu-
ment is only useful when paired with its target-language counterpart. These documents—together
with their corresponding target-language versions—form the core of the parallel corpus. Their per-
formance drop in the absence of their paired translations reveals the strong cross-lingual dependency
encoded in these parallel pairs.
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Figure 2: Source-only selection. Score the source-language data using Rater 1 and Rater 2, compare
the differences in their scores, and identify the documents with significant drops to construct the
core of parallel data.

Formally, a new rater I?,, is meta-trained on the high-value source language subset d,, the high-

value mismatched target language subset d}, and the low-value source language subset c~1’S Follow-
ing Eq. 3] the language model optimization is denoted as

g="Vol(d:udy udy;0), )

Where d* = R,,(d,), d”* = R,,(d}), and d}* = R,,(d}) are the subsets selected by the rater 2.
Note again that this is an iterative process, and for simplicity we have omitted the step indices. The
rater optimization is then defined as:

= argmin (L(0(d; U d} UAL)).

d} represents the source-language samples that remain highly valuable despite lacking a corre-
sponding target-language counterpart. Since these samples already enhance the language model’s
capability in the target language on their own, there is no need to use them as seeds for constructing
additional parallel data. Our focus is on

ds = as - a;
which is the core of the parallel corpus. This subset of source-language data whose usefulness relies
on the presence of their parallel target-language counterparts.

Source-only Selection Once the two raters described above have been obtained, we can filter the
existing parallel corpus to extract its core portion. However, naturally occurring parallel data are
relatively scarce, and performing large-scale translation to construct large candidate parallel corpora
is also computationally expensive. Therefore, a more important application is to first select the high-
value subset from the source-language corpus and then translate it to form core parallel data. This
can be easily achieved using ParaRater. Figure [J]depicts the source-only selection process.

In source-side filtering, the only difference from the two stages described above is that we do not
have access to the rankings on the target-language side. As a result, stage 1 may include samples
that rank highly in the source language but poorly in the target language. Such cases are primarily
caused by low-quality or erroneous translations. The impact of these samples can be mitigated by
improving translation quality.

5 EXPERIMENT

In this section, we conduct experiments under the Source-only Selection setting to evaluate the
effectiveness of ParaRater in improving multilingual capabilities.

5.1 SETUP

Dataset Since naturally occurring parallel data are relatively scarce, we use machine-translated
parallel data when training the rater. Unlike some previous work, we do not use concatenated par-
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allel pairs in order to eliminate potential bias introduced by the data format; instead, all parallel
documents are distributed independently within the training data. The experiment is conducted
on multilingual data drawn from Fineweb-2 (Penedo et all [2025). For rater training, we sample
20B tokens from English corpora and translate them into 8 languages — Chinese, German, French,
Japanese, Thai, Arabic, Tagalog and Russian — thereby ensuring coverage across multiple linguistic
typology dimensions. Translations are generated using the Qwen3-8B model, and documents with
COMET (Rei et al.l 2020) scores above 0.8 are retained to control and maintain high translation
quality. We sample 2B tokens from the native corpus of each of the nine target languages to serve
as the validation set in the meta-learning process.

To evaluate the effectiveness of ParaRater, we use the trained ParaRater for each language to perform
source-side filtering on the FineWeb English data, selecting 1B tokens for each language. These
selected samples are then translated into the corresponding target languages to form the core parallel
corpus. We then add an additional 100B tokens of English data and pre-train a 1.2B-parameter
language model based on the LLaMA architecture. This unbalanced design is intended to simulate
the scenario where target-language data are extremely scarce, allowing us to evaluate the effect of
transferring knowledge from English through translated parallel data.

Baselines We compare ParaRater to other data selection methods, including FineWeb-Edu Clas-
sifier (Penedo et al., [2024)), which is trained on LLM labeled data to identify educational content,
and DCLM (Li et al., 2024)), a FastText classifier trained to distinguish high-quality data from raw
web data. We apply these data selection methods to select 1B tokens from the English corpus, trans-
late them into the target languages, and pre-train the language models using the resulting parallel
data combined with the same 100B tokens of English data as above.

Evaluation We evaluate the pre-trained language models on both English and the target languages.
For English evaluation, we adopt ARC-E (Clark et al.,|[2018)), Hellaswag (Zellers et al.,[2019), Sto-
ryCloze (Mostafazadeh et al., 2016), BMLAMA (Q:i et al., 2023, MMLU (Hendrycks et al.,[2021),
covering multiple capabilities ranging from natural language understanding, commonsense reason-
ing, and factoid knowledge. For evaluation on the target languages, the widely used multilingual
version of Hellaswag (Lai et al., 2023), StoryCloze (Lin et al., [2022) and MMMLU E] are adopted.
For BMLAMA, we observed that the original multilingual version contained a substantial number
of errors, so we used the MuBench (Han et al.,[2025)) version instead. For the languages not covered
by the above multilingual version, we also supplement them using MuBench. In addition, we use
FLORES (Goyal et al.} 2022)) ChrF++ scores to evaluate the EN-to-target translation capabilities of
the models.

Implementation We conducted both rater training and language model training on a cluster of
64 H100 GPUs. To avoid interference from cross-lingual factors and ensure fairness, we train a
separate ParaRater for each En—Target language pair. For each language, ParaRater training con-
sumed roughly 24 x 64 H100 GPU-hours, while training each final language model required 12
X 64 GPU-hours. As the initial rater, we used Qwen3-Embedding-0.6B P| with a linear head. The
language model co-trained with the rater during meta-learning, as well as the final language model,
share the same architecture with 1.2B parameters. Inspired by DataRater, we developed Para-
Tool, a meta-learning toolkit for rater training, and applied several optimizations to make large-
scale training practical. Both ParaTool and ParaCore—the parallel corpus we constructed through
ParaRater—are open-sourced to foster further research on multilingual large language models.

5.2 RESULTS

Table [T shows the result. We observe that ParaRater demonstrates clear advantages on most bench-
marks, covering both NLU tasks (e.g., HellaSwag, StoryCloze, xWinograd) and factual knowledge
tasks. Moreover, ParaRater shows substantial improvements on translation tasks, aligning with prior
observations that parallel corpora significantly boost translation performance. Compared with other

*https://huggingface.co/Qwen/Qwen3—8B
Ynttps://huggingface.co/datasets/openai/MMMLU
Shttps://huggingface.co/Qwen/Qwen3-Embedding-0. 6B
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data selection approaches for constructing parallel corpora, ParaRater achieves higher data effi-
ciency, delivering notable performance gains using only 1B tokens per language.

We also note that ParaRater underperforms on science-oriented tasks (e.g., ARC-E). This may be re-
lated to the choice of validation set: we directly use multilingual data from FineWeb-2 as validation
data, which results in a more comprehensive optimization target for ParaRater. In contrast, FineWeb-
Edu explicitly targets the selection of educational content, which makes it more advantageous on
science-focused benchmarks. Nevertheless, ParaRater still delivers a measurable improvement on
English, suggesting that its data selection process effectively filters out noisy data introduced by
low-quality translations, thereby preventing negative impacts on the model’s English capabilities.

Table 1: Model performance trained on parallel data selected by different methods.
| DCLM | FineWeb-Edu | ParaRater

EN ZH JA FR TH EN ZH JA FR TH EN ZH JA FR TH
ARC-E 5841 4828 4574 4489 3985 5952 54.85 4943 48.28 4536 6223 49.81 4582 4582 4142
TL DE RU AR TL DE RU AR TL DE RU AR
41.08 4447 4243 38.83 4231 4799 4570 42.94 3993 4620 43.92 38.58
EN ZH JA FR TH EN ZH JA FR TH EN ZH JA FR TH
MMMLU 28.93 2734 27.10 27.40 2659 29.66 27.88 27.74 2798 2728 29.80 27.63 2697 2741 26.78
TL DE RU AR TL DE RU AR TL DE RU AR
27.58 2721 26.55 2589 28.11 27.33  26.65 26.12 28.38 2733 2690 26.33
EN ZH JA FR TH EN ZH JA FR TH EN ZH JA FR TH
BMLAMA 69.35 4342 36.15 5522 3280 69.28 46.43 4039 5723 3496 70.04 4495 41.06 57.85 39.30
TL DE RU AR TL DE RU AR TL DE RU AR
63.88 60.11 3524 38.55 64.03 63.07 3948 4129 6391 62.81 39.78 43.22
EN ZH JA FR TH EN ZH JA FR TH EN ZH JA FR TH
HellaSwag 53.51 3628 32.09 3813 3230 5515 3832 3280 40.14 3371 5513 40.85 3565 4229 34.11
TL DE RU AR TL DE RU AR TL DE RU AR
3647 34.14 36.17 33.18 38.62 3626 37.85 35.50 39.22 3735 40.37 37.01
EN ZH JA FR TH EN ZH JA FR TH EN ZH JA FR TH
StoryCloze 7198 6029 59.06 62.69 5735 7345 64.16 59.67 64.78 5820 7330 65.25 62.00 66.25 60.14
TL DE RU AR TL DE RU AR TL DE RU AR
56.04 6238 61.53 5441 56.58 64.09 6440 56.50 57.04 6594 6540 58.36
XWinograd EN ZH JA FR RU EN ZH JA FR RU EN ZH JA FR RU
73.12 5496 5401 5542 5429 7837 5893 5401 57.83 53.65 7897 59.92 5516 59.03 5841
ZH JA FR TH ZH JA FR TH ZH JA FR TH
Flores 8.08 840 1854 10.56 1030 9.54 2481 1253 11.05 993 2989 1441
TL DE RU AR TL DE RU AR TL DE RU AR
31.53 19.06 1535 14.55 3515 2312 1724 17.17 36.75 30.15 23.76 19.11

Table 2: Comparison between ParaRater Stage 1 and the full two-stage ParaRater pipeline. Results
are averaged across all evaluated languages.
ARC-E BMLAMA MMLU HellaSwag StoryCloze XWinoGrad Flores

Stagel  46.44 52.15 27.44 40.01 62.70 62.30 20.13
Stage2 4597 51.44 27.50 40.22 63.74 62.30 21.88

5.3 ABLATION STUDY: STAGE 1

We conduct an ablation study by removing Stage 2 to investigate the effect of using only Rater 1.
Following the same experimental setup, we use Rater 1 to select 1B tokens per language, which
are then combined with 100B English tokens for training. The result is shown in Table 2] We
observe that Stage 2 significantly enhances performance on NLU and translation tasks over Stage
1. The improvements on StoryCloze and Flores are primarily attributed to Rater 2. Stage 1 mainly
serves to filter out low-quality texts, thereby reducing noise in the overall distribution. Stage 2,
in contrast, maintains the marginal distributions while perturbing the joint distribution between the
two languages to identify the most strongly interacting parallel corpora. We also observe that on
knowledge-centric tasks, Stage 1 shows a slight advantage over Stage 2. This finding aligns with
our earlier attribution: since both raters are trained on the same validation set, Stage 2 tends to bias
the rater further toward selecting data that benefits language understanding rather than knowledge
acquisition. A promising direction for improvement is to explore more principled approaches for
validation set selection.
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Table 3: Samples classified according to ParaRater rankings in Stage 1 and Stage 2. In stage 1, 1 and
J denotes high and low rank respectively. In Stage 2, 1T denotes samples that keep the rank, whereas
J denotes samples whose ranks have declined.

Category English Chinese

Stage 1

EN1ZH 1T Amplifier circuits can be described AR FE B R LU T E’Uiﬁ%@c&
in terms of the layout or topology of ~ FHFNEHAA, X EMEE & H
components which plays a crucial BEEREENER . KEZHZ
part in shaping the sound ... usinga  BRAY L MBBCRESR AR &t
lead made from this between guitar .. X FHEATE R AT
and amp, while not dangerous, will i, BRARSERER, HETS
usually be very noisy. TRME 7 .

EN1ZH | It’s 1928 in Harlem, New York. 19284F, AAMGR - BFLRAN
Jazz and gangsters are king in an BRI EBATE T A E
interesting lifestyle. Richard Gere F o A /R 5 P
plays Dixie Dwyer, a musician who /K, Hii T—#EAR. ..
witnesses a murder. ...

EN | ZH 1 The “Foothill Village” of Sierra PEERTIGE R AL B R —
Madre is a small, quaint and N, ERNIOR R NER, JEEA
friendly town with storefronts NEKAEE20 T 20204 (UAI304E
reminiscent of the 1920s and 1930s, 18, HEEH I FE— T ZRK
and is often thought of as an “artist’ ~ HIFEERHY” - #EIT4026 HISRERY b7
colony” ... EBIT50% ...

EN|ZH | Materials: Chart paper with the Wk —ikI EEER
riddle: aShould Sheri share her T “Sheri A TR R
shoes with her sister Shelly?i on it.  Shelly =i AI¥EIG? ~ Dr. Seuss
Class set of the book by Dr. Seuss, R, (—HE, WHRE, 22
One Fish, Two Fish, Red Fish, Blue ~ fa, #ifi) KFEESN.

Fish.

Stage 2

EN | People often message me on my MITEBERIEE HARE
blog with questions about why their &, [T AMfITRIEEES T\
cakes have gone wrong and how B, DL R IR AR A .
they can prevent it happening again.

EN 1 Over the past century, the EdER— LR, SRR

neighborhood of Little Italy,
Manbhattan, has evolved from a
cultural center for Italian
immigrants to a tourist destination
with very little Italian culture at all.

ANERAR X ERAN RS RS
HE A 3 — D JLPRE B AR
SCALRTRE H R ..

6 CASE STUDY AND DISCUSSION

We draw English-Chinese samples from the two-stage ParaRater scoring procedure to conduct a
qualitative analysis of its scoring behavior.

In stage 1, the rater assigns scores to the bilingual corpus, which are then ranked separately within
each language. We designate the top 30% as high-ranked and the bottom 30% as low-ranked, yield-
ing four cross-lingual ranking combinations. The upper section of Table [3]illustrates representative
cases from these four categories for Chinese—English data. We find that the four categories display
clear patterns. In particular, documents ranked highly in both Chinese and English tend to be fluent,
knowledge-bearing explanatory texts with relatively greater length. For documents that receive high
rankings in English but low rankings in Chinese (EN 1T ZH |), we observe that many instances,
consistent with our earlier discussion, are attributable to poor or incorrect translations. In the case,
“are king” is a figurative expression meaning “to dominate” or “to be the most important or influ-
ential thing.” However, in Chinese this was translated literally as “king,” which makes the sentence
sound very confusing. Therefore, improving translation quality would reduce the number of samples
falling into this category and potentially shift them toward the first category (EN T ZH 1). In the
category where English ranks low but Chinese ranks high (EN | ZH 1), we observe that most sam-
ples pertain to topics such as Western geography, institutions, and culture. However, the domains of
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these texts may be relatively distant from the distribution of the Chinese corpus, making the original
English texts less effective in improving the model’s Chinese capability. Nevertheless, these texts
are generally fluent, and thus, once translated into Chinese, they may be recognized as high-quality
Chinese data. For data that receive low scores in both languages (EN | ZH |), we generally observe
issues with fluency and completeness; the corresponding English texts are often disorganized and
difficult to understand.

Stage 2 performs a decomposition of the subset that ranked highly in both languages (EN 1+ ZH 1).
In Table [3| we categorize samples whose rankings drop by more than 20% as having a significant
decline (EN |); otherwise, they are considered to have maintained their ranking (EN 7). In Stage
2, the samples that maintain high rankings (EN 1) tend to be more well-structured and formal, with
overall very fluent translations. In contrast, the samples whose rankings drop (EN ), although
still high-quality in English, often have translations that appear somewhat stiff or unnatural. While
more regular and polished text generally signals higher quality, it also reduces diversity to some
extent. We take a reverse perspective to analyze the factors contributing to these translation quality
outcomes. Fluently translated text is easier for the model to learn — after all, a translation model is
itself an LLM. Consequently, the samples that drop in ranking in Stage 2 are harder to learn in the
target language, and thus require the presence of parallel data to enable effective transfer.

Using ParaRater, we can either identify the core portion within existing parallel corpora or pre-select
it on the source side to construct targeted parallel data, thereby maximizing the efficiency of corpus
construction and cross-lingual transfer of linguistic competence. ParaRater learns language-specific
selection strategies through meta-learning, offering a more adaptive and fine-grained alternative to
existing methods that rely on fixed heuristics or rigid filtering criteria.

7 CONCLUSION

To address the challenge of parallel corpus selection and construction, this paper introduces
ParaRater. By leveraging the scoring differences between the two raters, ParaRater identifies parallel
data with strong cross-lingual interactions. ParaRater substantially improves the transfer efficiency
of language abilities during LLM training. Extensive experiments are conducted from English to
eight target languages to validate the approach. Results show that parallel data selected by ParaRater
leads to significant gains in both NLU and translation performance, while maintaining stable perfor-
mance on English tasks. An important direction for future work is to explore how to better choose
and configure the training objectives for ParaRater.
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A DETAILS OF META LEARNING PARARATER

Algorithm (1 outlines the rater training process, which is cast as a bi-level optimization problem. In
the inner loop, the language model fy is updated on batches of English data from D;,,;,. For each
batch, the rater ¢, assigns a score to every example, which is then converted into a non-negative
weight. These weights determine how strongly each example influences the inner training loss
Linner, €ncouraging the model to focus on English data that may be most valuable for transfer. In

detail, we use the softmax function to get the normalized weights: w(x) = % .
x/ €By

In the outer loop, after 7" such inner updates, the adapted model fy(r) is evaluated on held-out
target-language validation data D,,). The validation loss L, captures how well the model transfers
knowledge across languages. By differentiating through the inner steps, we obtain meta-gradients
with respect to 1), which are used to update the rater. Over time, ¢,, learns to assign higher weights to
English examples whose translations improve target-language performance, while down-weighting
less useful ones.

Algorithm 1 Meta-Learning a ParaRater

Inputs: Train data Di,ain, validation data Dy,y; inner model fq; rater ¢, producing per-sample
scores/weights; inner steps 7', outer steps K.
1: Initialize 6,7

2: for k =1to K do > Outer loop (meta step)
32 0 « CLONE()
4 fort =1to T do > Inner loop (train LM with rater weights)
5: Sample batch B C Diyain
6: s < ¢n(B) > Rater scores
7: w < SCORESTOWEIGHTS(s) > Any monotone map/normalization
8: ‘Cinner A Z(w,y)eB ’IU(.I‘) ' CE(fQ(f'*l) ($)7 y)
9: O  g(t=1) _ OéVg(r,—l)ﬁmner
10: end for

11: Sample validation batch BC Dyal

12: £val <~ ﬁ Z(i@)eé CE(f9<T) (i.)’g)

13: > Meta-update
14: n<n—BVyLa (O(T) (77))

15 0 < Copy(6M))
16: end for
17: return ¢, > Trained rater

To further ensure the quality of selected data, ParaRater employs a two-stage filtering strategy. First,
it selects examples that are helpful on their own when weighted by the rater. Second, it retains only
those that prove effective when both the English and translated versions are included in training, thus
capturing truly impactful parallel corpora. The final selected set can then be translated to build high-
quality parallel corpora, enabling more efficient and effective cross-lingual transfer for multilingual
LLMs.

B EXPERIMENTAL DETAILS

The hyper-parameter settings employed for the meta-learning of ParaRater are listed below.

For the pretraining experiments, we employ a transformer architecture derived from the LLaMA-
2 model (Touvron et al., 2023b), configured with roughly 1.2 billion parameters. All models are
initialized randomly prior to pretraining. Tabled] provides the full specifications of the model archi-
tecture and training hyperparameters.

For rater training, we initialize with Qwen3-Embedding-0.6B and using a inner model with the same
architecture of the language model as in the pretraining. During the meta-learning process, we set
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Model configuration Values
Attention head 16
Layers 24
Hiddent size 2048
Intermediate layer dimension 5504
maximum position embedding 4096
layer normalization epsilon 1x107°
Training Hyperparameters Values
Batch size 3072
Sequence length 4096
Optimizer AdamW
Learning rate 4.3 x 1074

Learning rate schedule
Traning steps
Precision

Cosine decay to 10% of inital value
Varied based on the total token budget
bf16(mxied-precision training)

Table 4: Model configuration and Training Hyperparameters for pretraining LLms

the number of inner steps to 2, and the maximum token length for both the rater and the inner model

is fixed at 512.
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