

000 PARARATER: ENHANCING CROSS-LINGUAL TRANS- 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PARARATER: ENHANCING CROSS-LINGUAL TRANS- FER IN LLMS WITH META-LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Multilingual LLMs are rapidly emerging, accompanied by claims of supporting an ever-increasing number of languages. However, significant gaps remain between their performance in English and in other languages. Due to the limited quantity and quality of low-resource language data, independently improving these languages is a tough route. A natural alternative is to transfer the capabilities learned in English to low-resource languages. Parallel corpora play a key role in such transfer, and some prior works have conducted empirical studies. Yet, which types of parallel corpora contribute most effectively to cross-lingual transfer has not been systematically explored. To address this, we propose ParaRater, a corpus selection method designed to identify the most valuable English data to be translated into target languages, thereby constructing high-quality parallel corpora that efficiently boost performance in those languages. ParaRater leverages meta-learning to directly align corpus selection with model performance on native target-language data. It further employs a two-stage filtering process to pinpoint data that is only effective when both language versions appear in training—i.e., truly impactful parallel corpora. We demonstrate the effectiveness of this approach across multiple languages and provide detailed qualitative analyses, offering new insights into cross-lingual transfer in large language models. Our rater, datasets, and code are all released open-source. Our code and data are anonymously open at <https://anonymous.4open.science/r/dVqzLmtrwFae-8676>.

1 INTRODUCTION

Multilingual large language models (LLMs) are rapidly proliferating, touting support for an expanding array of languages. Gemma 3 (Team et al., 2025) offers support for over 140 languages, and Qwen 3 (Yang et al., 2025) expands its predecessor’s capabilities by supporting 119 languages and dialects. On closed-source models, GPT-5¹ and Claude-4² also demonstrate broad multilingual coverage. Despite these advances, significant performance gaps persist between English and other languages—especially low-resource ones (Han et al., 2025). Methods for improving LLMs’ performance in non-English languages mainly fall into two directions: one is to independently enhance target-language ability by increasing the quantity and quality of its training data (Zhao et al., 2025; Dou et al., 2025), and the other is to leverage the abundance of high-quality English data to transfer English capabilities to other languages (Shen et al., 2025; Fujii et al., 2024; Lu et al., 2023; Qorib et al., 2025).

What remains unexplored is a fundamental research problem: which types of parallel corpora truly drive cross-lingual transfer in LLMs, and how can we systematically identify them? Using parallel corpora to train models for cross-lingual transfer is a mainstream approach. Existing approaches typically treat all parallel data as equally useful, relying on heuristics or post-training adaptation, with benefits observed mostly in translation tasks. However, existing work has been largely empirical, focusing mainly on the post-training stage, with the primary benefits of parallel data observed in translation tasks. There has been little systematic investigation into how to select parallel corpora or how they influence broader general-purpose language capabilities. Furthermore, not all parallel corpora contribute in the same way—some English texts improve target-language performance even

¹<https://openai.com/index/introducing-gpt-5/>

²<https://www.anthropic.com/news/claude-4>

when used alone, while others only exert impact when paired with their translations. Disentangling this distinction is crucial: only the latter represents the “core” of parallel corpora that genuinely induces transfer. This motivates us to design a principled framework to automatically identify and exploit the most impactful subsets for efficient multilingual pretraining.

To address these challenges, we propose ParaRater, which employs a meta-learning framework to directly align the impact of parallel corpora with LLMs’ performance on a validation set. The goal of ParaRater is to identify the subset of parallel data that truly drives cross-lingual transfer—what we term the core of the parallel corpus. We define the core of the parallel corpus as the portion of source-language data that can only provide positive impact on the target language when paired with its translated counterpart. For example, in the case of English-Chinese, we aim to identify the most valuable English documents that can enhance an LLM’s Chinese ability. These documents have little effect on improving Chinese performance when included alone in training, but once translated into Chinese and added as parallel data, their original English versions begin to contribute positively to Chinese capability.

To achieve this goal, we design a two-stage strategy to filter the core of the parallel corpus. Each stage employs a rater that assigns importance weights to documents with respect to their contribution in the target language. In the first stage, the rater selects documents that receive high weights in both the source and target languages. In the second stage, the target-language versions of these documents are removed from the training data, and the rater then identifies the subset of source-language documents whose weights drop significantly—these constitute the core documents. These documents represent the portion of parallel data that truly exerts its effect in a parallel manner, as opposed to pseudo-parallel data that exists in parallel form but whose benefits stem solely from the monolingual side. With this approach, we can make more efficient use of parallel data—for example, by extracting the core subset from existing parallel corpora, or by selecting high-value subsets of English data to be translated for constructing new parallel corpora. To control for confounding factors, we conduct experiments by pretraining 1.2B-parameter LLMs from scratch on multiple bilingual pairs. The results show that ParaRater significantly outperforms strong baselines. We further provide detailed analyses and case studies of the selected data, offering new perspectives on cross-lingual transfer in LLMs. To summarize, our contributions are as follows:

- We propose ParaRater, which leverages meta-learning and a two-stage strategy to disentangle the effective components of parallel data from pseudo-parallel data, providing a more efficient way to exploit parallel corpora.
- We construct the ParaCore training set, consisting of core parallel data between English and several other languages, which significantly improves LLM performance in non-English languages.
- We develop ParaTool, a meta-learning framework for training parallel-data selectors, which enables convenient identification of the most valuable data for cross-lingual transfer across arbitrary languages and datasets.
- We conduct controlled experiments on multiple bilingual pairs using clean parallel data, and provide both qualitative and quantitative analyses that reveal the role of parallel corpora in LLM pretraining, offering valuable insights into cross-lingual transfer.

2 RELATED WORK

Cross-lingual Capability Transferring with Parallel Corpus Because the amount of high-quality data in non-English languages is significantly smaller than in English, and increasing the proportion of low-resource language data often leads to a decline in English performance, many studies have resorted to using parallel corpora to enhance LLM capabilities in low-resource languages. Although some studies have explored the impact of parallel corpora, the field is still far from being well-documented. Shen et al. (2025) introduce a method to scale multilingual LLMs by leveraging multi-way parallel corpora, aligning previously unaligned models through systematic parallel data utilization. Fujii et al. (2024) explore continual pre-training for cross-lingual adaptation, showing that targeted additional training can substantially enhance Japanese capabilities in multilingual LLMs. Lu et al. (2023) propose TRIP, a triangular document-level pretraining strategy that accelerates multilingual pretraining by exploiting parallel data triplets at the document level.

108 Qorib et al. (2025) demonstrate that systematically incorporating parallel corpora into training improves the multilingual capabilities of LLMs across diverse languages. These studies confine their 109 exploration of parallel data either to the post-training stage or to its impact on translation capabilities. Yet the pretraining stage is the most critical phase for shaping multilingual competence in 110 LLMs, and to the best of our knowledge, no prior work has systematically examined the influence 111 of parallel corpora on LLMs' general capabilities in pretraining phase.

114

115 **Data Curating** Selecting high-quality subsets from raw corpora for pretraining is a crucial step 116 in determining LLM performance. The main approaches include heuristic rule-based filtering and 117 LLM-as-judge methods. Heuristic filtering removes duplicates, overly short, or toxic texts using 118 regular-expression matching (Laurençon et al., 2023; Weber et al., 2024; Penedo et al., 2023; Sol- 119 daini et al., 2024), or applies simple classifiers based on features such as perplexity or text type 120 for selection (Chowdhery et al., 2022; Touvron et al., 2023a; Xie et al., 2023; Muennighoff et al., 121 2023). However, such methods are limited in generalizability and accuracy, and in recent years, 122 LLM-as-judge approaches for text classification or quality assessment have become the mainstream. 123 QuRating (Wettig et al., 2024) trains a model to evaluate texts along dimensions like writing style, 124 expertise, facts/trivia, and educational value. FineWeb-Edu (Penedo et al., 2024) filters data with 125 an LLM-based educational quality classifier trained on synthetic annotations from Llama-3. FIRE 126 (Xu et al., 2025) aligns diverse data quality raters and introduce a progressive data selection scheme. 127 MuRating (Chen et al., 2025) combines multiple English raters via pairwise comparisons to train a 128 unified rater. Although these methods can filter corpora along more sophisticated dimensions than 129 heuristic rules, the signals used to train the raters are still grounded in human-predefined criteria. 130 DataRater (Calian et al., 2025) trains a rater model to score training samples directly aligning with 131 the effectiveness in LLM pretraining, using meta-learning method. Inspired by this, we adopt a 132 meta-learning approach to investigate the effectiveness of parallel corpora in LLM pretraining, and 133 train raters to perform data selection.

134

3 PRELIMINARY: DATA SELECTION WITH META-LEARNING

135

136 Using meta-learning for data selection primarily involves training a rater that assigns scores to data, 137 with the selected subset then used for model pretraining; the optimization objective is to minimize 138 the loss of the pretrained model on a given test dataset.

139

140 Given a training corpus $\mathcal{D}_{\text{train}}$, a rater model R_η is used to score the documents $d \in \mathcal{D}_{\text{train}}$. A language 141 model M_θ is trained with the curated data and a loss function l . The gradient of the language model 142 in a step t is defined as:

143

$$g_t = \frac{1}{n} \sum_{i=1}^n \nabla_\theta l(d_i; \theta_t), \quad (1)$$

144

145 where $d_i \in R_\eta(\mathcal{D}_{\text{train}})$ is a batch of documents selected by the rater at step t . After T steps, the 146 optimized parameters are obtained, which is denoted as

147

$$\theta^* = \theta(R_\eta(\mathcal{D}_{\text{train}})).$$

148

149

150 The optimized language model is then evaluated by a loss on a given test dataset $L(\theta_t; \mathcal{D}_{\text{test}})$. The 151 optimization objective of the rater R is:

152

153

$$\eta^* = \arg \min_{\eta} L(\theta(R_\eta(\mathcal{D}_{\text{train}})); \mathcal{D}_{\text{test}}) \quad (2)$$

154

155

156 The task is to filter a predefined size of subset \mathcal{D}' , where the documents in it are with high effectiveness 157 in pretraining the language model.

158

159

4 PARARATER

160

161

Unlike typical data selection tasks, the goal of ParaRater is to identify the high-value subset from source data to construct target-language corpora, thereby forming parallel data. The key difference

162 is that we not only aim to identify the portion of the corpus that contributes to improving the target-
 163 language capability, but also to disentangle the bilingual dependency within that portion.
 164

165 In Section 4.1, we first formulate the problem of parallel data selection and present the overall
 166 optimization objective. Since directly optimizing this objective is computationally infeasible, in
 167 Section 4.2 we approximate it using a two-stage procedure. In the first stage, we identify documents
 168 in the parallel corpus that provide benefits in both languages. In the second stage, we keep only
 169 the source-language documents and remove their target-language counterparts, then compare the
 170 scoring differences between the two raters across the two stages to identify the core of parallel
 171 data—the documents whose bilingual coupling is the strongest.
 172

172 4.1 PARALLEL CORPUS FILTERING PROBLEM

174 Given a training dataset in the source language \mathcal{D}_s and a test dataset $\mathcal{D}_{\text{test}}$ in the target language, the
 175 rater selects a high-value subset of pre-determined size

$$176 \mathbf{d}_s = R(\mathcal{D}_s).$$

178 After the selection, \mathbf{d}_s is used to build its target language version \mathbf{d}_t , forming the parallel corpus. A
 179 language model is then optimized on the developed parallel corpus. We rewrite Eq. 1 as

$$180 g = \nabla_{\theta} l(\mathbf{d}_s \cup \mathbf{d}_t; \theta), \quad (3)$$

182 where we omit the step annotation for simplicity. Following the approach in section 3, we use the
 183 Eq. 2 to optimize the rater, with the $R(\mathcal{D}_s)$ replaced by $\mathbf{d}_s \cup \mathbf{d}_t$.

184 However, this objective does not guarantee that the constructed subset achieves the highest effi-
 185 ciency for language capability transfer. Parallel corpus that can drive effective cross-lingual transfer
 186 should manifest in the way that the two language versions of the same data mutually influence their
 187 effectiveness during model training. What we seek is to identify cases where the combination of
 188 two languages produces high value when they appear together, rather than data that is already highly
 189 valuable in a monolingual setting. Therefore, we need to introduce additional constraints. The final
 190 optimization objective for the rater is then as follows:
 191

$$192 \eta^* = \arg \min_{\eta} \left(L(\theta(\mathbf{d}_s \cup \mathbf{d}_t)) - L(\theta(\mathbf{d}_s \cup \mathbf{d}'_t)) \right), \quad (4)$$

193 where \mathbf{d}'_t denotes the target-language counterpart that is mismatched with \mathbf{d}_s and \mathbf{d}'_t satisfies
 194 $L(\theta(\mathbf{d}_t)) = L(\theta(\mathbf{d}'_t))$, i.e., \mathbf{d}'_t is of equal quality to \mathbf{d}_t . We omit the explicit dependence of L on
 195 $\mathcal{D}_{\text{test}}$. In this objective, the selected subset of source corpus only contributes to the language model
 196 performance when the model is jointly trained on the subset and its target-language counterpart.
 197

198 4.2 DUAL-RATER CROSS FILTERING

200 Since the selection from the corpus is a discrete sampling process, directly optimizing Eq. 4 is a non-
 201 deterministic polynomial-time hard problem. Inspired by DataRater (Calian et al., 2025), we instead
 202 optimize the rater by assigning continuous weight values to batches of training samples. Moreover,
 203 directly optimizing Eq. 4 would require maintaining multiple language models and computing their
 204 gradients simultaneously, which is computationally sophisticated. Therefore, we adopt a two-stage
 205 strategy, optimizing two raters to cross-filter the data as an approximation. [Figure 1 depicts the two](#)
 206 [stages](#).
 207

Stage 1: High-Value Bilingual Subset Selection At this stage, we train rater R_{η_1} to optimize the
 208 first term of Eq. 4, in order to select the documents that get high rank in language model pretraining
 209 in both languages. Here we have

$$211 \eta_1 = \arg \min_{\eta} \left(L(\theta(\tilde{\mathbf{d}}_s \cup \tilde{\mathbf{d}}_t)) \right),$$

213 where $\tilde{\mathbf{d}}_s$ and $\tilde{\mathbf{d}}_t$ represent a coarse-grained filtering of \mathbf{d}_s and \mathbf{d}_t . In practice, we first construct
 214 parallel data \mathcal{D}_t in the target language from the source language data \mathcal{D}_s . Then, the language model
 215 is trained on this parallel corpus and the rater meta-learns from the loss L of the language model
 parameters on the test set $\mathcal{D}_{\text{test}}$ as the optimization objective. [We then use the trained rater to score](#)

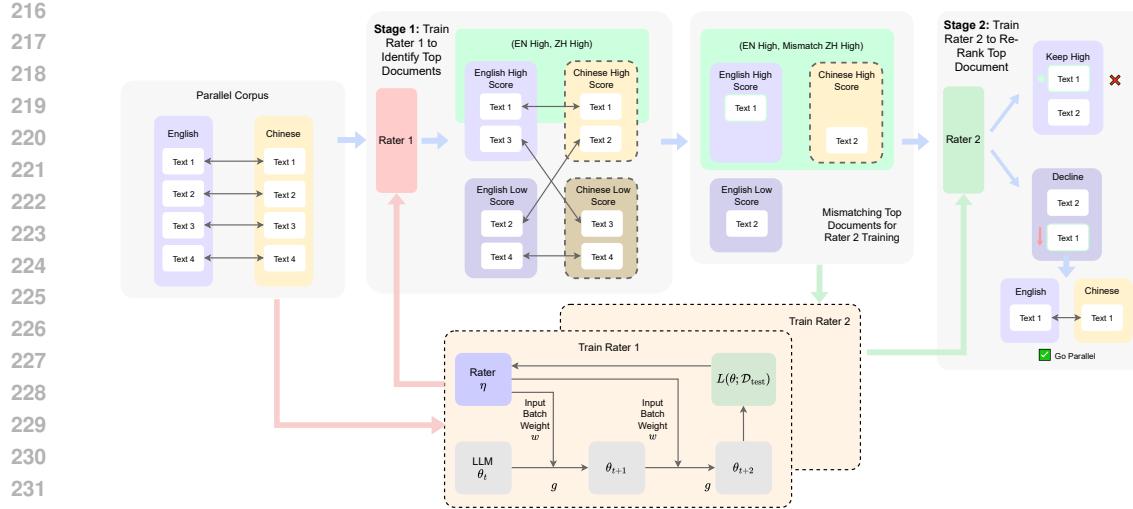


Figure 1: ParaRater training process. In Stage 1, Rater 1 is trained to select the top-performing documents in both languages. Using the scores from Rater 1, we then reorganize the parallel corpus by deliberately mismatching the top documents from the two languages. In Stage 2, Rater 2 is trained on this mismatched data to identify the source-language documents whose rankings drop once their target-language counterparts are removed. These documents—and their corresponding target-language versions—constitute the most valuable parallel data for pretraining.

\mathcal{D}_t and \mathcal{D}_s independently, and select the samples that rank high in both languages. In summary, at this stage, we performed a standard meta-learning procedure to filter out high-quality data from a training set that is composed entirely of parallel corpora, based on the model’s performance in the target language.

Stage 2: Low-Value Monolingual Source Language Subset Selection In the previous stage, although we successfully identified bilingual data that are highly valuable for improving performance in the target language, this does not necessarily imply effective language capability transfer—the language model may develop its capabilities independently in each language. The essence of parallel data lies in enabling interoperability: when the model learns knowledge in one language, that knowledge should interact with its understanding of the same content in the other language. For example, if learning a particular Chinese document improves the model’s performance in Chinese, then learning the English version of that document should likewise bring improvements. In the context of rater meta-learning, this is reflected by the rater’s score for the English document being influenced by the presence of its corresponding Chinese counterpart.

At this stage, our goal is to identify source-language data that improves model performance only when its target-language counterpart is also present. To do this, we start with the source-language documents that ranked highly in both languages in the previous stage. We then construct a new training set by combining:

- these high-ranking source documents,
- high-ranking target-language documents that are not parallel to them, and
- a small subset of low-ranking source documents (as a comparison group).

Using this mixture, we meta-learn a second rater and examine how the rankings of the high-scoring source documents change. If a document’s ranking drops substantially, it indicates that the document is only useful when paired with its target-language counterpart. These documents—together with their corresponding target-language versions—form the core of the parallel corpus. Their performance drop in the absence of their paired translations reveals the strong cross-lingual dependency encoded in these parallel pairs.

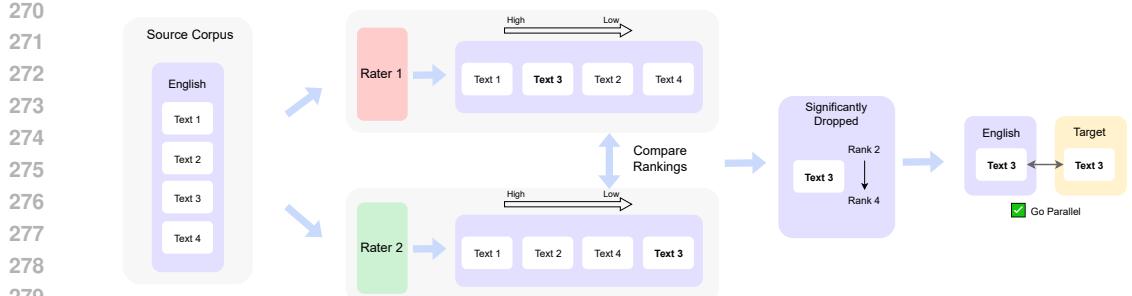


Figure 2: **Source-only selection.** Score the source-language data using Rater 1 and Rater 2, compare the differences in their scores, and identify the documents with significant drops to construct the core of parallel data.

Formally, a new rater R_{η_2} is meta-trained on the high-value source language subset $\tilde{\mathbf{d}}_s$, the high-value mismatched target language subset $\tilde{\mathbf{d}}'_t$, and the low-value source language subset $\tilde{\mathbf{d}}'_s$. Following Eq. 3 the language model optimization is denoted as

$$g = \nabla_{\theta} l(\tilde{\mathbf{d}}_s^* \cup \tilde{\mathbf{d}}'_t^* \cup \tilde{\mathbf{d}}'_s^*; \theta), \quad (5)$$

Where $\tilde{\mathbf{d}}_s^* = R_{\eta_2}(\tilde{\mathbf{d}}_s)$, $\tilde{\mathbf{d}}'_s^* = R_{\eta_2}(\tilde{\mathbf{d}}'_s)$, and $\tilde{\mathbf{d}}'_t^* = R_{\eta_2}(\tilde{\mathbf{d}}'_t)$ are the subsets selected by the rater 2. Note again that this is an iterative process, and for simplicity we have omitted the step indices. The rater optimization is then defined as:

$$\eta_2 = \arg \min_{\eta} (L(\theta(\tilde{\mathbf{d}}_s^* \cup \tilde{\mathbf{d}}'_t^* \cup \tilde{\mathbf{d}}'_s^*))).$$

$\tilde{\mathbf{d}}_s^*$ represents the source-language samples that remain highly valuable despite lacking a corresponding target-language counterpart. Since these samples already enhance the language model’s capability in the target language on their own, there is no need to use them as seeds for constructing additional parallel data. Our focus is on

$$\mathbf{d}_s = \tilde{\mathbf{d}}_s - \tilde{\mathbf{d}}_s^*,$$

which is the core of the parallel corpus. This subset of source-language data whose usefulness relies on the presence of their parallel target-language counterparts.

Source-only Selection Once the two raters described above have been obtained, we can filter the existing parallel corpus to extract its core portion. However, naturally occurring parallel data are relatively scarce, and performing large-scale translation to construct large candidate parallel corpora is also computationally expensive. Therefore, a more important application is to first select the high-value subset from the source-language corpus and then translate it to form core parallel data. This can be easily achieved using ParaRater. [Figure 2 depicts the source-only selection process](#).

In source-side filtering, the only difference from the two stages described above is that we do not have access to the rankings on the target-language side. As a result, stage 1 may include samples that rank highly in the source language but poorly in the target language. Such cases are primarily caused by low-quality or erroneous translations. The impact of these samples can be mitigated by improving translation quality.

5 EXPERIMENT

In this section, we conduct experiments under the Source-only Selection setting to evaluate the effectiveness of ParaRater in improving multilingual capabilities.

5.1 SETUP

Dataset Since naturally occurring parallel data are relatively scarce, we use machine-translated parallel data when training the rater. Unlike some previous work, we do not use concatenated par-

324 allele pairs in order to eliminate potential bias introduced by the data format; instead, all parallel
 325 documents are distributed independently within the training data. The experiment is conducted
 326 on multilingual data drawn from **Fineweb-2** (Penedo et al., 2025). For rater training, we sample
 327 20B tokens from English corpora and translate them into 8 languages — Chinese, German, French,
 328 Japanese, Thai, Arabic, Tagalog and Russian — thereby ensuring coverage across multiple linguistic
 329 typology dimensions. Translations are generated using the Qwen3-8B³ model, and documents with
 330 COMET (Rei et al., 2020) scores above 0.8 are retained to control and maintain high translation
 331 quality. We sample 2B tokens from the native corpus of each of the nine target languages to serve
 332 as the validation set in the meta-learning process.

333 To evaluate the effectiveness of ParaRater, we use the trained ParaRater for each language to perform
 334 source-side filtering on the FineWeb English data, selecting 1B tokens for each language. These
 335 selected samples are then translated into the corresponding target languages to form the core parallel
 336 corpus. We then add an additional 100B tokens of English data and pre-train a 1.2B-parameter
 337 language model based on the LLaMA architecture. This unbalanced design is intended to simulate
 338 the scenario where target-language data are extremely scarce, allowing us to evaluate the effect of
 339 transferring knowledge from English through translated parallel data.

340 **Baselines** We compare ParaRater to other data selection methods, including **FineWeb-Edu Classifier**
 341 (Penedo et al., 2024), which is trained on LLM labeled data to identify educational content,
 342 and **DCLM** (Li et al., 2024), a FastText classifier trained to distinguish high-quality data from raw
 343 web data. We apply these data selection methods to select 1B tokens from the English corpus, trans-
 344 late them into the target languages, and pre-train the language models using the resulting parallel
 345 data combined with the same 100B tokens of English data as above.

347 **Evaluation** We evaluate the pre-trained language models on both English and the target languages.
 348 For English evaluation, we adopt **ARC-E** (Clark et al., 2018), **Hellaswag** (Zellers et al., 2019), **StoryCloze**
 349 (Mostafazadeh et al., 2016), **BMLAMA** (Qi et al., 2023), **MMLU** (Hendrycks et al., 2021),
 350 covering multiple capabilities ranging from natural language understanding, commonsense reasoning,
 351 and factoid knowledge. For evaluation on the target languages, the widely used multilingual
 352 version of **Hellaswag** (Lai et al., 2023), **StoryCloze** (Lin et al., 2022) and **MMMLU**⁴ are adopted.
 353 For **BMLAMA**, we observed that the original multilingual version contained a substantial number
 354 of errors, so we used the MuBench (Han et al., 2025) version instead. For the languages not covered
 355 by the above multilingual version, we also supplement them using MuBench. In addition, we use
 356 **FLORES** (Goyal et al., 2022) ChrF++ scores to evaluate the EN-to-target translation capabilities of
 357 the models.

358 **Implementation** We conducted both rater training and language model training on a cluster of
 359 64 H100 GPUs. To avoid interference from cross-lingual factors and ensure fairness, we train a
 360 separate ParaRater for each En–Target language pair. For each language, ParaRater training con-
 361 sumed roughly 24×64 H100 GPU-hours, while training each final language model required 12×64 GPU-hours.
 362 As the initial rater, we used Qwen3-Embedding-0.6B⁵ with a linear head. The language model co-trained with the rater during meta-learning, as well as the final language model,
 363 share the same architecture with 1.2B parameters. Inspired by DataRater, we developed **Para-**
 364 **Tool**, a meta-learning toolkit for rater training, and applied several optimizations to make large-
 365 scale training practical. Both **ParaTool** and **ParaCore**—the parallel corpus we constructed through
 366 ParaRater—are open-sourced to foster further research on multilingual large language models.

369 5.2 RESULTS

370 Table 1 shows the result. We observe that ParaRater demonstrates clear advantages on most bench-
 371 marks, covering both NLU tasks (e.g., HellaSwag, StoryCloze, xWinograd) and factual knowledge
 372 tasks. Moreover, ParaRater shows substantial improvements on translation tasks, aligning with prior
 373 observations that parallel corpora significantly boost translation performance. Compared with other

374³<https://huggingface.co/Qwen/Qwen3-8B>

375⁴<https://huggingface.co/datasets/openai/MMMLU>

376⁵<https://huggingface.co/Qwen/Qwen3-Embedding-0.6B>

378 data selection approaches for constructing parallel corpora, ParaRater achieves higher data efficiency, 379 delivering notable performance gains using only 1B tokens per language.

380 We also note that ParaRater underperforms on science-oriented tasks (e.g., ARC-E). This may be related 381 to the choice of validation set: we directly use multilingual data from FineWeb-2 as validation 382 data, which results in a more comprehensive optimization target for ParaRater. In contrast, FineWeb- 383 Edu explicitly targets the selection of educational content, which makes it more advantageous on 384 science-focused benchmarks. Nevertheless, ParaRater still delivers a measurable improvement on 385 English, suggesting that its data selection process effectively filters out noisy data introduced by 386 low-quality translations, thereby preventing negative impacts on the model’s English capabilities.

388 Table 1: Model performance trained on parallel data selected by different methods.

	DCLM					FineWeb-Edu					ParaRater				
ARC-E	EN 58.41	ZH 48.28	JA 45.74	FR 44.89	TH 39.85	EN 59.52	ZH 54.85	JA 49.43	FR 48.28	TH 45.36	EN 62.23	ZH 49.81	JA 45.82	FR 45.82	TH 41.42
	TL DE	RU AR				TL DE	RU AR				TL DE	RU AR			
	41.08	44.47	42.43	38.83		42.31	47.99	45.70	42.94		39.93	46.20	43.92	38.58	
MMMLU	EN 28.93	ZH 27.34	JA 27.10	FR 27.40	TH 26.59	EN 29.66	ZH 27.88	JA 27.74	FR 27.98	TH 27.28	EN 29.80	ZH 27.63	JA 26.97	FR 27.41	TH 26.78
	TL DE	RU AR				TL DE	RU AR				TL DE	RU AR			
	27.58	27.21	26.55	25.89		28.11	27.33	26.65	26.12		28.38	27.33	26.90	26.33	
BMLAMA	EN 69.35	ZH 43.42	JA 36.15	FR 55.22	TH 32.80	EN 69.28	ZH 46.43	JA 40.39	FR 57.23	TH 34.96	EN 70.04	ZH 44.95	JA 41.06	FR 57.85	TH 39.30
	TL DE	RU AR				TL DE	RU AR				TL DE	RU AR			
	63.88	60.11	35.24	38.55		64.03	63.07	39.48	41.29		63.91	62.81	39.78	43.22	
HellaSwag	EN 53.51	ZH 36.28	JA 32.09	FR 38.13	TH 32.30	EN 55.15	ZH 38.32	JA 32.80	FR 40.14	TH 33.71	EN 55.13	ZH 40.85	JA 35.65	FR 42.29	TH 34.11
	TL DE	RU AR				TL DE	RU AR				TL DE	RU AR			
	36.47	34.14	36.17	33.18		38.62	36.26	37.85	35.50		39.22	37.35	40.37	37.01	
StoryCloze	EN 71.98	ZH 60.29	JA 59.06	FR 62.69	TH 57.35	EN 73.45	ZH 64.16	JA 59.67	FR 64.78	TH 58.20	EN 73.30	ZH 65.25	JA 62.00	FR 66.25	TH 60.14
	TL DE	RU AR				TL DE	RU AR				TL DE	RU AR			
	56.04	62.38	61.53	54.41		56.58	64.09	64.40	56.50		57.04	65.94	65.40	58.36	
XWinograd	EN 73.12	ZH 54.96	JA 54.01	FR 55.42	RU 54.29	EN 78.37	ZH 58.93	JA 54.01	FR 57.83	RU 53.65	EN 78.97	ZH 59.92	JA 55.16	FR 59.03	RU 58.41
Flores	ZH 8.08	JA 8.40	FR 18.54	TH 10.56		ZH 10.30	JA 9.54	FR 24.81	TH 12.53		ZH 11.05	JA 9.93	FR 29.89	TH 14.41	
	TL DE	RU AR				TL DE	RU AR				TL DE	RU AR			
	31.53	19.06	15.35	14.55		35.15	23.12	17.24	17.17		36.75	30.15	23.76	19.11	

411 Table 2: Comparison between ParaRater Stage 1 and the full two-stage ParaRater pipeline. Results 412 are averaged across all evaluated languages.

	ARC-E	BMLAMA	MMLU	HellaSwag	StoryCloze	XWinoGrad	Flores
Stage1	46.44	52.15	27.44	40.01	62.70	62.30	20.13
Stage2	45.97	51.44	27.50	40.22	63.74	62.30	21.88

418 5.3 ABLATION STUDY: STAGE 1

419 We conduct an ablation study by removing Stage 2 to investigate the effect of using only Rater 1. 420 Following the same experimental setup, we use Rater 1 to select 1B tokens per language, which 421 are then combined with 100B English tokens for training. The result is shown in Table 2. We 422 observe that Stage 2 significantly enhances performance on NLU and translation tasks over Stage 423 1. The improvements on StoryCloze and Flores are primarily attributed to Rater 2. Stage 1 mainly 424 serves to filter out low-quality texts, thereby reducing noise in the overall distribution. Stage 2, 425 in contrast, maintains the marginal distributions while perturbing the joint distribution between 426 the two languages to identify the most strongly interacting parallel corpora. We also observe that on 427 knowledge-centric tasks, Stage 1 shows a slight advantage over Stage 2. This finding aligns with 428 our earlier attribution: since both raters are trained on the same validation set, Stage 2 tends to bias 429 the rater further toward selecting data that benefits language understanding rather than knowledge 430 acquisition. A promising direction for improvement is to explore more principled approaches for 431 validation set selection.

432
 433 Table 3: Samples classified according to ParaRater rankings in Stage 1 and Stage 2. In stage 1, \uparrow and
 434 \downarrow denotes high and low rank respectively. In Stage 2, \uparrow denotes samples that keep the rank, whereas
 435 \downarrow denotes samples whose ranks have declined.

436	Category	English	Chinese	
437	<i>Stage 1</i>			
438	EN \uparrow ZH \uparrow	Amplifier circuits can be described in terms of the layout or topology of components which plays a crucial part in shaping the sound ... using a lead made from this between guitar and amp, while not dangerous, will usually be very noisy.	放大器电路可以用元件的布局或拓扑来描述, 这在塑造声音方面起着至关重要的作用。大多数经典的电吉他放大器采用A类设计 ... 使用这种线材连接吉他和音箱, 虽然不会有危险, 但通常会很嘈杂。	
439	EN \uparrow ZH \downarrow	It's 1928 in Harlem, New York. Jazz and gangsters are king in an interesting lifestyle. Richard Gere plays Dixie Dwyer, a musician who witnesses a murder. ...	1928年, 纽约哈莱姆。爵士乐和黑帮是一个有趣的生活方式的国王。理查德·吉尔饰演迪克西·德怀尔, 目击了一起谋杀案。 ...	
440	EN \downarrow ZH \uparrow	The "Foothill Village" of Sierra Madre is a small, quaint and friendly town with storefronts reminiscent of the 1920s and 1930s, and is often thought of as an "artist" colony" ...	"塞拉玛德拉的“山麓村”是一个小, 古朴而友好的小镇, 店面令人联想到20世纪20年代和30年代, 并经常被认为是一个“艺术家的殖民地”。超过40%的城镇的房屋超过50岁" ...	
441	EN \downarrow ZH \downarrow	Materials: Chart paper with the riddle: "Should Sheri share her shoes with her sister Shelly?" on it. Class set of the book by Dr. Seuss, One Fish, Two Fish, Red Fish, Blue Fish.	材料: 一张纸上写着谜语: "Sheri 应该和她的妹妹 Shelly 分享她的鞋吗?" Dr. Seuss 的书, 《一只鱼, 两只鱼, 红鱼, 蓝鱼》的班级套书。	
451	<i>Stage 2</i>			
452	EN \downarrow	People often message me on my blog with questions about why their cakes have gone wrong and how they can prevent it happening again. ...	人们经常在我的博客上给我留言, 问为什么他们的蛋糕出了问题, 以及如何防止再次发生。 ...	
453	EN \uparrow	Over the past century, the neighborhood of Little Italy, Manhattan, has evolved from a cultural center for Italian immigrants to a tourist destination with very little Italian culture at all. ...	在过去的一个世纪里, 曼哈顿的小意大利区从意大利移民的文化中心演变为一个几乎没有意大利文化的旅游目的地 ...	

469 6 CASE STUDY AND DISCUSSION

471 We draw English-Chinese samples from the two-stage ParaRater scoring procedure to conduct a
 472 qualitative analysis of its scoring behavior.

473 In stage 1, the rater assigns scores to the bilingual corpus, which are then ranked separately within
 474 each language. We designate the top 30% as high-ranked and the bottom 30% as low-ranked, yielding
 475 four cross-lingual ranking combinations. The upper section of Table 3 illustrates representative
 476 cases from these four categories for Chinese–English data. We find that the four categories display
 477 clear patterns. In particular, documents ranked highly in both Chinese and English tend to be fluent,
 478 knowledge-bearing explanatory texts with relatively greater length. For documents that receive high
 479 rankings in English but low rankings in Chinese (EN \uparrow ZH \downarrow), we observe that many instances,
 480 consistent with our earlier discussion, are attributable to poor or incorrect translations. In the case,
 481 “are king” is a figurative expression meaning “to dominate” or “to be the most important or influ-
 482 ential thing.” However, in Chinese this was translated literally as “king,” which makes the sentence
 483 sound very confusing. Therefore, improving translation quality would reduce the number of samples
 484 falling into this category and potentially shift them toward the first category (EN \uparrow ZH \uparrow). In the
 485 category where English ranks low but Chinese ranks high (EN \downarrow ZH \uparrow), we observe that most sam-
 486 ples pertain to topics such as Western geography, institutions, and culture. However, the domains of

486 these texts may be relatively distant from the distribution of the Chinese corpus, making the original
 487 English texts less effective in improving the model’s Chinese capability. Nevertheless, these texts
 488 are generally fluent, and thus, once translated into Chinese, they may be recognized as high-quality
 489 Chinese data. For data that receive low scores in both languages ($\text{EN} \downarrow \text{ZH} \downarrow$), we generally observe
 490 issues with fluency and completeness; the corresponding English texts are often disorganized and
 491 difficult to understand.

492 Stage 2 performs a decomposition of the subset that ranked highly in both languages ($\text{EN} \uparrow \text{ZH} \uparrow$).
 493 In Table 3, we categorize samples whose rankings drop by more than 20% as having a significant
 494 decline ($\text{EN} \downarrow$); otherwise, they are considered to have maintained their ranking ($\text{EN} \uparrow$). In Stage
 495 2, the samples that maintain high rankings ($\text{EN} \uparrow$) tend to be more well-structured and formal, with
 496 overall very fluent translations. In contrast, the samples whose rankings drop ($\text{EN} \downarrow$), although
 497 still high-quality in English, often have translations that appear somewhat stiff or unnatural. While
 498 more regular and polished text generally signals higher quality, it also reduces diversity to some
 499 extent. We take a reverse perspective to analyze the factors contributing to these translation quality
 500 outcomes. Fluently translated text is easier for the model to learn — after all, a translation model is
 501 itself an LLM. Consequently, the samples that drop in ranking in Stage 2 are harder to learn in the
 502 target language, and thus require the presence of parallel data to enable effective transfer.

503 Using ParaRater, we can either identify the core portion within existing parallel corpora or pre-select
 504 it on the source side to construct targeted parallel data, thereby maximizing the efficiency of corpus
 505 construction and cross-lingual transfer of linguistic competence. ParaRater learns language-specific
 506 selection strategies through meta-learning, offering a more adaptive and fine-grained alternative to
 507 existing methods that rely on fixed heuristics or rigid filtering criteria.

508 7 CONCLUSION

511 To address the challenge of parallel corpus selection and construction, this paper introduces
 512 ParaRater. By leveraging the scoring differences between the two raters, ParaRater identifies parallel
 513 data with strong cross-lingual interactions. ParaRater substantially improves the transfer efficiency
 514 of language abilities during LLM training. Extensive experiments are conducted from English to
 515 eight target languages to validate the approach. Results show that parallel data selected by ParaRater
 516 leads to significant gains in both NLU and translation performance, while maintaining stable perfor-
 517 mance on English tasks. An important direction for future work is to explore how to better choose
 518 and configure the training objectives for ParaRater.

519 REFERENCES

521 Dan A. Calian, Gregory Farquhar, Iurii Kemaev, Luisa M. Zintgraf, Matteo Hessel, Jeremy Shar,
 522 Junhyuk Oh, András György, Tom Schaul, Jeffrey Dean, Hado van Hasselt, and David Silver.
 523 DataRater: Meta-Learned Dataset Curation, May 2025.

525 Zhixun Chen, Ping Guo, Wenhan Han, Yifan Zhang, Binbin Liu, Haobin Lin, Fengze Liu, Yan
 526 Zhao, Bingni Zhang, Taifeng Wang, Yin Zheng, and Meng Fang. MuRating: A High Quality
 527 Data Selecting Approach to Multilingual Large Language Model Pretraining, July 2025.

528 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
 529 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
 530 Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
 531 Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
 532 Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
 533 skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
 534 Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
 535 Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
 536 Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
 537 Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
 538 nnan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
 539 Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. PaLM: Scaling Language Modeling with Pathways,
 October 2022.

540 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 541 Oyvind Tafjord. Think you have Solved Question Answering? Try ARC, the AI2 Reasoning
 542 Challenge, March 2018.

543

544 Longxu Dou, Qian Liu, Fan Zhou, Changyu Chen, Zili Wang, Ziqi Jin, Zichen Liu, Tongyao Zhu,
 545 Cunxiao Du, Penghui Yang, Haonan Wang, Jiaheng Liu, Yongchi Zhao, Xiachong Feng, Xin Mao,
 546 Man Tsung Yeung, Kunat Pipatanakul, Fajri Koto, Min Si Thu, Hynek Kydlíček, Zeyi Liu, Qun-
 547 shu Lin, Sittipong Sripaisarmongkol, Kridtaphad Sae-Khow, Nirattisai Thongchim, Taechawat
 548 Konkaew, Narong Borijindargo, Anh Dao, Matichon Maneegard, Phakphum Artkaew, Zheng-
 549 Xin Yong, Quan Nguyen, Wannaphong Phatthiyaphaibun, Hoang H. Tran, Mike Zhang, Shiqi
 550 Chen, Tianyu Pang, Chao Du, Xinyi Wan, Wei Lu, and Min Lin. Sailor2: Sailing in South-East
 551 Asia with Inclusive Multilingual LLMs, February 2025.

552 Kazuki Fujii, Taishi Nakamura, Mengsay Loem, Hiroki Iida, Masanari Ohi, Kakeru Hattori, Hirai
 553 Shota, Sakae Mizuki, Rio Yokota, and Naoaki Okazaki. Continual Pre-Training for Cross-Lingual
 554 LLM Adaptation: Enhancing Japanese Language Capabilities, April 2024.

555

556 Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-Jen Chen, Guillaume Wenzek, Da Ju, San-
 557 jana Krishnan, Marc'Aurelio Ranzato, Francisco Guzmán, and Angela Fan. The Flores-101 Eval-
 558 uation Benchmark for Low-Resource and Multilingual Machine Translation. *Transactions of the*
 559 *Association for Computational Linguistics*, 10:522–538, 2022. doi: 10.1162/tacl_a_00474.

560

561 Wenhan Han, Yifan Zhang, Zhixun Chen, Binbin Liu, Haobin Lin, Bingni Zhang, Taifeng Wang,
 562 Mykola Pechenizkiy, Meng Fang, and Yin Zheng. MuBench: Assessment of Multilingual Capa-
 563 bilities of Large Language Models Across 61 Languages, June 2025.

564

565 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 566 Steinhardt. Measuring Massive Multitask Language Understanding, January 2021.

567

568 Viet Lai, Chien Nguyen, Nghia Ngo, Thuat Nguyen, Franck Dernoncourt, Ryan Rossi, and Thien
 569 Nguyen. Okapi: Instruction-tuned Large Language Models in Multiple Languages with Rein-
 570 force Learning from Human Feedback. In Yansong Feng and Els Lefever (eds.), *Proceedings*
 571 *of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demon-
 572 strations*, pp. 318–327, Singapore, December 2023. Association for Computational Linguistics.
 573 doi: 10.18653/v1/2023.emnlp-demo.28.

574

575 Hugo Laurençon, Lucile Saulnier, Thomas Wang, Christopher Akiki, Albert Villanova del Moral,
 576 Teven Le Scao, Leandro Von Werra, Chenghao Mou, Eduardo González Ponferrada, Huu Nguyen,
 577 Jörg Frohberg, Mario Šaško, Quentin Lhoest, Angelina McMillan-Major, Gerard Dupont, Stella
 578 Biderman, Anna Rogers, Loubna Ben allal, Francesco De Toni, Giada Pistilli, Olivier Nguyen,
 579 Somaieh Nikpoor, Maraim Masoud, Pierre Colombo, Javier de la Rosa, Paulo Villegas, Tristan
 580 Thrush, Shayne Longpre, Sebastian Nagel, Leon Weber, Manuel Muñoz, Jian Zhu, Daniel Van
 581 Strien, Zaid Alyafeai, Khalid Almubarak, Minh Chien Vu, Itziar Gonzalez-Dios, Aitor Soroa,
 582 Kyle Lo, Manan Dey, Pedro Ortiz Suarez, Aaron Gokaslan, Shamik Bose, David Adelani, Long
 583 Phan, Hieu Tran, Ian Yu, Suhas Pai, Jenny Chim, Violette Lepercq, Suzana Ilic, Margaret
 584 Mitchell, Sasha Alexandra Luccioni, and Yacine Jernite. The BigScience ROOTS Corpus: A
 585 1.6TB Composite Multilingual Dataset, March 2023.

586

587 Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal,
 588 Etash Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muenninghoff, Rein-
 589 hard Heckel, Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon Albalak,
 590 Yonatan Bitton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh, Josh Gard-
 591 ner, Maciej Kilian, Hanlin Zhang, Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel Ilharco, Gi-
 592 annis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao Nguyen,
 593 Igor Vasiljevic, Sham Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke
 594 Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie Wang,
 595 Dirk Groeneveld, Luca Soldani, Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G. Di-
 596 makis, Yair Carmon, Achal Dave, Ludwig Schmidt, and Vaishaal Shankar. DataComp-LM: In
 597 search of the next generation of training sets for language models, June 2024.

594 Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuhui Chen, Daniel Simig, Myle
 595 Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh
 596 Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva,
 597 Mona Diab, Veselin Stoyanov, and Xian Li. Few-shot Learning with Multilingual Language
 598 Models, November 2022.

599 Hongyuan Lu, Haoyang Huang, Shuming Ma, Dongdong Zhang, Wai Lam, and Furu Wei. Ad-
 600 vancing Multilingual Pre-training: TRIP Triangular Document-level Pre-training for Multilingual
 601 Language Models, May 2023.

602 Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Van-
 603 derwende, Pushmeet Kohli, and James Allen. A Corpus and Evaluation Framework for Deeper
 604 Understanding of Commonsense Stories, April 2016.

605 Niklas Muennighoff, Alexander M. Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus, Nou-
 606 mane Tazi, Sampo Pyysalo, Thomas Wolf, and Colin Raffel. Scaling Data-Constrained Language
 607 Models, October 2023.

608 Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Hamza Alobeidli,
 609 Alessandro Cappelli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The Refined-
 610 Web Dataset for Falcon LLM: Outperforming Curated Corpora with Web Data Only. *Advances
 611 in Neural Information Processing Systems*, 36:79155–79172, December 2023.

612 Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
 613 Raffel, Leandro Von Werra, and Thomas Wolf. The FineWeb Datasets: Decanting the Web for
 614 the Finest Text Data at Scale, October 2024.

615 Guilherme Penedo, Hynek Kydlíček, Vinko Sabolčec, Bettina Messmer, Negar Foroutan, Amir Hos-
 616 sein Kargaran, Colin Raffel, Martin Jaggi, Leandro Von Werra, and Thomas Wolf. FineWeb2:
 617 One Pipeline to Scale Them All – Adapting Pre-Training Data Processing to Every Language,
 618 June 2025.

619 Jirui Qi, Raquel Fernández, and Arianna Bisazza. Cross-Lingual Consistency of Factual Knowl-
 620 edge in Multilingual Language Models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
 621 *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*,
 622 pp. 10650–10666, Singapore, December 2023. Association for Computational Linguistics. doi:
 623 10.18653/v1/2023.emnlp-main.658.

624 Muhammad Reza Qorib, Junyi Li, and Hwee Tou Ng. Just Go Parallel: Improving the Multilingual
 625 Capabilities of Large Language Models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova,
 626 and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association
 627 for Computational Linguistics (Volume 1: Long Papers)*, pp. 33411–33424, Vienna, Austria, July
 628 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/
 629 2025.acl-long.1602.

630 Ricardo Rei, Craig Stewart, Ana C. Farinha, and Alon Lavie. COMET: A Neural Framework for
 631 MT Evaluation, October 2020.

632 Yingli Shen, Wen Lai, Shuo Wang, Kangyang Luo, Alexander Fraser, and Maosong Sun. From
 633 Unaligned to Aligned: Scaling Multilingual LLMs with Multi-Way Parallel Corpora, May 2025.

634 Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Arthur,
 635 Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Jha,
 636 Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas
 637 Muennighoff, Aakanksha Naik, Crystal Nam, Matthew Peters, Abhilasha Ravichander, Kyle
 638 Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Evan Walsh,
 639 Luke Zettlemoyer, Noah Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge,
 640 and Kyle Lo. Dolma: An Open Corpus of Three Trillion Tokens for Language Model Pretraining
 641 Research. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd
 642 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 643 15725–15788, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
 644 10.18653/v1/2024.acl-long.840.

648 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 649 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
 650 Mesnard, Geoffrey Cideron, Jean-bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Cas-
 651 bon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiao-
 652 hai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman,
 653 Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-
 654 Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi, Dan
 655 Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe Friesen,
 656 Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa Saade,
 657 Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András György,
 658 André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia Paterson,
 659 Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini, Charlie
 660 Chen, Charline Le Lan, Christopher A. Choquette-Choo, C. J. Carey, Cormac Brick, Daniel
 661 Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivaku-
 662 mar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eu-
 663 gene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna
 664 Klimczak-Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian
 665 Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wi-
 666 eting, Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju-yeong Ji, Jyotinder Singh,
 667 Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine,
 668 Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael
 669 Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Ni-
 670 lay Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Ruben-
 671 stein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya
 672 Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu,
 673 Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti
 674 Sheth, Siim Pöder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi
 675 Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evcı, Vedant Misra, Vincent Roseberry,
 676 Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein
 677 Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotrata, Minh Giang, Phoebe Kirk, Anand Rao, Kat
 678 Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas
 679 Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Bar-
 680 ral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam
 681 Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
 682 Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry Lepikhin, Sebastian Borgeaud, Olivier
 683 Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot.
 684 Gemma 3 Technical Report, March 2025.

685 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 686 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
 687 mand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation
 688 Language Models, February 2023a.

689 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 690 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 691 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023b.

692 Maurice Weber, Daniel Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov, Xi-
 693 aozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, Ben Athiwaratkun, Rahul Chalamala,
 694 Kezhen Chen, Max Ryabinin, Tri Dao, Percy Liang, Christopher Ré, Irina Rish, and Ce Zhang.
 695 RedPajama: An Open Dataset for Training Large Language Models, November 2024.

696 Alexander Wettig, Aatmik Gupta, Saumya Malik, and Danqi Chen. QuRating: Selecting High-
 697 Quality Data for Training Language Models, July 2024.

698 Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy Liang. Data Selection for Language
 699 Models via Importance Resampling, November 2023.

700 Liangyu Xu, Xuemiao Zhang, Feiyu Duan, Sirui Wang, Rongxiang Weng, Jingang Wang, and Xun-
 701 liang Cai. FIRE: Flexible Integration of Data Quality Ratings for Effective Pre-Training, May
 2025.

702 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
703 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
704 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
705 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
706 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
707 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
708 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
709 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
710 Qiu. Qwen3 Technical Report, May 2025.

711 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
712 Machine Really Finish Your Sentence? In Anna Korhonen, David Traum, and Lluís Màrquez
713 (eds.), *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*,
714 pp. 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.
715 18653/v1/P19-1472.

716 Yiran Zhao, Chaoqun Liu, Yue Deng, Jiahao Ying, Mahani Aljunied, Zhaodonghui Li, Lidong Bing,
717 Hou Pong Chan, Yu Rong, Deli Zhao, and Wenzuan Zhang. Babel: Open Multilingual Large
718 Language Models Serving Over 90% of Global Speakers, March 2025.
719

720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 A DETAILS OF META LEARNING PARARATER
757

758 Algorithm 1 outlines the rater training process, which is cast as a bi-level optimization problem. In
759 the inner loop, the language model f_θ is updated on batches of English data from $\mathcal{D}_{\text{train}}$. For each
760 batch, the rater ϕ_η assigns a score to every example, which is then converted into a non-negative
761 weight. These weights determine how strongly each example influences the inner training loss
762 $\mathcal{L}_{\text{inner}}$, encouraging the model to focus on English data that may be most valuable for transfer. In
763 detail, we use the softmax function to get the normalized weights: $w(x) = \frac{e^{\phi_\eta(x)}}{\sum_{x' \in B_t} e^{\phi_\eta(x')}}.$
764

765 In the outer loop, after T such inner updates, the adapted model $f_{\theta(T)}$ is evaluated on held-out
766 target-language validation data \mathcal{D}_{val} . The validation loss \mathcal{L}_{val} captures how well the model transfers
767 knowledge across languages. By differentiating through the inner steps, we obtain meta-gradients
768 with respect to η , which are used to update the rater. Over time, ϕ_η learns to assign higher weights to
769 English examples whose translations improve target-language performance, while down-weighting
770 less useful ones.

771 **Algorithm 1** Meta-Learning a ParaRater
772

773 **Inputs:** Train data $\mathcal{D}_{\text{train}}$, validation data \mathcal{D}_{val} ; inner model f_θ ; rater ϕ_η producing per-sample
774 scores/weights; inner steps T , outer steps K .

```

775 1: Initialize  $\theta, \eta$                                 ▷ Outer loop (meta step)
776 2: for  $k = 1$  to  $K$  do
777 3:    $\theta^{(0)} \leftarrow \text{CLONE}(\theta)$                   ▷ Inner loop (train LM with rater weights)
778 4:   for  $t = 1$  to  $T$  do
779 5:     Sample batch  $B \subset \mathcal{D}_{\text{train}}$            ▷ Rater scores
780 6:      $s \leftarrow \phi_\eta(B)$ 
781 7:      $w \leftarrow \text{SCORESTOWEIGHTS}(s)$            ▷ Any monotone map/normalization
782 8:      $\mathcal{L}_{\text{inner}} \leftarrow \sum_{(x,y) \in B} w(x) \cdot \text{CE}(f_{\theta^{(t-1)}}(x), y)$ 
783 9:      $\theta^{(t)} \leftarrow \theta^{(t-1)} - \alpha \nabla_{\theta^{(t-1)}} \mathcal{L}_{\text{inner}}$ 
784 10:  end for
785 11:  Sample validation batch  $\tilde{B} \subset \mathcal{D}_{\text{val}}$            ▷ Meta-update
786 12:   $\mathcal{L}_{\text{val}} \leftarrow \frac{1}{|\tilde{B}|} \sum_{(\tilde{x}, \tilde{y}) \in \tilde{B}} \text{CE}(f_{\theta^{(T)}}(\tilde{x}), \tilde{y})$ 
787 13:   $\eta \leftarrow \eta - \beta \nabla_\eta \mathcal{L}_{\text{val}}(\theta^{(T)}(\eta))$ 
788 14:   $\theta \leftarrow \text{COPY}(\theta^{(T)})$ 
789 15:  end for
790 16:  return  $\phi_\eta$                                 ▷ Trained rater
791

```

792
793 To further ensure the quality of selected data, ParaRater employs a two-stage filtering strategy. First,
794 it selects examples that are helpful on their own when weighted by the rater. Second, it retains only
795 those that prove effective when both the English and translated versions are included in training, thus
796 capturing truly impactful parallel corpora. The final selected set can then be translated to build high-
797 quality parallel corpora, enabling more efficient and effective cross-lingual transfer for multilingual
798 LLMs.
799

800 B EXPERIMENTAL DETAILS
801

802 The hyper-parameter settings employed for the meta-learning of ParaRater are listed below.

803 For the pretraining experiments, we employ a transformer architecture derived from the LLaMA-
804 2 model (Touvron et al., 2023b), configured with roughly 1.2 billion parameters. All models are
805 initialized randomly prior to pretraining. Table 4 provides the full specifications of the model archi-
806 tecture and training hyperparameters.
807

808 For rater training, we initialize with Qwen3-Embedding-0.6B and using a inner model with the same
809 architecture of the language model as in the pretraining. During the meta-learning process, we set

Model configuration	Values
Attention head	16
Layers	24
Hiddent size	2048
Intermediate layer dimension	5504
maximum position embedding	4096
layer normalization epsilon	1×10^{-5}
Training Hyperparameters	Values
Batch size	3072
Sequence length	4096
Optimizer	AdamW
Learning rate	4.3×10^{-4}
Learning rate schedule	Cosine decay to 10% of inital value
Traning steps	Varied based on the total token budget
Precision	bf16(mxied-precision training)

Table 4: Model configuration and Training Hyperparameters for pretraining LLms

the number of inner steps to 2, and the maximum token length for both the rater and the inner model is fixed at 512.