Under review as submission to TMLR

StructEval: Benchmarking LLMs’ Capabilities to Generate
Structural Outputs

Anonymous authors
Paper under double-blind review

Abstract

As Large Language Models (LLMs) become integral to software development workflows,
their ability to generate structured outputs has become critically important. We introduce
StructEval, a comprehensive benchmark for evaluating LLMs’ capabilities in producing
both non-renderable (JSON, YAML, CSV) and renderable (HTML, React, SVG) structured
formats. Unlike prior benchmarks, StructEval systematically evaluates structural fidelity
across diverse formats through two paradigms: 1) generation tasks, producing structured
output from natural language prompts, and 2) conversion tasks, translating between struc-
tured formats. Our benchmark encompasses 18 formats and 44 types of task, with novel
metrics for format adherence and structural correctness. Results reveal significant perfor-
mance gaps—even state-of-the-art models like ol-mini achieve only 75.58 average score, with
open-source alternatives lagging approximately 10 points behind. We find generation tasks
more challenging than conversion tasks, and producing correct visual content more difficult
than generating text-only structures.

1 Introduction

In recent years, there has been a significant surge in the capabilities of large language models (LLMs) in
generating human-like text and performing a wide range of natural language processing tasks. State-of-
the-art models like GPT-40 (Hurst et al., [2024]), OpenAI o1/03 (Contributors et al. 2024), and Google’s
Gemini (Team et all 2023)) have achieved superior performance in knowledge QA (Hendrycks et al.l [2020;
Wang et al.l [2024)), instruction-following (Chiang et al., 2024 |Zhou et al., [2023), and code generation (Zhuo
et al., 2024} [Jain et al.) [2024]).

Despite recent advances, many real-world applications require not only fluency in the content of the output
but also precise control over its structure. This includes tasks where the expected output must follow specific
formats such as JSON, XML, LaTeX, HTML, or code in frameworks like React or Vue. Additionally, in
these tasks, in these tasks, we also want the code to render a page that correctly places elements according
to the requirements. These types of structured output are essential in domains like software development,
data pipelines, user interface generation, and scientific publishing, where incorrect formatting can lead to
disrupted pipelines or non-functional outputs.

However, most existing benchmarks focus on the semantic quality (Wang et al., |2024) or reasoning ability
of LLMs (Hendrycks et al., |2021; He et al. [2024), with limited emphasis on their ability to produce
format-conforming structured outputs. Some recently proposed benchmarks aim to evaluate the quality of
structured outputs tend to target specific modalities, such as code generation (Zhuo et all |2024) or text-only
structures (Gu et al 2024} Tang et al., |2023)), rather than offering comprehensive evaluations across diverse
structured formats. As existing benchmarks gradually become more saturated, it is still unknown how the
current state-of-the-art models perform in structured generation tasks. We argue that effectively evaluating
the models’ performance on such tasks is inherently challenging due to the following issues:

(1) Data Collection Challenges: Gathering diverse structured tasks and corresponding examples requires
domain expertise across multiple formats, with high-quality annotations demanding significant effort and
specialized knowledge.

Under review as submission to TMLR

StructEval-T StructEval-V
(] = = [T] Y m v
m Angular LaTex Markdown HTML Mermaid
TOML
CANVAS
WA
Mntplotllb Ve React

Figure 1: STRUCTEVAL evaluates the LLM’s capability to generate structured outputs, including text-only
tasks like JSON, TOML, etc, and visual rendering tasks like HTML, React, Latex, etc.

@ Task Prompt @ Query & Metric @ Expert Review "%

System: Task Prompt 0 & | Metri
_ : ue: etric
Y01.1 ire :1 prompt-design @ S Generate Ty
assistant.... ’ Query & Metric
Instruction:
ue:
You are designing a new LLM Q - . 2 Rounds
query based on the following i Please output HTML code. .. E . Manual
input/output types... ~ TTTTTTTTITTTTTomTmmommoommooes Label Studio Review
Metric
Example: e ittt
You must generate a new query Lvea . Keywords |
that is structured like the i -QFontsize? 3y Syntax Rules ! Query & Metric

-A: 16
example below... ! X

Figure 2: The overall designed annotation pipeline of STRUCTEVAL dataset

(2) Evaluation Metric Complexity: Designing reasonable metrics in a unified form for both text-only
structures (JSON, YAML) and visual outputs (HTML, SVG) is difficult, as they require different assessment
approaches for structural correctness and visual fidelity.

(3) Technical Implementation Barriers: Building a framework that supports execution and evaluation
across numerous rendering environments requires complex integration of multiple language interpreters and
visualization tools.

To address these challenges, we introduce STRUCTEVAL, a comprehensive benchmark that systematically
evaluates LLMs’ abilities to produce highly structured output. Our benchmark encompasses 21 distinct
formats and 44 task types organized into two complementary subsets: StructFval-T, which assesses the
generation of text-only structures such as JSON and TOML, and StructFEval-V, which evaluates the quality
of visually rendered outputs from code such as HTML and SVG. Both subsets include generation tasks
(converting natural language to structured outputs) and conversion tasks (transforming between two structured
formats), See for example formats. To ensure robust evaluation across these diverse formats, we
have developed a novel assessment framework that integrates syntactic validity checking, keyword matching,
and visual question answering, providing a holistic measure of both structural correctness and output fidelity.

Our comprehensive evaluation reveals significant performance gaps across models and tasks. Even state-of-
the-art commercial models like ol-mini achieve only an average score of 75.58, while the best open-source
model, such as Llama-3-8B-Instruct, lags 10 points behind, underscoring the performance gap between
commercial and open-source LLMs. We observe that generation tasks generally pose greater challenges than
conversion tasks, and producing code capable of rendering correct visual content proves more difficult than
generating text-only structured outputs. Task difficulty varies considerably across formats: while some tasks
are effectively solved by all LLMs with scores exceeding 0.95 (such as Text—Markdown and Text—HTML),

Under review as submission to TMLR

Subset # Total # Total # Avg # Avg
ubse Tasks Examples Keywords VQA pairs
SE-T-gen 5 250 7.9 -
SE-T-conv 14 700 17.5 -
SE-V-gen 13 650 11.1 7.9
SE-V-conv 12 435 22.2 9.0
StructEval | 44 2035 14.7 8.5

Table 1: The overall statistics of the STRUCTEVAL dataset. Here "SE" denotes StructEval. "T" and "V"'
represents the StructFval-T and StructEval-V subsets respectively. "gen" and "conv" represent the "generation"
and "conversion" task types respectively.

Rule Type Example Description

Literal key access planet.name Checks if key name exists as a child of object planet.

Nested lists with index planet.moons[@].name Verifies first item in moons list has a name field.

Wildcard in lists planet.moons.*.name Confirms that name exists for any moon in the list.

Backtick quoting data. ‘key.with.dots* Treats entire quoted token as a single key, useful for
special characters.

CSV header check csv::discovery.location Ensures CSV output has a column named
discovery.location.

XML attribute fallback @id Looks for id attribute, using @ to indicate XML format.

Table 2: Supported rule types in our path-based evaluation.

others remain particularly challenging with all models scoring below 0.5 (including Text—Mermaid and
Matplotlib—TikZ). Through this systematic analysis, we aim to drive progress in structured output generation
capabilities that are increasingly crucial for the real-world applications of language models.

2 StructEval Dataset

In this section, we first present an overview of our STRUCTEVAL dataset and statistical analysis infsubsection 2.1
Next, we elaborate on how we design the whole pipeline for annotation and quality review in [subsection 2.2
We will introduce how we design the evaluation metrics for each task in our dataset in

2.1 Overview

As shown in our STRUCTEVAL dataset comprises a total of 2,035 examples, covering 44 unique
structure generation tasks across 18 structured output formats. The dataset is organized into two main
subsets: StructEval-T and StructFEval-V.

o StructBEval-T is designed to evaluate an LLM’s ability to generate structured outputs directly from
natural language prompts without rendering. Supported formats include JSON, XML, YAML,
Markdown, CSV, TOML, among others. These are highly useful formats in many downstream
applications.

e StructFval-V assesses an LLM’s ability to generate executable code for visual rendering that fulfills a
specified visual requirement. This subset includes formats such as HTML, React, Matplotlib, Canvas,
LaTeX, SVG, Mermaid, and more. These are widely adopted formats for various applications.

Each example in the dataset is categorized as either generation or conversion. In generation tasks, the model
is required to produce structured output based on a natural language description with detailed specifications.
In conversion tasks, the model must translate structured content from one format to another (e.g., JSON to
YAML, HTML to React).

Under review as submission to TMLR

StructEval-T Question, KeyWords

Please output JSON code.
Task:

Summarize metadata about a fictional scientific article. Feature Requirements:

1. Top-level field "title” is a string containing the article title.

2. Field "authors” is a list of exactly two items.

3. Each element of "authors” contains "name” (string) and "affiliation” (string).
4. Field "publication.year” is an integer.

5. Field "keywords” is a list of strings.

Keywords:

e title

e authors[@].name

e authors[1].affiliation
e publication.year

e keywords[2]

Figure 3: Example question and key words of the StructEval-T generation task

Formally, each example is represented as a triplet (¢, K,QY), where ¢ denotes the structure genera-
tion question, K = {ki,...,kk} is a set of keywords expected to appear in the output, and Qv =

StructEval-V Question, Keywords Matching, VQA Pairs

Please output HTML code.
Task:

Design a webpage that presents a user’s travel itinerary. Feature Requirements:

e Include a centered <h1> header with the text "Trip Summary".

¢ Use a <table> to list destinations; include 3 rows and 2 columns.
e Apply a class "highlight” to the second row.

e Add a <button> labeled "Export PDF" at the bottom of the page.

Keywords:

e Trip Summary
e highlight

e <h1>

e Export PDF

VQA Pairs:

e Q: What text is displayed in the <h1> header?
A: Trip Summary
e Q: How many rows are in the table?
A:3
¢ Q: What class is applied to the second table row?
A highlight
e Q: What text is on the button at the bottom?
A: Export PDF

Figure 4: Example question, keywords, and VQA pairs for STRUCTEVAL-V generation task

Under review as submission to TMLR

Human Evaluation of VQA Questions ‘ Unfair Fair Total ‘ Fair Proportion (%)

Correct 6 347 352 98.58%

Wrong 39 6 45 13.33%

Total | 44 353 397 | 88.92%
Accuracy (%) | 13.64% 98.30% 88.66% |

Table 3: Human evaluation results of sampled VQA questions used in StructEval-V. Each question is
annotated as fair or unfair, and correctness is measured by VLM judge performance.

{(¢7,aY),..., (djqv)- aer‘)} is a set of visual question-answer (VQA) pairs used for evaluating examples in the
StructEval-V subset(An example StructEval-V task with keywords and VQA pairs is shown in . In
contrast, for StructEval-T, QY is empty and not used during evaluation (An example StructEval-T question
and its keywords are shown in . To ensure comprehensive evaluation, each example in the dataset
contains on average 14.7 keywords and 8.5 VQA pairs, as detailed in

To further assess the quality and fairness of the VQA pairs used in StructEval-V, we conduct a human expert
evaluation. Each VQA question is judged as either fair, meaning it can be reasonably answered by a VLM
judge using only the rendered image, or unfair, typically involving information not visually accessible, such
as precise numeric values or interactive UI elements. presents the results of this evaluation. Among
397 sampled VQA pairs, 88.92% were considered fair, and 98.58% of the correct VQA questions were judged
fair. Overall, 98.30% of all fair questions could be correctly answered by our VLM judge (GPT-4.1-mini),
supporting the validity of our automated evaluation process.

The dataset encompasses a wide spectrum of structured output formats, ranging from widely-used data
serialization types like JSON and YAML to visually-renderable formats such as SVG, Mermaid, and TikZ.
This diverse format coverage enables a more holistic evaluation of LLMs’ capabilities in both structured
data modeling and visual code generation. Notably, the inclusion of niche yet expressive formats—such as
Typst for typesetting, Mermaid for diagram specification, and TikZ for LaTeX-based graphics—broadens the
evaluative scope beyond conventional tasks. These formats collectively span domains including web front-end
development, data exchange, scientific visualization, and technical documentation. The distribution of tasks
across these formats is shown in highlighting the balanced composition of generation and conversion
tasks across both textual and visual modalities.

2.2 Annotation Pipeline

To construct a high-quality and diverse benchmark, we design a multi-stage annotation pipeline consisting
of three key components: 1) task curation, 2) LLM-based synthesis, and 3) expert review (see for
an overview of this pipeline). This pipeline ensures both the scalability and accuracy of the STRUCTEVAL
dataset.

Task Prompt We begin by identifying a broad spectrum of structure generation and conversion tasks
that span both text-based and executable visual formats. These tasks are selected to reflect practical use
cases and diverse real-world scenarios, covering 18 target formats and 44 distinct task types (also shown
in Each task specification includes format constraints, input-output expectations, and, where
applicable, conversion rules. Please refer to for a sample task prompt.

Query/Metric Generation Given the high cost of fully manual annotation, we leverage a large language
model to synthesize an initial pool of candidate examples. Each example consists of a task query and a set of
associated evaluation metrics, including keywords for text outputs and visual question-answer (VQA) pairs
for visual outputs. This step allows us to rapidly generate a large and varied collection of plausible instances
that serve as drafts for human refinement.

Expert Review To ensure quality and correctness, we employ a two-pass human review process. Annotators
first validate and refine the generated task queries and associated metrics. They are allowed to freely modify,

Under review as submission to TMLR

add, or remove any part of the synthesized content to ensure task clarity, completeness, and evaluability. In
the second pass, a separate reviewer verifies the consistency and correctness of each example. All annotation
is conducted using LabelStudio (Tkachenko et al., |2020-2025)), an open-source collaborative annotation tool
designed for structured data. The final dataset contains 2035 curated examples, carefully reviewed to support
robust evaluation across both StructFval-T and StructEval-V settings.

3 StructEval Evaluation

Before the evaluation, we feed the LLM with the questions ¢ in the datasets with the corresponding prompt
template defined in We require the LLM to output the desired structured outputs between
"<|BEGIN_CODE |>" and "<|END_CODE|>" so we can correctly parse the structured outputs for evaluation. For
the StructEval-V, parsed outputs will be additionally sent to our rendering engines to acquire the rendered
visual outputs (see examples in . We then evaluate model outputs using an automatic
evaluation pipeline that captures both structural correctness and semantic fidelity. Specifically, we have
designed core metrics depending on the task format: 1) Syntax Score, 2) Keyword Matching Score, and 3)
Visual Question Answering (VQA) Score.

{StructEval Question}

IMPORTANT: Only output the required output format. You must start the format/code with
<|BEGIN_CODE|> and end the format/code with <|END_CODE|>. No other text output (explanation,
comments, etc.) are allowed.

Do not use markdown code fences.

Table 4: Prompt template used for LLM inference before the evaluation

Syntax Score. The Syntax Score verifies the structural correctness of the generated output. For text-based
formats such as JSON, YAML, and CSV, this involves parsing the output using a format-specific Python
parser. For executable visual formats like HTML, LaTeX, or SVG, the code is rendered using a headless
renderer to determine whether it executes successfully. A score of 1 is assigned if the output is syntactically
valid or successfully rendered; otherwise, the score is 0. See the for some correctly rendered
images, code produced by the tested LLMs.

Keyword Matching Score This metric evaluates whether the generated output contains the required
structural elements. Given the reference set of expected keywords K = {k,..., kjk/} for a given task, we
assess their presence using exact matching or regular expression rules.

For the tasks of StructEval-T such as JSON or XML, keyword matching is performed over field names and
values using dot-path references to account for nested hierarchies. The score is computed as the proportion
of expected keywords correctly matched in the model’s output. Our evaluation supports a variety of path
formats as shown in The way dot-path rules are created differs depending on the task type.

For generation tasks, each task prompt includes feature requirements stated in natural language. These
requirements define target keys and their relationships to one another (e.g., nesting depth, list membership).
Annotators translate each requirement into a concrete dot-path rule using the syntax rules shown in
For conversion tasks, the input is itself a structured format (e.g., YAML or XML). We use an LLM to parse
the structural schema of the input—identifying key names, nesting levels, and list structures—and convert
them into target dot-path rules that the generated output must preserve.

This approach ensures that models are not only producing syntactically valid outputs, but also preserving
the expected structural relationships.

For the tasks of StructFval-V such as HTML, and Matplotlib, we simply detect whether the annotated
keyword is in the structured outputs and give scores accordingly.

Under review as submission to TMLR

VQA Prompt Template

You are given an image and a list of question-answer pairs.

e For each pair, verify if the image content supports the expected answer based on the corresponding question.
e Base your judgment solely on the visual content of the provided image, and the question.

e Do not use any external information or common-sense reasoning beyond what is visible.

e Respond with a JSON object mapping each question number to true or false (e.g., {"1": true, "2": false}).

e If the image is unclear or does not contain enough information to answer, use null for that question.

Here are the question-answer pairs: {qa_ list}

Figure 5: Prompt template used for VQA evaluation. We use GPT-4.1-mini in the benchmark evaluation.

VQA Score This score is used exclusively for tasks in the StructEval-V subset, where the output is expected
to be visually rendered. After rendering the output, GPT-4.1-mini (Hurst et al., [2024)), a vision-language
model (VLM), is employed to answer a set of visual questions Q¥ = {(q{,a¥), ..., (¢/qv|, ajqv|)}- The VLM
will be given both the questions and answers and required to decide whether the VQA pair matches this
rendered image. The VQA score is computed as the proportion of correctly answered questions.

Final task scores are calculated as weighted combinations of these metrics, with weights adjusted based on
whether the task is renderable. Let sg, s, s, € [0, 1] denotes the syntax, keyword matching, and VQA score
respectively. The for StructFval-T task, the final score s is computed as:

s=0.2-5,+028- sy (1)
For StructFEval-V, the final score s in computed as:
s=02-5,+0.1-5,+0.7-5s, (2)

This evaluation framework provides a unified, fine-grained view of model performance across both structured
data generation and visual code synthesis tasks, supporting deeper insights into LLM capabilities across
modalities.

4 Experiments

4.1 Experimental Setup

Evaluation Models. We evaluate a range of open-source and commercial large language models (LLMs)
using our benchmark. For open-source models, we use Meta-Llama-3-8B-Instruct |Grattafiori et al.| (2024)), Phi-
3-mini-128k-instruct |Abdin et al.| (2024al), Phi-4-mini-instruct |Abdin et al.[(2024b), Qwen2.5-7B-Instruct |Yang
et al| (2024), and Qwen3-4B [Yang et al| (2025). For commercial models, we use Gemini-1.5-pro and
Gemini-2.0-flash [Team et al.| (2023]), GPT-4.1-mini and GPT-40 Hurst et al| (2024), GPT-40-mini, and
ol-mini |Contributors et al.| (2024]). All tasks are evaluated in a zero-shot setting using consistent prompts
and parameters.

Inference Setup. All model generations are performed using LLM-Engine |Jiang| (2024), a unified inference
framework that supports both open-source backends (e.g., VLLM, SGLang, Together), and commercial
APIs (e.g., OpenAl, Claude, Gemini). For open-source models, we specifically utilize the vLLM engine for
efficiency [Kwon et al.| (2023]). For close-source models, we simply call the APIs. As shown in @ we use
greedy decoding by default. All tasks are evaluated zero-shot using uniform task prompts defined in [Table 4]

Under review as submission to TMLR

When performing the VQA evaluation, we select GPT-4.1-mini as the VLM due to its superior multimodal
abilities (OpenAl, [2025)). We apply the VQA prompt template defined in and ask the VLM to
decide whether each VQA pair matches the rendered visual image at once.

Parameter Value

Max tokens Unlimited

Temperature 0.0 (deterministic)
num__proc 32

time_out None

num_ workers 5

num_ gpu_ per_worker 1

Cache usage Disabled

Batch API Disabled

Hardware NVIDIA RTX A6000 GPU

Table 5: Inference configuration

Evaluation. Output generations are automatically scored using the evaluation pipeline described in
including syntactic validity checking, keyword matching, and VQA accuracy. GPT-4.1-mini (Hurst et al.,
2024) is used as the vision-language model for all VQA-based evaluations.

4.2 Main Results

StructEval-T StructEval-V
Models Average
generation conversion generation conversion |

Open Source
Llama-3.1-8B-Instruct |Grattafiori et al.|(2024) 60.22 71.26 54.44 61.15 61.77
Meta-Llama-3-8B-Instruct |Grattafiori et al.|(2024) 49.18 53.65 46.61 56.91 51.59
Phi-3-mini-128k-instruct |Abdin et al.[(2024a) 47.39 29.78 44.77 41.23 40.79
Phi-4-mini-instruct [Abdin et al.|(2024b) 51.38 72.39 51.62 52.48 56.97
Qwen2.5-7B-Instruct |Team|(2024) 59.21 62.18 53.28 61.43 59.03
Qwen3-4B |Yang et al.|(2025) 64.95 81.13 57.00 65.08 67.04

Close Source
Gemini-1.5-pro |Team et al.|(2023) 88.07 74.24 58.11 66.59 71.75
Gemini-2.0-flash [Team et al.|(2023) 72.42 72.20 53.62 51.97 62.55
GPT-4.1-mini (OpenAT|(2025) 92.57 75.63 64.30 70.04 75.64
GPT-40 Hurst et al.|(2024) 91.52 73.95 65.39 73.20 76.02
GPT-4o0-mini [Hurst et al.[(2024) 79.86 75.57 60.77 76.54 73.19
ol-mini (Contributors et al.|(2024) 88.12 81.82 61.98 70.40 75.58
A (ol-mini - Qwen3-4B) | 2317 0.70 4.99 5.32 | 854

Table 6: Main evaluation results of STRUCTEVAL

Overall Performance summarizes the performance of all evaluated models across the two main
task groups: StructFval-T and StructFEval-V, each further divided into generation and conversion subtasks.
Overall, GPT-40 achieves the highest average score of 76.02% among all 12 models. The best-performing
open-source model is Qwen3-4B, with a score of 67.04%, trailing GPT-40 by approximately 10 percentage
points. While GPT-40 excels particularly in the generation tasks within the StructEval-V category, Qwen3-4B
demonstrates consistently strong performance across all task types among open-source models. This likely
reflects Qwen3-4B’s robust reasoning capabilities relative to other open-source alternatives.

In contrast, the lowest-performing model is phi-3-mini-128k-instruct, with an average score of only 40.79%.
Although one might attribute this to its relatively small size of 3.8 billion parameters, model size alone
does not fully explain the poor results. For example, phi-3-mini underperforms even compared to similarly
sized models such as phi-4-mini-instruct. Notably, it achieves the lowest score in StructEval-T conversion

Under review as submission to TMLR

100%

Text—>TOML 90%
80%
Text—Mermaid 70%
Text—SVG 60%
50%
Matplotlib—TikZ 40%
YAML—XML 80%
20%
CSV—YAML 10%
0%

0% 20% 40% 60% 80% 100% T-Gen T-Conv V-Gen V-Conv

(a) Avg. score over all models based on most challenging (b) Avg. score over all models based on the four task types
subtasks

tasks, a category where models with strong reasoning abilities—such as o1-mini (81.82%) and Qwen3-4B
(81.13%)—tend to perform well.

Error analysis reveals two key failure modes for phi-3-mini-128k-instruct. First, in the TOML-to- YAML
conversion task, the model frequently produces malformed closing tags, outputting |<|END_CODE |> instead of
the correct <|END_CODE |>, which significantly penalizes its score. Second, in the CSV-to-JSON conversion
task, the model fails to capture hierarchical relationships (e.g., parent-child) specified in the CSV headers,
leading to structurally incorrect JSON outputs. These recurring structural errors in StructEval-T conversion
tasks substantially contribute to the model’s overall low performance.

Open-Source vs. Closed-Source Models When comparing open-source models and commercial models,
we can see that by A (closegyg - Opengy,y) value, which is the difference between the average score of commercial
source model and open model, that commercial model’s score is consistently higher than open-source models,
this makes sense given the much larger parameters of commercial models by scaling law. We can see that
commercial models exceed open-source models on average the most on generation tasks in StructEval-T
setting, and the performance gap is smallest on generation tasks in StructEval-V setting.

Generation vs. Conversion As shown in a comparison between generation and conversion
tasks in both StructFuval-T and StructFval-V settings reveals that, in general, models perform better on
conversion tasks than on generation tasks. An exception to this trend occurs in the StructEval-T setting,
where commercial models tend to outperform on generation tasks, while open-source models show the opposite
behavior—achieving higher scores on conversion tasks.

Under a temperature setting of 1, commercial models attain an average score of 75.78% on StructEval-T
generation tasks. In contrast, open-source models average only 8.58% on the same tasks for the TOML
format. This considerable disparity in TOML generation performance partly explains why commercial models
perform better on StructEval-T generation tasks overall. However, the performance gap is not confined to
TOML—commercial models also lead in the other four generation formats within StructFval-T.

In the StructEval-V setting, commercial models significantly outperform open-source counterparts on
generation tasks involving complex visual formats such as Mermaid and TikZ. These tasks require advanced
visual reasoning capabilities, which are more prevalent in multimodal commercial LLMs like GPT-40 and
GPT-40-mini.

Subtasks Analysis Meanwhile, several tasks in both in generation and conversion types appear to be
saturated, with most models achieving scores exceeding 90%. These include generation tasks for common
formats such as JSON, HTML, CSV, Markdown, and YAML, as well as conversion tasks like YAML-to-JSON,
React-to-HTML, TOML-to-JSON, and Markdown-to-HTML. Such results indicate that LLMs have already
mastered many structurally straightforward format transformations.

There remain several challenging tasks where all models struggle significantly (shown in , including
generation tasks like Text—TOML, Text—SVG, Text—Mermaid, and Text— Vega, as well as conversion tasks
like YAML—XML, CSV—YAML, Matplotlib—TikZ, and Markdown— Angular(see scores in [subsection A.2)).
Both closed-source and open-source models achieve low scores on these tasks, which typically require complex

Under review as submission to TMLR

structural or visual reasoning. Notably, the performance gap between closed-source and open-source models
is even wider on these challenging subtasks, suggesting that proprietary models may have advantages in
handling more complex structural representations and transformation logic.

5 Related Work

5.1 Large Language Models

Large Language Models (LLMs) have demonstrated remarkable capabilities and gained surging popularity in
recent years, ever since the release of ChatGPT (OpenAl| 2023)). Over the years, open-source models like
Llama (Grattafiori et al. [2024), Phi (Abdin et al., |2024bja)), and Qwen (Yang et al., 2024;2025|) developed by
companies like Meta, Microsoft, and Alibaba further facilitated a widespread integration of Al into diverse
workflows and everyday applications. Leveraging their large parameter sizes and extensive post-training,
LLMs are capable of performing a diverse array of Natural Language Processing (NLP) tasks (Wan et al.,
2023). One of the key aspects of the generative capabilities of these models is their ability to generate
structured data and transform data from one type to another while maintaining strict adherence to specified
formats (Guo et al., |2024)). In this paper, we design a new and comprehensive benchmark that evaluates
the capability of LLMs to understand, generate, and manipulate structured data across a range of complex,
real-world tasks.

5.2 Evaluation of LLMs

Evaluating structured output has become a focal point for understanding LLM’s limitations (Ning et al.l
2025)). SoEval (Liu et al.| 2024) offers a fast, rule-based check for JSON and XML, but its flat schemas
fail to reveal errors in deeper hierarchies. StrucText-Eval (Gu et al., 2024) shifts the task to reasoning
over structure-rich text (JSON, YAML, LaTeX) rather than generating the structures themselves, while
FOFO (Xia et al. [2024]) extends to domains such as law and finance yet covers only a few formats and
still relies on human verification. Developer-focused suites like StackEval (Shah et al. |2024) for HTML,
CSS, and plotting libraries, and CodeXGLUE (Lu et alJ, 2021) for multilingual code tasks remain limited to
programming artifacts, and Struc-Bench (Tang et al., 2023) concentrates on tabular generation with bespoke
metrics. Each benchmark highlights a part of the challenge—Dbe it format adherence, domain coverage, or
table fidelity. However, none simultaneously demands broad format coverage, automated grading, and robust
transformation capabilities. StructEval addresses these gaps by spanning 18 code and non-code formats,
unifying generation, completion, and conversion tasks, and scoring outputs with fully automated structural
and vision-based metrics, offering a comprehensive lens on how well LLMs respect and manipulate complex
schemas.

5.3 Structured Output Generation

The ability to generate structured outputs is central to many real-world applications of LLMs (Gu et al.}
2024; Tang et al.l 2023). These outputs are not only expected to be semantically coherent but must also
adhere strictly to syntactic and structural constraints—violations of which can lead to parsing failures,
rendering errors, or broken downstream applications. Common tasks include generating JSON for API
responses (Geng et al., [2025), YAML or TOML for configuration files (Peddireddy} [2024), HTML or React for
UI components (Si et all 2024)), and LaTeX or Markdown for technical writing (Wen et all 2024). Moreover,
in data science, models are used to transform unstructured descriptions into structured formats like CSV or
tables for integration into analysis pipelines (Li et al., [2023} |Su et al.||2024)). In publishing and education, tools
that convert textual prompts into diagrams (e.g., using TikZ, SVG, or Mermaid) help automate visualization
generation (Lee et al., [2025; [Rodriguez et al., |2025; [Ku et al., [2025). Despite its significance, structured output
generation remains challenging due to the need for models to internalize both syntax rules and hierarchical
schema relationships across a wide variety of formats. Our STRUCTEVAL first conducts a comprehensive
evaluation of existing LLMs on both renderable and non-renderable tasks, showing that they still struggle to
correctly generate some data formats including TOML, SVG, and Mermaid.

10

Under review as submission to TMLR

6 Conclusion

In this paper, we have comprehensively studied LLMs’ abilities to generate highly structured content. Having
the ability to generate fully structured content is highly useful for many downstream tasks. Our paper is
among the first few to provide an evaluation suite for that. Our results indicate that current models are still
lagging on the renderable structured content, especially on less frequent format. We advocate that the future
models should invest more time to optimize their abilities to generate highly structured output.

Limitations

Non-interactive formats Our benchmark focuses on evaluating LLMs’ ability to generate static visual
rendering formats such as HTML, React, Mermaid, etc. While this approach effectively assesses the model’s
capacity to produce well-structured and visually coherent outputs, it is currently limited to single-page,
non-interactive formats. The evaluation does not account for dynamic behaviors such as button interactions,
page transitions, animations, or scroll events, which are essential to many real world user interfaces. Future
work could extend the benchmark to include dynamic rendering tasks, enabling a more comprehensive
assessment of LLM capabilities in producing fully interactive and responsive user experiences.

Expert Review While our dataset underwent a two-pass expert review process to ensure correctness,
diversity, and minimize potential biases, the initial content was still generated by large language models.
Despite expert oversight, residual biases inherent in the model outputs may persist, particularly in subtle
or context-dependent scenarios that are challenging to detect through manual review. Moreover, expert
validation, while thorough, may not fully capture the wide range of cultural, social, or contextual sensitivities
relevant to diverse user populations. Future work could incorporate broader multi-annotator audits or
automated bias detection techniques to further enhance dataset reliability and inclusiveness.

References

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach, Amit
Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck,
Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dongdong Chen, Weizhu Chen,
Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang Dai, Matthew Dixon, Ronen Eldan,
Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit Garg, Allie Del Giorno, Abhishek Goswami, Suriya
Gunasekar, Emman Haider, Junheng Hao, Russell J. Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter,
Sam Ade Jacobs, Mojan Javaheripi, Xin Jin, Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi,
Dongwoo Kim, Young Jin Kim, Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li,
Chen Liang, Lars Liden, Xihui Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong
Liu, Chong Luo, Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro
Mendes, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker,
Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo de Rosa, Corby Rosset,
Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital
Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla, Xia Song, Masahiro Tanaka, Andrea
Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua Wang, Lijuan Wang, Shuohang Wang, Xin Wang,
Yu Wang, Rachel Ward, Wen Wen, Philipp Witte, Haiping Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can
Xu, Jiahang Xu, Weijian Xu, Jilong Xue, Sonali Yadav, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang,
Donghan Yu, Lu Yuan, Chenruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue
Zhang, Yunan Zhang, and Xiren Zhou. Phi-3 technical report: A highly capable language model locally on
your phone, 2024a. URL https://arxiv.org/abs/2404.14219.

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat Lee, Yuanzhi Li,
Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric Price, Gustavo de Rosa, Olli Saarikivi, Adil Salim,
Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli Yu, Cyril Zhang, and Yi Zhang. Phi-4 technical
report, 2024b. URL https://arxiv.org/abs/2412.08905.

11

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2412.08905

Under review as submission to TMLR

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng Li,
Hao Zhang, Banghua Zhu, Michael Jordan, Joseph Gonzalez, and Ion Stoica. Chatbot arena: An
open platform for evaluating llms by human preference. ArXiv, abs/2403.04132, 2024. URL https:
//api.semanticscholar.org/CorpusID:268264163.

Foundational Contributors, Ahmed El-Kishky, Daniel Selsam, Francis Song, Giambattista Parascandolo,
Hongyu Ren, Hunter Lightman, Hyung Won, Ilge Akkaya, Ilya Sutskever, Jason Wei, Jonathan Gordon, Karl
Cobbe, Kevin Yu, Lukasz Kondraciuk, Max Schwarzer, Mostafa Rohaninejad, Noam Brown, Shengjia Zhao,
Trapit Bansal, Vineet Kosaraju, Wenda Zhou Leadership, Jakub W. Pachocki, Jerry Tworek, Liam Fedus,
Lukasz Kaiser, Mark Chen, Szymon Sidor, Wojciech Zaremba, Alex Karpenko, Alexander Wei, Allison
Tam, Ananya Kumar, Andre Saraiva, Andrew Kondrich, An drey Mishchenko, Ashvin Nair, B. Ghorbani,
Brandon McKinzie, Chak Bry don Eastman, Ming Li, Chris Koch, Dan Roberts, David Dohan, David
Mély, Dimitris Tsipras, Enoch Cheung, Eric Wallace, Hadi Salman, Haim ing Bao, Hessam Bagher-inezhad,
Ilya Kostrikov, Jiacheng Feng, John Rizzo, Karina Nguyen, Kevin Lu, Kevin R. Stone, Lorenz Kuhn,
Mason Meyer, Mikhail Pavlov, Nat McAleese, Oleg Boiko, Oleg Murk, Peter Zhokhov, Randall Lin, Raz
Gaon, Rhythm Garg, Roshan James, Rui Shu, Scott McKinney, Shibani Santurkar, Suchir Balaji, Taylor
Gordon, Thomas Dimson, Weiyi Zheng, Aaron Jaech, Adam Lerer, Aiden Low, Alex Carney, Alexander
Neitz, Alexander Prokofiev, Benjamin Sokolowsky, Boaz Barak, Borys Minaiev, Botao Hao, Bowen Baker,
Brandon Houghton, Camillo Lugaresi, Chelsea Voss, Chen Shen, Chris Orsinger, Daniel Kappler, Daniel
Levy, Doug Li, Eben Freeman, Edmund Wong, Fan Wang, Felipe Petroski Such, Foivos Tsimpourlas,
Geoff Salmon, Gildas Chabot, Guillaume Leclerc, Hart Andrin, Tan O’Connell, Ignasi Ian Osband, Clavera
Gilaberte, Jean Harb, Jiahui Yu, Jiayi Weng, Joe Palermo, John Hallman, Jonathan Ward, Julie Wang,
Kai Chen, Katy Shi, Keren Gu-Lemberg, Kevin Liu, Leo Liu, Linden Li, Luke Metz, Maja Trebacz,
Manas R. Joglekar, Marko Tintor, Melody Y. Guan, Mengyuan Yan, Mia Glaese, Michael Malek, Michelle
Fradin, Mo Bavarian, Nikolas A. Tezak, Ofir Nachum, Paul Ashbourne, Pavel Izmailov, Raphael Gontijo
Lopes, Reah Miyara, Reimar H. Leike, Robin Brown, Ryan Cheu, Ryan Greene, Saachi Jain, Scottie Yan,
Shengli Hu, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Suvansh Sanjeev, Tao Wang, Ted Sanders, Tejal
Patwardhan, Thibault Sottiaux, Tianhao Zheng, T. Garipov, Valerie Qi, Vitchyr H. Pong, Vlad Fomenko,
Yinghai Lu, Yining Chen, Yu Bai, Yuchen He, Yuchen Zhang, Zheng Shao, Zhuohan Li, Lauren Yang,
Mianna Chen, Aidan Clark, Jieqi Yu, Kai Xiao, Sam Toizer, Sandhini Agarwal, Safety Research, Andrea
Vallone, Chong Zhang, Ian D. Kivlichan, Meghan Shah, Sam Toyer, Shraman Ray Chaudhuri, Stephanie
Lin, Adam Richardson, Andrew Duberstein, Charles de Bourcy, Dragos Oprica, Florencia Leoni, Made laine
Boyd, Matt Jones, Matt Kaufer, Mehmet Ali Yatbaz, Mengyuan Xu, Mike McClay, Mingxuan Wang, Trevor
Creech, Vinnie Monaco, Erik Ritter, Evan Mays, Joel Parish, Jonathan Uesato, Leon Maksin, Michele
Wang, Miles Wang, Neil Chowdhury, Olivia Watkins, Patrick Chao, Rachel Dias, Samuel Miserendino,
Red Teaming, Lama Ahmad, Michael Lampe, Troy Peterson, and Joost Huizinga. Openai ol system card.
ArXiv, abs/2412.16720, 2024. URL https://api.semanticscholar.org/CorpusID:274611667.

Saibo Geng, Hudson Cooper, Michal Moskal, Samuel Jenkins, Julian Berman, Nathan Ranchin, Robert West,
Eric Horvitz, and Harsha Nori. Generating structured outputs from language models: Benchmark and
studies. arXiv preprint arXiv:2501.10868, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal,
Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany
Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer,
Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor
Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzman, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme
Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo
Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang,
Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der

12

https://api.semanticscholar.org/CorpusID:268264163
https://api.semanticscholar.org/CorpusID:268264163
https://api.semanticscholar.org/CorpusID:274611667

Under review as submission to TMLR

Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe,
Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal
Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis
Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham,
Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan,
Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang,
Olivier Duchenne, Onur Celebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng,
Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao
Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro,
Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath
Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra,
Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov,
Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent
Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin
Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia,
Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen
Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi,
Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie
Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew
Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong,
Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe,
Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth
Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti,
Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris
Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer,
Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich,
Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery,
Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan
Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco
Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,
Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen
Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov,
llias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam,
Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein,
Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan
McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay
Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqgian Li, Kiran
Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro
Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer,
Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey,
Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini
Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar

13

Under review as submission to TMLR

Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip
Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian
Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra,
Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes,
Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt,
Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh
Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil,
Shiva Shankar, Shuqgiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith
Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit
Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,
Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang,
Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez,
Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,
Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang,
Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi,
Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi
Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei
Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783|

Zhouhong Gu, Haoning Ye, Xingzhou Chen, Zeyang Zhou, Hongwei Feng, and Yanghua Xiao. Structext-eval:
Evaluating large language model’s reasoning ability in structure-rich text. arXiv preprint arXiv:2406.10621,
2024. URL https://arxiv.org/abs/2406.10621.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest, and
Xiangliang Zhang. Large language model based multi-agents: A survey of progress and challenges. arXiv
preprint arXiv:2402.01680, 2024.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yujie
Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiadbench: A challenging
benchmark for promoting agi with olympiad-level bilingual multimodal scientific problems. In Annual
Meeting of the Association for Computational Linguistics, 2024. URL https://api.semanticscholar.org/
CorpusID:267770504.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Xiaodong Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. ArXiv, abs/2009.03300, 2020. URL
https://api.semanticscholar.org/CorpusID:221516475.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Xiaodong
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. ArXiv,
abs/2103.03874, 2021. URL https://api.semanticscholar.org/CorpusID:232134851.

OpenAl Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Mkadry, Alex Baker-Whitcomb,
Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alexander Kirillov, Alex Nichol, Alex Paino, Alex
Renzin, Alexandre Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali Kamali, Allan Jabri,
Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian, Amin Tootoonchian, Ananya Kumar,
Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codispoti, Andrew Galu,
Andrew Kondrich, Andrew Tulloch, An drey Mishchenko, Angela Baek, Angela Jiang, An toine Pelisse,
Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph,
B. Ghorbani, Ben Leimberger, Ben Rossen, Benjamin Sokolowsky, Ben Wang, Benjamin Zweig, Beth
Hoover, Blake Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon
Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo Lugaresi,
Carroll L. Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern,
Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris Beaumont,
Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim, Christine Choi, Christine McLeavey, Chris
Hesse, Claudia Fischer, Clemens Winter, Coley Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis,

14

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2406.10621
https://api.semanticscholar.org/CorpusID:267770504
https://api.semanticscholar.org/CorpusID:267770504
https://api.semanticscholar.org/CorpusID:221516475
https://api.semanticscholar.org/CorpusID:232134851

Under review as submission to TMLR

Dane Sherburn, Daniel Kappler, Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mély, David
Robinson, David Sasaki, Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Phong Duc Nguyen,
Duncan Findlay, Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric
Antonow, Eric Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Fugene Brevdo, Evan Mays, Farzad
Khorasani, Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit, Gabriel
Goh, Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Hai-Biao Bao, Haitang
Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun, Hendrik Kirchner,
Henrique Pondé de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won Chung, Ian D. Kivlichan, Ian
O’Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Cihangir Okuyucu, Ikai Lan, Ilya Kostrikov, Ilya
Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon, Jacob Menick, Jakub W. Pachocki, James
Aung, James Betker, James Crooks, James Lennon, Jamie Ryan Kiros, Jan Leike, Jane Park, Jason Kwon,
Jason Phang, Jason Teplitz, Jason Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan
Lee, Jessica Shieh, Ji Lin, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinionero
Candela, Joe Beutler, Joe Landers, Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman,
Jonathan McKay, Jonathan Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin,
Jos Kraaijeveld, Joshua Gross, Josh Kaplan, Josh Snyder, Josh Achiam, Joy Jiao, Joyce Lee, Juntang
Zhuang, Justyn Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla Wood,
Kendra Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel Howe,
Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren Workman, Leher
Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lilian Weng, Lindsay
McCallum, Lindsey Held, Ouyang Long, Louis Feuvrier, Lu Zhang, Lukasz Kondraciuk, Lukasz Kaiser,
Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens, Made laine Boyd, Madeleine Thompson,
Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall, Marvin Zhang, Marwan Aljubeh, Ma teusz Litwin,
Matthew Zeng, Max Johnson, Maya Shetty, Mayank Gupta, Meghan Shah, Mehmet Ali Yatbaz, Mengxue
Yang, Mengchao Zhong, Mia Glaese, Mianna Chen, Michael Janner, Michael Lampe, Michael Petrov,
Michael Wu, Michele Wang, Michelle Fradin, Michelle Pokrass, Miguel Castro, Miguel Castro, Mikhail
Pavlov, Miles Brundage, Miles Wang, Mina Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat Yesildal,
Nacho Soto, Natalia Gimelshein, Na talie Cone, Natalie Staudacher, Natalie Summers, Natan LaFontaine,
Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nikolas A. Tezak, Niko Felix, Nithanth Kudige,
Nitish Shirish Keskar, Noah Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko,
Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen Campbell-Moore, Patrick Chao, Paul
McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan, Peter Hoeschele,
Peter Welinder, Phil Tillet, Philip Pronin, Phil Tillet, Prafulla Dhariwal, Qim ing Yuan, Rachel Dias,
Rachel Lim, Rahul Arora, Rajan Troll, Randall Lin, Raphael Gontijo Lopes, Raul Puri, Reah Miyara,
Reimar H. Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob Donnelly, Rob Honsby, Rocky Smith,
Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory Carmichael, Rowan Zellers, Roy Chen, Ruby Chen,
Ruslan Ramilevich Nigmatullin, Ryan Cheu, Saachi Jain, Sam Altman, Sam Schoenholz, Sam Toizer,
Samuel Miserendino, Sandhini Agarwal, Sara Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean
Metzger, Shamez Hermani, Shantanu Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi
Xia, Sonia Phene, Spencer Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir Balaji,
Tal Broda, Tal Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal Patwardhan,
Thomas Cunninghman, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas Shadwell, Tianhao
Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan, Tristan
Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie Monaco, Vishal
Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra, Will Sheu, Wojciech
Zaremba, Yash Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen He, Yuchen Zhang,
Yujia Jin, Yunxing Dai, and Yury Malkov. Gpt-4o system card. ArXiv, abs/2410.21276, 2024. URL
https://api.semanticscholar.org/CorpusID:273662196.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free evaluation of
large language models for code. ArXiv, abs/2403.07974, 2024. URL https://api.semanticscholar.org/
CorpusID:268379413.

15

https://api.semanticscholar.org/CorpusID:273662196
https://api.semanticscholar.org/CorpusID:268379413
https://api.semanticscholar.org/CorpusID:268379413

Under review as submission to TMLR

Dongfu Jiang. Llm-engines: A unified and parallel inference engine for large language models. |https:
//github.com/jdf-prog/LLM-Engines) 2024.

Max W.F. Ku, Thomas Chong, Jonathan Leung, Krish Shah, Alvin Yu, and Wenhu Chen. Theoremexplaina-
gent: Towards multimodal explanations for llm theorem understanding. ArXiv, abs/2502.19400, 2025. URL
https://api.semanticscholar.org/CorpusID:276618117.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gon-
zalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with
pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles,
2023.

Jaewook Lee, Jeongah Lee, Wanyong Feng, and Andrew Lan. From text to visuals: Using llms to generate
math diagrams with vector graphics. ArXiv, abs/2503.07429, 2025. URL https://api.semanticscholar!
org/CorpusID:276928444.

Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang, Danielle Rifinski Fainman, Dongmei
Zhang, and Surajit Chaudhuri. Table-gpt: Table-tuned gpt for diverse table tasks. ArXiv, abs/2310.09263,
2023. URL https://api.semanticscholar.org/CorpusID:264127877.

Jian Liu, Jian Wang, Wei Zhang, and Ming Li. Are llms good at structured outputs? a benchmark for
evaluating structured output generation. Information Processing & Management, 61(5):103809, 2024. doi:
10.1016/j.ipm.2024.103809. URL |https://doi.org/10.1016/j.ipm.2024.103809.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano,
Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu.
Codexglue: A machine learning benchmark dataset for code understanding and generation. arXiv preprint
arXiw:2102.04664, 2021. URL https://arxiv.org/abs/2102.04664.

Kun-Peng Ning, Shuo Yang, Yu-Yang Liu, Jia-Yu Yao, Zhen-Hui Liu, Yong-Hong Tian, Yibing Song,
and Li Yuan. Pico: Peer review in llms based on the consistency optimization, 2025. URL https:
//arxiv.org/abs/2402.01830.

OpenAl. Chat generative pre-trained transformer (chatgpt). https://www.openai.com/, 2023.

OpenAl. Introducing gpt-4.1 in the api, April 2025. URL https://openai.com/index/gpt-4-1/. Accessed:
2025-05-20.

Abhiram Reddy Peddireddy. Effective workflow automation in github: Leveraging bash and yaml. Journal
of Artificial Intelligence € Cloud Computing, 2024. URL https://api.semanticscholar.org/CorpusID/
271141990.

Juan A Rodriguez, Abhay Puri, Shubham Agarwal, Issam H Laradji, Sai Rajeswar, David Vazquez, Christopher
Pal, and Marco Pedersoli. Starvector: Generating scalable vector graphics code from images and text. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 29691-29693, 2025.

Nidhish Shah, Zulkuf Genc, and Dogu Araci. Stackeval: Benchmarking llms in coding assistance. In Advances
in Neural Information Processing Systems 37 (NeurIPS 2024), Datasets and Benchmarks Track, 2024.
URL https://arxiv.org/abs/2412.05288.

Chenglei Si, Yanzhe Zhang, Ryan Li, Zhengyuan Yang, Ruibo Liu, and Diyi Yang. Design2code: Benchmarking
multimodal code generation for automated front-end engineering. arXiv preprint arXiv:2403.03163, 2024.

Aofeng Su, Aowen Wang, Chaonan Ye, Chengcheng Zhou, Ga Zhang, Gang Chen, Guangcheng Zhu, Haobo
Wang, Haokai Xu, Hao Chen, Haoze Li, Haoxuan Lan, Jiaming Tian, Jing Yuan, Junbo Zhao, Junlin Zhou,
Kaizhe Shou, Liangyu Zha, Lin Long, Liyao Li, Peng Wu, Qi Zhang, Qingyi Huang, Sa Yang, Tao Zhang,
Wen-Yuan Ye, Wufang Zhu, Xiaomeng Hu, Xijun Gu, Xinjie Sun, Xiang Li, Yuhang Yang, and Zhiqing
Xiao. Tablegpt2: A large multimodal model with tabular data integration. ArXiv, abs/2411.02059, 2024.
URL |https://api.semanticscholar.org/CorpusID:273812242.

16

https://github.com/jdf-prog/LLM-Engines
https://github.com/jdf-prog/LLM-Engines
https://api.semanticscholar.org/CorpusID:276618117
https://api.semanticscholar.org/CorpusID:276928444
https://api.semanticscholar.org/CorpusID:276928444
https://api.semanticscholar.org/CorpusID:264127877
https://doi.org/10.1016/j.ipm.2024.103809
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2402.01830
https://arxiv.org/abs/2402.01830
https://www.openai.com/
https://openai.com/index/gpt-4-1/
https://api.semanticscholar.org/CorpusID:271141990
https://api.semanticscholar.org/CorpusID:271141990
https://arxiv.org/abs/2412.05288
https://api.semanticscholar.org/CorpusID:273812242

Under review as submission to TMLR

Xiangru Tang, Yiming Zong, Jason Phang, Yilun Zhao, Wangchunshu Zhou, Arman Cohan, and Mark
Gerstein. Struc-bench: Are large language models really good at generating complex structured data?
arXiv preprint arXiw:2309.08963, 2023. URL https://arxiv.org/abs/2309.08963.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Qwen Team. Qwen2.5: A party of foundation models, 2024. URL https://qwenlm.github.io/blog/qwen2.5/.

Maxim Tkachenko, Mikhail Malyuk, Andrey Holmanyuk, and Nikolai Liubimov. Label Studio: Data
labeling software, 2020-2025. URL |https://github.com/HumanSignal/label-studio. Open source software
available from https://github.com/HumanSignal/label-studio.

Zhen Wan, Fei Cheng, Zhuoyuan Mao, Qianying Liu, Haiyue Song, Jiwei Li, and Sadao Kurohashi. Gpt-re:
In-context learning for relation extraction using large language models, 2023. URL https://arxiv.org/
abs/2305.02105.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren, Aaran
Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max W.F. Ku, Kai Wang, Alex Zhuang, Rongqi "Richard" Fan,
Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging multi-task language understanding
benchmark. ArXiv, abs/2406.01574, 2024. URL https://api.semanticscholar.org/CorpusID:270210486.

Haomin Wen, Zhenjie Wei, Yan Lin, Jiyuan Wang, Yuxuan Liang, and Huaiyu Wan. Overleafcopilot:
Empowering academic writing in overleaf with large language models. ArXiv, abs/2403.09733, 2024. URL
https://api.semanticscholar.org/CorpusID:268510595.

Congying Xia, Chen Xing, Jiangshu Du, Xinyi Yang, Yihao Feng, Ran Xu, Wenpeng Yin, and Caiming
Xiong. FOFO: A benchmark to evaluate LLMs’ format-following capability. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 680-699,
Bangkok, Thailand, 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.40.
URL https://aclanthology.org/2024.acl-1long.40/.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li,
Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang,
Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He,
Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang,
Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang
Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang,
Xipin Wei, Xuancheng Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024. URL
https://arxiv.org/abs/2407.10671.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen
Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, Haoran Wei,
Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou,
Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng
Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao
Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan,
Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang,
Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388|

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and
Le Hou. Instruction-following evaluation for large language models. ArXiv, abs/2311.07911, 2023. URL
https://api.semanticscholar.org/CorpusID:265157752.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen Gong, Thong Hoang, Armel Randy

17

https://arxiv.org/abs/2309.08963
https://qwenlm.github.io/blog/qwen2.5/
https://github.com/HumanSignal/label-studio
https://arxiv.org/abs/2305.02105
https://arxiv.org/abs/2305.02105
https://api.semanticscholar.org/CorpusID:270210486
https://api.semanticscholar.org/CorpusID:268510595
https://aclanthology.org/2024.acl-long.40/
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2505.09388
https://api.semanticscholar.org/CorpusID:265157752

Under review as submission to TMLR

Zebaze, Xiao ke Hong, Wen-Ding Li, Jean Kaddour, Minglian Xu, Zhihan Zhang, Prateek Yadav, Naman
Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang, David Lo, Binyuan Hui, Niklas
Muennighoff, Daniel Fried, Xiao-Nan Du, Harm de Vries, and Leandro von Werra. Bigcodebench:
Benchmarking code generation with diverse function calls and complex instructions. ArXiv, abs/2406.15877,
2024. URL https://api.semanticscholar.org/CorpusID:270702705.

18

https://api.semanticscholar.org/CorpusID:270702705

Under review as submission to TMLR

A Example Appendix

A.1 Task Distributions

Subset Tasks # Examples

Generation

Text — JSON 50

Text — CSV 50

StructEval-T Text — TOML 50

Text — XML 50

Text — YAML 50

Text — Angular 50

Text — Canvas 50

Text — HTML 50

Text — LaTeX 50

Text — Markdown 50

Text — Matplotlib 50

StructEval-V Text — Mermaid 50

Text — React 50

Text — SVG 50

Text — TikZ 50

Text — Typst 50

Text — Vega 50

Text — Vue 50
Conversion

CSV — JSON 50

JSON — CSV 50

XML — JSON 50

JSON — XML 50

YAML — JSON 50

JSON — YAML 50

XML — CSV 50

StructEval-T CSV —s XML 50

XML — YAML 50

YAML — XML 50

YAML — CSV 50

TOML — JSON 50

CSV — YAML 50

TOML — YAML 50

Matplotlib — TikZ 100

Markdown — HTML 50

HTML — React 45

React — HTML 45

Vue — HTML 40

HTML — Vue 40

StructEval-V Markdown — React 30

HTML — Angular 30

Markdown — Vue 25

Vue — React 15

Markdown — Angular 10

React — Angular 5

Table 7: Statistics of number examples for each task in all the 4 subsets of STRUCTEVAL.

19

Under review as submission to TMLR

A.2 Subtask Performance

& S
S - -
%) S N4
5 § £ F 4
Model & & & & & Avg.
Llama-3.1-8B-Instruct 78.82 81.68 6.76 59.38 74.44 60.22
Meta-Llama-3-8B-Instruct 69.08 45.04 7.94 45.30 78.54 49.18
Phi-3-mini-128k-Instruct 68.84 93.50 0.00 37.68 36.92 47.39
Phi-4-mini-Instruct 51.50 82.56 16.12 40.20 66.54 51.38
Qwen-2.5-7B-Instruct 84.40 90.62 13.22 61.30 46.52 59.21
Qwen-3-4B 90.96 76.44 7.44 71.16 78.74 64.95
Gemini-1.5-pro 94.06 100.00 75.38 73.32 97.58 88.07
Gemini-2.0-flash 48.88 98.40 78.78 44.60 91.44 72.42
GPT-4.1-mini 99.26 99.92 91.34 77.06 95.26 92.57
GPT-4o0 99.36 100.00 90.22 70.32 97.68 91.52
GPT-40-mini 97.88 99.90 29.56 75.10 96.84 79.86
ol-mini 92.56 99.24 89.40 71.12 88.28 88.12
Table 8: StructEval-T Generation Scores
)
& Q <’ 5 £ {&\7
F # F 7 F # &
Model & & & & & & &
Llama-3.1-8B-Instruct 61.22 78.04 87.34 80.52 64.30 44.18 46.92
Meta-Llama-3-8B-Instruct 48.92 68.40 72.06 56.54 55.24 40.16 28.04
Phi-3-mini-128k-Instruct 48.28 63.88 64.16 59.38 44.12 35.78 32.44
Phi-4-mini-Instruct 62.60 72.92 88.90 71.30 58.46 39.72 35.28
Qwen-2.5-7B-Instruct 63.08 66.68 81.02 74.70 65.48 47.30 48.88
Qwen-3-4B 48.80 72.60 92.80 89.54 77.06 53.44 55.38
Gemini-1.5-pro 90.62 76.94 94.00 84.96 33.68 54.72 69.44
Gemini-2.0-flash 44.28 75.26 92.06 75.34 46.64 56.72 61.24
GPT-4.1-mini 84.52 76.20 91.80 96.34 69.58 58.74 69.74
GPT-40 87.42 75.18 93.02 95.76 74.66 56.78 62.32
GPT-40-mini 86.72 78.44 94.36 95.36 75.46 53.98 60.76
ol-mini 89.30 49.24 92.08 96.06 71.98 58.12 71.86
Table 9: StructEval-V Generation Scores (Part 1)
> .,
S & x &
g & & & $ §
£ # § a a E
Model & & & & & & Avg.
Llama-3.1-8B-Instruct 95.96 9.02 23.38 28.36 57.90 30.56 54.44
Meta-Llama-3-8B-Instruct 72.52 6.04 29.46 30.74 66.50 31.28 46.61
Phi-3-mini-128k-Instruct 92.10 11.12 22.90 35.56 39.84 32.50 44.77
Phi-4-mini-Instruct 97.24 9.30 42.22 34.72 29.48 28.90 51.62
Qwen-2.5-7B-Instruct 92.92 6.16 33.44 30.56 37.90 44.52 53.28
Qwen-3-4B 98.80 13.62 9.92 45.28 29.42 54.28 57.00
Gemini-1.5-pro 99.30 15.94 11.60 65.18 29.66 29.36 58.11
Gemini-2.0-flash 99.26 9.66 45.28 29.74 32.46 29.16 53.62
GPT-4.1-mini 99.30 43.46 9.96 48.28 38.44 49.60 64.30
GPT-40 99.22 36.00 23.94 72.20 40.04 33.54 65.39
GPT-40-mini 99.02 30.50 9.96 41.28 33.66 30.50 60.77
ol-mini 99.44 27.76 9.98 65.68 40.76 33.52 61.98

Table 10: StructEval-V Generation Scores (Part 2)

20

Under review as submission to TMLR

s A S S 5 § A

% & % ~ % N %

5 o » & » o 2
Model d ~ AL ~ A ' o
Llama-3.1-8B-Instruct 34.14 95.96 68.62 56.02 94.00 92.52 98.98
Meta-Llama-3-8B-Instruct 31.40 48.00 69.24 55.40 90.00 74.00 48.26
Phi-3-mini-128k-Instruct 24.88 87.28 8.00 12.40 23.20 32.80 33.92
Phi-4-mini-Instruct 45.42 97.62 89.56 61.90 100.00 100.00 90.70
Qwen-2.5-7B-Instruct 31.36 95.74 33.14 31.04 50.00 95.24 77.72
Qwen-3-4B 55.28 100.00 92.84 65.98 100.00 98.00 99.78
Gemini-1.5-pro 48.14 100.00 40.14 67.14 98.00 100.00 99.78
Gemini-2.0-flash 25.72 100.00 32.60 69.76 100.00 100.00 99.78
GPT-4.1-mini 55.52 100.00 38.68 69.76 100.00 100.00 99.78
GPT-40 38.56 99.74 66.46 69.76 100.00 100.00 99.78
GPT-40-mini 58.52 100.00 73.26 65.98 98.00 100.00 98.22
ol-mini 58.46 100.00 82.70 68.60 100.00 100.00 99.78

Table 11: StructEval-T Conversion Scores (Part 1)

5 &
S S 5 -
8 Y S A S x> o
< Ny = S A \z Ng
s F 5 F & 5 g
Model CZ\ A ~ A & 07‘ & Avg.
Llama-3.1-8B-Instruct 20.20 86.96 39.90 88.32 86.90 49.54 85.62 71.26
Meta-Llama-3-8B-Instruct 17.28 54.48 38.12 61.90 63.38 36.50 63.18 53.65
Phi-3-mini-128k-Instruct 9.50 20.56 22.42 87.58 8.80 19.10 26.46 29.78
Phi-4-mini-Tnstruct 21.72 60.00 48.28 84.14 86.02 66.22 61.84 72.39
Qwen-2.5-7B-Instruct 18.12 81.62 24.16 97.62 78.22 70.86 85.68 62.18
Qwen-3-4B 24.82 94.10 48.68 98.94 96.92 65.08 95.36 81.13
Gemini-1.5-pro 27.14 42.96 47.56 100.00 99.76 71.40 97.36 74.24
Gemini-2.0-flash 17.74 59.02 46.36 100.00 99.26 63.18 97.36 72.20
GPT-4.1-mini 29.36 59.18 48.36 100.00 100.00 60.82 97.36 75.63
GPT-10 27.40 44.28 48.76 100.00 100.00 43.20 97.36 73.95
GPT-40-mini 29.62 40.20 48.76 98.10 100.00 50.00 97.36 75.57
ol-mini 29.26 88.62 48.36 100.00 100.00 72.40 97.36 81.82
Table 12: StructEval-T Conversion Scores (Part 2)
%
& < &
& & K j’ & &
S S & < J
£ S J St g
7 7 S S
Model ¢ X ~ & < <~
Llama-3.1-8B-Instruct 88.36 84.65 43.23 60.90 36.36 16.26
Meta-Llama-3-8B-Instruct 86.82 85.23 33.73 52.83 29.52 8.29
Phi-3-mini-128k-Instruct 70.73 73.85 30.80 32.77 27.32 17.15
Phi-4-mini-Instruct 92.27 81.82 28.50 33.47 33.88 15.70
Qwen-2.5-7B-Instruct 89.29 79.53 34.70 68.67 33.80 26.32
Qwen-3-4B 95.53 89.65 54.23 55.10 34.64 25.64
Gemini-1.5-pro 95.24 91.27 34.83 86.43 30.96 38.82
Gemini-2.0-flash 93.02 88.67 32.37 29.30 32.00 17.46
GPT-4.1-mini 95.22 90.12 52.87 81.97 31.96 36.80
GPT-40 95.36 90.55 74.20 87.17 37.56 39.69
GPT-40-mini 95.07 91.58 80.40 87.73 31.96 42.47
ol-mini 95.09 89.65 58.37 87.90 36.80 40.60

Table 13: StructEval-V Conversion Scores (Part 1)

21

Under review as submission to TMLR

&
4 & &
S5 s s
By & X &
g & g 7 d F

Model <~ & % A ~ < Avg.
Llama-3.1-8B-Instruct 88.28 55.02 72.93 75.73 26.90 85.20 61.15
Meta-Llama-3-8B-Instruct 84.52 73.91 75.28 62.73 33.10 57.00 56.91
Phi-3-mini-128k-Instruct 65.60 42.16 34.65 33.00 25.10 41.60 41.23
Phi-4-mini-Instruct 92.44 57.11 41.05 55.87 26.50 71.20 52.48
Qwen-2.5-7TB-Instruct 85.16 69.20 80.02 50.87 35.00 84.60 61.43
Qwen-3-4B 90.20 65.31 83.05 68.13 34.50 85.00 65.08
Gemini-1.5-pro 95.28 40.62 86.65 64.00 49.80 85.20 66.59
Gemini-2.0-flash 96.60 41.04 67.77 68.00 28.20 29.20 51.97
GPT-4.1-mini 96.40 88.09 46.28 86.47 49.10 85.20 70.04
GPT-40 95.32 88.31 62.55 78.93 48.20 80.60 73.20
GPT-40-mini 93.14 88.42 79.75 81.20 49.20 97.60 76.54
ol-mini 94.48 72.18 7.7 65.60 41.20 85.20 70.40

Table 14: StructEval-V Conversion Scores (Part 2)

* T - Text, C — CSV, J — JSON, X — XML, Y - YAML, Ang. — Angular, MD — Markdown, MPL — Matplotlib, R — React, V —
Vue.

22

Under review as submission to TMLR

A.3 Examples of rendered image

Wind Speed vs Altitude

2500
°

2000 5000
e

1500 4500
° °

1000

a000
° °

500 3500
°
3000
°

@ Data Points

35
Project Snapshot
Overview *
Project Name: Angular Upgrade =
Project Manager: John Doe =
Completion Dt December 2023 E
< 20
Timeline 3
« January 2023: Kickoff Meeting 215
« Aprl 2023: First Milestone Actieved £
+ July 2023 Mid-Project Review H
+ November 2023: Fina Testng 0
Notes o
N £ Angul: 5
with enhanced fetures and performance improvements.
0
|| updae scheaule)
(a) Angular
‘ Enter your email ‘
[J 1 agree to receive weekly updates
Subscribe
(d) React
30
s
Fok:]
x
w15
H
g 10
g
E
g s
o

1000 20 4000 5000

00 3000
Altitude (m)

(b) Matplotlib

(e) SVG

Imaginary Monthly Temperature Trends

Figure 7: Example images rendered in STRUCTEVAL tasks.

LR A RS
Month

city
@CiyA @CyE @CC @CiyD @CiE @CiyF

(g) Vega

23

Urban Transit Map

Transit Hub 2

Roule Divéreion

Lagend

Decision Point

[—
(¢) Mermaid

(f) TikZ

Under review as submission to TMLR

A.4 Task Generation Prompt

Sample Prompt

You are a prompt-design assistant building benchmark items for conversion tasks.

Input Format: {input_type}

Output Format: {output_type}

Your task: Think silently through the checklist and then output a single JSON object with:

e "raw_output_metric”: dot-paths for the expected keys/attributes in the {output_type} structure
e "query”: A generated input format {input_type} code inside <code>...</code> tags.
Assumed Mapping Rule (state it implicitly in the paths):

¢ No XML attributes unless absolutely necessary.
If an attribute is required, map it to a key prefixed with "@", and include that in dot-paths.

CHECKLIST (INTERNAL - DO NOT OUTPUT)
1. Pick a super creative and random domain.
2. Generate {input_type} code with:

o At least two levels of nesting

e At least one list inside an object/element
3. Avoid XML attributes where possible; prefer child elements.
4. Wrap the code in <code>...</code> tags.
5. Dot-path rules:

e JSON / YAML / TOML: parent.child, list[@].child
e XML: element.child or element.@attr (only if used)
e CSV: csv::Header (not used here)

OUTPUT FORMAT

{
"raw_output_metric”: ["<dot_path1>",
"<dot_path2>", ...],
"query": "<code>...</code>"
3

Figure 8: Example task generation prompt

24

	Introduction
	StructEval Dataset
	Overview
	Annotation Pipeline

	StructEval Evaluation
	Experiments
	Experimental Setup
	Main Results

	Related Work
	Large Language Models
	Evaluation of LLMs
	Structured Output Generation

	Conclusion
	Example Appendix
	Task Distributions
	Subtask Performance
	Examples of rendered image
	Task Generation Prompt

