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Abstract

As Large Language Models (LLMs) become integral to software development workflows,
their ability to generate structured outputs has become critically important. We introduce
StructEval, a comprehensive benchmark for evaluating LLMs’ capabilities in producing
both non-renderable (JSON, YAML, CSV) and renderable (HTML, React, SVG) structured
formats. Unlike prior benchmarks, StructEval systematically evaluates structural fidelity
across diverse formats through two paradigms: 1) generation tasks, producing structured
output from natural language prompts, and 2) conversion tasks, translating between struc-
tured formats. Our benchmark encompasses 18 formats and 44 types of task, with novel
metrics for format adherence and structural correctness. Results reveal significant perfor-
mance gaps—even state-of-the-art models like ol-mini achieve only 75.58 average score, with
open-source alternatives lagging approximately 10 points behind. We find generation tasks
more challenging than conversion tasks, and producing correct visual content more difficult
than generating text-only structures.

1 Introduction

In recent years, there has been a significant surge in the capabilities of large language models (LLMs) in
generating human-like text and performing a wide range of natural language processing tasks. State-of-
the-art models like GPT-40 (Hurst et al., [2024]), OpenAI o1/03 (Contributors et al. 2024), and Google’s
Gemini (Team et all 2023)) have achieved superior performance in knowledge QA (Hendrycks et al.l [2020;
Wang et al.l [2024)), instruction-following (Chiang et al., 2024 |Zhou et al., [2023), and code generation (Zhuo
et al., 2024} [Jain et al.) [2024]).

Despite recent advances, many real-world applications require not only fluency in the content of the output
but also precise control over its structure. This includes tasks where the expected output must follow specific
formats such as JSON, XML, LaTeX, HTML, or code in frameworks like React or Vue. Additionally, in
these tasks, in these tasks, we also want the code to render a page that correctly places elements according
to the requirements. These types of structured output are essential in domains like software development,
data pipelines, user interface generation, and scientific publishing, where incorrect formatting can lead to
disrupted pipelines or non-functional outputs.

However, most existing benchmarks focus on the semantic quality (Wang et al., |2024) or reasoning ability
of LLMs (Hendrycks et al., |2021; He et al. [2024), with limited emphasis on their ability to produce
format-conforming structured outputs. Some recently proposed benchmarks aim to evaluate the quality of
structured outputs tend to target specific modalities, such as code generation (Zhuo et all |2024) or text-only
structures (Gu et al 2024} Tang et al., |2023)), rather than offering comprehensive evaluations across diverse
structured formats. As existing benchmarks gradually become more saturated, it is still unknown how the
current state-of-the-art models perform in structured generation tasks. We argue that effectively evaluating
the models’ performance on such tasks is inherently challenging due to the following issues:

(1) Data Collection Challenges: Gathering diverse structured tasks and corresponding examples requires
domain expertise across multiple formats, with high-quality annotations demanding significant effort and
specialized knowledge.
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Figure 1: STRUCTEVAL evaluates the LLM’s capability to generate structured outputs, including text-only
tasks like JSON, TOML, etc, and visual rendering tasks like HTML, React, Latex, etc.
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Figure 2: The overall designed annotation pipeline of STRUCTEVAL dataset

(2) Evaluation Metric Complexity: Designing reasonable metrics in a unified form for both text-only
structures (JSON, YAML) and visual outputs (HTML, SVG) is difficult, as they require different assessment
approaches for structural correctness and visual fidelity.

(3) Technical Implementation Barriers: Building a framework that supports execution and evaluation
across numerous rendering environments requires complex integration of multiple language interpreters and
visualization tools.

To address these challenges, we introduce STRUCTEVAL, a comprehensive benchmark that systematically
evaluates LLMs’ abilities to produce highly structured output. Our benchmark encompasses 21 distinct
formats and 44 task types organized into two complementary subsets: StructFval-T, which assesses the
generation of text-only structures such as JSON and TOML, and StructFEval-V, which evaluates the quality
of visually rendered outputs from code such as HTML and SVG. Both subsets include generation tasks
(converting natural language to structured outputs) and conversion tasks (transforming between two structured
formats), See for example formats. To ensure robust evaluation across these diverse formats, we
have developed a novel assessment framework that integrates syntactic validity checking, keyword matching,
and visual question answering, providing a holistic measure of both structural correctness and output fidelity.

Our comprehensive evaluation reveals significant performance gaps across models and tasks. Even state-of-
the-art commercial models like ol-mini achieve only an average score of 75.58, while the best open-source
model, such as Llama-3-8B-Instruct, lags 10 points behind, underscoring the performance gap between
commercial and open-source LLMs. We observe that generation tasks generally pose greater challenges than
conversion tasks, and producing code capable of rendering correct visual content proves more difficult than
generating text-only structured outputs. Task difficulty varies considerably across formats: while some tasks
are effectively solved by all LLMs with scores exceeding 0.95 (such as Text—Markdown and Text—HTML),
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Subset # Total # Total # Avg # Avg
ubse Tasks Examples Keywords VQA pairs
SE-T-gen 5 250 7.9 -
SE-T-conv 14 700 17.5 -
SE-V-gen 13 650 11.1 7.9
SE-V-conv 12 435 22.2 9.0
StructEval | 44 2035 14.7 8.5

Table 1: The overall statistics of the STRUCTEVAL dataset. Here "SE" denotes StructEval. "T" and "V"'
represents the StructFval-T and StructEval-V subsets respectively. "gen" and "conv" represent the "generation"
and "conversion" task types respectively.

Rule Type Example Description

Literal key access planet.name Checks if key name exists as a child of object planet.

Nested lists with index planet.moons[@].name Verifies first item in moons list has a name field.

Wildcard in lists planet.moons.*.name Confirms that name exists for any moon in the list.

Backtick quoting data. ‘key.with.dots* Treats entire quoted token as a single key, useful for
special characters.

CSV header check csv::discovery.location Ensures CSV output has a column named
discovery.location.

XML attribute fallback @id Looks for id attribute, using @ to indicate XML format.

Table 2: Supported rule types in our path-based evaluation.

others remain particularly challenging with all models scoring below 0.5 (including Text—Mermaid and
Matplotlib—TikZ). Through this systematic analysis, we aim to drive progress in structured output generation
capabilities that are increasingly crucial for the real-world applications of language models.

2 StructEval Dataset

In this section, we first present an overview of our STRUCTEVAL dataset and statistical analysis infsubsection 2.1
Next, we elaborate on how we design the whole pipeline for annotation and quality review in [subsection 2.2
We will introduce how we design the evaluation metrics for each task in our dataset in

2.1 Overview

As shown in our STRUCTEVAL dataset comprises a total of 2,035 examples, covering 44 unique
structure generation tasks across 18 structured output formats. The dataset is organized into two main
subsets: StructEval-T and StructFEval-V.

o StructBEval-T is designed to evaluate an LLM’s ability to generate structured outputs directly from
natural language prompts without rendering. Supported formats include JSON, XML, YAML,
Markdown, CSV, TOML, among others. These are highly useful formats in many downstream
applications.

e StructFval-V assesses an LLM’s ability to generate executable code for visual rendering that fulfills a
specified visual requirement. This subset includes formats such as HTML, React, Matplotlib, Canvas,
LaTeX, SVG, Mermaid, and more. These are widely adopted formats for various applications.

Each example in the dataset is categorized as either generation or conversion. In generation tasks, the model
is required to produce structured output based on a natural language description with detailed specifications.
In conversion tasks, the model must translate structured content from one format to another (e.g., JSON to
YAML, HTML to React).



Under review as submission to TMLR

StructEval-T Question, KeyWords

Please output JSON code.
Task:

Summarize metadata about a fictional scientific article. Feature Requirements:

1. Top-level field "title” is a string containing the article title.

2. Field "authors” is a list of exactly two items.

3. Each element of "authors” contains "name” (string) and "affiliation” (string).
4. Field "publication.year” is an integer.

5. Field "keywords” is a list of strings.

Keywords:

e title

e authors[@].name

e authors[1].affiliation
e publication.year

e keywords[2]

Figure 3: Example question and key words of the StructEval-T generation task

Formally, each example is represented as a triplet (¢, K,QY), where ¢ denotes the structure genera-
tion question, K = {ki,...,kk} is a set of keywords expected to appear in the output, and Qv =

StructEval-V Question, Keywords Matching, VQA Pairs

Please output HTML code.
Task:

Design a webpage that presents a user’s travel itinerary. Feature Requirements:

e Include a centered <h1> header with the text "Trip Summary".

¢ Use a <table> to list destinations; include 3 rows and 2 columns.
e Apply a class "highlight” to the second row.

e Add a <button> labeled "Export PDF" at the bottom of the page.

Keywords:

e Trip Summary
e highlight

e <h1>

e Export PDF

VQA Pairs:

e Q: What text is displayed in the <h1> header?
A: Trip Summary
e Q: How many rows are in the table?
A:3
¢ Q: What class is applied to the second table row?
A highlight
e Q: What text is on the button at the bottom?
A: Export PDF

Figure 4: Example question, keywords, and VQA pairs for STRUCTEVAL-V generation task
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Human Evaluation of VQA Questions ‘ Unfair Fair Total ‘ Fair Proportion (%)

Correct 6 347 352 98.58%

Wrong 39 6 45 13.33%

Total | 44 353 397 | 88.92%
Accuracy (%) | 13.64% 98.30% 88.66% |

Table 3: Human evaluation results of sampled VQA questions used in StructEval-V. Each question is
annotated as fair or unfair, and correctness is measured by VLM judge performance.

{(¢7,aY),..., (djqv)- aer‘)} is a set of visual question-answer (VQA) pairs used for evaluating examples in the
StructEval-V subset(An example StructEval-V task with keywords and VQA pairs is shown in . In
contrast, for StructEval-T, QY is empty and not used during evaluation (An example StructEval-T question
and its keywords are shown in . To ensure comprehensive evaluation, each example in the dataset
contains on average 14.7 keywords and 8.5 VQA pairs, as detailed in

To further assess the quality and fairness of the VQA pairs used in StructEval-V, we conduct a human expert
evaluation. Each VQA question is judged as either fair, meaning it can be reasonably answered by a VLM
judge using only the rendered image, or unfair, typically involving information not visually accessible, such
as precise numeric values or interactive UI elements. presents the results of this evaluation. Among
397 sampled VQA pairs, 88.92% were considered fair, and 98.58% of the correct VQA questions were judged
fair. Overall, 98.30% of all fair questions could be correctly answered by our VLM judge (GPT-4.1-mini),
supporting the validity of our automated evaluation process.

The dataset encompasses a wide spectrum of structured output formats, ranging from widely-used data
serialization types like JSON and YAML to visually-renderable formats such as SVG, Mermaid, and TikZ.
This diverse format coverage enables a more holistic evaluation of LLMs’ capabilities in both structured
data modeling and visual code generation. Notably, the inclusion of niche yet expressive formats—such as
Typst for typesetting, Mermaid for diagram specification, and TikZ for LaTeX-based graphics—broadens the
evaluative scope beyond conventional tasks. These formats collectively span domains including web front-end
development, data exchange, scientific visualization, and technical documentation. The distribution of tasks
across these formats is shown in highlighting the balanced composition of generation and conversion
tasks across both textual and visual modalities.

2.2 Annotation Pipeline

To construct a high-quality and diverse benchmark, we design a multi-stage annotation pipeline consisting
of three key components: 1) task curation, 2) LLM-based synthesis, and 3) expert review (see for
an overview of this pipeline). This pipeline ensures both the scalability and accuracy of the STRUCTEVAL
dataset.

Task Prompt We begin by identifying a broad spectrum of structure generation and conversion tasks
that span both text-based and executable visual formats. These tasks are selected to reflect practical use
cases and diverse real-world scenarios, covering 18 target formats and 44 distinct task types (also shown
in Each task specification includes format constraints, input-output expectations, and, where
applicable, conversion rules. Please refer to for a sample task prompt.

Query/Metric Generation Given the high cost of fully manual annotation, we leverage a large language
model to synthesize an initial pool of candidate examples. Each example consists of a task query and a set of
associated evaluation metrics, including keywords for text outputs and visual question-answer (VQA) pairs
for visual outputs. This step allows us to rapidly generate a large and varied collection of plausible instances
that serve as drafts for human refinement.

Expert Review To ensure quality and correctness, we employ a two-pass human review process. Annotators
first validate and refine the generated task queries and associated metrics. They are allowed to freely modify,
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add, or remove any part of the synthesized content to ensure task clarity, completeness, and evaluability. In
the second pass, a separate reviewer verifies the consistency and correctness of each example. All annotation
is conducted using LabelStudio (Tkachenko et al., |2020-2025)), an open-source collaborative annotation tool
designed for structured data. The final dataset contains 2035 curated examples, carefully reviewed to support
robust evaluation across both StructFval-T and StructEval-V settings.

3 StructEval Evaluation

Before the evaluation, we feed the LLM with the questions ¢ in the datasets with the corresponding prompt
template defined in We require the LLM to output the desired structured outputs between
"<|BEGIN_CODE |>" and "<|END_CODE|>" so we can correctly parse the structured outputs for evaluation. For
the StructEval-V, parsed outputs will be additionally sent to our rendering engines to acquire the rendered
visual outputs (see examples in . We then evaluate model outputs using an automatic
evaluation pipeline that captures both structural correctness and semantic fidelity. Specifically, we have
designed core metrics depending on the task format: 1) Syntax Score, 2) Keyword Matching Score, and 3)
Visual Question Answering (VQA) Score.

{StructEval Question}

IMPORTANT: Only output the required output format. You must start the format/code with
<|BEGIN_CODE|> and end the format/code with <|END_CODE|>. No other text output (explanation,
comments, etc.) are allowed.

Do not use markdown code fences.

Table 4: Prompt template used for LLM inference before the evaluation

Syntax Score. The Syntax Score verifies the structural correctness of the generated output. For text-based
formats such as JSON, YAML, and CSV, this involves parsing the output using a format-specific Python
parser. For executable visual formats like HTML, LaTeX, or SVG, the code is rendered using a headless
renderer to determine whether it executes successfully. A score of 1 is assigned if the output is syntactically
valid or successfully rendered; otherwise, the score is 0. See the for some correctly rendered
images, code produced by the tested LLMs.

Keyword Matching Score This metric evaluates whether the generated output contains the required
structural elements. Given the reference set of expected keywords K = {k,..., kjk/} for a given task, we
assess their presence using exact matching or regular expression rules.

For the tasks of StructEval-T such as JSON or XML, keyword matching is performed over field names and
values using dot-path references to account for nested hierarchies. The score is computed as the proportion
of expected keywords correctly matched in the model’s output. Our evaluation supports a variety of path
formats as shown in The way dot-path rules are created differs depending on the task type.

For generation tasks, each task prompt includes feature requirements stated in natural language. These
requirements define target keys and their relationships to one another (e.g., nesting depth, list membership).
Annotators translate each requirement into a concrete dot-path rule using the syntax rules shown in
For conversion tasks, the input is itself a structured format (e.g., YAML or XML). We use an LLM to parse
the structural schema of the input—identifying key names, nesting levels, and list structures—and convert
them into target dot-path rules that the generated output must preserve.

This approach ensures that models are not only producing syntactically valid outputs, but also preserving
the expected structural relationships.

For the tasks of StructFval-V such as HTML, and Matplotlib, we simply detect whether the annotated
keyword is in the structured outputs and give scores accordingly.
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VQA Prompt Template

You are given an image and a list of question-answer pairs.

e For each pair, verify if the image content supports the expected answer based on the corresponding question.
e Base your judgment solely on the visual content of the provided image, and the question.

e Do not use any external information or common-sense reasoning beyond what is visible.

e Respond with a JSON object mapping each question number to true or false (e.g., {"1": true, "2": false}).

e If the image is unclear or does not contain enough information to answer, use null for that question.

Here are the question-answer pairs: {qa_ list}

Figure 5: Prompt template used for VQA evaluation. We use GPT-4.1-mini in the benchmark evaluation.

VQA Score This score is used exclusively for tasks in the StructEval-V subset, where the output is expected
to be visually rendered. After rendering the output, GPT-4.1-mini (Hurst et al., [2024)), a vision-language
model (VLM), is employed to answer a set of visual questions Q¥ = {(q{,a¥), ..., (¢/qv|, ajqv|)}- The VLM
will be given both the questions and answers and required to decide whether the VQA pair matches this
rendered image. The VQA score is computed as the proportion of correctly answered questions.

Final task scores are calculated as weighted combinations of these metrics, with weights adjusted based on
whether the task is renderable. Let sg, s, s, € [0, 1] denotes the syntax, keyword matching, and VQA score
respectively. The for StructFval-T task, the final score s is computed as:

s=0.2-5,+028- sy (1)
For StructFEval-V, the final score s in computed as:
s=02-5,+0.1-5,+0.7-5s, (2)

This evaluation framework provides a unified, fine-grained view of model performance across both structured
data generation and visual code synthesis tasks, supporting deeper insights into LLM capabilities across
modalities.

4 Experiments

4.1 Experimental Setup

Evaluation Models. We evaluate a range of open-source and commercial large language models (LLMs)
using our benchmark. For open-source models, we use Meta-Llama-3-8B-Instruct |Grattafiori et al.| (2024)), Phi-
3-mini-128k-instruct |Abdin et al.| (2024al), Phi-4-mini-instruct |Abdin et al.[(2024b), Qwen2.5-7B-Instruct |Yang
et al| (2024), and Qwen3-4B [Yang et al| (2025). For commercial models, we use Gemini-1.5-pro and
Gemini-2.0-flash [Team et al.| (2023]), GPT-4.1-mini and GPT-40 Hurst et al| (2024), GPT-40-mini, and
ol-mini |Contributors et al.| (2024]). All tasks are evaluated in a zero-shot setting using consistent prompts
and parameters.

Inference Setup. All model generations are performed using LLM-Engine |Jiang| (2024), a unified inference
framework that supports both open-source backends (e.g., VLLM, SGLang, Together), and commercial
APIs (e.g., OpenAl, Claude, Gemini). For open-source models, we specifically utilize the vLLM engine for
efficiency [Kwon et al.| (2023]). For close-source models, we simply call the APIs. As shown in @ we use
greedy decoding by default. All tasks are evaluated zero-shot using uniform task prompts defined in [Table 4]
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When performing the VQA evaluation, we select GPT-4.1-mini as the VLM due to its superior multimodal
abilities (OpenAl, [2025)). We apply the VQA prompt template defined in and ask the VLM to
decide whether each VQA pair matches the rendered visual image at once.

Parameter Value

Max tokens Unlimited

Temperature 0.0 (deterministic)
num__proc 32

time_out None

num_ workers 5

num_ gpu_ per_worker 1

Cache usage Disabled

Batch API Disabled

Hardware NVIDIA RTX A6000 GPU

Table 5: Inference configuration

Evaluation. Output generations are automatically scored using the evaluation pipeline described in
including syntactic validity checking, keyword matching, and VQA accuracy. GPT-4.1-mini (Hurst et al.,
2024) is used as the vision-language model for all VQA-based evaluations.

4.2 Main Results

StructEval-T StructEval-V
Models . . . . Average
generation conversion generation conversion |

Open Source
Llama-3.1-8B-Instruct |Grattafiori et al.|(2024) 60.22 71.26 54.44 61.15 61.77
Meta-Llama-3-8B-Instruct |Grattafiori et al.|(2024) 49.18 53.65 46.61 56.91 51.59
Phi-3-mini-128k-instruct |Abdin et al.[(2024a) 47.39 29.78 44.77 41.23 40.79
Phi-4-mini-instruct [Abdin et al.|(2024b) 51.38 72.39 51.62 52.48 56.97
Qwen2.5-7B-Instruct |Team|(2024) 59.21 62.18 53.28 61.43 59.03
Qwen3-4B |Yang et al.|(2025) 64.95 81.13 57.00 65.08 67.04

Close Source
Gemini-1.5-pro |Team et al.|(2023) 88.07 74.24 58.11 66.59 71.75
Gemini-2.0-flash [Team et al.|(2023) 72.42 72.20 53.62 51.97 62.55
GPT-4.1-mini (OpenAT|(2025) 92.57 75.63 64.30 70.04 75.64
GPT-40 Hurst et al.|(2024) 91.52 73.95 65.39 73.20 76.02
GPT-4o0-mini [Hurst et al.[(2024) 79.86 75.57 60.77 76.54 73.19
ol-mini (Contributors et al.|(2024) 88.12 81.82 61.98 70.40 75.58
A (ol-mini - Qwen3-4B) | 2317 0.70 4.99 5.32 | 854

Table 6: Main evaluation results of STRUCTEVAL

Overall Performance summarizes the performance of all evaluated models across the two main
task groups: StructFval-T and StructFEval-V, each further divided into generation and conversion subtasks.
Overall, GPT-40 achieves the highest average score of 76.02% among all 12 models. The best-performing
open-source model is Qwen3-4B, with a score of 67.04%, trailing GPT-40 by approximately 10 percentage
points. While GPT-40 excels particularly in the generation tasks within the StructEval-V category, Qwen3-4B
demonstrates consistently strong performance across all task types among open-source models. This likely
reflects Qwen3-4B’s robust reasoning capabilities relative to other open-source alternatives.

In contrast, the lowest-performing model is phi-3-mini-128k-instruct, with an average score of only 40.79%.
Although one might attribute this to its relatively small size of 3.8 billion parameters, model size alone
does not fully explain the poor results. For example, phi-3-mini underperforms even compared to similarly
sized models such as phi-4-mini-instruct. Notably, it achieves the lowest score in StructEval-T conversion
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100%

Text—>TOML 90%
80%
Text—Mermaid 70%
Text—SVG 60%
50%
Matplotlib—TikZ 40%
YAML—XML 80%
20%
CSV—YAML 10%
0%

0% 20% 40% 60% 80% 100% T-Gen T-Conv V-Gen V-Conv

(a) Avg. score over all models based on most challenging (b) Avg. score over all models based on the four task types
subtasks

tasks, a category where models with strong reasoning abilities—such as o1-mini (81.82%) and Qwen3-4B
(81.13%)—tend to perform well.

Error analysis reveals two key failure modes for phi-3-mini-128k-instruct. First, in the TOML-to- YAML
conversion task, the model frequently produces malformed closing tags, outputting |<|END_CODE |> instead of
the correct <|END_CODE |>, which significantly penalizes its score. Second, in the CSV-to-JSON conversion
task, the model fails to capture hierarchical relationships (e.g., parent-child) specified in the CSV headers,
leading to structurally incorrect JSON outputs. These recurring structural errors in StructEval-T conversion
tasks substantially contribute to the model’s overall low performance.

Open-Source vs. Closed-Source Models When comparing open-source models and commercial models,
we can see that by A (closegyg - Opengy,y) value, which is the difference between the average score of commercial
source model and open model, that commercial model’s score is consistently higher than open-source models,
this makes sense given the much larger parameters of commercial models by scaling law. We can see that
commercial models exceed open-source models on average the most on generation tasks in StructEval-T
setting, and the performance gap is smallest on generation tasks in StructEval-V setting.

Generation vs. Conversion As shown in a comparison between generation and conversion
tasks in both StructFuval-T and StructFval-V settings reveals that, in general, models perform better on
conversion tasks than on generation tasks. An exception to this trend occurs in the StructEval-T setting,
where commercial models tend to outperform on generation tasks, while open-source models show the opposite
behavior—achieving higher scores on conversion tasks.

Under a temperature setting of 1, commercial models attain an average score of 75.78% on StructEval-T
generation tasks. In contrast, open-source models average only 8.58% on the same tasks for the TOML
format. This considerable disparity in TOML generation performance partly explains why commercial models
perform better on StructEval-T generation tasks overall. However, the performance gap is not confined to
TOML—commercial models also lead in the other four generation formats within StructFval-T.

In the StructEval-V setting, commercial models significantly outperform open-source counterparts on
generation tasks involving complex visual formats such as Mermaid and TikZ. These tasks require advanced
visual reasoning capabilities, which are more prevalent in multimodal commercial LLMs like GPT-40 and
GPT-40-mini.

Subtasks Analysis Meanwhile, several tasks in both in generation and conversion types appear to be
saturated, with most models achieving scores exceeding 90%. These include generation tasks for common
formats such as JSON, HTML, CSV, Markdown, and YAML, as well as conversion tasks like YAML-to-JSON,
React-to-HTML, TOML-to-JSON, and Markdown-to-HTML. Such results indicate that LLMs have already
mastered many structurally straightforward format transformations.

There remain several challenging tasks where all models struggle significantly (shown in , including
generation tasks like Text—TOML, Text—SVG, Text—Mermaid, and Text— Vega, as well as conversion tasks
like YAML—XML, CSV—YAML, Matplotlib—TikZ, and Markdown— Angular(see scores in [subsection A.2)).
Both closed-source and open-source models achieve low scores on these tasks, which typically require complex
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structural or visual reasoning. Notably, the performance gap between closed-source and open-source models
is even wider on these challenging subtasks, suggesting that proprietary models may have advantages in
handling more complex structural representations and transformation logic.

5 Related Work

5.1 Large Language Models

Large Language Models (LLMs) have demonstrated remarkable capabilities and gained surging popularity in
recent years, ever since the release of ChatGPT (OpenAl| 2023)). Over the years, open-source models like
Llama (Grattafiori et al. [2024), Phi (Abdin et al., |2024bja)), and Qwen (Yang et al., 2024;2025|) developed by
companies like Meta, Microsoft, and Alibaba further facilitated a widespread integration of Al into diverse
workflows and everyday applications. Leveraging their large parameter sizes and extensive post-training,
LLMs are capable of performing a diverse array of Natural Language Processing (NLP) tasks (Wan et al.,
2023). One of the key aspects of the generative capabilities of these models is their ability to generate
structured data and transform data from one type to another while maintaining strict adherence to specified
formats (Guo et al., |2024)). In this paper, we design a new and comprehensive benchmark that evaluates
the capability of LLMs to understand, generate, and manipulate structured data across a range of complex,
real-world tasks.

5.2 Evaluation of LLMs

Evaluating structured output has become a focal point for understanding LLM’s limitations (Ning et al.l
2025)). SoEval (Liu et al.| 2024) offers a fast, rule-based check for JSON and XML, but its flat schemas
fail to reveal errors in deeper hierarchies. StrucText-Eval (Gu et al., 2024) shifts the task to reasoning
over structure-rich text (JSON, YAML, LaTeX) rather than generating the structures themselves, while
FOFO (Xia et al. [2024]) extends to domains such as law and finance yet covers only a few formats and
still relies on human verification. Developer-focused suites like StackEval (Shah et al. |2024) for HTML,
CSS, and plotting libraries, and CodeXGLUE (Lu et alJ, 2021) for multilingual code tasks remain limited to
programming artifacts, and Struc-Bench (Tang et al., 2023) concentrates on tabular generation with bespoke
metrics. Each benchmark highlights a part of the challenge—Dbe it format adherence, domain coverage, or
table fidelity. However, none simultaneously demands broad format coverage, automated grading, and robust
transformation capabilities. StructEval addresses these gaps by spanning 18 code and non-code formats,
unifying generation, completion, and conversion tasks, and scoring outputs with fully automated structural
and vision-based metrics, offering a comprehensive lens on how well LLMs respect and manipulate complex
schemas.

5.3 Structured Output Generation

The ability to generate structured outputs is central to many real-world applications of LLMs (Gu et al.}
2024; Tang et al.l 2023). These outputs are not only expected to be semantically coherent but must also
adhere strictly to syntactic and structural constraints—violations of which can lead to parsing failures,
rendering errors, or broken downstream applications. Common tasks include generating JSON for API
responses (Geng et al., [2025), YAML or TOML for configuration files (Peddireddy} [2024), HTML or React for
UI components (Si et all 2024)), and LaTeX or Markdown for technical writing (Wen et all 2024). Moreover,
in data science, models are used to transform unstructured descriptions into structured formats like CSV or
tables for integration into analysis pipelines (Li et al., [2023} |Su et al.||2024)). In publishing and education, tools
that convert textual prompts into diagrams (e.g., using TikZ, SVG, or Mermaid) help automate visualization
generation (Lee et al., [2025; [Rodriguez et al., |2025; [Ku et al., [2025). Despite its significance, structured output
generation remains challenging due to the need for models to internalize both syntax rules and hierarchical
schema relationships across a wide variety of formats. Our STRUCTEVAL first conducts a comprehensive
evaluation of existing LLMs on both renderable and non-renderable tasks, showing that they still struggle to
correctly generate some data formats including TOML, SVG, and Mermaid.
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6 Conclusion

In this paper, we have comprehensively studied LLMs’ abilities to generate highly structured content. Having
the ability to generate fully structured content is highly useful for many downstream tasks. Our paper is
among the first few to provide an evaluation suite for that. Our results indicate that current models are still
lagging on the renderable structured content, especially on less frequent format. We advocate that the future
models should invest more time to optimize their abilities to generate highly structured output.

Limitations

Non-interactive formats Our benchmark focuses on evaluating LLMs’ ability to generate static visual
rendering formats such as HTML, React, Mermaid, etc. While this approach effectively assesses the model’s
capacity to produce well-structured and visually coherent outputs, it is currently limited to single-page,
non-interactive formats. The evaluation does not account for dynamic behaviors such as button interactions,
page transitions, animations, or scroll events, which are essential to many real world user interfaces. Future
work could extend the benchmark to include dynamic rendering tasks, enabling a more comprehensive
assessment of LLM capabilities in producing fully interactive and responsive user experiences.

Expert Review While our dataset underwent a two-pass expert review process to ensure correctness,
diversity, and minimize potential biases, the initial content was still generated by large language models.
Despite expert oversight, residual biases inherent in the model outputs may persist, particularly in subtle
or context-dependent scenarios that are challenging to detect through manual review. Moreover, expert
validation, while thorough, may not fully capture the wide range of cultural, social, or contextual sensitivities
relevant to diverse user populations. Future work could incorporate broader multi-annotator audits or
automated bias detection techniques to further enhance dataset reliability and inclusiveness.
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A Example Appendix

A.1 Task Distributions

Subset Tasks # Examples

Generation

Text — JSON 50

Text — CSV 50

StructEval-T Text — TOML 50

Text — XML 50

Text — YAML 50

Text — Angular 50

Text — Canvas 50

Text — HTML 50

Text — LaTeX 50

Text — Markdown 50

Text — Matplotlib 50

StructEval-V Text — Mermaid 50

Text — React 50

Text — SVG 50

Text — TikZ 50

Text — Typst 50

Text — Vega 50

Text — Vue 50
Conversion

CSV — JSON 50

JSON — CSV 50

XML — JSON 50

JSON — XML 50

YAML — JSON 50

JSON — YAML 50

XML — CSV 50

StructEval-T CSV —s XML 50

XML — YAML 50

YAML — XML 50

YAML — CSV 50

TOML — JSON 50

CSV — YAML 50

TOML — YAML 50

Matplotlib — TikZ 100

Markdown — HTML 50

HTML — React 45

React — HTML 45

Vue — HTML 40

HTML — Vue 40

StructEval-V Markdown — React 30

HTML — Angular 30

Markdown — Vue 25

Vue — React 15

Markdown — Angular 10

React — Angular 5

Table 7: Statistics of number examples for each task in all the 4 subsets of STRUCTEVAL.
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A.2 Subtask Performance

& S
S - -
%) S N4
5 § £ F 4
Model & & & & & Avg.
Llama-3.1-8B-Instruct 78.82 81.68 6.76 59.38 74.44 60.22
Meta-Llama-3-8B-Instruct 69.08 45.04 7.94 45.30 78.54 49.18
Phi-3-mini-128k-Instruct 68.84 93.50 0.00 37.68 36.92 47.39
Phi-4-mini-Instruct 51.50 82.56 16.12 40.20 66.54 51.38
Qwen-2.5-7B-Instruct 84.40 90.62 13.22 61.30 46.52 59.21
Qwen-3-4B 90.96 76.44 7.44 71.16 78.74 64.95
Gemini-1.5-pro 94.06 100.00 75.38 73.32 97.58 88.07
Gemini-2.0-flash 48.88 98.40 78.78 44.60 91.44 72.42
GPT-4.1-mini 99.26 99.92 91.34 77.06 95.26 92.57
GPT-4o0 99.36 100.00 90.22 70.32 97.68 91.52
GPT-40-mini 97.88 99.90 29.56 75.10 96.84 79.86
ol-mini 92.56 99.24 89.40 71.12 88.28 88.12
Table 8: StructEval-T Generation Scores
)
& Q <’ 5 £ {&\7
F # F 7 F # &
Model & & & & & & &
Llama-3.1-8B-Instruct 61.22 78.04 87.34 80.52 64.30 44.18 46.92
Meta-Llama-3-8B-Instruct 48.92 68.40 72.06 56.54 55.24 40.16 28.04
Phi-3-mini-128k-Instruct 48.28 63.88 64.16 59.38 44.12 35.78 32.44
Phi-4-mini-Instruct 62.60 72.92 88.90 71.30 58.46 39.72 35.28
Qwen-2.5-7B-Instruct 63.08 66.68 81.02 74.70 65.48 47.30 48.88
Qwen-3-4B 48.80 72.60 92.80 89.54 77.06 53.44 55.38
Gemini-1.5-pro 90.62 76.94 94.00 84.96 33.68 54.72 69.44
Gemini-2.0-flash 44.28 75.26 92.06 75.34 46.64 56.72 61.24
GPT-4.1-mini 84.52 76.20 91.80 96.34 69.58 58.74 69.74
GPT-40 87.42 75.18 93.02 95.76 74.66 56.78 62.32
GPT-40-mini 86.72 78.44 94.36 95.36 75.46 53.98 60.76
ol-mini 89.30 49.24 92.08 96.06 71.98 58.12 71.86
Table 9: StructEval-V Generation Scores (Part 1)
> .,
S & x &
g & & & $ §
£ # § a a E
Model & & & & & & Avg.
Llama-3.1-8B-Instruct 95.96 9.02 23.38 28.36 57.90 30.56 54.44
Meta-Llama-3-8B-Instruct 72.52 6.04 29.46 30.74 66.50 31.28 46.61
Phi-3-mini-128k-Instruct 92.10 11.12 22.90 35.56 39.84 32.50 44.77
Phi-4-mini-Instruct 97.24 9.30 42.22 34.72 29.48 28.90 51.62
Qwen-2.5-7B-Instruct 92.92 6.16 33.44 30.56 37.90 44.52 53.28
Qwen-3-4B 98.80 13.62 9.92 45.28 29.42 54.28 57.00
Gemini-1.5-pro 99.30 15.94 11.60 65.18 29.66 29.36 58.11
Gemini-2.0-flash 99.26 9.66 45.28 29.74 32.46 29.16 53.62
GPT-4.1-mini 99.30 43.46 9.96 48.28 38.44 49.60 64.30
GPT-40 99.22 36.00 23.94 72.20 40.04 33.54 65.39
GPT-40-mini 99.02 30.50 9.96 41.28 33.66 30.50 60.77
ol-mini 99.44 27.76 9.98 65.68 40.76 33.52 61.98

Table 10: StructEval-V Generation Scores (Part 2)
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s A S S 5 § A

% & % ~ % N %

5 o » & » o 2
Model d ~ AL ~ A ' o
Llama-3.1-8B-Instruct 34.14 95.96 68.62 56.02 94.00 92.52 98.98
Meta-Llama-3-8B-Instruct 31.40 48.00 69.24 55.40 90.00 74.00 48.26
Phi-3-mini-128k-Instruct 24.88 87.28 8.00 12.40 23.20 32.80 33.92
Phi-4-mini-Instruct 45.42 97.62 89.56 61.90 100.00 100.00 90.70
Qwen-2.5-7B-Instruct 31.36 95.74 33.14 31.04 50.00 95.24 77.72
Qwen-3-4B 55.28 100.00 92.84 65.98 100.00 98.00 99.78
Gemini-1.5-pro 48.14 100.00 40.14 67.14 98.00 100.00 99.78
Gemini-2.0-flash 25.72 100.00 32.60 69.76 100.00 100.00 99.78
GPT-4.1-mini 55.52 100.00 38.68 69.76 100.00 100.00 99.78
GPT-40 38.56 99.74 66.46 69.76 100.00 100.00 99.78
GPT-40-mini 58.52 100.00 73.26 65.98 98.00 100.00 98.22
ol-mini 58.46 100.00 82.70 68.60 100.00 100.00 99.78

Table 11: StructEval-T Conversion Scores (Part 1)

5 &
S S 5 -
8 Y S A S x> o
< Ny = S A \z Ng
s F 5 F & 5 g
Model CZ\ A ~ A & 07‘ & Avg.
Llama-3.1-8B-Instruct 20.20 86.96 39.90 88.32 86.90 49.54 85.62 71.26
Meta-Llama-3-8B-Instruct 17.28 54.48 38.12 61.90 63.38 36.50 63.18 53.65
Phi-3-mini-128k-Instruct 9.50 20.56 22.42 87.58 8.80 19.10 26.46 29.78
Phi-4-mini-Tnstruct 21.72 60.00 48.28 84.14 86.02 66.22 61.84 72.39
Qwen-2.5-7B-Instruct 18.12 81.62 24.16 97.62 78.22 70.86 85.68 62.18
Qwen-3-4B 24.82 94.10 48.68 98.94 96.92 65.08 95.36 81.13
Gemini-1.5-pro 27.14 42.96 47.56 100.00 99.76 71.40 97.36 74.24
Gemini-2.0-flash 17.74 59.02 46.36 100.00 99.26 63.18 97.36 72.20
GPT-4.1-mini 29.36 59.18 48.36 100.00 100.00 60.82 97.36 75.63
GPT-10 27.40 44.28 48.76 100.00 100.00 43.20 97.36 73.95
GPT-40-mini 29.62 40.20 48.76 98.10 100.00 50.00 97.36 75.57
ol-mini 29.26 88.62 48.36 100.00 100.00 72.40 97.36 81.82
Table 12: StructEval-T Conversion Scores (Part 2)
%
& < &
& & K j’ & &
S S & < J
£ S J St g
7 7 S S
Model ¢ X ~ & < <~
Llama-3.1-8B-Instruct 88.36 84.65 43.23 60.90 36.36 16.26
Meta-Llama-3-8B-Instruct 86.82 85.23 33.73 52.83 29.52 8.29
Phi-3-mini-128k-Instruct 70.73 73.85 30.80 32.77 27.32 17.15
Phi-4-mini-Instruct 92.27 81.82 28.50 33.47 33.88 15.70
Qwen-2.5-7B-Instruct 89.29 79.53 34.70 68.67 33.80 26.32
Qwen-3-4B 95.53 89.65 54.23 55.10 34.64 25.64
Gemini-1.5-pro 95.24 91.27 34.83 86.43 30.96 38.82
Gemini-2.0-flash 93.02 88.67 32.37 29.30 32.00 17.46
GPT-4.1-mini 95.22 90.12 52.87 81.97 31.96 36.80
GPT-40 95.36 90.55 74.20 87.17 37.56 39.69
GPT-40-mini 95.07 91.58 80.40 87.73 31.96 42.47
ol-mini 95.09 89.65 58.37 87.90 36.80 40.60

Table 13: StructEval-V Conversion Scores (Part 1)
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&
4 & &
S5 s s
By & X &
g & g 7 d F

Model <~ & % A ~ < Avg.
Llama-3.1-8B-Instruct 88.28 55.02 72.93 75.73 26.90 85.20 61.15
Meta-Llama-3-8B-Instruct 84.52 73.91 75.28 62.73 33.10 57.00 56.91
Phi-3-mini-128k-Instruct 65.60 42.16 34.65 33.00 25.10 41.60 41.23
Phi-4-mini-Instruct 92.44 57.11 41.05 55.87 26.50 71.20 52.48
Qwen-2.5-7TB-Instruct 85.16 69.20 80.02 50.87 35.00 84.60 61.43
Qwen-3-4B 90.20 65.31 83.05 68.13 34.50 85.00 65.08
Gemini-1.5-pro 95.28 40.62 86.65 64.00 49.80 85.20 66.59
Gemini-2.0-flash 96.60 41.04 67.77 68.00 28.20 29.20 51.97
GPT-4.1-mini 96.40 88.09 46.28 86.47 49.10 85.20 70.04
GPT-40 95.32 88.31 62.55 78.93 48.20 80.60 73.20
GPT-40-mini 93.14 88.42 79.75 81.20 49.20 97.60 76.54
ol-mini 94.48 72.18 7.7 65.60 41.20 85.20 70.40

Table 14: StructEval-V Conversion Scores (Part 2)

* T - Text, C — CSV, J — JSON, X — XML, Y - YAML, Ang. — Angular, MD — Markdown, MPL — Matplotlib, R — React, V —
Vue.
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A.3 Examples of rendered image
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Figure 7: Example images rendered in STRUCTEVAL tasks.
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A.4 Task Generation Prompt

Sample Prompt

You are a prompt-design assistant building benchmark items for conversion tasks.

Input Format: {input_type}

Output Format: {output_type}

Your task: Think silently through the checklist and then output a single JSON object with:

e "raw_output_metric”: dot-paths for the expected keys/attributes in the {output_type} structure
e "query”: A generated input format {input_type} code inside <code>...</code> tags.
Assumed Mapping Rule (state it implicitly in the paths):

¢ No XML attributes unless absolutely necessary.
If an attribute is required, map it to a key prefixed with "@", and include that in dot-paths.

CHECKLIST (INTERNAL - DO NOT OUTPUT)
1. Pick a super creative and random domain.
2. Generate {input_type} code with:

o At least two levels of nesting

e At least one list inside an object/element
3. Avoid XML attributes where possible; prefer child elements.
4. Wrap the code in <code>...</code> tags.
5. Dot-path rules:

e JSON / YAML / TOML: parent.child, list[@].child
e XML: element.child or element.@attr (only if used)
e CSV: csv::Header (not used here)

OUTPUT FORMAT

{
"raw_output_metric”: ["<dot_path1>",
"<dot_path2>", ...],
"query": "<code>...</code>"
3

Figure 8: Example task generation prompt

24



	Introduction
	StructEval Dataset
	Overview
	Annotation Pipeline

	StructEval Evaluation
	Experiments
	Experimental Setup
	Main Results

	Related Work
	Large Language Models
	Evaluation of LLMs
	Structured Output Generation

	Conclusion
	Example Appendix
	Task Distributions
	Subtask Performance
	Examples of rendered image
	Task Generation Prompt


