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Abstract

In traditional conversational intelligence from001
speech, a cascaded pipeline is used, involving002
tasks such as voice activity detection, diariza-003
tion, transcription, and subsequent processing004
with different NLP models for tasks like seman-005
tic endpointing and named entity recognition006
(NER). Our paper introduces TokenVerse, a sin-007
gle Transducer-based model designed to handle008
multiple tasks. This is achieved by integrating009
task-specific tokens into the reference text dur-010
ing ASR model training, streamlining the infer-011
ence and eliminating the need for separate NLP012
models. In addition to ASR, we conduct ex-013
periments on 3 different tasks: speaker change014
detection, endpointing, and NER. Our experi-015
ments on a public and a private dataset show016
that the proposed method improves ASR by up017
to 7.7% in relative WER while outperforming018
the cascaded pipeline approach in individual019
task performance.020

1 Introduction021

Automated analysis of conversational audios has022

a wide range of practical applications, including023

in contact center analytics (Saberi et al., 2017;024

Mamou et al., 2006). Traditionally, conversational025

audios are transcribed with intermediate voice ac-026

tivity detection (VAD) (Medennikov et al., 2020)027

or endpointing (Chang et al., 2019) and diariza-028

tion (Park et al., 2022). Afterward, separate NLP029

pipelines are employed on the transcripts to per-030

form tasks such as named entity recognition (NER)031

(Li et al., 2020), among others, to comprehend the032

conversation’s structure and content (Zou et al.,033

2021; Xu et al., 2021). Using separate models for034

each subtask (optimized independently) has draw-035

backs (Ghannay et al., 2018) such as error propaga-036

tion and a potential mismatch between automatic037

speech recognition (ASR) metrics and the final task.038

For instance, the best ASR hypothesis may not be039

optimal for the final task. Moreover, the cascaded040

hi this is fromagerie du bourg how can i help you i am carlos is gruyere the best
cheese you have over there

hi this is fromagerie du bourg [ENDP] how can i help you [ENDP] i am carlos is
gruyere the best cheese you have over there 

hi this is fromagerie du bourg [ENDP] how can i help you [ENDP] [SCD] i am
carlos is gruyere the best cheese you have over there 

Reference:

T1: [+ENDP]

T2: [+SCD]

T3: [+NER] hi this is [NE] fromagerie du bourg  [/NE] [ENDP] how can i help you [ENDP] [SCD] i
am [NE] carlos [/NE] is [NE] gruyere [/NE] the best cheese you have over there 

Predictor

XLSR

Jo
in

t N
et

w
or

k

So
ftm

ax

Outputs
- ASR hypothesis 
-Text and time-aligned: 
    - Named-entity recognition 
    - Speaker change detection 
    - End-pointing detection 

b) TokenVerse: Token-based multitasking with XLSR-Transducer

a) Token Augmentation Protocol

Figure 1: a) Proposed unified token augmentation pro-
tocol for SCD, ENDP, and NER. b) TokenVerse unifies
multiple speech and NLP tasks (e.g., T1+T2+T3) in a
single model within the neural Transducer framework.

approaches could translate to increased compute 041

and latency, which will be exacerbated by the intro- 042

duction of a new task. 043

In this paper, we introduce TokenVerse, a neu- 044

ral Transducer (Graves, 2012) model capable of 045

learning ASR and multiple additional tasks through 046

the incorporation of task tokens. In contrast to 047

the multi-head based multitasking approaches ex- 048

plored in previous studies (Chen et al., 2021; wen 049

Yang et al., 2021; Kumar et al., 2024), TokenVerse 050

distinguishes itself by generating tokens directly 051

within the ASR hypothesis, as illustrated in Fig. 1a. 052

Leveraging the transducer architecture (Graves, 053

2012), we can attain text-audio alignment for each 054

output token, including those designated as task 055

tokens. For example, we can perform NER di- 056

rectly in the acoustic domain, presenting potential 057

utility in scenarios such as audio de-identification 058

(Cohn et al., 2019). To address challenges in low- 059

resource settings, we use self-supervised (SSL) 060

trained XLSR-53 (Conneau et al., 2020) model 061

as an encoder in the transducer setup, leading to 062

the XLSR-Transducer (Fig. 1b). Previous works 063

aims at modeling several tasks directly from speech 064

using special tokens (Wu et al., 2024; Chang et al., 065

2023), or ASR with speaker change detection 066
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(SCD) (Shafey et al., 2019; Xia et al., 2022; Kumar067

et al., 2024), VAD (Radford et al., 2023), speech-068

to-text translation (Zuluaga-Gomez et al., 2023), or069

timestamps (Cornell et al., 2023), NER (Ghannay070

et al., 2018; Yadav et al., 2020) and multi-speaker071

ASR (Kanda et al., 2022; Wu et al., 2023). Token-072

based multitasking offers multiple benefits, e.g.,073

it has a fix number of parameters while all tasks074

are predicted with standard decoding without in-075

creased latency. However, NLP tasks like NER in076

conjunction with other tasks from audio domains077

have not received much attention in the literature.078

Therefore, we consider 3 additional tasks along-079

side ASR: SCD, endpointing and NER. These tasks080

are selected to represent both audio and NLP do-081

mains. SCD is an audio task (Bredin et al., 2017).082

Endpointing can be viewed as an NLP task when083

conducting semantic endpointing (Raux and Eske-084

nazi, 2008), or as an audio task (Chang et al., 2019).085

NER is an NLP task (Li et al., 2020; Ghannay et al.,086

2018). They serve as suitable benchmarks for eval-087

uating our proposed method.088

2 TokenVerse089

Through TokenVerse, we aim to train a single090

model for ASR (main task), speaker change detec-091

tion (SCD), endpointing, and named entity recog-092

nition (NER). This is achieved by augmenting the093

reference text, with task tokens that denote special094

events at the acoustic level.095

2.1 Token Augmentation Protocol096

We introduce “tokens" for tasks apart from ASR:097

[SCD] (speaker change detection), [NE] and [/NE]098

(named entity recognition), and [ENDP] (endpoint-099

ing) to prepare the multitask dataset. An illustrative100

example is depicted in Figure 1a. We insert [SCD]101

token during text concatenation if there is a speaker102

change within an utterance. The [ENDP] token is in-103

serted at the end of a segment text, considered as a104

semantic endpoint from the conversational context105

perspective. Note that occurrence of [ENDP] will106

be a superset of [SCD] because a speaker change107

indicates the completion of the previous speaker’s108

sentence. For NER, we insert [NE] before the start109

of a named entity and [/NE] after it is concluded,110

since it can comprise multiple words.111

2.2 Training & Inference112

TokenVerse Training We train the XLSR-113

Transducer model on the multitask data which con-114

sists of XLSR encoder, state-less predictor (Gh-115

odsi et al., 2020) and joint networks (linear layer). 116

The model is trained with pruned transducer 117

loss (Kuang et al., 2022). We utilize SentencePiece 118

(Kudo and Richardson, 2018) tokenizer to train 119

subwords from the training text (Sennrich et al., 120

2016). Note that the text includes task-specific to- 121

kens, and splitting them into multiple subwords 122

may degrade their prediction accuracy because the 123

entire sequence of subwords for a token must be 124

predicted correctly to count it as a valid token pre- 125

diction. Hence, we ensure that tokens are repre- 126

sented by a single subword during their training.1 127

TokenVerse Inference We generate hypothesis 128

with beam search. From the hypothesis, we can ex- 129

tract and align the predicted task tokens in the time 130

domain. Since NER consists of two tokens, we 131

extract words between a matched pairs of [NE] and 132

[/NE]. To obtain timestamps for [SCD] or [ENDP], 133

we note the acoustic frame index for which these 134

tokens are emitted and calculate time information, 135

i.e., XLSR acoustic embeddings have a frame du- 136

ration of 25ms and a stride of 20ms. Particularly 137

for [SCD], the time-level token prediction enables 138

subsequent tasks, e.g., diarization (Xia et al., 2022). 139

2.3 Ablations within TokenVerse 140

We conduct ablation experiments to understand 141

how including or excluding tasks affects other tasks 142

in the TokenVerse. Note that ASR is our primary 143

task and is always included. 144

Single task For each task, we retain only the 145

tokens specific to that task in the multitask dataset 146

and train our ASR model. This eliminates any 147

detractor tasks that may affect the task being evalu- 148

ated and serves as a baseline in this paper. 149

Leave-one-task-out We exclude tokens of a sin- 150

gle task from the multitask data and train our ASR 151

model. This provides insights whether we should 152

retain or discard any task in TokenVerse for opti- 153

mal performance on a given task. 154

Task-Transfer Learning In multi-head multi- 155

task architectures (Chen et al., 2021), a new task 156

can be learnt by fine-tuning the model on the new 157

task while keeping the base encoder and other 158

heads frozen. We explore this for TokenVerse by 159

fine-tuning the model, derived from the removal 160

of a task, on the removed task. Furthermore, we 161

evaluate its impact on both existing tasks and the 162

performance of the new task in comparison to the 163

overall performance when all-tasks are included. 164

1https://github.com/google/sentencepiece
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3 Task-Specific Baselines, Metrics &165

Evaluation Protocol166

In this section, we describe strong independent167

baselines for each task considered in this work.168

Automatic Speech Recognition We train our169

XLSR-Transducer model after removing all task170

tokens from the multitask dataset. This serves as171

a baseline for the ASR task. Evaluation It is172

evaluated with WER. For TokenVerse models, we173

remove task tokens from both the reference and174

hypothesis to compute WER for a fair comparison.175

Named-Entity Recognition We finetune pre-176

trained BERT2 (Devlin et al., 2019) model on our177

datasets for subword-level NER classification. We178

evaluate the models on both reference and hypoth-179

esis from the ASR model. Evaluation NER180

systems are usually evaluated by comparing their181

outputs against human annotations, either using182

an exact-match or soft-match approach (Li et al.,183

2020). We adapted these metrics to a scenario184

where the text comes from an ASR system. De-185

tailed description in appendix B.186

Speaker Change Detection We utilize the di-187

arization pipeline3 from PyAnnote (Bredin, 2023)188

to extract speaker change timestamps from the au-189

dio. In literature, the SCD is predominantly re-190

garded as a task within the audio domain (Bredin191

et al., 2017), we opt not to establish an independent192

text-based baseline for this task. Evaluation We193

evaluate SCD in two ways: text-based (only valid194

for TokenVerse) and time-based. For both meth-195

ods, predictions from TokenVerse are compared196

with the reference, and the F1 score is calculated.197

Detailed description in appendix B.198

Endpointing Considering semantic endpointing,199

we fine-tune BERT (Devlin et al., 2019) for [ENDP]200

token classification on the multitask training text,201

termed as BERT-ENDP. Results are reported on202

both reference text and hypothesis text obtained203

from TokenVerse. From the audio perspective, we204

use segmentation pipeline4 from PyAnnote to ob-205

tain endpoint timestamps. Evaluation It follows206

the same approach as for SCD. We also report false207

alarms (FA), missed speech (MS), and detection208

error rate (DER), which are common metrics in209

endpointing literature (Medennikov et al., 2020).210

2https://huggingface.co/google-bert/
bert-base-uncased

3https://huggingface.co/pyannote/
speaker-diarization-3.1

4huggingface.co/pyannote/segmentation-3.0

Table 1: WER (%) for ASR on DefinedAI with
TokenVerse. The task tokens are removed from both
the reference and hypothesis for WER calculation.

Exp Model WER (↓)

1) ASR (baseline) 15.3

2) all-tasks 14.7
3-a) single-[SCD] 15.1
3-b) single-[NE] 14.7
3-c) single-[ENDP] 14.7

4 Experimental Setup 211

Dataset To train TokenVerse, we require con- 212

versational audio data with corresponding tran- 213

scripts, NER, segment timestamps, and speaker 214

annotations. We could not find a large-scale public 215

dataset satisfying all the tasks. Thus, we opt for a 216

private dataset , DefinedAI5. We also train and eval- 217

uate on the open-source CallHome English dataset. 218

See detailed description in appendix A. 219

Training Details We train TokenVerse on the 220

multitask dataset. We implement the XLSR- 221

Transducer model from the Icefall’s Transducer 222

recipe6 adapted with XLSR from fairseq (Ott et al., 223

2019). The model is optimized with pruned RNN-t 224

loss (Kuang et al., 2022). The initial learning rate 225

is set to lr= 1.25e−3 and we train the model for 226

50 epochs. For each dataset, the best epoch is se- 227

lected based on the WER on respective dev sets 228

and results are presented on the eval sets. The task- 229

transfer experiments, described in §2.3, are trained 230

for additional 10 epochs on the new task. 231

5 Results & Discussion 232

Automatic Speech Recognition For the De- 233

finedAI (Tab. 1) set, including all tasks in 234

TokenVerse (exp 2) leads to a 4% relative improve- 235

ment in WER compared to the baseline ASR model 236

(exp 1). For models trained on a single task (exp 237

3a-c), ASR results remain similar except for SCD. 238

On the CallHome dataset (Tab. 4), the multitask 239

model with all tokens yields a 7.7% relative im- 240

provement. Overall, the results on both datasets 241

indicate that the all-tasks TokenVerse improves 242

ASR performance. 243

Named-Entity Recognition As expected, com- 244

pared to evaluating BERT-NER on reference text, a 245

5https://www.defined.ai/
6https://github.com/k2-fsa/icefall/tree/

master/egs/librispeech/ASR/zipformer
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Table 2: Text-based performances on the the [NE]
(exact- and soft-match) and [ENDP]. P: precision; R:
recall. †upper-bound: BERT model evaluated on text
references. ‡model trained on [ENDP] or [NE] task.

Exp Model [NE]-Exact [NE]-Soft [ENDP]

@P @R @F1 @P @R @F1 @F1

BERT: fine-tuned on DefinedAI

b-1) Eval. on Ref.† 80.0 77.0 78.5 91.6 87.9 89.7 81.6
b-2) Eval on Hyp. 52.9 53.0 52.9 82.0 81.3 81.6 80.5

2) all-tasks 65.0 51.7 57.6 93.0 73.2 81.9 89.9
3-b/c) single‡ 61.7 49.9 55.2 91.4 73.3 81.4 88.5

significant degradation is observed when evaluated246

on hypothesis (Tab. 2) due to ASR errors (Ghannay247

et al., 2018). In exact-match, on both the DefinedAI248

(Tab. 2) and CallHome (Tab. 4) test sets, the all-249

tasks TokenVerse outperforms the baseline BERT-250

NER models trained on their respective datasets251

and evaluated on hypothesis in F1 score. This is252

not the case for soft-match evaluation on the De-253

finedAI test set, where the F1 score is similar. This254

degradation is mostly attributed to the incorrect255

prediction of [/NE] tag by the baseline, resulting256

in only a partial match of the named entity words257

leading to increase in false positives. The absolute258

F1 score is low on the CallHome dataset due to259

higher ASR errors on named entities, attributed to260

their low repetition in the training text (see Tab. 5).261

Speaker Change Detection On the DefinedAI262

(Tab. 3), including all tasks in TokenVerse out-263

performs the baseline PyAnnote model in time-264

based evaluations. Interestingly, models trained for265

single-task SCD perform better than the all-tasks266

model in terms of F1, but show similar results for267

Coverage-Purity based F1. Upon closer scrutiny,268

we found that including [ENDP] delays the pre-269

diction for [SCD] tokens, causing the hypothesis270

timestamps of these tokens to fall outside the tol-271

erance window (250ms). Increasing the tolerance272

window further improves the F1 for both models,273

with a much higher rate of increase for the all-tasks274

model. This observation is reinforced in the text-275

based F1 score, where the all-tasks model achieves276

an F1 score of 90.3% compared to 88.5% from the277

single-[SCD] model. On the CallHome (Tab. 4), the278

all-tasks model outperforms the PyAnnote baseline.279

These evaluations suggest that excluding [SCD]280

from TokenVerse is preferable for precise speaker281

change timestamps, while including all tasks im-282

proves speaker-attributed text segmentation.283

Endpointing In text-based evaluation on the De-284

finedAI (Tab. 2) and CallHome (Tab. 4) test sets,285

Table 3: [SCD] and [ENDP] time-based evaluation. FA:
false alarm; MS: missed speech; DER: detection error
rate. †F1-score computed from the Coverage-Purity.
‡single-task model per task, i.e., SCD and ENDP.

Exp Model SCD EndPointing

F1 CP-F1† F1 FA MS DER

b-1/2) PyAnnote 69.6 92.2 73.5 1.1 8.5 9.6
2) all-tasks 79.7 97.7 85.7 4.7 1.4 6.1
3-a/c) single‡ 87.5 97.6 84.1 1.9 2.0 3.9

Table 4: F1-score and WER for CallHome Eval set on
different tasks with TokenVerse. †time-based F1 score.
‡baselines are computed with PyAnnote for SCD or with
fine-tuned BERT on ENDP and NER (exact-match).

Exp ASR SCD† ENDP NER
WER (↓) F1 (↑) F1 (↑) F1 (↑)

baselines‡ 24.6 91.7 55.9 27.4
all-tasks 22.7 92.5 73.3 30.6

the all-tasks TokenVerse outperforms the BERT- 286

ENDP models trained on respective datasets. Ad- 287

ditionally, on the DefinedAI dataset, we evaluate 288

the BERT-ENDP model on both reference and hy- 289

pothesis to understand the effect of ASR errors on 290

[ENDP] token prediction. Interestingly, we do not 291

observe a significant degradation when evaluating 292

on the hypothesis compared to the reference. This 293

suggests that errors introduced by ASR may not 294

drastically affect the semantic meaning of the sen- 295

tences. In time-based evaluation on the DefinedAI 296

test set (Tab 3), the all-tasks model outperforms the 297

baseline PyAnnote segmentation model. However, 298

single-task ENDP is better than including all tasks 299

in DER due to lower false alarms. 300

Overall, all-tasks TokenVerse outperforms spe- 301

cialized models for each task and single-task mod- 302

els suggesting that additional tasks improve each 303

other. See detailed ablation results in appendix C. 304

6 Conclusions 305

In this paper, we show the effectiveness of a token- 306

based multitask model on speech and NLP using 307

XLSR-Transducer as our ASR model, termed To- 308

kenVerse. Alongside ASR, speaker change detec- 309

tion, endpointing and named entity recognition are 310

considered. Results on 2 datasets show that our 311

approach improves ASR performance while out- 312

performing strong task-specific baselines. Ablation 313

experiments suggest that multitask training across 314

different domains can enhance performance on all 315

tasks. Our approach offers flexibility for extension 316

to numerous tasks across various domains. 317
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Limitations318

One major limitation of our work is the restricted319

size of the datasets used in our experiments. The320

scope of our research involves performing multiple321

tasks on conversational audios, making it challeng-322

ing to find an open-source dataset that provides323

annotations for all the considered tasks. Another324

limitation is that we do not consider multiple entity325

types, instead assuming a single entity type, which326

limits the usability of our proposed model in sce-327

narios where entity type predictions are required.328
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A Dataset Details 498

A.1 Datasets Descriptions 499

DefinedAI contains stereo-audio/transcript pairs 500

for contact center conversations between agents 501

and customers. We upsampled audio from 8 kHz 502

to 16 kHz to align with the XLSR-53 model’s re- 503

quirements. Each segment includes transcripts, 504

speaker ID and NE annotations, facilitating mul- 505

titask dataset preparation (Sec A.2). This dataset 506

spans health, banking and finance domains, which 507

makes it particularly challenging due to variations 508

in NEs. 509

CallHome English dataset (LDC97S42) contains 510

natural conversational stereo-audios between mul- 511

tiple speakers. The transcript includes named enti- 512

ties annotation.This dataset poses challenges due 513

to its natural conversational nature, known to be 514

challenging for ASR modeling, and a large number 515

of short segments without entities, differing from 516

the DefinedAI dataset. Further details about these 517

datasets are provided in Table 5. 518

A.2 Multitask Dataset Preparation 519

Our work is focused on conversational audios 520

which is typically long in duration (avg 5 minutes) 521

and can’t be directly used for ASR training due 522

to high GPU memory requirements. The dataset 523

provides audio-text transcripts together with times- 524

tamp information for every segment within the 525

long-form audio. For each sample, we begin with 526
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Table 5: Datasets statistics with token metadata per
subset for the public and private datasets.

Datasets metadata Token-based metadata [%]

subset #utt/word dur [h] [SCD] [NE] [ENDP] #NE #uniq

DefinedAI dataset

train 10k/359k 40 1.9 3.6 2.1 6.5k 2350
dev 559/20k 2.25 2.0 3.6 2.1 379 232
test 1.1k/42k 4.5 1.9 3.4 2.0 727 378

CallHome dataset

train 2.7k/198k 13 6.3 2.9 8.7 2.8k 1414
dev 641/52k 3 7.2 3.0 10.4 779 466
test 339/23k 1.5 6.0 3.0 9.6 351 220

the first segment start and find the farthest seg-527

ment end such that the duration is up to 20 seconds.528

Audios within this range are extracted as one utter-529

ance and this procedure is repeated until the last530

segment is consumed. Note that an utterance may531

span over multiple segments, potentially contain-532

ing silences, noise, speaker changes, endpoints and533

numerous named entities. Afterward, we concate-534

nate the text corresponding to all segments within535

an utterance, inserting token at appropriate posi-536

tions according to our tasks, described in §2.1. This537

multitask dataset preparation approach applies uni-538

versally across all datasets used in our experiments.539

B Metrics & Evaluation Protocol540

Named-Entity Recognition Exact-Match: Let541

P = {P1, P2, . . . , Pn} be the set of predicted en-542

tities, and A = {A1, A2, . . . , An} be the set of543

actual entities, where each Pi and Ai is accompa-544

nied by its corresponding [NE]-[/NE] tokens (See545

Fig.1). Thus, an entity Pi is considered correctly546

identified if and only if: ∀i ∈ {1, 2, . . . , n}, Pi =547

Ai, including the tokens. Unmatched pairs of to-548

kens in reference are considered false negative.549

Similarly, unmatched open or close tokens in hy-550

pothesis are considered false positive. Soft-Match:551

in this case we only count for the paired sets of552

[NE]-[/NE] tokens without considering if the pre-553

dicted entity value Pi was correctly transcribed.554

After obtaining each pair and unmatched tokens,555

we evaluate NER with F1-score.556

Speaker Change Detection In text-based evalu-557

ation, we align the reference and hypothesis using558

edit-distance. For each occurrence of the [SCD]559

token in the reference, matching with the same560

token in the hypothesis counts as True Positive;561

else, False Negative. Unmatched tokens in the hy-562

pothesis are considered False Positive. F1 score is563
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Figure 2: Absolute changes in text-based evaluation
w.r.t all-tasks TokenVerse in @F1. We either remove
a task, e.g., remove-[NE], or transfer to the removed
task, e.g., transfer-to →[NE]. Note that all-tasks
TokenVerse performs better in all scenarios.

calculated by standard definitions. In time-based 564

evaluation, we obtain the timestamps where [SCD] 565

tokens are predicted in the hypothesis. We calcu- 566

late F1 score (Kumar et al., 2024), using a collar 567

of 250ms during timestamp matching, following 568

common practice in speaker diarization literature 569

(Park et al., 2022). Additionally, segment coverage, 570

purity (Bredin et al., 2017), and their F1 score are 571

also reported. We use pyannote.metrics (Bredin, 572

Hervé, 2017) to compute all time-based metrics. 573

C TokenVerse Ablation Results 574

In ASR, we observed degradation for all ablation 575

experiments (see §2.3), with the largest relative 576

degradation of 2.4% in WER when [ENDP] was 577

removed. Transfer learning on any of the 3 tasks 578

do not degrade ASR performance further. The text- 579

based evaluations of other tasks on DefinedAI are 580

reported in Figure 2; absolute change is calculated 581

from the all-tasks model. Removing a task ad- 582

versely affects other tasks. Specifically, for SCD 583

and endpointing, [NE] removal has the least im- 584

pact on performance. Learning it afterward either 585

improves or maintain their performance, indicat- 586

ing a stronger correlation between these tasks than 587

with NER; supported by the degradation in [SCD] 588

performance when [ENDP] is removed. Task trans- 589

fer on [ENDP] degrades the performance further, 590

possibly due to confusion during prediction caused 591

by the insertion of the token before [SCD] during 592

training. Transfer to NER shows relatively large 593

degradation compared to other tasks, likely because 594

the model must predict both [NE] and [/NE] ac- 595

curately. This suggests that tasks encoded with 596

multiple tokens may not transfer as effectively as 597

those encoded with a single token. 598
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