
SatNet: A Benchmark for Satellite Scheduling Optimization
Edwin Goh1, Hamsa Shwetha Venkataram 1, Bharathan Balaji 2, Mark D Johnston 1, Brian

Wilson 1

1Jet Propulsion Laboratory, California Institute of Technology
Pasadena, California 91109

2 Amazon*

Seattle, Washington 98109
1edwin.y.goh@jpl.nasa.gov, 1venkatar@jpl.nasa.gov, 2bhabalaj@amazon.com, 1mark.d.johnston@jpl.nasa.gov,

1bdwilson@jpl.nasa.gov

Abstract

Satellites provide essential services such as networking and
weather tracking, and the number of near-earth and deep
space satellites are expected to grow rapidly in the coming
years. Communications with terrestrial ground stations is one
of the critical functionalities of any space mission. Satellite
scheduling is a problem that has been scientifically investi-
gated since the 1970s. A central aspect of this problem is the
need to consider resource contention and satellite visibility
constraints as they require line of sight. Due to the combina-
torial nature of the problem, prior solutions such as linear pro-
grams and evolutionary algorithms require extensive compute
capabilities to output a feasible schedule for each scenario.
Machine learning based scheduling can provide an alternative
solution by training a model with historical data and generat-
ing a schedule quickly with model inference. We present Sat-
Net1, a benchmark for satellite scheduling optimization based
on historical data from the NASA Deep Space Network. We
propose formulation of the satellite scheduling problem as
a Markov Decision Process and use reinforcement learning
(RL) policies to generate schedules. The nature of constraints
imposed by SatNet differ from other combinatorial optimiza-
tion problems such as vehicle routing studied in prior lit-
erature. Our initial results indicate that RL is an alternative
optimization approach that can generate candidate solutions
of comparable quality to existing state-of-the-practice results.
However, we also find that RL policies overfit to the training
dataset and do not generalize well to new data, thereby ne-
cessitating continued research on reusable and generalizable
agents.

Introduction
Driven by advances in space exploration, particularly with
the imminent plans for lunar exploration, the space com-
munications sector is growing rapidly. Communication of
satellites with ground stations is essential to downlink valu-
able data and uplink mission-critical commands. Scheduling
of satellite communications can be challenging as satellites
can request more bandwidth than is available and are visible
for limited periods from the ground station. The number of
possible schedules grows combinatorially with the number
of satellite requests and the antennas available. We study the

*work unrelated to Amazon
Copyright © 2021. All rights reserved.

1SatNet is available at https://github.com/edwinytgoh/satnet

scheduling optimization problem so that the ground station
resources are fully utilized while ensuring fair allocation to
satellite requests.

We use the NASA Deep Space Network2 (DSN) as an
example system for satellite scheduling optimization prob-
lems. A number of algorithms have been proposed for
scheduling of the DSN (Clement and Johnston 2005; John-
ston 2008; Johnston et al. 2014; Johnston 2020; Sabol et al.
2021), but they primarily rely on compute intensive heuris-
tics due to the NP-hard nature of the problem. We explore
data driven methods to solve the satellite scheduling prob-
lem given success in combinatorial optimization problems
such as vehicle routing (Nazari et al. 2018) and bin packing
(Balaji et al. 2019; Mazyavkina et al. 2021). Existing solu-
tions require extensive computation for each instance of the
problem. On the other hand, a machine learning (ML) model
can learn the distribution of communication requests from
historical data, and the resulting policy can generate opti-
mized schedules with a neural network inference. A stochas-
tic policy can generate a diverse set of candidate schedules,
and it is possible to incorporate additional objectives such as
fairness in the reward function.

To our knowledge, there are no datasets available to train
ML models or benchmark existing algorithms in this do-
main. We present SatNet, a dataset consisting of historical
communications requests by interplanetary spacecraft using
the NASA DSN and their corresponding visibility to anten-
nas on the ground stations. We formulate the scheduling op-
timization problem as a Markov Decision Process (MDP)
with the objective of satisfying the maximum number of
hours of communication requested by spacecraft. We train
policies using the Proximal Policy Optimization (PPO) algo-
rithm (Schulman et al. 2017), and the resulting schedules are
competitive with those from state-of-the-practice heuristics.
However, we find that generalization of the policies to new
data is challenging, and identify avenues of further research
in both problem formulation and algorithm development.

Related Work
Satellite scheduling is an important problem that has been
studied since the earliest space missions, and with the onset

2https://eyes.nasa.gov/dsn/dsn.html

https://github.com/edwinytgoh/satnet

of low-cost satellites like smallsats, CubeSats, the schedul-
ing task is becoming increasingly challenging because the
level of available resources (e.g., antennas, expert human
schedulers) is unable to keep up. In their expansive survey,
(Xhafa and Ip 2021) highlight scheduling problem as central
to satellite mission planning for effective communication be-
tween operations teams. Works such as (Prins 1994), (Tang-
pattanakul, Jozefowiez, and Lopez 2015), (Wong et al. 2016)
and (Lee et al. 2002) propose various algorithms and meth-
ods to the problem of scheduling under different use cases
involving CubeSats, satellite multimedia networks etc. On
the other hand, there have been targeted efforts that specif-
ically propose solutions to the DSN scheduling problem
using deep reinforcement learning (Goh et al. 2021), evo-
lutionary computational methods (Guillaume et al. 2007),
heuristic search techniques (Johnston 2020), and mixed in-
teger linear programming (Sabol et al. 2021; Claudet et al.
Forthcoming). Nonetheless, as outlined earlier, related re-
search in this field use custom built datasets that are specific
to each task. Since the key to creating an open ML research
community is a benchmark, this is the gap that our present
work hopes to bridge through the SatNet dataset.

Interplanetary Communications Scheduling
Efficient scheduling is especially relevant for interplanetary
science missions because an increasing number of interplan-
etary spacecraft need to be served by a fixed set of opera-
tional facilities powerful enough for interplanetary commu-
nications. NASA’s DSN is a major provider of such capabil-
ities, and is frequently oversubscribed. DSN communicates
with ∼30 interplanetary spacecraft active at any given time.

Problem Elements and Terminology
Satellite communications scheduling problems pose a few
unique challenges and constraints that are different from
those associated with terrestrial communications schedul-
ing. In this section, we define the relevant concepts and ter-
minology used throughout SatNet.

The main elements of a request are the spacecraft in-
volved, the different missions m associated with the space-
craft, and the antenna(s) or ground station on which com-
munications is established.

In DSN, spacecraft communicate with ground stations lo-
cated in one (or more, in the case of multi-antenna requests)
of the three DSN complexes in Goldstone, Canberra, and
Madrid. These complexes operate antennas, which are also
known as resources 3.

Since antennas can only communicate with spacecraft that
are visible in the sky, transmissions can only occur dur-
ing view periods — periods during which satellites are vis-
ible to the antennas. View periods v are defined for each

3Note that in DSN terminology, resources represent a more
general abstraction of the antenna; they are in fact the combina-
tion of antennas with which spacecraft can communicate. Except
for multi-antenna/arrayed requests, this combination of antennas is
generally of size 1. Thus the term ‘resources’ is frequently used
interchangeably with ‘antennas’.

spacecraft-resource pair based on the spacecraft’s orbital el-
ements. They are bounded by vb and ve, where b and e mean
“beginning” and “end” of the view period, respectively.

In addition to physical constraints on visibility, transmis-
sion windows are also constrained by operational consid-
erations that are specific to each mission. These time win-
dow constraints are associated with each request r, and are
used to determine the set of usable or valid view periods
for each request. View periods that fall outside the specified
time windows are considered unusable. This constraint on
visibility windows is similar to time window constraints en-
countered in other operations research problems such as the
Vehicle Routing Problem with Time Windows (VRPTWs)
(Kolen, Rinnooy Kan, and Trienekens 1987).

Problem Elements Summary
In summary, the scheduling problem consists of a set of N
requests, R = {ri | i = 1, 2, ..., N}. In turn, each request ri
contains:

1. A mission corresponding to a spacecraft, mi ∈ M
2. A set of A antennas/resources that can be used to fulfill

this request, Ai = {ai,j | j = 1, 2, ..., A}
3. A set of V view periods during which mi is visible to

ai,j , Vi,j = {[vbi,j,k, vei,j,k] | k = 1, 2, ..., V }
Note that there are A sets of view periods, each of poten-
tially different sizes, including the null set.

4. A minimum requested duration, dmin,i

5. A nominal requested duration, di
6. A time window constraint that specifies when a mission

wants transmissions to take place, [tsi , t
e
i].

Here, we assume that each mission operates one space-
craft. Multi-spacecraft (i.e., constellation) missions can be
treated using an additional index, or by treating each space-
craft as a separate mission. DSN request sets currently adopt
the latter approach.

The total requested duration in a given week is given as,

TR =

N∑
i

di (1)

Scheduling Objective
Satellite scheduling is inherently a multi-objective optimiza-
tion problem. Ground station operators need to maximize
satisfaction of communications requests under capacity con-
straints. The extent to which each user’s requests is fulfilled
presents another optimization objective, which is the notion
of fairness across users. These high-level objectives can be
expressed in various different forms, which include:

1. Maximizing the total hours scheduled across all antennas
2. Maximizing the number of satisfied requests across users
3. Minimizing the time window conflicts between users
4. Maximizing the utilization/duty cycle across all antennas
5. Maximizing the total hours scheduled on missions with

the fewest hours allocated (i.e., maximin)

6. Minimizing the variance between fraction of requested
time satisfied for each user

Indeed, there are numerous other creative representations
in service of the high-level scheduling objectives of maxi-
mum request satisfaction in a fair manner. The relative im-
portance of the objectives also depend on the specific space
application. For instance, a commercial ground station oper-
ator might choose to prioritize high-value requests (thus sac-
rificing fairness), while a NASA ground station might prior-
itize fairness to maximize overall mission success across all
federal investments.

In the proposed RL approach, we consider the single ob-
jective problem of maximizing the total number of sched-
uled hours across all users. While not operationally practi-
cal, the single-objective problem provides a reasonable start-
ing point for diagnostics and analysis of the approach.

Fairness Objectives The baseline MILP and RL results
include a metric URMS , which is the root mean square of
the unsatisfied time fraction across the set of all missions,
M. The unsatisfied time fraction of a mission m is given as,

Um =
TR,m − TS,m

TR,m
(2)

where TR,m and TS,m, the total requested and satisfied du-
rations for mission m, respectively, are given as

TR,m =

N∑
i=1

di
∣∣
mi=m

(3)

TS,m =

N∑
i=1

|Ti,j |
∣∣∣∣
mi=m

(4)

where Ti,j is a track for request ri that is allocated on an-
tenna ai,j . Note that the unsatisfied time fraction is 1 mi-
nus the satisfied time fraction. The root mean square of this
quantity, URMS , represents the standard deviation of the un-
satisfied time fraction across all missions. URMS is one way
to capture the “fairness” of a schedule (Johnston 2020); a
schedule with a lower effective unsatisfied time fraction on
average would have a lower URMS , and vice versa. URMS

is given as

URMS =

√
1

|M|
∑

m∈M
(Um)2 (5)

While URMS captures the overall unsatisfied time frac-
tion and the level of variation amongst different missions,
it remains less sensitive to extreme cases of unfairness. For
example, if no communications time is allocated for any re-
quest from a given mission, i.e., TS,m = 0, the URMS met-
ric would obviously increase. However, this increase does
not capture the severity of neglecting an entire mission. In
these and other situations, a complementary metric, UMAX ,
can be used to identify the mission with the highest unsatis-
fied time fraction. UMAX is given by Eq. 6 and captures the
same idea as item 5 in the preceding discussion on different
objectives.

UMAX = max
m∈M

Um (6)

Typical Scheduling Constraints
In addition to the visibility and time window constraints, the
scheduling problem is also subject to resource and opera-
tional constraints. We summarize the constraints as follows:

1. Each resource can only communicate with one spacecraft
at a given time. In other words, there may be no overlaps
between activities on any ground station4.

2. A scheduled track for the ith request on resource ai,j ,
Ti,j , must fall within a valid view period. Formally,
Ti,j ⊆ Vi,j . Recall that a valid view period is one that
falls within the user-specified time window for a particu-
lar request.

3. A scheduled track’s duration must meet the minimum
requested duration dmin,i and must not exceed the re-
quested duration di.

4. For requests that require simultaneous access to multiple
ground stations5, tracks must fall within view periods that
overlap across all ground stations.

Furthermore, near-Earth communications applications
have constraints related to the hand-off between one ground
station and another. These include duration limits on com-
munications gaps as well as the timing of those gaps so as to
maintain Quality of Service requirements or ensure mission
safety.

Setup and Teardown Times Tracks on the DSN must
have the correct setup and teardown durations. These oper-
ational segments are appended to the start and end of trans-
mission, respectively, and allow for ground station calibra-
tion and pointing. Because no transmissions occur during
the setup and teardown phases, these segments of the track
are allowed to fall outside V(i, j), provided that antenna j is
available for the entire setup and/or teardown duration. The
required setup and teardown durations are provided for each
request.

Splitting One of the unique aspects of DSN scheduling is
the relatively long transmission duration compared to near-
Earth satellite communications. This is primarily due to
the overall greater distance of DSN users’ spacecraft from
Earth, which reduces throughput because of attenuation but
increases the duration a spacecraft is visible to a ground sta-
tion. This enables long-running communications requests to
be split into two or more segments. In the DSN scheduling
problem, the primary constraints on splitting are as follows:

1. Splitting is allowed for requests that are longer than or
equal to 8 hours.

2. Each split track needs to be at least 4 hours long

4Recent technological upgrades have enabled the NASA Deep
Space Network to offer Multiple Spacecraft per Antenna (MSPA)
operations for Mars missions, which relaxes this constraint for a
subset of missions. For generality, this is not reflected in present
results.

5e.g., for Time Division Multiple Access (TDMA) in telecom-
munications applications, or in the case of the DSN, Delta-
Differential One-way Ranging (DDOR) and signal aggregation
across multiple antennas to increase signal strength

3. Each split track must fall within a valid view period
4. The total duration of all split tracks must meet the min-

imum requested duration dmin,i for the original request,
and not exceed the requested duration di.

5. Each split track must have its own setup and teardown
segments, which are allowed to fall outside of valid view
periods as long as the antenna is available.

Antenna Maintenance Most ground stations undergo
regular maintenance to enable reliable operation. Some may
have flexible maintenance schedules in which maintenance
is performed whenever there are gaps between tracking ac-
tivities, while other applications may have rigid schedules
that have higher priority than regular communications. We
adopt the latter approach because historical maintenance
data are readily available, and because the reduced antenna
vacancy presents a more challenging optimization problem.

The SatNet Benchmark Dataset
The SatNet dataset consists of mission requests and cor-
responding DSN antenna availability for 5 oversubscribed
weeks in 2018. The relevant metrics include the number of
total requests, N , total requested hours, TR, number of mis-
sions, and number of usable antennas. Note that because
requests can use combinations of antennas, the number of
usable resources will be higher than the number of usable
antennas (12 in this time period). These metrics are sum-
marized in Table 1. The dataset is a single JSON file with
entries for each of the five weeks. A week entry is further
broken down into a list of requests, where each request con-
tains the key elements contained in the Problem Elements
Summary section.

In addition to the problem JSON file, SatNet also includes
a maintenance history across all 12 antennas in 2018. The
maintenance history is represented as a CSV file with the
corresponding antenna, start times and end times.

Table 1: DSN subscription level varies by the time of year.
The table below depicts request distributions from the five
weeks from year 2018 that are provided in SatNet.

Week # Usable
antennas # Requests, N

Total
requested
hours, TR

Missions

10 12 257 1192 30
20 12 294 1406 33
30 12 293 1464 32
40 12 333 1737 33
50 12 275 1292 29

Problem Formulation
We implement a satellite scheduling simulator using the
OpenAI Gym API.

State Space
Our RL formulation leverages a state space represented as
a 1D vector. This state vector provides the state of the

schedule, including the number of missions, requests and
requested hours remaining (1x3), the remaining duration
of each request (1xN), and the remaining number of hours
available on each antenna (1x15). Thus, the dimensionality
of the state space is (1xN+18), where N is the number of
requests (typically ∼ 300),

S ∈ RN+18 (7)

The simple 1D state space facilitates a “batch” approach
to satellite scheduling by providing the entire set of requests
to the agent at once, as opposed to presenting requests to the
agent in sequential fashion. This batch scheduling approach
is inspired by the canonical knapsack problem in combinato-
rial optimization. The knapsack problem involves choosing
from a set of n items (of prescribed weight and value) to in-
clude in a knapsack of fixed size such that the overall value
is maximized.

Action Space
The action space A = {1, ..., N}, not to be confused with
the set of antennas Ai, is the set of integers {1, ..., N}. An
action at time t, at ∈ A, represents the index of a particular
request in the environment’s internal array representation.
For example, a = 2 corresponds to the third request in the
array.

State Transition
The environment’s state transition/simulation step is illus-
trated in Fig. 1. Given an action, at ∈ A, we assign the
request index, i = at. The environment retrieves the us-
able antennas Ai and the set of valid view periods, Vi ⊆⋃A=|Ai|

j=1 Vi,j . If there are valid view periods, i.e., Vi ̸= ∅,
the simulator chooses a view period, vi,j,k ∈ Vi, based on a
prescribed greedy heuristic that simply selects the longest
view period from Vi. Next, the simulator shortens/clips
vi,j,k if it is longer than the requested duration di, or if split-
ting is requested for a specific track. This shorten function
takes a heuristic that tells the environment whether to align
the resulting Ti,j to the left, center, or right of vi,j,k. Finally,
the simulator allocates the potentially shortened vi,j,k onto
the corresponding jth antenna for this request, i.e., ai,j .

Reward
The challenge in defining a reward function is analogous to
the earlier discussion on scheduling objectives — there are
many ways in which one can formulate the reward in an at-
tempt to achieve the end goal of a fair and optimally satisfied
schedule. For our initial results, we treat the single-objective
problem of maximizing the total number of hours scheduled
in a given week. The environment returns at the conclusion
of each step the track duration that was allocated as a result
of the agent’s action, rt = dt = |Ti,j |.

Thus the total reward or return, R, for an episode is equal
to the total scheduled duration, TS . That is,

R = TS =

Nt∑
t=0

dt(st, at) (8)

Action at; i = at

Find valid view periods Vi ⊆
⋃A=|Ai|

j=1 Vi,j

Vi = ∅? Return Null

Choose longest VP, vi,j,k ∈ Vi

|vi,j,k| > di? Shorten and align left

Allocate track Ti,j on antenna ai,j

Update satisfied requests and simulation metrics

Return track Ti,j

Y

N

Y

N

Figure 1: Processes in the scheduling simulator’s state tran-
sition. These steps are hidden from the agent, which only
receives signals through states (remaining request distribu-
tion) and rewards (hours allocated) in between each action.

Episode Termination
An episode ends if:

1. all requests have been satisfied (an unlikely scenario); or
2. there are no more valid positions on the antennas to ac-

commodate the remaining requests; or
3. the simulation exceeds a prescribed number of timesteps.

Request Shuffling
The simulation provides an option for users to toggle shuf-
fling of the requests to prevent the agent from memorizing
the order of requests after numerous episodes. When shuf-
fling is enabled, the internal array representation is fixed to
reduce computational cost. Instead, we shuffle a list of each
request’s unique identifier, or ID. With shuffling enabled, the
previous example a = 2 points to the third ID in the shuffled

list, which is then mapped back to a particular row in the
array representation. This may or may not correspond to the
second row in the array. To prevent “confusing” the agent,
the state space is also re-ordered to match the order of the
shuffled IDs such that successfully allocating the third ID
corresponds to a reduction in remaining duration in the third
element of the observation.

Enforcing Constraints
The RL formulation primarily uses action masking to ensure
constraint satisfaction. As part of the observation returned at
the end of each simulation step, the environment also returns
a boolean array of size N that masks out requests that have
been satisfied and requests that no longer have valid view
periods as a result of other requests occupying antenna time.
This mechanism prevents the agent from selecting invalid
requests, thereby preventing wasted steps with no reward,
which decreases the total runtime for each episode.

One of the advantages of the simple approach is to have
the scheduling simulator handle all constraints in the state
transition, encapsulating or hiding them from the agent.
The majority of these scheduling constraints come into play
when finding Vi and allocating track Ti,j on antenna ai,j .
Future formulations can provide richer representations in the
observation space, with information that agents can use to
learn the scheduling constraints by penalizing invalid actions
in the reward function.

MILP Baselines
We use a mixed integer linear programming (MILP) for-
mulation of the DSN scheduling problem (Claudet et al.
Forthcoming) as the baseline for SatNet. This formulation
is itself comparable to expert-guided heuristic search algo-
rithms, and takes into account the “fairness” metric by si-
multanouesly maximizing TS , minimizing URMS , and min-
imizing UMAX .

Table 2: Baseline MILP results from (Claudet et al. Forth-
coming)

Week TS / TR

(hours) URMS UMAX

Number of
satisfied
requests

Run
time (hours)

10 822 / 1192 0.26 0.48 203 18
20 1059 / 1406 0.21 0.64 249 10.5
30 983 / 1464 0.29 0.64 231 13.5
40 949 / 1737 0.40 1.00 223 22.5
50 816 / 1292 0.35 0.60 197 7.5

RL Experiments
In this section, we briefly describe the experimental setup
and ablation studies that were performed. We then present
the initial results obtained using the RL formulation and
compare the RL results to existing baselines. The experi-
ments were run on a single Amazon EC2 cloud instance with
16 GPUs and 96 CPUs.

Training Regime
We use the Proximal Policy Optimization (PPO) algorithm
(Schulman et al. 2017) to train RL scheduling agents with a
SGD minibatch size of 8192 and train batch size of 160000,
along with tuned humanoid-v1 hyperparameters 6. We used
the large batch size to ensure sufficient exploration when in-
teracting with the environment, and used a learning rate of
0.001. Convergence was defined to occur when the 50 most
recent PPO iterations were within one hour from each other.

Results
RL results from the experiments described in the foregoing
sections are presented for the SatNet dataset in Table 3. All
results are presented with request shuffling turned off. After
convergence, we run 1,000 episodes of inference to gener-
ate candidate schedules for each week. The numerous can-
didate schedules are possible because the learned policy is
stochastic, and does not repeat the same action sequences
each episode. From the candidates, we choose the solution
with the highest TS that has UMAX < 1. Examples of the
solution space spanned by the 1,000 candidate schedules are
shown in Figs. 2 and 3, respectively.

Figure 2: On week 30, the trained RL agent produced a best
schedule of TS = 1,100 hours, URMS = 0.28, UMAX =
0.85 among 1,000 inference runs. Relevant metrics of the
solution space covered by 1,000 RL inference runs on week
30 of the SatNet dataset. Points are colored according to
UMAX ; darker is better.

Discussion
Effects of Shuffling
As described in earlier sections, the scheduling simulator
provides the capability to shuffle the order of requests in the

6https://github.com/ray-project/ray/blob/master/rllib/
tuned examples/ppo/humanoid-ppo.yaml

Figure 3: On week 40, the trained RL agent produced a best
schedule of TS = 1,058 hours, URMS = 0.39, UMAX =
0.82. Relevant metrics of the solution space covered by
1,000 (trained) RL inference runs on week 40 of the Sat-
Net dataset. Points are colored according to UMAX ; darker
is better.

Table 3: The RL formulation performs comparably to ex-
isting MILP baselines on the SatNet dataset. Here, TS

represents the total hours scheduled, TR represents the to-
tal hours requested, URMS represents the root mean square
of the unsatisfied time fraction across all missions (described
above), and UMAX represents the unsatisfied fraction for the
least satisfied mission.

Week TS / TR

(hours) URMS UMAX

Number of
satisfied
requests

Training time
(hours)

10 886 / 1192 0.28 0.71 204 4
20 1000 / 1406 0.27 0.81 223 18
30 1100 / 1464 0.28 0.85 229 13
40 1058 / 1737 0.39 0.82 216 6
50 879 / 1292 0.36 0.67 185 25

agent’s observation space. The motivation behind shuffling
the sequence of requests is to enable the agent to general-
ize to other problem weeks beyond the one on which it is
trained. However, we found that the agent could only exhibit
significant progress when we held constant the sequence of
requests. This effect is shown in Fig. 4. This showed that
the agent memorized the sequence of requests and overfit to
the training dataset. On the contrary, shuffled requests did
not help the agent generalize, and also did not maximise
the mean reward even after extended periods of training (36
hours).

State Transition Heuristics
Two subroutines within the scheduling simulator require the
specification of heuristics — the selection of a view peri-

Figure 4: Agents can memorize request sequences with
shuffling turned off. Comparison of agent’s learning with
and without shuffling.

ods vi,j,k from the set of valid view periods Vi, and the
alignment of the transmission time within vi,j,k, should it
be longer than the requested duration di.

VP Selection The selection of vi,j,k involves two heuris-
tics, one to select the resource ai,j , and another to select the
kth view period vi,j,k from Vi,j . We implemented the fol-
lowing heuristics for the selection of ai,j :
1. Choose the resource with the most available time
2. Choose the resource with the longest valid VP
3. Choose the resource with the highest number of valid

VPs
4. Choose the resource with the least available time (i.e., the

most utilized)
5. Choose a resource randomly

Once ai,j is selected, the simulator selects vi,j,k using one
of the following heuristics:
1. Choose the longest VP on this resource
2. Choose the shortest VP on this resource
3. Randomly choose a VP from this resource

Shortening and Alignment As shown in Fig. 1, the sim-
ulator needs to allocate only the requested duration di in the
event vi,j,k is longer than di. The user (or agent) can specify
whether to align the resulting transmission time to the left,
center, or right of vi,j,k. In scheduling operations, mission
planners have the option to specify analogous preferences
— early, centered, or late.

In general, we found that the RL approach is insensitive
to the choice of heuristic used in the simulator. All agents
converged to similar levels of performance regardless of the
combination of heuristics used, relying only on the state
and reward signals from the environment to leverage its hid-
den transition mechanics and find optimal sequences of ac-
tions. Similarly, we also performed experiments using an

RL formulation that exposed these heuristic choices to the
agent, that is, the agent could decide not only the request
index i, but provide guidance on the selection of j and k
as well in vi,j,k. Despite the increased time to convergence,
the additional flexibility did not provide substantial perfor-
mance benefits, indicating that 1) the idealized, single ob-
jective version of the scheduling problem can be solved just
by memorizing/finding the optimal sequence of of actions
for a given heuristic and/or 2) the state space’s synoptic na-
ture precludes the agent from identifying the best heuristic
to choose.

Reward Functions
We extensively experimented with reward functions to max-
imise number of hours while providing fair allocation to
all users. However, we empirically found that optimizing
for number of hours allocated without any penalty helped
achieve better results compared to other reward functions.

Conclusion and Future Work
In this paper, we presented a benchmark, SatNet, for satel-
lite scheduling optimization based on historical data from
the NASA Deep Space Network. We also presented the set
of unique constraints that make this problem different from
other combinatorial optimization problems. As discussed in
the results section, the RL policies tend to overfit to the train-
ing dataset, however, we intend to focus on the generaliza-
tion aspect as part of our future work. Although the yearly
patterns have remained fairly consistent from historical data
perspective, having generalizing models is beneficial from
both product and technical standpoints. To close this gap,
we have designed this benchmark for experimentation and
invite contributions from the operations research and deep
reinforcement learning community to improve upon the pre-
liminary results obtained.

Reproducibility
All code, data, and experiments for this paper will be made
available on the GitLab platform.

References
Balaji, B.; Bell-Masterson, J.; Bilgin, E.; Damianou,
A.; Garcia, P. M.; Jain, A.; Luo, R.; Maggiar, A.;
Narayanaswamy, B.; and Ye, C. 2019. Orl: Reinforce-
ment learning benchmarks for online stochastic optimization
problems. arXiv preprint arXiv:1911.10641.
Claudet, T.; Alimo, R.; Goh, E.; Johnston, M.; Madani, R.;
and Wilson, B. Forthcoming. ∆-MILP: Deep Space Net-
work Scheduling via Mixed-Integer Linear Programming.
IEEE Access.
Clement, B. J.; and Johnston, M. D. 2005. The deep space
network scheduling problem. In Proceedings of the National
Conference on Artificial Intelligence, volume 3, 1514–1520.
Goh, E.; Venkataram, H. S.; Hoffmann, M.; Johnston, M. D.;
and Wilson, B. 2021. Scheduling the NASA Deep Space
Network with Deep Reinforcement Learning. In 2021 IEEE
Aerospace Conference (50100), 1–10. IEEE.

Guillaume, A.; Lee, S.; Wang, Y. F.; Zheng, H.; Hovden, R.;
Chau, S.; Tung, Y. W.; and Terrile, R. J. 2007. Deep space
network scheduling using evolutionary computational meth-
ods. In IEEE Aerospace Conference Proceedings. ISBN
1424405254.
Johnston, M. D. 2008. An evolutionary algorithm approach
to multi-objective scheduling of space network communi-
cations. Intelligent Automation and Soft Computing, 14(3):
367–376.
Johnston, M. D. 2020. Scheduling NASA’s Deep Space Net-
work: Priorities Preferences and Optimization. In SPARK
Workshop.
Johnston, M. D.; Tran, D.; Arroyo, B.; Sorensen, S.; Tay, P.;
Carruth, B.; Coffman, A.; and Wallace, M. 2014. Automated
scheduling for NASA’s deep space network. AI Magazine,
35(4): 7–25.
Kolen, A. W.; Rinnooy Kan, A.; and Trienekens, H. W. 1987.
Vehicle routing with time windows. Operations Research,
35(2): 266–273.
Lee, K. D.; Cho, Y. H.; Lee, H. J.; and Jeong, H. 2002.
Optimal scheduling for timeslot assignment in MF-TDMA
broadband satellite communications. IEEE Vehicular Tech-
nology Conference, 56(3): 1560–1564.
Mazyavkina, N.; Sviridov, S.; Ivanov, S.; and Burnaev, E.
2021. Reinforcement learning for combinatorial optimiza-
tion: A survey. Computers & Operations Research, 105400.
Nazari, M.; Oroojlooy, A.; Takáč, M.; and Snyder, L. V.
2018. Reinforcement learning for solving the vehicle rout-
ing problem. In Proceedings of the 32nd International Con-
ference on Neural Information Processing Systems, 9861–
9871.
Prins, C. 1994. An overview of scheduling problems aris-
ing in satellite communications. Journal of the Operational
Research Society, 45(6): 611–623.
Sabol, A.; Alimo, R.; Kamangar, F.; and Madani, R. 2021.
Deep Space Network Scheduling via Mixed-Integer Linear
Programming. IEEE Access, 9: 39985–39994.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Tangpattanakul, P.; Jozefowiez, N.; and Lopez, P. 2015. A
multi-objective local search heuristic for scheduling Earth
observations taken by an agile satellite. European Journal
of Operational Research, 245(2): 542–554.
Wong, Y. F.; Kegege, O.; Schaire, S. H.; Bussey, G.; Al-
tunc, S.; Zhang, Y.; Chitra, P.; Kegege, O.; Schaire, S. H.;
Bussey, G.; Altunc, S.; Zhang, Y.; and Chitra, P. 2016.
An Optimum Space-to-Ground Communication Concept for
CubeSat Platform Utilizing NASA Space Network and Near
Earth Network. Technical report.
Xhafa, F.; and Ip, A. W. 2021. Optimisation problems and
resolution methods in satellite scheduling and space-craft
operation: a survey. Enterprise Information Systems, 15(8):
1022–1045.

Acknowledgments
This effort was supported by the Jet Propulsion Labo-
ratory, California Institute of Technology, under a con-
tract with the National Aeronautics and Space Admin-
istration (80NM0018D0004). The authors would like to
thank the JPL Interplanetary Network Directorate and Deep
Space Network team, as well as internal Quantum Schedul-
ing Strategic Initiative team members Alex Guillaume,
Shahrouz Alimo, and Thomas Claudet. U.S. Government
sponsorship acknowledged.

	Introduction
	Related Work
	Interplanetary Communications Scheduling
	Problem Elements and Terminology
	Problem Elements Summary
	Scheduling Objective
	Typical Scheduling Constraints

	The SatNet Benchmark Dataset
	Problem Formulation
	State Space
	Action Space
	State Transition
	Reward
	Episode Termination
	Request Shuffling
	Enforcing Constraints

	MILP Baselines
	RL Experiments
	Training Regime
	Results

	Discussion
	Effects of Shuffling
	State Transition Heuristics
	Reward Functions

	Conclusion and Future Work
	Reproducibility
	Acknowledgments

