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ABSTRACT

The capability to widely sample the state and action spaces is a key ingredient
toward building effective reinforcement learning algorithms. The trade-off be-
tween exploration and exploitation generally requires the use of a data model,
from which novelty bonuses are estimated and used to bias the return toward
wider exploration. Surprisingly, little is known about the optimization objec-
tive followed when novelty (or entropy) bonuses are considered. Following the
“probability matching” principle, we interpret here returns (cumulative rewards)
as set points that fixate the occupancy of the state space, that is the frequency at
which the different states are expected to be visited during trials. The circular
dependence of the rewards sampling on the occupancy/policy makes it difficult to
evaluate. We provide here a variational formulation for the matching objective,
named MaCAO (Maximal Credit Assignment Occupancy) that interprets rewards
as a log-likelihood on occupancy, that operate anticausally from the effects toward
the causes. It is, broadly speaking, an estimation of the contribution of a state to-
ward reaching a (future) goal. It is constructed so as to provide better convergence
guaranties, with a complementary term serving as a regularizer, that, in principle,
may reduce the greediness. In the absence of an explicit objective occupancy, a
uniform prior is used, making the regularizer consistent with a MaxEnt (Maxi-
mum Entropy) objective on states. Optimizing the entropy on states in known
to be more tricky than optimizing the entropy on actions, because of an exter-
nal sampling through the (unknown) environment, that prevents the propagation
of a gradient. In our practical implementations, the MaxEnt regularizer is inter-
preted as a TD-error rather than a reward, making it possible to define an update
in both the discrete and continuous cases. It is implemented on an actor-critic off-
policy setup with a replay buffer, using gradient descent on a multi-layered neural
network, and shown to provide significant increase in the sampling efficacy, that
reflects in a reduced training time and higher returns on a set of classical motor
learning benchmarks, in both the dense and the sparse rewards cases.

1 PROBLEM STATEMENT

Learning in the real world implies dealing with very large, potentially unlimited environments, over
which the data to collect is seemingly infinite. Efficient exploration is thus one of the key aspects
of open-ended learning Santucci et al. (2020), when no final model of the environment can feasibly
be expected to be engineered or trained. On the one side, having access to unlimited data is very
beneficial for the training of complex multi-layered perceptrons, for they are known to rely on large
datasets to improve their performance. On the other side, the circular dependence between the learn-
ing algorithm and the data on which it operates renders the learning very tricky, at high risk of data
overfitting and trapping in local optima. The open-ended learning problem is generally addressed
through the lens of the reinforcement learning framework (Sutton et al., 1998), where rewards are
collected during the interaction, and the selection of action is fit so as to maximize the total number
of positive rewards, and prevent the encounter of negative ones. Fitting behaviour to rewards is
however at the risk of ignoring important data from the rest of the environment, where putatively
more rewarding regions may be neglected. The agreement of reward-seeking (that is exploitation)
with data collecting (that is exploration), is still one of the fundamental issues of modern artificial
intelligence.
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An important effort has recently been put on reframing the reinforcement learning setup into a more
general probabilistic inference framework, allowing to link rewards seeking and data modelling
under a single perspective (Furmston & Barber, 2010; Levine, 2018; Haarnoja et al., 2018; Ab-
dolmaleki et al., 2018; Fellows et al., 2019). This greater focus over the data collection problem is
linked to an important set of training algorithms, that contain some forms of exploration bonuses, in-
cluding “curiosity” drives (Schmidhuber et al., 2009; Pathak et al., 2017), intrinsic rewards (Oudeyer
et al., 2007) and pseudo-counts (Bellemare et al., 2016; Tang et al., 2017). However, at the differ-
ence of the classic optimization on rewards alone, where the Bellman optimum is well defined, there
is still no consensus about the objective followed when optimizing both on rewards and data col-
lection under a variational perspective (Eysenbach & Levine, 2019). The data collection problem is
effectively shadowed by the reward maximization objective, under which it is still considered as a
incidental component. An important body of work has recently been devoted to addressing the data
collection problem as such, with the notable design of the MaxEnt algorithm (Hazan et al., 2019),
State Marginal Matching (Lee et al., 2019) and E3D (Daucé, 2020), that aim at fitting the distribu-
tion of the states encountered to a uniform distribution, in the absence of definite rewards. This is
here referred as a MaxEnt-on-state principle (or MaxEnt to be short), not to be confounded with the
MaxEnt-on-actions principle implemented in the soft actor critic (Haarnoja et al., 2018) for instance.
Following a MaxEnt objective means optimizing the policy so as the states visited are maximally
variable, ideally uniformly visiting all possible states. We develop in the following a possible ex-
tension of the MaxEnt principle, that brings a considerable simplification in the expression of the
evidence lower bound (ELBO) with regards with the existing literature (Furmston & Barber, 2010;
Abdolmaleki et al., 2018; Fellows et al., 2019). In contrast to pure MaxEnt, our approach provides
a way to combine the MaxEnt objective with a reward maximization objective, under a variational
inference perspective. An intriguing property of the resulting ELBO formula is that the future states
(the ones that are visited after the current observation) play the role of a model for the current data,
participating in the elaboration of the returns collected under the current policy. This gives ways
toward optimizing the policy with respect to the distribution of the data, and provides a principled
justification to the use of intrinsic rewards in the design of reinforcement learning algorithms.

2 PRINCIPLES

2.1 PROBABILITY MATCHING RL

We assume an agent acting in a fully observable environment. The state of the environment is
provided by an observation s ∈ S , with S the set of all possible states. The agent can act on the
environment through its actuators. Such a motor command is described by a ∈ A, with A the set of
all motor commands. In the following, the capital letters S and A will reflect random variables on S
andA, and the lower cases s and a will either reflect observations or random draw realizations. The
decision of which action to choose relies on a policy, that maps the current observation to the action
space, generally expressed in a conditional probabilistic form π(a|s).

A reinforcement learning problem consists in finding a policy π∗ that maximizes a certain objective
function, without knowing the physical or mechanical properties of the environment. It is supposed
here, for simplicity, that the dynamics of the environment is Markovian (no hidden states). More-
over, the environment is providing an auxiliary signal called the reward. Sending an action to the
environment makes it possible to access to a new state s′, and to obtain a reward r ∈ R. A classic
objective in learning is to maximize the global return, generally described as a discounted sum of
future rewards over all possible trajectories. Let us now denote by st the state visited at time t and
τ(st) = (st+1, ..., st+T , ...) a certain pathway that is visited after observing st. During this visit, a
certain number of rewards can be collected, and R(τ) is the (discounted) return obtained over τ , i.e.
R(τ) =

∑
t γ

trt, with γ ∈ [0, 1[ a discounting factor that sums up the rewards up to an “horizon”
of the order of 1

1−γ . This said, the dynamic programming objective (Bellman, 1966), is the result
of π∗ = maxΠ Es∼p(S0),τ∼pπ(τ |s)R(τ), with p(S0) the distribution of initial states, and Π the set of
all conditional policies. When a state transition model p(S′|s, a) is provided, the unique solution is
given by the dynamic programming recurrent equation in the discrete case (Bellman, 1966). On the
contrary, a large panel of reinforcement learning techniques allow to approach the solution in the
model-free setup, assuming an effective sampling of all state-action pairs (Sutton et al., 1998).
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We are here interested in a different class of objective function, that rely on fitting the rewards toward
probabilities of state occupancies. A reward should indicate in which proportion the different states
(and actions) should be visited (and selected) during trials (with the idea that the states providing
high return should be visited more often than the ones providing low returns). Solving the reinforce-
ment learning problem then means to match the external cue to an actual distribution of visit over
states and actions, where a differential in rewards only indicates a difference in the number of visits,
allowing to seek rewards in a flexible way (so it is also referred as to “soft” reinforcement learning
(Haarnoja et al., 2018)). This idea stems back from empirical observations on human and animal
behaviors, and was coined the “matching law” in the operant conditioning literature (Herrnstein,
1961; Eysenbach & Levine, 2019).

2.2 STATE OCCUPANCY AND CONDITIONAL STATE OCCUPANCY

Matching rewards to probabilities can be done in many different ways. We frame here the probability
matching reinforcement learning problem into a state occupancy matching problem. It relies on the
use of an occupancy distribution, that is a density of state visit under a certain policy. Importantly,
it ignores the time order at which the different states are visited, still conserving some aspects of
causality between states in the form of conditional probabilities as we see later. Dating back from
Dayan (1993), an occupancy distribution is a distribution on states, designed so as to match with the
distribution measured over the trajectories of the MDP.

Following the definitions of (Puterman, 2014; Ho & Ermon, 2016; Hazan et al., 2019), a gamma-
absorbing state occupancy of a Markov Decision process (with a policy π) is the (discounted) density
of visit of the states — or (state, action) pairs — of the environment when starting from the initial
distribution p(S0). It is defined, as:{

ρπ(s) = (1− γ)p0(s) + γ
∑
s′,a′ p(s|s′, a′)π(a′|s′)ρπ(s′)

ρπ(s, a) = π(a|s)ρπ(s)
(1)

so that any policy π settled on an MDP defines an occupancy on the states of that MDP. It comes that,
inversely, any valid (state, action) occupancy (meaning that this occupancy is effectively feasible in
a given agent/environment setup), defines a unique corresponding policy:

π(a|s) =
ρ(s, a)

ρ(s)
(2)

that is a softmax (stochastic) conditional policy over the states.

Following the same reasoning, let ρπ(S+|s...) the conditional occupancy be defined recursively. Let
Tπ(s) the set of trajectories starting from s:

∀s+ ∈ Tπ(s), ρπ(s+|s...) = pπ(s+|s) + γ
∑

s′∈Tπ(s)

pπ(s+|s′)ρπ(s′|s...)

The triple dots (...) are intended to help distinguish the one-step distribution pπ(S′|s) from the long-
term distribution ρπ(S+|s...). This conditional distribution provides a description of the “future” of
s, that is the distribution of states that will most probably follow s. It can be seen as an instance
of the “successor” representation of states initially proposed by Dayan (1993). Those future states
will generally be noted s+, with the ’+’ exponent meaning the state being measured “further away
in time”.

2.3 MATCHING REWARDS TO OCCUPANCIES

Those definitions provide a way toward interpreting rewards as occupancy templates, allowing to
implement the “matching law” in a principled way. The mapping of rewards toward probabilities
relies on using exponentiated returns in the parameters of a stochastic policy, such as in the softmax
(or Boltzmann) decision rule case. Let π(a|s) = exp βQ(s,a)

K(s) with K(s) =
∑
a expβQ(s, a), with β

the “inverse temperature”, and the state-action value Q(s, a) representing the total return estimated
at (s, a).

Let τ = (s0, s1, ..., st, ...) a certain trajectory observed on the MDP under the policy π. The set
of all possible trajectories is noted T , pπ(τ) is a measure over the trajectories for a certain policy
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π, and ρπ is the corresponding occupancy on states. Consider for instance the series of rewards
encountered when following τ . It comes that:

Es0∼p0V (s0) = Eτ∼pπ(T )

∑
t

γtr(st, at) ≈ E s∼ρπ(S)
a∼π(A|s)

r(s, a)
∑
t

γt = Es,a∼ρπ(S,A)
r(s, a)

1− γ

so that ∀t, r(st,at)1−γ is interpreted as an estimator of V (s0).

Next, for any t, it comes that ∀t′ > t, r(st′ ,at′ )1−γ is an estimator of the state-action value Q(st, at),
i.e:

Q(st, at) = Eτ∼pπ(T )
st∈τ

∑
t′>t

γ(t′−t)r(st′ , at′) ≈ Es+∼ρπ(S+|st,at...)
a+∼π(A|s+)

r(s+, a+)

1− γ
(3)

In that setup, the rewards are interpreted as value samples. This means, in short, that each future
reward r(s+, a+) takes the role of a “model” for the total returnQ(st, at). The models are weighted
according to the conditional occupancy ρπ(S+, A+|s, a...), that takes the role of the “mixture”.

Then, noting that log π(a|s) = βQ(s, a)−K(s), we define :

R̄(s, s+, a+) ,
r(s+, a+)

1− γ
− 1

β
(K(s)− log ρπ(s)) (4)

said the “extended” return composed of the return estimator plus a virtual baseline. Then, because
the policy and the occupancy are exchangeable from eq.(2), each reward collected after (s, a) may
also take the role of a “model” for the occupancy, sampled from the conditional occupancy, i.e.:

log ρπ(s, a) ≈ Es+∼ρπ(S+|s,a...)
a+∼π(A|s+)

βR̄(s, s+, a+) (5)

2.4 DENSITY MATCHING OPTIMIZATION

Assuming π a current policy, ρπ a corresponding occupancy, and taking 〈˜log ρ(s, a)〉A+,S+,π as a
shorthand for Es+∼ρπ(S+|st,at...)

a+∼π(A|s+)

βR̄(s, s+, a+) the sampling-based optimization writes:

π∗ = argmax
Π

Es,a∼ρπ(S,A)〈˜log ρ(s, a)〉A+,S+,π (6)

which is a cross-entropy objective that aims at fitting ρπ(S,A) with 〈ρ̃(S,A)〉. The optimization can
be done, for instance, by optimizing a current policy π by stochastic gradient ascent on the objective,
which conducts to maximizing the return, under a softmax policy, like in classic policy gradient.

However, we can make a step further by trying to estimate how far is 〈˜log ρ(s, a)〉 from the opti-
mum log ρ∗(s, a). Interestingly, for any distribution on the future states q(S+, A+), the following
inequality holds:
Es+,a+∼q(S+,A+)βR̄(s, s+, a+) ≥ Es+,a+∼q(S+,A+)βR̄(s, s+, a+)−DKL(q(S+, A+)||ρ∗(S+, A+|s, a...))

≈ Es+,a+∼q(S+,A+) log ρ∗(s, a)−DKL(q(S+, A+)||ρ∗(S+, A+|s, a...))
(7)

providing a variational (log-) evidence lower bound (ELBO) interpretation of the maximization on
βR̄(s, s+, a+). At the convergence of the gradient ascent, the distribution q is expected to match the
posterior ρ∗, and the inequality would becomes an equality, i.e.
log ρ∗(s, a) = Es+,a+∼ρ∗(S+,A+|s,a...)βR̄(s, s+, a+)−DKL(ρ∗(S+, A+|s, a...)||ρ∗(S+, A+|s, a...))
This formula (7) is not directly usable in optimization, because the optimal posterior ρ∗ is not spec-
ified, but provides new hints into interpreting the current occupancy at the light of its future effects.
The actual optimization is indeed done on R̄(s, s+, a+) solely, irrespective of the divergence bias.
This bias is expected to fade away with the progress of the training, making the sampling of the
rewards more and more accurate at estimating the parameters of the policy/occupancy. This how-
ever, is not guaranteed, and the optimization on the (pseudo) cross entropy is at risk of keeping a
high divergence throughout the optimization, hindering the convergence toward the optimum. This
illustrates a more general problem that is the lack of efficacy in sampling the data (the posterior
occupancy), a more robust upper bound guarantee would be preferred, even at the risk of a lesser
final optimality with regard to the Bellman optimum.
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2.5 MAXIMAL CREDIT ASSIGNMENT OCCUPANCY

We now introduce the main insight of our Maximal Credit Assignment Occupancy (MaCAO) model.
It appears that the formulas (5) and (6) are not entirely satisfactory: the average over the rewards
translates into an average over log-density templates, that actually depend on (s+, a+), though it is
not explicit in the formula. Expressing this dependency is possible by reshaping the ELBO formula
(7) like :

log ρ∗(s, a) ≥ Es+,a+∼q(S+,A+) log ρ∗(s, a|...s+, a+)−DKL(q(S+, A+)||ρ∗(S+, A+)) (8)

This introduces a new conditional distribution, namely ρ(S,A|...s+, a+), that is the frequency at
which (s, a) may precede (s+, a+) in the iteration of the dynamics. This distribution expresses an
“anti-causal” relationship between the future states and the current observations, that is the exact
measure of how much (s, a) is instrumental in reaching (s+, a+). This is also said the “credit as-
signment” in the reinforcement learning literature (Sutton, 1988; Harutyunyan et al., 2019). Here
ρ∗(s, a|...s+, a+) represents the target credit assignment. From the Bayesian perspective, it is inter-
preted as a log-likelihood of the “data” (s, a), given the “model” (s+, a+), that is a way to say that
(s+, a+) exerts a control on (s, a).

This conducts to reconsider the rewards as log-likelihood templates rather than occupancy tem-
plates. It comes from lemma 4 (see appendix)) that: Es+,a+∼q(S+,A+) log ρ∗(s, a|...s+, a+) ≥
Es+,a+∼q(S+,A+)R̄(s, s+, a+), so that:

log ρ∗(s, a) ≥ Es+,a+∼q(S+,A+)R̄(s, s+, a+)−DKL(q(S+, A+)||ρ∗(S+, A+)) (9)
This new objective provides a variational Bayesian perspective on the density matching optimiza-
tion, with q (the conditional occupancy) taking the role of the variational distribution. This is equiv-
alent to augmenting the return with a supplementary divergence term on the conditional occupancy.
Then, matching log ρ∗(s, a) with the returns becomes identical to maximize the ELBO (8) from
variational inference.

The loss is composed of two complementary terms, a first term being the occupancy matching on
cumulative rewards (that is consistent with the softmax optimization), while the second term is
the explicit density matching of a posterior with a prior. The prior takes the role of a supervision
signal, that aims at putting a constraint on the conditional occupancy (that represents the exploration
pattern). By construction of the loss, the right term is made to shape the posterior occupancy, that
conducts the evaluation of the return. This is formally analog to the case of Bayesian inference
where the prior serves as a regularizer that tends to counteract the overfitting of the data. This sort
of regularizer is highly expected in reinforcement learning that is known to be prone to overfitting.
The analogy with Bayesian inference suggests for instance to consider a Gaussian or a uniform
distribution. This has important consequences though. Taking a prior that is not the target occupancy
strongly modifies the interpretation of the loss, that is now composed of two concurrent terms. The
likelihood part aims at fitting the occupancy with the rewards collected, while the divergence part
aims at fitting the posterior occupancy with an arbitrary prior. This breaks the original symmetry,
for the implies to concurrently follow two different objectives. For instance, the role of regularizer
that would be devoted to a uniform prior introduces a bias in the probability matching, for the target
occupancy is not anymore the softmax-Bellman optimum, but rather an intermediary occupancy that
combines the Bellman optimum and a uniform occupancy. This is expected to be beneficial for a
wider exploration, helping to avoid overfitting, but this is at the cost of a relaxed constraint on fitting
to the optimum.

This expression of a variational upper bound is reminiscent of the standard variational bounds con-
sidered in the reinforcement learning literature (Furmston & Barber, 2010; Abdolmaleki et al.,
2018), from which it could be interpreted as an occupancy-oriented variant. By breaking the tem-
poral chain dependence, however, it surprisingly provides a justification for considering an entropy
on states in the optimization of the policy. Indeed, the classic variational optimization operates on
chained sequences of observations, for which the state transitions vanish during the optimization of
π (Haarnoja et al., 2018). In our case, ignoring the sequential time order establishes both the future
states and the future actions as parameters of the policy, over which it should be optimized. This
allows to address the data efficiency through explicitly optimizing on the exploration path. It more-
over provides a room to the maxent-on-states term (Hazan et al., 2019), as a regularization incentive
in a more general expression. This conceptual shift has however an important consequence on the
objective followed, for the target occupancy is not anymore equal to the softmax Bellman optimum.
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3 METHOD

The main ingredients for an efficient implementation is the access to a wide variety of samples
(s, a, r, s′, a′) over which optimization can be carried out on parameterized policy πθ (said the “ac-
tor”) and a parameterized action value function Qψ (said the “critic”). It is here implicitly assumed
that both the actor and the critic consist of multi-layered perceptrons, containing many parameters
and organized in layered weights, over which a gradient descent is operated on losses expressed as
negative objectives.

Assuming an off-policy approach, we consider a replay buffer containing many samples of states,
actions and rewards as observed from interacting with the environment. In a variational setup, one
can assume an alternation between two complementary steps. A first step, said the “estimation”
step, consists in evaluating a distribution over the parameters of the model, that is here assumed to
be a distribution over future states, identified as the conditional occupancy under the current policy
qπ . This distribution is then exploited in a second step, said the “maximization” step, where the
parameters of the policy/Q-function are updated so as to maximize the proximal objective (that is
fitting a policy to a distribution of returns obtained from the current occupancy).

We assume here the estimation of qπ being obtained from a parametric or non-parametric method
over a sufficiently large sample of recent states (or state, action pairs), and concentrate on the
optimization of the actor under the guidance of the critic. Knowing qπ , and given a sample
(s, a, r, s′, a′), an element of optimization is given by the log-difference log qπ(s′, a′)−log ρ∗(s′, a′)
that is a point estimate of the Kullback-Leibler divergence, that is expected to be minimized during
the optimization of the policy. This term is supposed to be differentiated with regards to π, providing
a first gradient direction that should contribute to improving the policy toward a wider occupancy on
future states. A second and independent element of optimization is the parameterized action-value
mapping Q(s, a), relying on the TD-error construct Sutton (1988), based on approximating the fu-
ture rewards with the best current estimate at t+1, defining a gamma-discounted proximal objective
value Q̃(s, a) = r+ γQ(s′, a′). The squared difference λ(Q̃(s, a)−Qψ(s, a))2, with λ a precision
hyperparameter, is known as the mean-squared Bellman error (MSBE), providing a second gradient
that aims at maximizing the return with regards to the policy parameters. The concurrence of both
gradients contains the necessary elements to combine exploration and exploitation in an principled
way.

Building a full parametric model of the occupancy is however a difficult task that should be under-
taken with care. The building of such a probabilistic model is indeed at a non negligible cost of
regressing parametric distributions from samples, that inherently contain design choices and a spe-
cific optimization on a set of latent parameters (like in the case, e.g., of auto-encoders). For the sake
of simplicity, we consider here the case of a non-parametric estimator of the occupancy distribution
qπ . This could appear counter-intuitive at first glance, for the update of the policy is supposed to rely
on backpropagating gradients through the estimator. As a workaround, we provide here a method
allowing to directly inject the gradient information in the design of the Q-function.

Assume a parameterize Q-function Qψ that should undergo a dual optimization under two concur-
rent objectives. This implies in short that the value settled in the Q-function may arbitrate between
the reward-seeking and the occupancy-seeking objectives, so that maximizing π with respect to Q
only may be equivalent to the previous concurrent optimization. Considering (s, a, r, s′, a′) a sam-
ple, a simple way to retain the divergence information is to simply add the log difference information
log qπ(s′, a′) − log ρ∗(s′, a′) to the current Q-function, making it possible to recover the original
formula. This sketch of idea implies the use of two concurrent update rules in the Q-function itself.
A first term Lref(s, a, r, s

′, a′) would be the traditional MSBE loss on rewards. The second loss
needs to consider the log-difference itself as an error, for it to be “contained” (so to say) in Q after
the update. Consider the implicit reward :

rKL(s, a) , (1− γ)

[
Qψ(s, a)− 1

β
(log qπ(s′, a′)− log ρ∗(s′, a′))

]
(10)

and let Q̂(s, a) = rKL(s, a) + γQψ(s′, a′). Then a complementary MSBE loss is:

LKL(s, a, r, s′, a′) = (rKL(s, a) + γQψ(s′, a′)−Qψ(s, a))2
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Algorithm 1 Maximum Credit Assignment Occupancy (MaCAO)
Require: πθ (actor), Qψ (critic), B (replay buffer), β, γ, λ (hyperparameters)

while number of trials not exceeded do
initialize the environment
while trial not terminated do

observe s
choose a ∼ πθ(A|s)
read s′, r
store (s, a, r, s′) in B

end while
if B is full enough then

randomly sample a batch of (next) states {s+, ...} from B.
estimate q with a nonparametric method.
while number of batch updates not exceeded do

randomly sample a batch of transitions b = {(s, a, r, s′), ...} from B.
for all (s, a, r, s′) ∈ b do

estimate log q(s′) and set rKL (eq. 10)
sample a′ ∼ πθ(A|s′)
calculate LMaCAO(s, a, r, s

′, a′) (eq. 11)
end for
update the critic Qψ by gradient descent over all losses.
for all s ∈ b do

sample a ∼ πθ(A|s)
estimate Qψ(s, a)
calculate Lact = −Qψ(s, a) + 1

β
log πθ(A|s) (including the reparameterization trick)

end for
update the actor πθ by gradient descent over all losses.

end while
end if

end while

So that the final loss expression is:

LMaCAO(s, a, r, s
′, a′) =λ

(
r + γQψ(s

′, a′)−Qψ(s, a)
)2 (11)

+

([
− (1− γ)

β
(log qπ(s

′, a′)− log ρ∗(s′, a′))

]
+ γ

(
Qψ(s

′, a′)−Qψ(s, a)
))2

The additional precision hyperparameter λ plays here the role of an extra regularizer, helping to
adjust between both terms in case of highly sparse rewards. The main lines of our implementation
are provided in algorithm 1 (see Appendix), that fits the pursuit of the MaCAO objective in an actor-
critic setup. It relies on a wide use replay buffers (Mnih et al., 2013) to regularize the gradient over
batches that mix the samples from many different trials. From this perspective, an important shortcut
is our on-the-fly calculation of the log-occupancy, with the help of kernel-based density estimation
method (Pedregosa et al., 2011) from an initial sampling of (future) states from the buffer at each
start of an update sequence (line 10). This occupancy sample remains quite limited in number (about
1000) in order to avoid unnecessary computer overload.

4 RESULTS

In order to reach state-of-the art efficacy, many algorithmic improvements need to be included in
supplement to the baseline algorithm1. This concerns in particular the use of target Q-networks up-
dated at slower pace (Mnih et al., 2013), and the clipped double-Q trick (Fujimoto et al., 2018). Our
implementation is moreover drawn over the “spinning-up” open source framework (Achiam, 2018),
allowing for a direct comparison with the state of the art. We consider here for comparison the soft
actor-critic method (SAC) (Haarnoja et al., 2018), proximal policy optimization (Schulman et al.,
2017) and TD3 (Fujimoto et al., 2018). Our method was tested over several benchmark environ-
ments, as provided by the “Gym” suite (Brockman et al., 2016). We concentrate here on the contin-
uous states and actions case, that is the most challenging one with regards to function approximation.

1code freely available at http://github.com/xxx/yyy (to come).

7



Under review as a conference paper at ICLR 2022

0 7.5E+04 1.5E+05

0

20

40

60

80

100

Co
nt

in
uo

us
M

ou
ta

in
Ca

r-v
0

MaCAO
SAC
PPO
TD3

0 7.5E+04 1.5E+05

0.0

0.2

0.4

0.6

0.8

1.0

1.2

MaCAO
SAC
PPO
TD3

0 7.5E+04 1.5E+05

0

20000

40000

60000

80000

100000

120000

140000

160000 MaCAO
SAC
PPO
TD3

0 1.0E+06 2.0E+06

100

0

100

200

300

Bi
pe

da
lW

al
ke

r-v
3

MaCAO
SAC
PPO
TD3

0 1.0E+06 2.0E+06

0.1

0.0

0.1

0.2

0.3

0.4

MaCAO
SAC
PPO
TD3

0 1.0E+06 2.0E+06

0

100000

200000

300000

400000

500000
MaCAO
SAC
PPO
TD3

0 1.0E+06 2.0E+06

0

50

100

150

200

250

300

Sw
im

m
er

-v
3

MaCAO
SAC
PPO
TD3

0 1.0E+06 2.0E+06

0.00

0.05

0.10

0.15

0.20

0.25

0.30

MaCAO
SAC
PPO
TD3

0 1.0E+06 2.0E+06

0

100000

200000

300000

400000

500000 MaCAO
SAC
PPO
TD3

0 5.0E+05 1.0E+06
1000

0

1000

2000

3000

4000

5000

An
t-v

2

MaCAO
SAC
PPO
TD3

0 5.0E+05 1.0E+06

1

0

1

2

3

4

5

MaCAO
SAC
PPO
TD3

0 5.0E+05 1.0E+06

0

1000000

2000000

3000000

4000000 MaCAO
SAC
PPO
TD3

0 1.0E+06 2.0E+06
0

1000

2000

3000

4000

5000

6000

7000

Hu
m

an
oi

d-
v2

MaCAO
SAC
PPO
TD3

0 1.0E+06 2.0E+06

4.5

5.0

5.5

6.0

6.5

7.0 MaCAO
SAC
PPO
TD3

0 1.0E+06 2.0E+06
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1e7
MaCAO
SAC
PPO
TD3

Figure 1: Methods comparison Average episode rewards, average
rewards and cumulative rewards are compared in the course of learn-
ing for the MaCAO, SAC, PPO and TD3 frameworks, on 5 contin-
uous state/continuous control problems. Row 1: Gym Continuous
Mountain Car problem. β = 10, λ = 0.1, γ = 0.99, 2 hidden lay-
ers with N = 32 neurons. 5 seeds. Row 2: Gym/MuJoCo Swim-
mer problem. β = 30, λ = 0.3, γ = 0.995, 2 hidden layers with
N = 32 neurons. 5 seeds. Row 3: Gym/Box2D Bipedal Walker.
β = 30, λ = 1, γ = 0.99, 2 hidden layers with N = 64 neurons.
5 seeds. Row 4: Gym/MuJoCo Ant. β = 10, λ = 0.3, γ = 0.99, 2
hidden layers with N = 256 neurons. 5 seeds. Row 5: Gym/MuJoCo
Humanoid. β = 10, λ = 3, γ = 0.98, 2 hidden layers with N = 256
neurons. 1 seed.

The different setups are compared
on the basis of the returns col-
lected during training. This is
expressed as average return (that
is the total sum of rewards gath-
ered at the end of an episode),
the average reward (total rewards
collected divided by the episode
length) and cumulative rewards
(the total sum of rewards collected
at a given stage of the training).
The width of the occupancy over
the state space is not compared
here, for the other frameworks are
not designed to optimize it. The
different environments differ in
scale, difficulty and rewards den-
sity. All continuous problems pro-
posed in the library provide dense
rewards, that are a compound of
negatively and positively weighted
extrinsic informations, like the en-
ergy consumption, the speed of the
agent or its elevation. The prob-
lems separate in two broad cate-
gories. A first class of problems
provides only dense rewards. A
second class of problems have, in
addition, a supplementary sparse
reward taking the form of an “end-
of-episode” bonus or penalty. In
that case, the dense rewards may
(or may not) contain relevant in-
formation with regards to the task
at hand.

From that prospect, the most un-
favorable problem is the Contin-
uous Mountain Car problem (first
row of figure 4). Here the dense
rewards only refer to the energy
consumption, at the exception of
a +100 end-of-episode bonus ob-
tained at the hilltop. This in-
evitably conducts baseline algo-
rithms to remain stucked at the
bottom of the hill, where the en-
ergy consumption is low. Only our
approach, that contains an explicit incentive for widening the occupancy of the state space, has the
capability to reach the most rewarding states, finally providing a policy that solves the task.

The Bipedal Walker (second row of figure 4) is also a problem that combines dense and sparse
rewards. A negative (-100) reward is undergone when the agent falls down, and a positive (+100)
reward is gained when the agent reaches the end of the track. The continual dense rewards provide
an incentive for staying upright and increase the velocity. This task reveals more tricky to train
than expected, and contains enough variability for the agent to develop various gaits and locomotion
patterns over the course of learning. Our approach shows here a clear advantage, that is maybe more
obvious when comparing with the SAC. Like in the Mountain car, the problem is about reaching a
final (distal) end-of-path objective, from which a strong bonus allows to ”freeze” the behavior in a
favorable locomotion pattern. The (S-shaped) discontinuity in the MaCAO and the SAC learning
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curves reflect the reaching of the distal objective, after which close-by policies are followed. The
difference in the two curves is the time at which it is attained, that is less than 105 iterations in the
first case, and more than 106 in the second. This one order difference illustrates the disadvantage of
occupancy-agnostic optimization methods.

The swimmer task (third row) is concerned with the development of a locomotion pattern that is
swimming in a liquid medium. The reward is only the speed at which an eel-like agent manage to
swim over the place (that is coordinating segments in a periodic manner). This tasks contain a local
optimum that corresponds to a rower pattern that coordinates the extremal segments, and a global
optimum that corresponds to a classic swimming ripple from the head toward the tail. Despite its
apparent simplicity, only an extensive exploration such as the one provided by our approach allows
to reach the optimum.

The fourth task, known as the ”ant” aims at controlling the locomotion of a 4-legged agent. The
state space contains a detailed account of joint angle and torque moments plus contact sensors in
a 111 dimension observation vector (Schulman et al., 2015), but the control space is more reduced
(8 DOFs). Here again the displacement speed is the main incentive, with a survival bonus, and
an energy cost penalty. All 3 actor critic frameworks (namely MaCAO, SAC and E3D) are here
capable to reach a decent locomotion pattern in about 400000 iterations of the dynamics, which can
be considered data efficient here. No clear advantage is found here for our approach.

Last, the humanoid task shows a large number of degrees of freedom, and the unlimited number
of possible locomotion patterns often result in strange-looking final gaits. Only the SAC and the
MaCAO methods allow here to reach decent locomotion patterns in the limited number of steps
considered. When looking in detail, the light advantage observed for the SAC algorithm on the
average episode return is reversed when considering the average return. This apparent contradiction
is explained when looking at the detailed behavior. Here, the high-speed risky locomotion patterns
developed in the MaCAO framework result in a higher number of early failures. This is not related to
a risk-seeking incentive, but is rather explained by a tendency to maintain a high diversity of behavior
while pursuing the reward-guided objective, which reveals to be more risky when the balance of the
body needs to be maintained over time.

5 DISCUSSION

This work participates to a general trend toward the development of data models in reinforce-
ment learning, that provide ways to help the agent toward better exploring the world. This is
known of practical use and has been largely exploited so far in the large family of curiosity-driven
and maximum-entropy algorithms. Our contribution here is to provide a more detailed appraisal
of the benefits and putative risks of such a construct. It is shown here to frame into a larger
Bayesian/variational optimization where the future data plays the role of a model, and where an
evidence lower bound is maximized through gradient ascent over the policy parameters. The gen-
eral principles exposed point to the importance of an occupancy model that synthesizes the general
distribution of the agent’s environmental states over which it can act (defining a virtual “territory”).
Those occupancy models are the subject of frequent updates as the exploration progresses and that
new states are undisclosed during the course of the training. By making an additional uniform prior
assumption on the occupancy, the resulting loss expresses a balance between two concurrent tenden-
cies, namely the widening of the occupancy space and the maximization of the rewards, reminding
of the classical exploration/exploitation trade-off. The consequence is a shift in the target occupancy
pursued, that relaxes the constraint on fitting the initial Bellman objective. Both are embodied in a
MSBE Loss operating on a single Q-function in our implementation (though this is not necessary
the case). Computer simulations illustrate the benefit of our conceptual developments, both in the
case of sparse and dense rewards.
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. the Journal of machine Learning research, 12:2825–2830, 2011.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Vieri Giuliano Santucci, Pierre-Yves Oudeyer, Andrew Barto, and Gianluca Baldassarre. Editorial:
Intrinsically motivated open-ended learning in autonomous robots. Frontiers in Neurorobotics,
13:115, 2020. ISSN 1662-5218.

Jurgen Schmidhuber et al. Simple algorithmic theory of subjective beauty, novelty, surprise, in-
terestingness, attention, curiosity, creativity, art, science, music, jokes. Journal of SICE, 48(1),
2009.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3
(1):9–44, 1988.

Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning, volume 135. MIT
press Cambridge, 1998.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman,
Filip De Turck, and Pieter Abbeel. # exploration: A study of count-based exploration for deep
reinforcement learning. In 31st Conference on Neural Information Processing Systems (NIPS),
volume 30, pp. 1–18, 2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

A MATHEMATICAL COMPLEMENTS

A.1 LOWER BOUNDS

Consider a triplet of random variables (S,A,Z) defined on the domains S ×A×Z and obeying to
the mixture probability p(S,A,Z). Les s ∈ S be a ”state”, a ∈ A be an “action” and z ∈ Z be a
“successor”. Define p(S), p(A), p(Z), p(S,A), p(S,Z) and p(A,Z) the corresponding marginals
and define any conditional p(X|Y ) = p(X,Y )

p(Y ) .

Lemma 1. Take π a probability distribution on A, then ∀s ∈ S,

log p(s) ≥ Ea∼π(A) log p(s, a)− log π(a)

Proof. Noting that log p(s, a) = log p(s) + log p(a|s):

Ea∼π(A) log p(s, a)− log π(a) = log p(s)− Ea∼π(A) (log π(a)− log p(a|s))
and Ea∼π(A) log π(a)− log p(a|s) ≥ 0 (Kullback-Leibler divergence positivity).

Lemma 2. Take q a probability distribution on Z , then ∀(s, a) ∈ S ×A,

log p(s, a) ≥ Ez∼q(Z) log p(s, a|z)− log q(z) + log p(z)

Proof. Noting that log p(s, a|z) + log p(z) = log p(s, a) + log p(z|s, a) (Bayes Theorem)

Ez∼q(Z) log p(s, a|z)− log q(z) + log p(z) = log p(s, a)− Ez∼q(Z) (log q(z)− log p(z))

and Ez∼q(Z) log q(z)− log p(z) ≥ 0 (Kullback-Leibler divergence positivity).
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Lemma 3. Take π a probability distribution on A and q a probability distribution on Z , then
∀s ∈ S,

log p(s) ≥ E(a,z)∼(π(A),q(z)) log p(s, a|z)− log π(a)− log q(z) + log p(z)

‘

Proof. From lemmas 1 and 2, use the transitivity of the ≥ operator

Remark: the random variable Z has been used here for readability. Taking Z = (S+, A+) with
(S+, A+) ∈ S ×A and p(Z) = p(S+, A+), the previous properties still hold.

A.2 THE REWARD CONSTRAINT

Take β ∈ R+, γ ∈]0, 1], and r : Z 7→ R a reward function.

Note R(z) = r(z)
1−γ .

Assume that p(A|s) (said the “optimal policy”) is such that :

p(a|s) =
expβEz∼p(Z|s,a)R(z)∑

a′∈A expβEz′∼p(Z|s,a′)R(z′)

and define K(s) = log
∑
a∈A expβEz∼p(Z|s,a)R(z)

Lemma 4. Ez∼p(Z|s,a) log p(s, a|z) ≥ Ez∼p(Z|s,a)βR(z)−K(s) + log(p(s))

Proof.

log p(s, a) = log p(s) + log p(a|s)
= log p(s) + Ez∼p(Z|s,a)βR(z)−K(s)

From Bayes rule, we know that: ∀z: log p(s, a) + log p(z|s, a) = log p(z) + log p(s, a|z). Then:

Ez∼p(Z|s,a) log p(s, a|z)− log p(z|s, a) + log p(z) = Ez∼p(Z|s,a)βR(z)−K(s) + log p(s)

Noting that:
Ez∼p(Z|s,a) log p(z|s, a)− log p(z) ≥ 0

it comes that:

Ez∼p(Z|s,a) log p(s, a|z) ≥ Ez∼p(Z|s,a)βR(z)−K(s) + log p(s)

Remark: in the main text, R̄(s, z) = Ez∼p(Z|s,a)R(z) − 1
β (K(s) − log p(s)) is said the “extended

return”.

Define now π(A|s), a conditional distribution on actions, said the “current policy”. Then:
Lemma 5.

Ea∼π(A|s) log p(s) + log π(a|s) ≥ E a∼π(A|s)
z∼p(Z|s,a)

βR̄(s, z)− log p(z|s, a) + log p(z)

Proof. Identify from lemma (3) π(A) ≡ π(A|s) and q(Z) ≡ p(Z|s, a). Then from lemma 4, it
comes:

log p(s) ≥ E a∼π(A|s)
z∼p(Z|s,a)

βR̄(s, z)− log π(a|s)− log p(z|s, a) + log p(z)

which proves the formula.

The right term of the formula is said the (log)-evidence lower bound (ELBO) in the main text. It is
constructed such that βR̄(s, z) is interpreted as the log likelihood of (s, a) (even if it is, more strictly
speaking, a lower bound of the log likelihood).
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A.3 OPTIMIZATION

The ELBO being bounded from above by log p(s), one can now define a (local) optimization crite-
rion. Say Π be a family of policies. Then the optimization criterion is:

max
π∈Π

E a∼π(A|s)
z∼p(Z|s,a)

R̄(s, z)− log π(a|s)− log p(z|s, a) + log p(z)

This criterion contains by construction two optimization objectives.

• A first objective is said the reward density-matching objective:

max
π∈Π

E a∼π(A|s)
z∼p(Z|s,a)

R̄(s, z)− log π(a|s)

It is constructed so that the log-probability of choosing action a is proportional to the aver-
age reward observed at further stages of the dynamics.
• A second objective is said the regularization objective:

max
π∈Π

E a∼π(A|s)
z∼p(Z|s,a)

log p(z)− log p(z|s, a)

Taking a uniform prior distribution p(Z) imposes for the policy to make the successor Z to
fit, on average, a uniform distribution.
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