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Abstract

We consider the problem of computing tight privacy guarantees for the composition1

of subsampled differentially private mechanisms. Recent algorithms can numeri-2

cally compute the privacy parameters to arbitrary precision but must be carefully3

applied.4

Our main contribution is to address two common points of confusion. First, some5

privacy accountants assume that the privacy guarantees for the composition of a6

subsampled mechanism are determined by self-composing the worst-case datasets7

for the uncomposed mechanism. We show that this is not true in general. Second,8

Poisson subsampling is sometimes assumed to have similar privacy guarantees9

compared to sampling without replacement. We show that the privacy guarantees10

may in fact differ significantly between the two sampling schemes. In particular, we11

give an example of hyperparameters that result in ε ≈ 1 for Poisson subsampling12

and ε > 10 for sampling without replacement. This occurs for some parameters13

that could realistically be chosen for DP-SGD.14

1 Introduction15

A fundamental property of differential privacy is that the composition of multiple differentially16

private mechanisms still satisfies differential privacy. This property allows us to design complicated17

mechanisms with strong formal privacy guarantees such as differentially private stochastic gradient18

descent (DP-SGD, [SCS13, BST14, ACG+16]).19

The privacy guarantees of a mechanism inevitably deteriorate with the number of compositions.20

Accurately quantifying the privacy parameters under composition is highly non-trivial and is an21

important area within the field of differential privacy. A common approach is to find the privacy22

parameters for each part of a mechanism and apply a composition theorem [DRV10, KOV15] to find23

the privacy parameters of the full mechanism. In recent years, several alternatives to the traditional24

definition of differential privacy with cleaner results for composition have gained popularity (see,25

e.g., [DR16, BS16, Mir17, DRS19]).26

Another important concept is privacy amplification by subsampling (see, e.g., [BBG18, Ste22]). The27

general idea is to improve privacy guarantees by only using a randomly sampled subset of the full28

dataset as input to a mechanism. In this work we consider the problem of computing tight privacy29

parameters for subsampled mechanisms under composition.30

One of the primary motivations for studying privacy accounting of subsampled mechanisms is DP-31

SGD. DP-SGD achieves privacy by clipping gradients and adding Gaussian noise to each batch.32

As such, we can find the privacy parameters by analyzing the subsampled Gaussian mechanism33

under composition. One of the key contributions of [ACG+16] was the moments accountant,34

which gives tighter bounds for the mechanism than the generic composition theorems. Later work35
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improved the accountant by giving improved bounds on the Rényi Differential Privacy guarantees36

of the subsampled Gaussian mechanism under both Poisson subsampling and sampling without37

replacement [MTZ19, WBK20].38

Even small constant factors in an (ε, δ)-DP budget are important. First, from the definition, such39

constant factors manifest exponentially in the privacy guarantee. Furthermore, when training a model40

privately with DP-SGD, it has been observed that they can lead to significant differences in the41

downstream utility, see, e.g., Figure 1 of [DBH+22]. Consequently, “saving” such a factor in the42

value of ε through tighter analysis can be very valuable. While earlier approximate techniques for43

privacy accounting (e.g., moments accountant of [ACG+16] and related methods) were lossy, a44

more recent line of work focuses on exact computation of privacy loss by numerically estimating45

the privacy parameters [SMM19, KJH20, KJPH21, GLW21, ZDW22]. These accountants generally46

look at the “worst case” for a single iteration for a privacy mechanism, and then use a fast Fourier47

transform (FFT) to compose the privacy loss over multiple iterations. They often rely on an implicit48

assumption that the worst-case dataset for a single execution of a privacy mechanism remains the49

worst case for a self-composition of the mechanism.50

Most privacy accounting techniques for DP-SGD assume a version of the algorithm that employs51

amplification by Poisson subsampling. That is, the batch for each iteration is formed by including each52

point independently with sampling probability γ. Other privacy accountants consider a variant where53

random batches of a fixed size are selected for each step. Note that both of these are inconsistent with54

the standard method in the non-private setting, where batches are formed by randomly permuting and55

then partitioning the dataset. Indeed, the latter approach is much more efficient, and highly-optimized56

in most libraries. Consequently, many works in private machine learning implement a method with57

the conventional shuffle-and-partition method of batch formation, but employ privacy accountants58

that assume some other method of sampling batches. The hope is that small modifications of this59

sort would have negligible impact on the privacy analysis, thus justifying privacy accountants for a60

setting which is technically not matching. Concurrent work to this paper by [CGK+24] compares the61

shuffle-and-partition technique with Poisson subsampling. Similar to our results they find that the62

batching method can significantly impact the privacy parameters.63

The central aim of our paper is to highlight and clarify some common problems with privacy64

accounting techniques. Towards the goal of more faithful comparisons between private algorithms65

that rely upon such accountants, we make the following contributions:66

• In Sections 4 and 5, we establish that a worst-case dataset may exist for a single execution67

of a privacy mechanism but may fail to exist when looking at the self-composition of the68

same mechanism. Some popular privacy accountants incorrectly assume otherwise. Our69

counterexample involves the subsampled Laplace mechanism, and stronger analysis is70

needed to demonstrate the soundness of privacy accountants for specific mechanisms, e.g.,71

the subsampled Gaussian mechanism.72

• In Section 6, we show that rigorous privacy accounting is significantly affected by the method73

of sampling batches, e.g., Poisson versus fixed-size. This results in sizeable differences in the74

resulting privacy guarantees for settings which were previously treated as interchangeable75

by prior works. Consequently, we caution against the common practice of using one method76

of batch sampling and employing the privacy accountant for another.77

• In Section 7, we discuss issues that arise in tight privacy accounting under the “substitution”78

relation for neighbouring datasets, which make this setting even more challenging than under79

the traditional “add/remove” relation. Once again we consider the subsampled Laplace80

mechanism and show that there may be several worst-case datasets one must consider when81

doing accounting, exposing another important gap in existing analyses.82

2 Preliminaries83

Differential privacy is a rigorous privacy framework introduced by [DMNS06]. Differential privacy84

is a restriction on how much the output distribution of a mechanism can change between any pair of85

datasets that differ only in a single individual. Such datasets are called neighboring, and we denote a86

pair of neighboring datasets as D ∼ D′. We formally define neighboring datasets below.87
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Definition 1 ((ε, δ)-Differential Privacy). A randomized mechanism M satisfies (ε, δ)-DP under88

neighboring relation ∼ if and only if for all D ∼ D′ and all measurable sets of outputs Z we have89

Pr[M(D) ∈ Z] ≤ eε Pr[M(D′) ∈ Z] + δ.

In this work, we consider problems where we want to estimate a sum for k queries where each90

datapoint holds a single-dimensional real value in the interval [−1, 1] for each query. The mechanisms91

we consider apply more generally to multi-dimensional real-valued queries. Since we demonstrate92

issues already present in the former more restrictive setting, these pitfalls are present in the more93

general case as well. We focus on single-dimensional inputs for simplicity of presentation. Likewise,94

by considering mechanisms defined on [−1, 1], our privacy analysis immediately extends to any95

mechanism defined on R that clips to [−1, 1]. After the appropriate rescaling, our privacy analysis96

extends to any mechanism used in practice for DP-SGD. Note that in all but one example in Section 797

the datapoints hold the same value for all k queries for the datasets we consider. We abuse notation98

and represent each data point as a single real value rather than a vector.99

On the domain [−1, 1]∗×k :=
⋃∞

m=0[−1, 1]m×k, we define the neighboring definitions of add,100

remove, and substitution (replacement). We typically want the neighboring relation to be symmetric,101

which is why add and remove are typically included in a single definition. However, as noted by102

previous work we need to analyze the add and remove cases separately to get tight results (see, e.g.,103

[ZDW22]).104

Definition 2 (Neighboring Datasets). Let D and D′ be datasets. If D′ can be obtained by adding a105

datapoint to D, then we write D ∼A D′. Likewise, if D′ can be obtained by removing a datapoint106

from D, then we write D ∼R D′. Combining these, write D ∼A/R D′ if D ∼A D′ or D ∼R D′.107

Finally, we write D ∼S D′ if D can be obtained from D′ by swapping one datapoint for another.108

Note that differential privacy under add and remove implies differential privacy under substitution,109

with appropriate translation of the privacy parameters.110

Definition 1 can be restated in terms of the hockey-stick divergence.111

Definition 3 (Hockey-stick Divergence). For any α ≥ 0 the hockey-stick divergence between two112

distributions P and Q is defined as113

Hα(P ||Q) := Ey∼Q

[
max

{
dP

dQ
(y)− α, 0

}]
where dP

dQ is the Radon–Nikodym derivative.114

Specifically, a randomized mechanism M satisfies (ε, δ)-DP if and only if Heε(M(D)||M(D′)) ≤ δ115

for all pairs of neighboring datasets D ∼ D′. This restated definition is the basis for the privacy116

accounting tools we consider in this paper. If we know what choice of neighboring datasets D ∼ D′117

maximizes the expression then we can get optimal parameters by computing Heε(M(D)||M(D′)).118

The full range of privacy guarantees for a mechanism can be captured by the privacy curve.119

Definition 4 (Privacy Curves). The privacy curve of a randomized mechanism M under neighboring120

relation ∼ is the function δ∼M : R → [0, 1] given by121

δ∼M(ε) := min{δ ∈ [0, 1] : M is (ε, δ)-DP}.

If there is a single pair of neighboring datasets D ∼ D′ such that δ∼M(ε) = Heε(M(D)||M(D′))122

for all ε ≥ 0, we say that the privacy curve of M under ∼ is realized by the worst-case dataset pair123

(D,D′).124

Unfortunately, a worst-case dataset pair does not always exist. A broader tool that is now frequently125

used in the computation of privacy curves is the privacy loss distribution (PLD) formalism [DR16,126

SMM19].127

Definition 5 (Privacy Loss Distribution). Given a mechanism M and a pair of neighboring datasets128

D ∼ D′, the privacy loss distribution of M with respect to (D,D′) is129

LM(D||D′) := ln(dM(D)/dM(D′))(y),

where y ∼ M(D) and dM(D)/dM(D′) means the density of M(D) with respect to M(D′).130
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An important caveat is that the privacy loss distribution is defined with respect to a specific pair of131

datasets, whereas the privacy curve implicitly involves taking a maximum over all neighboring pairs132

of datasets. Nonetheless, the PLD formalism can be used to recover the hockey-stick divergence via133

Heε(M(D)||M(D′)) = EY∼LM(D||D′)[1− eε−Y ],

from which we can reconstruct the privacy curve as134

δ∼M(ε) = max
D∼D′

EY∼LM(D||D′)[1− eε−Y ].

Lastly, we define the two subsampling procedures we consider in this work: sampling without135

replacement (WOR) and Poisson sampling. Given a dataset D = (x1, . . . , xn) and a set I ⊆136

{1, . . . , n}, we denote the restriction of D to I = {i1, . . . , ib} by D|I := (xi1 , . . . , xib).137

Definition 6 (Subsampling). Let M take datasets of size1 b ≥ 1. The
(
n
b

)
-subsampled mechanism138

MWOR is defined on datasets of size n ≥ b as139

MWOR(D) := M(D|I),

where I is a uniform random b-subset of {1, . . . , n}.140

On the other hand, given a mechanism M taking datasets of any size, the γ-subsampled mechanism141

MPoisson is defined on datasets of arbitrary size as142

MPoisson(D) := M(D|I),

where I includes each element of {1, . . . , |D|} independently with probability γ.143

3 Related Work144

After [DR16] introduced privacy loss distributions, a number of works used the formalism to estimate145

the privacy curve to arbitrary precision, beginning with [SMM19]. [KJH20, KJPH21] developed an146

efficient accountant that efficiently computes the convolution of PLDs by leveraging the fast Fourier147

transform. [GLW21] fine-tuned the application of FFT to speed up the accountant by several orders148

of magnitude.149

The most relevant related paper for our work is by [ZDW22]. They introduce the concept of a150

dominating pair of distributions. Dominating pairs generalize worst-case datasets, which for some151

problems can be difficult to find and may not even exist.152

Definition 7 (Dominating Pair of Distributions [ZDW22]). The ordered pair (P,Q) is a dominating153

pair of distributions for a mechanism M (under some neighboring relation ∼) if for all α ≥ 0 it154

holds that155

sup
D∼D′

Hα(M(D)||M(D′)) ≤ Hα(P ||Q).

The hockey-stick divergence of the dominating pair P and Q gives an upper bound on the value δ for156

any ε. Note that the distributions P and Q do not need to be output distributions of the mechanism.157

However, if there exists a pair of neighboring datasets such that P = M(D) and Q = M(D′) then158

we can find tight privacy parameters by analyzing the mechanisms with inputs D and D′ because159

Heε(M(D)||M(D′)) is also a lower bound on δ for any ε. We refer to such D ∼ D′ as a dominating160

pair of datasets.161

The definition of dominating pairs of distributions is useful for analyzing the privacy guarantees of162

composed mechanisms. In this work, we focus on the special case where a mechanism consists of k163

self-compositions. This is, for example, the case in DP-SGD, in which we run several iterations of the164

subsampled Gaussian mechanism. The property we need for composition is presented in Theorem 8.165

Theorem 8 (Following Theorem 10 of [ZDW22]). If (P,Q) is a dominating pair for a mechanism166

M then (P k, Qk) is a dominating pair for k iterations of M.167

When studying differential privacy parameters in terms of the hockey-stick divergence, we usually168

focus on the case of α ≥ 1. Recall that the hockey-stick divergence of order α can be used to bound169

1We treat the sample size and batch size as public knowledge in line with prior work [ZDW22].
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the value of δ for an (ε, δ)-DP mechanism where ε = ln(α). We typically do not care about the region170

of α < 1 because it corresponds to negative values of ε. However, the definition of dominating pairs171

of distributions must include these values as well. This is because outputs with negative privacy loss172

are important for composition and Theorem 8 would not hold if the definition only considered α ≥ 1.173

In Sections 5 and 7 we consider mechanisms where the distributions that bound the hockey-stick174

divergence for α ≥ 1 without composition do not bound the divergence for α ≥ 1 under composition.175

[ZDW22] studied general mechanisms in terms of dominating pairs of distributions under Poisson176

subsampling and sampling without replacement. Their work gives upper bounds on the privacy177

parameters based on the dominating pair of distributions of the non-subsampled mechanism. We use178

some of their results which we introduce later throughout this paper.179

4 Dominating Pair of Datasets under Add and Remove Relations180

In this section we give pairs of neighboring datasets with provable worst-case privacy parameters181

under the add and remove neighboring relations separately. We use these datasets as examples of the182

pitfalls to avoid in the subsequent section, where we discuss the combined add/remove neighboring183

relation.184

Proposition 9. Let M be either the Gaussian mechanism M(x1, . . . , xn) :=
∑n

i=1 xi +N (0, σ2)185

or the Laplace mechanism M(x1, . . . , xn) :=
∑n

i=1 xi + Lap(0, s).186

1. The datasets D := (0, . . . , 0) and D′ := (0, . . . , 0, 1) form a dominating pair of datasets187

for MPoisson under the add relation and (D′, D) is a dominating pair of datasets under188

the remove relation.189

2. Likewise, the datasets D := (−1, . . . ,−1) and D′ := (−1, . . . ,−1, 1) form a dominating190

pair of datasets for MWOR under the add relation and (D′, D) is a dominating pair of191

datasets under the remove relation.192

The proposition implies that the hockey-stick divergence of the mechanisms with said datasets as193

input describes the privacy curves of the composed mechanisms under the add and remove relations,194

respectively. We contrast this good behavior of composed and subsampled mechanisms under add195

and remove separately with the Laplace mechanism, which, as we will see in Section 5, does not196

behave well when composed under the combined add/remove relation.197

Our dominating pair of datasets can be found by reduction to one of the main results of [ZDW22].198

Theorem 10 (Theorem 11 of [ZDW22]). Let M be a randomized mechanism, let MPoisson be199

the γ-subsampled version of the mechanism, and let MWOR be the
(
n
b

)
-subsampled version of the200

mechanism on datasets of size n and n− 1 with γ = b/n.201

1. If (P,Q) dominates M for add neighbors then (P, (1− γ)P + γQ) dominates MPoisson202

for add neighbors and ((1− γ)Q+ γP, P ) dominates MPoisson for removal neighbors.203

2. If (P,Q) dominates M for substitution neighbors then (P, (1 − γ)P + γQ) dominates204

MWOR for add neighbors and ((1 − γ)P + γQ,P ) dominates MWOR for removal205

neighbors.206

In Appendix A we prove that Proposition 9 holds by showing that the hockey-stick divergence between207

the mechanism with the dominating pairs of datasets matches the upper bound from Theorem 10.208

Crucially, Proposition 9 implies that under the add and remove relations, we must add noise with209

twice the magnitude when sampling without replacement compared to Poisson subsampling! The210

intuition behind this difference is that the subroutine behaves similarly to the add/remove neighboring211

relation when using Poisson subsampling, whereas it resembles the substitution neighborhood when212

sampling without replacement. When D′
i is included in the batch another datapoint is ’pushed out’ of213

the batch under sampling without replacement. Due to this parallel one might hope that the difference214

in privacy parameters between Poisson subsampling and sampling without replacement only differ215

by a small constant similar to the difference between the add/remove and substitution neighboring216

relations. That is indeed the case for many parameters, but as we show in Section 7 this assumption217

unfortunately does not always hold.218
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Figure 1: The privacy curves for the subsampled Laplace mechanism under the remove and add
neighboring relations respectively.

5 No Worst-case Pair of Datasets under Add/Remove Relation219

So far, we have considered the entire privacy curve for all ε ∈ R. This is a necessary subtlety for PLD220

privacy accounting tools under composition (e.g., Theorem 8). Here we focus only on the privacy221

curve for ε ≥ 0. Our main result of this section is to give a minimal example of a mechanism M that222

admits a worst-case dataset pair under ∼A/R yet Mk does not admit any worst-case dataset pair for223

some k > 1. This violates an implicit assumption made by some privacy accountants.224

Proposition 11. For some mechanism M, the privacy curve of the
(
n
b

)
-subsampled mechanism225

MWOR is realized by a pair of datasets under ∼A/R, yet no pair of datasets realizes the privacy226

curve of Mk
WOR for all k > 1.227

A proof of this proposition for a simple mechanism can be found in Appendix B.1. However, it228

is more illustrative to demonstrate the proposition informally for the Laplace mechanism M. In229

this case, note that the proposition can be extended to MPoisson as well. The proposition stands in230

contrast to the case of the add and remove relations discussed in Proposition 9. That is, we can find231

datasets D ∼A D′ such that δ∼A

MWOR
is realized by (D,D′) and δ∼R

MWOR
is realized by (D′, D), but232

no such (ordered) pair realizes the privacy curve under ∼A/R.233

Moreover, it is generally the case that the privacy curve of a subsampled mechanism without234

composition under ∼R dominates the privacy curve under ∼A when ε ≥ 0 (see, e.g., Proposition 30235

of [ZDW22] or Theorem 5 of [MTZ19]). Specifically, it follows from Proposition 30 of [ZDW22]236

that in the case of the subsampled Laplace mechanism and ε ≥ 0, we have that237

δ
∼A/R

MWOR
(ε) = δ∼R

MWOR
(ε) ≥ δ∼A

MWOR
(ε).

Here we visualize the counter-example by plotting privacy curves for the add and remove relation in238

Figure 1. Note that δ
∼A/R

MWOR
(ε) = max{δ∼A

MWOR
(ε), δ∼R

MWOR
(ε)}. Figure 1 shows several variations239

of the curves δ∼A

Mk
WOR

and δ∼R

Mk
WOR

, which we estimated numerically by Monte Carlo simulation (as240

in, e.g., [WMW+23]). Appendix B.2 has the methodological details. These curves are seen to cross241

in the region ε ≥ 0 for k = 2 compositions.242

The phenomenon is most apparent for k = 2. There is a clear break in the curve for the remove relation.243

Under many compositions, however, it is known that both PLDs converge to a Gaussian distribution244

[DRS19], which explains why this break vanishes as the number of compositions increases.245

Avoiding incorrect upper bounds As shown in this section we cannot assume that the privacy246

curve for the remove relation dominates the add relation for composed subsampled mechanisms under247

∼A/R even though it is the case without composition. Luckily, this particular issue can be easily248

resolved by computing the privacy parameters for the add and remove relation separately and taking249

the maximum. This technique is already used in practice in, e.g., the Google DP library [Goo20].250

We conjecture that this workaround is unnecessary for the Gaussian mechanism—the natural choice251

for DP-SGD. We searched a wide range of parameters and were unable to produce a counterexample.252

Conjecture 12. Let M be the Gaussian mechanism with any σ. Then for all k > 0, γ ∈ [0, 1], and253

ε ≥ 0 we have254

δ
∼A/R

Mk
Poisson

(ε) = δ∼R

Mk
Poisson

(ε) ≥ δ∼A

Mk
Poisson

(ε).
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6 Comparison of Sampling Schemes255

In this section we explore the difference in privacy parameters between Poisson subsampling and256

sampling without replacement. We focus on the subsampled Gaussian mechanism which is the257

mechanism of choice for DP-SGD. We show that for some parameters the privacy guarantees of the258

mechanism differ significantly between the two sampling schemes.259

There are several different techniques one might use when selecting privacy-specific hyperparameters260

for DP-SGD. One approach is to fix the value of δ and the number of iterations. Given a sampling261

rate γ and a value for ε, we can compute the smallest value for the noise multiplier σ such that the262

mechanism satisfies (ε, δ)-differential privacy. We use this approach to showcase our findings. We263

fix δ = 10−6 and the number of iterations to 10, 000. We then vary the sampling rate between 10−4264

to 1 and use the PLD accountant implemented in the Opacus library [YSS+21] to compute σ.265

Figure 2: Plots of the smallest noise multiplier σ required to achieve certain privacy parameters
for the subsampled Gaussian mechanism with varying sampling rates under add/remove. Each line
shows a specific value of ε for either Poisson subsampling or sampling without replacement. The
parameter δ is fixed to 10−6 for all lines.

In Figure 2 we plot the noise multiplier required to achieve (ε, 10−6)-DP with Poisson subsampling266

for ε ∈ {1, 2, 5, 10}. For comparison, we plot the noise multiplier that achieves (10, 10−6)-DP267

when sampling without replacement. Recall from Section 4 that the noise magnitude required when268

sampling without replacement is exactly twice that required for Poisson subsampling. The plots are269

clearly divided into two regions. For large sampling rate, the noise multiplier scales roughly linearly270

in the sampling rate. However, for sufficiently low sampling rates the noise multiplier decreases271

much slower. This effect has been observed previously for setting hyperparameters (see Figure 1 of272

[PHK+23] for a similar plot).273

δ ε (Poisson) ε (WOR)
10−7 1.19 17.48
10−6 0.96 15.26
10−5 0.80 12.98
10−4 0.64 10.62

Table 1: The table contrasts the privacy parameter ε for the subsampled Gaussian mechanism with
10, 000 iterations, sampling rate γ = 0.001, and noise multiplier σ = 0.8 for multiple values of δ.

Avoiding problematic parameters It is generally advised to select parameters that fall into the274

right-hand regime of the plots in Figure 2 [PHK+23]. However, one might select parameters close to275

the transition point. This can be especially problematic if the wrong privacy accountant is used. The276

transition point happens when σ is slightly less than 1 for Poisson sampling and therefore it happens277

when it is slightly less than 2 for sampling without replacement. The consequence can be seen for278

the plot for sampling without replacement in Figure 2. When the sampling rates are high the noise279

required roughly matches that for ε = 5 with Poisson subsampling. But when the sampling rate is280

small we have to add more noise than is required for ε = 1 with Poisson subsampling. As such, if we281
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use a privacy accountant for Poisson subsampling and have a target of ε = 1 but our implementation282

uses sampling without replacement the actual value of ε could be above 10! We might hope that283

this increase would be offset if we allow for some slack in δ as well. However, as seen in the table284

of Figure 1 there can still be a big gap in ε between the sampling schemes even when we allow a285

difference of several orders of magnitude in δ.286

7 Substitution Neighboring Relation287

In this section, we consider both sampling schemes under the substitution neighboring relation.288

In their work on computing tight differential privacy guarantees, [KJH20] considered worst-case289

distributions for the subsampled Gaussian mechanism under multiple sampling techniques and290

neighboring relations. In the substitution case, they compute the hockey-stick divergence between291

(1− γ)N (0, σ2) + γN (−1, σ2) and (1− γ)N (0, σ2) + γN (1, σ2). These distributions correspond292

to running the mechanism with neighboring datasets where all but one entry is 0. We first consider293

Poisson subsampling in the proposition below and later discuss sampling without replacement.294

Proposition 13. Consider the Gaussian mechanism M(x1, . . . , xn) :=
∑n

i=1 xi +N (0, σ2) and295

let MPoisson be the γ-subsampled mechanism. Then D := (0, . . . , 0, 1) and D′ := (0, . . . , 0,−1)296

form a dominating pair of datasets under the substitution neighboring relation.297

Proposition 13 simply confirms that the pair of distributions considered by [KJH20] does indeed give298

correct guarantees as it is a dominating pair of distributions. However, as far as we are aware, no299

formal proof existed anywhere. Our proof of the proposition is in Appendix C.300

In the rest of the section we focus on sampling without replacement. We start by restating another301

result from [ZDW22] which we use throughout the section.302

Theorem 14 (Proposition 30 of [ZDW22]). If (P,Q) dominates M under substitution for datasets303

of size γn, then under the substitution neighborhood for datasets of size n, we have304

δ(α) ≤
{
Hα((1− γ)Q+ γP ||P ) if α ≥ 1;

Hα(P ||(1− γ)P + γQ) if 0 < α < 1,

where δ(α) is the largest hockey-stick divergence of order α for MWOR on neighboring datasets.305

Next, we address a mistake made in related work. We introduced the distributions considered306

by [KJH20] for Poisson subsampling above and we show in Proposition 13 that it is a dominating307

pair of distributions. However, [KJH20] claimed in their paper that the privacy curves are identical308

for the two sampling schemes under the substitution relation which is unfortunately incorrect.309

They considered datasets where all but one entry has a value of 0. This results in correct distri-310

butions for Poisson subsampling but for sampling without replacement, we instead consider the311

datasets D := (−1, . . . ,−1, 1) and D′ := (−1, . . . ,−1,−1). With these datasets the values of312

Hα(MWOR(D)||MWOR(D
′)) and Hα(MWOR(D

′)||MWOR(D)) match the cases of the upper313

bound in Theorem 14 for α ≥ 1 and α < 1, respectively. This can be easily verified by following the314

steps of the proof of Proposition 9 for sampling without replacement.315

We can use the datasets above to compute tight privacy guarantees for a single iteration. However,316

composition is more complicated since neither of the two directions corresponds to a dominating317

pair of distributions. One might hope that we could simply compute the hockey-stick divergence of318

the self-composed distributions in both directions and use the maximum similar to the add/remove319

case. However, for some mechanisms that is not sufficient because we can combine the directions320

unlike with the add and remove cases. Next we give a minimal counterexample using the Laplace321

mechanism to showcase this challenge.322

We consider datasets of size 2 and sample batches with a single element such that γ = 0.5. Let323

x1 and x2 denote the two data points in D and without loss of generality assume that x1 = x′
1324

and x2 ̸= x′
2, where x′

1 and x′
2 are the corresponding data points in D′. We apply the subsampled325

Laplace mechanism with a scale of 2 and perform 2 queries where x1 has the value −1 for both326

queries. Let P := 0.5 · Lap(−1, 2) + 0.5 · Lap(1, 2) and Q := Lap(−1, 2). That is, P and Q are327

the distributions for running one query of MWOR(D) with x2 having value 1 or −1, respectively.328

Then Heε(P × P ||Q×Q) is the hockey-stick divergence for the mechanism if x2 has value 1 for329
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Figure 3: Hockey-stick divergence of the Laplace mechanism when sampling without replacement
under ∼S . The worst-case pair of datasets depends on the value of ε.

both queries and x′
2 has value −1 for both queries. Similarly, Heε(Q×Q||P × P ) is the divergence330

when x2 has value −1 for both queries and x′
2 has value 1 for both queries.331

The two hockey-stick divergences above are similar to those for the remove and add neighboring332

relations. However, we also have to consider Heε(P ×Q||P ×Q) in the case of substitution. These333

distributions correspond to the case when x2 has a value of 1 for the first query and −1 for the334

second query, and x′
2 has a value of −1 for the first query and 1 for the second query. Figure 3335

shows the hockey-stick divergence as a function of ε for the three pairs of neighboring datasets.336

The largest divergence depends on the value of ε with all three divergences being the maximum for337

some interval. This counterexample shows that we cannot upper bound the hockey-stick divergence338

for the subsampled Laplace mechanism as max{Heε(P
k||Qk), Heε(Q

k||P k)} for k > 1. For k339

compositions, we have to consider k + 1 ways of combining P and Q. This significantly slows down340

the accountants in contrast to the 2 cases required for add/remove. Worse still, we do not have a proof341

that one of k + 1 cases is the worst-case pair of datasets for all ε ≥ 0.342

In Appendix D we use an alternative technique for bounding the privacy curve under the substitution343

relation based on [DGK+22]. We show that this accountant does not generally outperform the RDP344

accountant. This demonstrates the need to strengthen the theory for sampling without replacement345

under the substitution relation for the purposes of tight privacy accounting.346

8 Discussion347

We have highlighted two issues that arise in the practice of privacy accounting.348

First, we have given a concrete example where the worst-case dataset (for ε ≥ 0) of a subsampled349

mechanism fails to be a worst-case dataset once that mechanism is composed. Care should therefore350

be taken to ensure that the privacy accountant computes privacy guarantees with respect to a true351

worst-case dataset for a given choice of ε.352

Secondly, we have shown that the privacy parameters for a subsampled and composed mechanism353

can differ significantly for different subsampling schemes. This can be problematic if the privacy354

accountant is assuming a different subsampling procedure from the one actually employed. We have355

shown this in the case of Poisson sampling and sampling without replacement but the phenomenon356

is likely to occur when comparing Poisson sampling to shuffling as well. Computing tight privacy357

guarantees for the shuffled Gaussian mechanism remains an important open problem. It is best358

practice to ensure that the implemented subsampling method matches the accounting method. When359

this is not practical, the discrepancy should be disclosed.360

We conclude with two recommendations for practitioners applying privacy accounting in the DP-361

SGD setting. We recommend disclosing the privacy accounting hyperparameters for the sake of362

reproducibility (see Section 5.3.3 of [PHK+23] for a list of suggestions). Finally, we also recommend363

that, when comparisons are made between DP-SGD mechanisms, the privacy accounting for both364

should be re-run for the sake of fairness.365
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A Proof of Proposition 9454

Without loss of generality, we show both parts for the Gaussian mechanism under the add neighboring455

relation only.456

We first note that any pair of neighboring datasets with maximum ℓ2-distance is a dominating pair of457

datasets for the Gaussian mechanism [BW18]. Since the datapoints in our setting are from [−1, 1]458

this implies that (N (0, σ2),N (1, σ2)) is a dominating pair of distributions for M under ∼A and459

(N (r, σ2),N (r + 2, σ2)) is a dominating pair of distributions for M under ∼S for any r ∈ R. The460

distance of 2 is obtained by substituting −1 with 1.461

Now, let us prove part 1 of the proposition. To that end, let D be the all zeros dataset and let D′ be D462

with a 1 appended to the end. The sum of the subsampled dataset is 1 if the last datapoint is included463

in the sample and 0 otherwise. As such, we have that464

MPoisson(D
′) = (1− γ)N (0, σ2) + γN (1, σ2)

Since (N (0, σ2),N (1, σ2)) is a dominating pair of distributions for M under ∼A from Theorem 10465

we have that466

(N (0, σ2), (1− γ)N (0, σ2) + γN (1, σ2)) = (MPoisson(D),MPoisson(D
′))

dominates MPoisson under ∼A.467

As for part 2, let γ := b/n for convenience, let D be the all −1 dataset, let D′ be D with a single −1468

substituted for a 1. We can describe MWOR(D
′) by considering the two cases where the 1 is either469

excluded or included in the batch of size b470

MWOR(D
′) = (1−γ)M(−1, . . . ,−1,−1︸ ︷︷ ︸

b

)+γM(−1, . . . ,−1, 1︸ ︷︷ ︸
b

) = (1−γ)N (−b, σ2)+γN (−b+2, σ2)

Since (N (−b, σ2),N (−b + 2, σ2)) is a dominating pair of distributions for M under ∼S from471

Theorem 10 we have that472

(N (−b, σ2), (1− γ)N (−b, σ2) + γN (−b+ 2, σ2)) = (MWOR(D),MWOR(D
′))

dominates MWOR under ∼A.473

The proof for the remove direction is symmetric and the proof for the Laplace mechanism follows474

from replacing the normal distribution with the Laplace distribution.475

B Details for Section 5476

B.1 Proof of Proposition 11 for Randomized Response477

Here we show that Proposition 11 holds using a simple mechanism. The mechanism is similar to478

randomized response [War65] which is used in differential privacy to privately release bits. The479

mechanism takes a dataset as input and randomly outputs a single bit. The output is weighted towards480

0 if all entries of the dataset are 0 and towards 1 otherwise. Here we use this mechanism for the proof481

because the calculations and presentation are particularly clean and simple since there are only two482

outputs. A similar proof can be used to verify the accuracy of the estimated plots for the Laplace483

mechanism presented in Section 5 by calculating the exact hockey-stick divergence at, e.g., ε = 0.25484

and ε = 1.5.485

M(D) =

{
b with probability 3

4

1− b with probability 1
4

where b ∈ {0, 1} is 0 if all entries in D are 0 and 1 otherwise.486

We use the dataset D that consists of all zeroes and D′ is obtained from D by adding a single 1.487

We will present the proof using MPoisson, but it is the same for MWOR since the only effect on488

the output distribution is whether or not the 1 is sampled in a batch. We use a sampling probability489

of γ = 1/2. Since the output distribution of M is symmetric this means that the probability for490

MPoisson(D
′) to output either bit is 1/2 · 3/4+ 1/2 · 1/4 = 1/2. The counterexample occurs when491
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running the mechanism for 2 iterations. There are 4 possible outcomes of the two iterations. The492

probability of any of these outcomes for MPoisson(D
′) is 1/2 · 1/2 = 1/4. For MPoisson(D) the493

probability we can find the output distribution by considering each distinct outcome494

Pr[MPoisson(D)×MPoisson(D) = (0, 0)] = Pr[MPoisson(D) = 0] · Pr[MPoisson(D) = 0] = 3/4 · 3/4 = 9/16

Pr[MPoisson(D)×MPoisson(D) = (0, 1)] = Pr[MPoisson(D) = 0] · Pr[MPoisson(D) = 1] = 3/4 · 1/4 = 3/16

Pr[MPoisson(D)×MPoisson(D) = (1, 0)] = Pr[MPoisson(D) = 1] · Pr[MPoisson(D) = 0] = 1/4 · 3/4 = 3/16

Pr[MPoisson(D)×MPoisson(D) = (1, 1)] = Pr[MPoisson(D) = 1] · Pr[MPoisson(D) = 1] = 1/4 · 1/4 = 1/16

Now, we find the hockey-stick divergence in both directions for α = 4/3 and α = 2. We denote495

the two distributions for running the mechanism as P = MPoisson(D) × MPoisson(D) and496

Q = MPoisson(D
′)×MPoisson(D

′).497

H4/3(P ||Q) = Pr[P = (0, 0)]− 4/3 · Pr[Q = (0, 0)] = 9/16− 4/3 · 1/4 = 11/48

H4/3(Q||P ) = Pr[Q ∈ {(0, 1), (1, 0), (1, 1)}]− 4/3 · Pr[P ∈ {(0, 1), (1, 0), (1, 1)}] = 3/4− 4/3 · 7/16 = 1/6

H2(P ||Q) = Pr[P = (0, 0)]− 2 · Pr[Q = (0, 0)] = 9/16− 2 · 1/4 = 1/16

H2(Q||P ) = Pr[Q = (1, 1)]− 2 · Pr[P = (1, 1)] = 1/4− 2 · 1/16 = 1/8

As such, we have that H4/3(P ||Q) > H4/3(Q||P ) and H2(P ||Q) < H2(Q||P ).498

B.2 Details of Monte Carlo Simulation499

To produce Figure 1, we leverage the PLD framework and apply Monte Carlo simulation.500

By Proposition 9 and Theorem 8, the privacy curve of the composed and subsampled Laplace501

mechanism under add (remove) is given by Heε(MPoisson(D)k||MPoisson(D
′)k) (vice-versa for502

remove) where503

D := (0, . . . , 0) D′ := (0, . . . , 0, 1).

On the other hand, a standard result (e.g. Theorem 3.5 of [GLW21]) asserts that the PLD of a504

composed mechanism is obtained by self-convolving the PLD of the uncomposed mechanism,505

namely506

Heε(MPoisson(D)k||MPoisson(D
′)k) = EY∼LMk

Poisson
(D||D′)[1− eε−Y ]

= EY∼LMPoisson
(D||D′)⊕k [1− eε−Y ].

We estimate this expectation via sampling. We know the densities of MPoisson(D) = N (0, σ2) and507

MPoisson(D
′) = (1− γ)N (0, σ2) + γN (1, σ2), so we can quickly sample LMPoisson

(D||D′). By508

drawing k samples and summing them, we can sample LMPoisson
(D||D′)⊕k as well. Therefore, we509

can draw Yi ∼ LMPoisson
(D||D′)k for 1 ≤ i ≤ N , then compute the Monte Carlo estimate510

1

N

N∑
i=1

(1− eε−Yi).

As for the error, the quantity inside the expectation is bounded in [0, 1], so we can apply Höffding as511

well as the union bound. In this case,512

N =

⌈
ln(2|E|/β)

2α2

⌉
samples will suffice to ensure that the Monte Carlo estimate of Heε(MPoisson(D)||MPoisson(D

′))513

is accurate within α, with probability 1− β, for all ε ∈ E simultaneously.514

For Figure 1, we chose α = 0.001 and β = 0.01 and considered |E| = 40 values of ε, which required515

N = 3, 342, 306 samples. This value of α is small enough relative to the plot that our conclusion516

holds with probability 99%.517
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C Proof of Proposition 13518

The proof relies mainly on the following data-processing inequality, which can also be seen as closure519

of privacy under post-processing.520

Lemma 15. Let P and Q be any distributions on X and let Proc : X → Y be a randomized521

procedure. Denote by ProcP the distribution of Proc(X) for X ∼ P . Then, for any α ≥ 0,522

Hα(ProcP ||ProcQ) ≤ Hα(P ||Q).

Proof. For any event E ⊆ Y ,523

(ProcP )(E)− α(ProcQ)(E) = EProc[PX∼P (Proc(X) ∈ E)]− αEProc[PX∼Q(Proc(X) ∈ E)]

= EProc[P (Proc−1(E))]− αEProc[Q(Proc−1(E)]

= EProc[P (Proc−1(E))− αQ(Proc−1(E)]

≤ EProc[Hα(P ||Q)]

= Hα(P ||Q)

and the result holds since524

Hα(ProcP ||ProcQ) = sup
E⊆Y

(ProcP )(E)− α(ProcQ)(E).

525

We now prove the proposition. Our main goal is to argue that D := (0, . . . , 0, 1) and D′ :=526

(0, . . . , 0,−1) form a dominating pair of datasets for MPoisson. To that end, consider any527

∼S-neighbors that differ, without loss of generality, in the last entry, say (x, a) and (x, a′).528

We leverage postprocessing to show that (MPoisson(x, a),MPoisson(x, a
′)) is dominated by529

(MPoisson(0, a),MPoisson(0, a
′)). Indeed, consider530

Proc(y) := y +

|x̂|∑
i=1

x̂i

where x̂ is randomly drawn from x by Poisson(γ)-subsampling. Now, sampling MPoisson(0, a) is531

equivalent to drawing â from the singleton dataset (a) via Poisson(γ) and returning a sample from532

N (
∑|â|

i=1 âi, σ
2). Since the normal distribution satisfies N (a, σ2) + b = N (a + b, σ2), sampling533

Proc(MPoisson(0, a)) is equivalent to sampling534

N

 |x̂|∑
i=1

x̂i +

|â|∑
i=1

âi, σ
2


where x̂ is Poisson(γ)-subsampled from x and â is Poisson(γ)-subsampled from (a). But,535

by independence, (x̂, â) is a Poisson(γ)-subsample drawn from (x, a), so, in conclusion,536

Proc(MPoisson(0, a)) = MPoisson(x, a). By an analogous argument, we have that537

Proc(MPoisson(0, a
′)) = MPoisson(x, a

′) and hence538

Hα(MPoisson(x, a)||MPoisson(x, a
′)) = Hα(Proc(MPoisson(0, a))||Proc(MPoisson(0, a

′)))

≤ Hα(MPoisson(0, a)||MPoisson(0, a
′)) (Lemma 15)

≤ Hα(MPoisson(0, 1)||MPoisson(0,−1)).

D Constructing a Dominating Pair of Distributions for the Gaussian539

Mechanism540

In this section we consider the problem of computing privacy curves for the Gaussian mechanism541

under ∼S when sampling without replacement. As shown in Section 7 computing tight parameters is542

challenging in this setting because we do not know which datasets result in the largest hockey-stick543

divergence. However, we can still compute an upper bound on the privacy curve using a dominating544

pair of distributions.545
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We modified the implementation of the algorithm introduced by [DGK+22] in the Google DP library546

to construct the PLDs (Privacy Loss Distribution object). The algorithm constructs an approximation547

of the PLD from the hockey-stick divergence between the pair of distributions at a range of values548

for ε. From Theorem 14 we know that the direction of the pair of distributions yielding the largest549

hockey-stick divergence for the mechanism of a single iteration differs for α below and above 1. We550

construct a new PLD by combining the two directions at α = 1 or ε = 0.551

See the left-side plot of Figure 4 for a visualization of how our construction uses the point-wise552

maximum of the hockey-stick divergence for a single iteration. This construction represents a553

dominating pair of distributions and as such it is sufficient to find a dominating pair of distributions554

for the composed mechanism using self-composition by Theorem 8.555

The right-side plot of Figure 4 shows the privacy curve obtained from self-composing the PLD for556

the dominating pair of distributions with parameters σ = 4, γ = 0.05, and 1000 iterations. The blue557

line is the privacy curve under ∼R and also serves as a lower bound for the true privacy curve. Note558

that the orange line would also be the privacy curve achieved by this technique under the add/remove559

relation if we did not consider the add and remove relations separately.560

The gap between the upper and lower bound motivates future work for understanding the worst-case561

datasets. Similar to the add/remove case we conjecture that the subsampled Gaussian mechanism562

behaves well under composision. Specifically, we conjecture that the privacy curve of the composed563

subsampled Gaussian mechanism under ∼S matches the curve under ∼R for ε ≥ 0. It seems likely564

that this is the case if Conjecture 12 holds. However, if Conjecture 12 does not hold the above565

statement also does not hold.566

Figure 4: Hockey-stick divergence for the Gaussian mechanism under substitution when sampling
without replacement using a dominating pair of distributions. The dominating pair of distributions
is constructed using a point-wise maximum of the privacy curve for a single iteration as seen in
the left plot. The right plot compares the privacy curve from self-composing the dominating pair
of distributions with a lower bound obtained from self-composing the PLD that corresponds to the
blue line in the left plot. The dotted line for the RDP accountant is used for reference of scale. The
difference between the blue and the dotted line corresponds to the difference between using the PLD
and RDP accountants for Poisson subsampling under add/remove.
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NeurIPS Paper Checklist567

1. Claims568

Question: Do the main claims made in the abstract and introduction accurately reflect the569

paper’s contributions and scope?570

Answer: [Yes]571

Justification: A provide a comprehensive list of contribitions at the end of the introduction.572

A summary is given in the abstract.573

Guidelines:574

• The answer NA means that the abstract and introduction do not include the claims575

made in the paper.576

• The abstract and/or introduction should clearly state the claims made, including the577

contributions made in the paper and important assumptions and limitations. A No or578

NA answer to this question will not be perceived well by the reviewers.579

• The claims made should match theoretical and experimental results, and reflect how580

much the results can be expected to generalize to other settings.581

• It is fine to include aspirational goals as motivation as long as it is clear that these goals582

are not attained by the paper.583

2. Limitations584

Question: Does the paper discuss the limitations of the work performed by the authors?585

Answer: [Yes]586

Justification: The main limitation of our work is expressed in Conjecture 12.587

Guidelines:588

• The answer NA means that the paper has no limitation while the answer No means that589

the paper has limitations, but those are not discussed in the paper.590

• The authors are encouraged to create a separate "Limitations" section in their paper.591

• The paper should point out any strong assumptions and how robust the results are to592

violations of these assumptions (e.g., independence assumptions, noiseless settings,593

model well-specification, asymptotic approximations only holding locally). The authors594

should reflect on how these assumptions might be violated in practice and what the595

implications would be.596

• The authors should reflect on the scope of the claims made, e.g., if the approach was597

only tested on a few datasets or with a few runs. In general, empirical results often598

depend on implicit assumptions, which should be articulated.599

• The authors should reflect on the factors that influence the performance of the approach.600

For example, a facial recognition algorithm may perform poorly when image resolution601

is low or images are taken in low lighting. Or a speech-to-text system might not be602

used reliably to provide closed captions for online lectures because it fails to handle603

technical jargon.604

• The authors should discuss the computational efficiency of the proposed algorithms605

and how they scale with dataset size.606

• If applicable, the authors should discuss possible limitations of their approach to607

address problems of privacy and fairness.608

• While the authors might fear that complete honesty about limitations might be used by609

reviewers as grounds for rejection, a worse outcome might be that reviewers discover610

limitations that aren’t acknowledged in the paper. The authors should use their best611

judgment and recognize that individual actions in favor of transparency play an impor-612

tant role in developing norms that preserve the integrity of the community. Reviewers613

will be specifically instructed to not penalize honesty concerning limitations.614

3. Theory Assumptions and Proofs615

Question: For each theoretical result, does the paper provide the full set of assumptions and616

a complete (and correct) proof?617

Answer: [Yes]618
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Justification: Each theoretical result is indicated as a proposition (theorems indicate prior619

work). A proof for each result can be found in the appropriate appendix section (references620

given in main body).621

Guidelines:622

• The answer NA means that the paper does not include theoretical results.623

• All the theorems, formulas, and proofs in the paper should be numbered and cross-624

referenced.625

• All assumptions should be clearly stated or referenced in the statement of any theorems.626

• The proofs can either appear in the main paper or the supplemental material, but if627

they appear in the supplemental material, the authors are encouraged to provide a short628

proof sketch to provide intuition.629

• Inversely, any informal proof provided in the core of the paper should be complemented630

by formal proofs provided in appendix or supplemental material.631

• Theorems and Lemmas that the proof relies upon should be properly referenced.632

4. Experimental Result Reproducibility633

Question: Does the paper fully disclose all the information needed to reproduce the main ex-634

perimental results of the paper to the extent that it affects the main claims and/or conclusions635

of the paper (regardless of whether the code and data are provided or not)?636

Answer: [Yes]637

Justification: Details for Monte Carlo simulation results (Figures 1 and 3) are in the appendix.638

Other experimental results can be obtained by straightforward modification of publicly639

available privacy accounting software.640

Guidelines:641

• The answer NA means that the paper does not include experiments.642

• If the paper includes experiments, a No answer to this question will not be perceived643

well by the reviewers: Making the paper reproducible is important, regardless of644

whether the code and data are provided or not.645

• If the contribution is a dataset and/or model, the authors should describe the steps taken646

to make their results reproducible or verifiable.647

• Depending on the contribution, reproducibility can be accomplished in various ways.648

For example, if the contribution is a novel architecture, describing the architecture fully649

might suffice, or if the contribution is a specific model and empirical evaluation, it may650

be necessary to either make it possible for others to replicate the model with the same651

dataset, or provide access to the model. In general. releasing code and data is often652

one good way to accomplish this, but reproducibility can also be provided via detailed653

instructions for how to replicate the results, access to a hosted model (e.g., in the case654

of a large language model), releasing of a model checkpoint, or other means that are655

appropriate to the research performed.656

• While NeurIPS does not require releasing code, the conference does require all submis-657

sions to provide some reasonable avenue for reproducibility, which may depend on the658

nature of the contribution. For example659

(a) If the contribution is primarily a new algorithm, the paper should make it clear how660

to reproduce that algorithm.661

(b) If the contribution is primarily a new model architecture, the paper should describe662

the architecture clearly and fully.663

(c) If the contribution is a new model (e.g., a large language model), then there should664

either be a way to access this model for reproducing the results or a way to reproduce665

the model (e.g., with an open-source dataset or instructions for how to construct666

the dataset).667

(d) We recognize that reproducibility may be tricky in some cases, in which case668

authors are welcome to describe the particular way they provide for reproducibility.669

In the case of closed-source models, it may be that access to the model is limited in670

some way (e.g., to registered users), but it should be possible for other researchers671

to have some path to reproducing or verifying the results.672
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5. Open access to data and code673

Question: Does the paper provide open access to the data and code, with sufficient instruc-674

tions to faithfully reproduce the main experimental results, as described in supplemental675

material?676

Answer: [No]677

Justification: See previous justification. Instructions to reproduce Monte Carlo simulation678

results are included in the appendix. Other results rely on open-source code.679

Guidelines:680

• The answer NA means that paper does not include experiments requiring code.681

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/682

public/guides/CodeSubmissionPolicy) for more details.683

• While we encourage the release of code and data, we understand that this might not be684

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not685

including code, unless this is central to the contribution (e.g., for a new open-source686

benchmark).687

• The instructions should contain the exact command and environment needed to run to688

reproduce the results. See the NeurIPS code and data submission guidelines (https:689

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.690

• The authors should provide instructions on data access and preparation, including how691

to access the raw data, preprocessed data, intermediate data, and generated data, etc.692

• The authors should provide scripts to reproduce all experimental results for the new693

proposed method and baselines. If only a subset of experiments are reproducible, they694

should state which ones are omitted from the script and why.695

• At submission time, to preserve anonymity, the authors should release anonymized696

versions (if applicable).697

• Providing as much information as possible in supplemental material (appended to the698

paper) is recommended, but including URLs to data and code is permitted.699

6. Experimental Setting/Details700

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-701

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the702

results?703

Answer: [Yes]704

Justification: Simulation results rely on a choice of sample size, which is explained in the705

appendix.706

Guidelines:707

• The answer NA means that the paper does not include experiments.708

• The experimental setting should be presented in the core of the paper to a level of detail709

that is necessary to appreciate the results and make sense of them.710

• The full details can be provided either with the code, in appendix, or as supplemental711

material.712

7. Experiment Statistical Significance713

Question: Does the paper report error bars suitably and correctly defined or other appropriate714

information about the statistical significance of the experiments?715

Answer: [Yes]716

Justification: An analysis of sample size and the associated error is included in the appendix.717

The error is very small compared to the plots due to the high sample size, so we did not718

explicitly include them in simulation plots.719

Guidelines:720

• The answer NA means that the paper does not include experiments.721

• The authors should answer "Yes" if the results are accompanied by error bars, confi-722

dence intervals, or statistical significance tests, at least for the experiments that support723

the main claims of the paper.724
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• The factors of variability that the error bars are capturing should be clearly stated (for725

example, train/test split, initialization, random drawing of some parameter, or overall726

run with given experimental conditions).727

• The method for calculating the error bars should be explained (closed form formula,728

call to a library function, bootstrap, etc.)729

• The assumptions made should be given (e.g., Normally distributed errors).730

• It should be clear whether the error bar is the standard deviation or the standard error731

of the mean.732

• It is OK to report 1-sigma error bars, but one should state it. The authors should733

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis734

of Normality of errors is not verified.735

• For asymmetric distributions, the authors should be careful not to show in tables or736

figures symmetric error bars that would yield results that are out of range (e.g. negative737

error rates).738

• If error bars are reported in tables or plots, The authors should explain in the text how739

they were calculated and reference the corresponding figures or tables in the text.740

8. Experiments Compute Resources741

Question: For each experiment, does the paper provide sufficient information on the com-742

puter resources (type of compute workers, memory, time of execution) needed to reproduce743

the experiments?744

Answer: [NA]745

Justification: Experiments required minimal compute resources, so we do not report details.746

Guidelines:747

• The answer NA means that the paper does not include experiments.748

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,749

or cloud provider, including relevant memory and storage.750

• The paper should provide the amount of compute required for each of the individual751

experimental runs as well as estimate the total compute.752

• The paper should disclose whether the full research project required more compute753

than the experiments reported in the paper (e.g., preliminary or failed experiments that754

didn’t make it into the paper).755

9. Code Of Ethics756

Question: Does the research conducted in the paper conform, in every respect, with the757

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?758

Answer: [Yes]759

Justification: We reviewed the guidelines and found no violations in our work.760

Guidelines:761

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.762

• If the authors answer No, they should explain the special circumstances that require a763

deviation from the Code of Ethics.764

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-765

eration due to laws or regulations in their jurisdiction).766

10. Broader Impacts767

Question: Does the paper discuss both potential positive societal impacts and negative768

societal impacts of the work performed?769

Answer: [No]770

Justification: The aim of the work is to bring attention among practitioners and theoreticians771

to the limitations of privacy accountants. There is no foreseeable path to negative broad772

societal impact. On the other hand improving privacy accountants may lead to wider773

deployment of private machine learning, which can be expected to have a positive societal774

impact. We briefly discuss this outcome in the introduction in order to motivate our work.775
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Guidelines:776

• The answer NA means that there is no societal impact of the work performed.777

• If the authors answer NA or No, they should explain why their work has no societal778

impact or why the paper does not address societal impact.779

• Examples of negative societal impacts include potential malicious or unintended uses780

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations781

(e.g., deployment of technologies that could make decisions that unfairly impact specific782

groups), privacy considerations, and security considerations.783

• The conference expects that many papers will be foundational research and not tied784

to particular applications, let alone deployments. However, if there is a direct path to785

any negative applications, the authors should point it out. For example, it is legitimate786

to point out that an improvement in the quality of generative models could be used to787

generate deepfakes for disinformation. On the other hand, it is not needed to point out788

that a generic algorithm for optimizing neural networks could enable people to train789

models that generate Deepfakes faster.790

• The authors should consider possible harms that could arise when the technology is791

being used as intended and functioning correctly, harms that could arise when the792

technology is being used as intended but gives incorrect results, and harms following793

from (intentional or unintentional) misuse of the technology.794

• If there are negative societal impacts, the authors could also discuss possible mitigation795

strategies (e.g., gated release of models, providing defenses in addition to attacks,796

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from797

feedback over time, improving the efficiency and accessibility of ML).798

11. Safeguards799

Question: Does the paper describe safeguards that have been put in place for responsible800

release of data or models that have a high risk for misuse (e.g., pretrained language models,801

image generators, or scraped datasets)?802

Answer: [NA]803

Justification: N/A804

Guidelines:805

• The answer NA means that the paper poses no such risks.806

• Released models that have a high risk for misuse or dual-use should be released with807

necessary safeguards to allow for controlled use of the model, for example by requiring808

that users adhere to usage guidelines or restrictions to access the model or implementing809

safety filters.810

• Datasets that have been scraped from the Internet could pose safety risks. The authors811

should describe how they avoided releasing unsafe images.812

• We recognize that providing effective safeguards is challenging, and many papers do813

not require this, but we encourage authors to take this into account and make a best814

faith effort.815

12. Licenses for existing assets816

Question: Are the creators or original owners of assets (e.g., code, data, models), used in817

the paper, properly credited and are the license and terms of use explicitly mentioned and818

properly respected?819

Answer: [Yes]820

Justification: Credit is given as needed to open-source software repositories.821

Guidelines:822

• The answer NA means that the paper does not use existing assets.823

• The authors should cite the original paper that produced the code package or dataset.824

• The authors should state which version of the asset is used and, if possible, include a825

URL.826

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.827
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• For scraped data from a particular source (e.g., website), the copyright and terms of828

service of that source should be provided.829

• If assets are released, the license, copyright information, and terms of use in the830

package should be provided. For popular datasets, paperswithcode.com/datasets831

has curated licenses for some datasets. Their licensing guide can help determine the832

license of a dataset.833

• For existing datasets that are re-packaged, both the original license and the license of834

the derived asset (if it has changed) should be provided.835

• If this information is not available online, the authors are encouraged to reach out to836

the asset’s creators.837

13. New Assets838

Question: Are new assets introduced in the paper well documented and is the documentation839

provided alongside the assets?840

Answer: [NA]841

Justification: N/A842

Guidelines:843

• The answer NA means that the paper does not release new assets.844

• Researchers should communicate the details of the dataset/code/model as part of their845

submissions via structured templates. This includes details about training, license,846

limitations, etc.847

• The paper should discuss whether and how consent was obtained from people whose848

asset is used.849

• At submission time, remember to anonymize your assets (if applicable). You can either850

create an anonymized URL or include an anonymized zip file.851

14. Crowdsourcing and Research with Human Subjects852

Question: For crowdsourcing experiments and research with human subjects, does the paper853

include the full text of instructions given to participants and screenshots, if applicable, as854

well as details about compensation (if any)?855

Answer: [NA]856

Justification: N/A857

Guidelines:858

• The answer NA means that the paper does not involve crowdsourcing nor research with859

human subjects.860

• Including this information in the supplemental material is fine, but if the main contribu-861

tion of the paper involves human subjects, then as much detail as possible should be862

included in the main paper.863

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,864

or other labor should be paid at least the minimum wage in the country of the data865

collector.866

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human867

Subjects868

Question: Does the paper describe potential risks incurred by study participants, whether869

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)870

approvals (or an equivalent approval/review based on the requirements of your country or871

institution) were obtained?872

Answer: [NA]873

Justification: N/A874

Guidelines:875

• The answer NA means that the paper does not involve crowdsourcing nor research with876

human subjects.877
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• Depending on the country in which research is conducted, IRB approval (or equivalent)878

may be required for any human subjects research. If you obtained IRB approval, you879

should clearly state this in the paper.880

• We recognize that the procedures for this may vary significantly between institutions881

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the882

guidelines for their institution.883

• For initial submissions, do not include any information that would break anonymity (if884

applicable), such as the institution conducting the review.885
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