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Abstract

Sign language recognition (SLR) is a machine learning task aiming to identify signs in
videos. Due to the scarcity of annotated data, unsupervised methods like contrastive learn-
ing have become promising in this field. They learn meaningful representations by pulling
positive pairs (two augmented versions of the same instance) closer and pushing negative
pairs (different from the positive pairs) apart. In SLR, only certain parts of the sign videos
provide information that is truly useful for their recognition. Applying contrastive methods
to SLR raises two issues: (i) contrastive learning methods treat all parts of a video in the
same way, without taking into account the relevance of certain parts over others; (ii) shared
movements between different signs make negative pairs highly similar, complicating sign dis-
crimination. These issues lead to learning non-discriminative features for sign recognition
and poor results in downstream tasks. In response, this paper proposes a self-supervised
learning framework designed to learn meaningful representations for SLR. This framework
consists of two key components designed to work together: (i) a new self-supervised ap-
proach with free-negative pairs; (ii) a new data augmentation technique. This approach
shows a considerable gain in accuracy compared to several contrastive and self-supervised
methods, across linear evaluation, semi-supervised learning, and transferability between sign
languages.

1 Introduction

Sign language recognition is a challenging task that involves identifying signs in videos. Depending on
the data format, there exist video-based SLR and image-based SLR. SLR with machine learning is rapidly
expanding, but it faces several challenges, particularly in the acquisition of annotated datasets. Indeed,
collecting and annotating sign language data requires linguistic expertise that is difficult to find, it is costly
and time-consuming (De Coster et al., 2024). As an example, annotating 1 hour of sign videos takes about
100 hours (Renz et al., 2021). For this reason, sign language suffers from a scarcity of annotated data.

Recent studies have turned to unsupervised methods such as contrastive representation learning. It offers
a promising solution enabling deep learning models to train without supervision by leveraging data aug-
mentations. Once pre-trained on unannotated sign language data, the model can then be fine-tuned on less
available data and achieve good results (Madjoukeng et al., 2025a;b). Most contrastive approaches generate
positive and negative pairs (Chen et al., 2020a; He et al., 2020) then learn similarities and dissimilarities
from them. A positive pair is usually created by applying an augmentation to an instance, while negative
pairs consist of different instances from the dataset. As an example, for an image, a positive pair consists of
the image with a new color distortion and the rotated image.

Li et al. (2020b) show that contrastive approaches can generate negative pairs with similar semantic char-
acteristics, resulting in a poorly discriminated latent space. This issue is amplified in sign language where
distinct signs may share similar movements (Vogler & Metaxas, 2004) and there are several signs that share
similar hand shapes and movements but convey different meanings (Zuo et al., 2023). Approaches without
negative (e.g., SimSiam (Chen et al., 2020a), BYOL (Grill et al., 2020)) pairs often require additional com-
ponents such as an encoder or clustering functions, increasing the complexity of the model. Additionally,
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sign language videos include repositioning (hand adjustments following a sign) and coarticulation (transitory
motions between signs) (Poitier et al., 2024). These movements are generally present in sign language data,
but they are not useful for sign discrimination. Thus, not all parts of the signs are relevant for their identi-
fication. Contrastive learning approaches are designed to learn invariant representations by leveraging data
augmentation. Thus, using contrastive approaches, all representations even those irrelevant for identification
are learned. This results in low accuracy during the linear evaluation, poorly discriminated embedding space
and limited transferability of learned representations. Methods that focus on local aspects (Xie et al., 2021;
He et al., 2020; Bardes et al., 2022) of images are not suitable for this task, as they only concentrate on
individual elements, rather than entire segments of the video recording.

In response to the above challenges, this paper proposes a self-supervised framework consisting of two key
components: a new self-supervised approach and a new augmentation method. The self-supervised method is
designed to be invariant to augmentations by producing similar representations for a sign and its augmented
variants. While the proposed data augmentation generates positive pairs by degrading the non-relevant
parts of the signs, enabling the self-supervised method to become invariant to those non-relevant parts. The
proposed method eliminates the need for negative pairs, additional encoders, or clustering mechanisms and
surpasses several well-known contrastive and self-supervised approaches on several SLR tasks.

The results show first an improvement in the accuracy and quality of representations learned by the most
popular contrastive architectures, such as SimCLR, MoCo, SimSiam, and BYOL, across several sign language
datasets. Second, the achievement of state-of-the-art results on several datasets without requiring a large
amount of data from diverse sources like some methods. The rest of this paper is organized as follows:
Section 2 presents contrastive learning and several popular methods generally used in SLR. Section 3 presents
previous works in SLR; Section 4 shows that not all parts of a sign language video are equally relevant for the
recognition; Section 5 presents the proposed approach; Section 6 presents experiments and the discussion;
Section 7 presents the ablation of the approach while Section 8 concludes and presents several further
perspectives.

2 Contrastive Representation Learning

Contrastive learning enables deep learning models to learn relevant representations without annotations.
Many contrastive learning methods exist, each with its own particularities; SimCLR (Chen et al., 2020a) is
one of the most popular approaches. At each step, it generates positive pairs through data augmentations,
then maximizes the similarity between positive pairs while minimizing the similarity between positive pairs
and the negative others. However, in this approach, positive and negative pairs are restricted to the instances
within the batch, which limits the learned diversity. MoCo v2 (Chen et al., 2020b) addresses this limitation
by introducing a queue to store the batch of the previous iteration and use two encoders. In SimCLR
and MoCo v2, many negative pairs that often share similar characteristics are generated. This complicates
the discrimination and often yields poorly discriminated embedding space. In response, (Li et al., 2020b)
introduced the prototypical contrastive learning (PCL). It follows the MoCo v2 approach, but at each step,
it uses the k-means clustering (MacQueen, 1967) on instances from the previous iterations in the queue.
The issue with the PCL is the use of a clustering function that requires the predefined number of clusters k.
Modern contrastive methods such as BYOL or SimSiam avoid this issue by using only positive pairs. BYOL
uses two encoders (the online and the target), at each step it generates positive pairs which are then passed
through an encoder. The online encoder is trained to predict the target encoder. SimSiam for its part employs
a straightforward Siamese architecture (Bromley et al., 1993) with one encoder to learn representations
from augmentations. These approaches are generally designed and validated for image classification and
segmentation tasks. They have been used in the SLR and have yielded interesting results (Kothadiya et al.,
2023; Madjoukeng et al., 2025a;b). The next section presents previous works in SLR.

3 Sign Language Recognition

Similar to spoken languages, there exist many sign languages that are different from one region to another.
Several SLR approaches have been developed for various sign languages.
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For the Argentinian sign language, Masood et al. (2018) proposed a two-level architecture (CNN and LSTM)
for the recognition of 46 different signs. They achieved 95.2% accuracy, this accuracy can be attributed by
the limited number of classes. (Marais et al., 2022) showed that an InceptionV3-GRU model (Szegedy et al.,
2016) trained from scratch achieved 74.22% accuracy on a vocabulary of 64 different signs. In the same sign
language, Alyami et al. (2024) benchmarked several architectures and found that the best result (98.25%
accuracy) was achieved with a transformer model.

For the French Belgian Sign Language (LSFB), Fink et al. (2021; 2023) introduced a comprehensive dataset
containing 4,567 distinct signs, thereby providing a valuable resource for the development and evaluation of
sign language recognition systems associated with this region. Leveraging this dataset, they trained a Vision
Transformer (Dosovitskiy et al., 2020) architecture from scratch. Despite the complexity and variability
inherent in this dataset, their model achieved 54.4% accuracy on a subset of 500 signs.

For the American sign language, Li et al. (2020a) proposed a pose-based Temporal Graph Convolutional
Neural Network (Pose-TGCN) for the recognition of the signs of this language. They achieved 55.43 % accu-
racy on a subset of 100 signs of Word Level American Sign Language (WLASL). Tunga et al. (2021) proposed
GCN-BERT, a framework for pose-based SLR that combines a Graph Convolutional Network (GCN) and
BERT. This approach yielded an accuracy of 60.15%. Hu et al. (2021) presented SignBERT, a large-scale
model pretrained on a vast amount of data using a pretext task of masked visual token reconstruction.
After pre-training and fine-tuning their model, they achieved an accuracy of 76.36% on the same subset (100
signs). Zhao et al. (2023) proposed BEST (BERT Pre-training for Sign Language Recognition with Cou-
pling Tokenization), a framework pre-trained on a large amount of data with a pretext task of reconstructing
the masked unit (left hand, right hand, etc.). With their approach, they obtained 77.91% accuracy on the
same subset. Hu et al. (2023) proposed SignBERT+, an enhancement of SignBERT which incorporates a
model-aware hand prior. This improved model achieved 79.84% accuracy. More recently, Jiang et al. (2024)
proposed SignCLIP, a large model trained on 500,000 videos and text descriptions from 44 different sign
language corpora. The architecture involves two encoders: a video encoder and a text encoder. During the
training, both encoders are optimized jointly using a contrastive loss to align video and text representations
in a shared latent space. With this approach, the model achieved 46% accuracy on the ASL Citizen dataset.

For the Greek sign language, Adaloglou et al. (2021) conducted an extensive benchmark of several deep
learning architectures to determine the most effective model. In their experiments, the best performance
was achieved using a hybrid architecture combining an Inception-3D with a bidirectional Long Short-Term
Memory (BiLSTM) module. This design allows the model to benefit both from spatiotemporal feature extrac-
tion (via Inception-3D) and from temporal sequence modeling (via BiLSTM). With their architecture, they
achieved an accuracy of 89.74% on a vocabulary of 310 isolated signs. Recently, on this dataset, Papadim-
itriou et al. (2024) introduced a multimodal framework that leverages both appearance-based information
and skeleton-based information. For the appearance features, they used a ResNet2+1D network, while for
skeleton sequences, they employed a spatio-temporal graph convolutional network. When applied to this
dataset, the model achieved 96.21% accuracy.

Worldwide, there exist over 150 sign languages, but only a few have enough annotated data to train deep
learning models effectively (Bilge et al., 2024). Existing models ((Hu et al., 2021; 2023; Zhao et al., 2023;
Jiang et al., 2024)) rely on huge amounts of data from multiple sign languages to pre-train models, which
are then fine-tuned with few annotated data. However, this presents some challenges, indeed pre-training
requires large datasets (e.g., 500,000 videos for SignCLIP, 243,000 for SignBERT) from diverse sources, which
are sometimes not accessible and require considerable computational resources; additionally, they often lack
sign-specific features (Wong et al., 2025). For an effective solution to data scarcity in SLR, instead of pre-
training models on vast amounts of data from diverse sources, recent studies are focusing on pre-training
the models on unannotated data from a sign language with self-supervised approaches (Ferreira et al., 2022;
Madjoukeng et al., 2025a;b; Wong et al., 2025; Gueuwou et al., 2025a;b). In this context, Wong et al. (2025)
proposed SignRep, a self-supervised learning framework for SLR that leverages a masked autoencoder. They
pretrained their model on the YouTube-SL dataset (Tanzer & Zhang, 2024), a large corpus containing more
than 3000 hours of videos across 25 sign languages, and achieved 49.95% accuracy on the ASL dataset during
fine-tuning. Madjoukeng et al. (2025a) leveraged contrastive learning techniques based on data augmentation
(SimCLR, MoCo, etc.) to learn representations from unannotated sign language data. They pre-trained and
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fine-tuned several contrastive models on data from a specific sign language without requiring vast amounts
of data from diverse sources. Conducted on image-based SLR, this work has yielded remarkable results. By
enabling the training of models in an unsupervised manner on a sign language, contrastive approaches provide
an innovative solution to address the challenges of scarce annotated data in sign language. Madjoukeng et al.
(2025b) show that by using contrastive learning approaches in image-based SLR, it sometimes occurs that the
learned representations are not aligned with the sign in the image. They show that by enabling contrastive
models to be more focused on the signs in the images, the accuracy and faithfulness of the contrastive models
increase. As in image-based SLR, where the sign occupies only a portion of the image, we observe that even
for video-based SLR, not all frames in a sequence are equally relevant for sign identification. The next section
demonstrates that for sign identification, only certain frames are truly useful.

4 Not All Parts Of A Sign Are Relevant For Its Recognition

(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4 (e) Step 5 (f) Step 6 (g) Step 7 (h) Step 8

(i) Step 1 (j) Step 2 (k) Step 3 (l) Step 4 (m) Step 5 (n) Step 6 (o) Step 7 (p) Step 8

(q) Step 1 (r) Step 2 (s) Step 3 (t) Step 4 (u) Step 5 (v) Step 6 (w) Step 7 (x) Step 8

Figure 1: Examples of sign steps across three different datasets: LSA (Ronchetti et al., 2023) (first row),
ASL (Desai et al., 2023) (second row), and LSFB (Fink et al., 2021) (third row).

Datasets for sign languages are generally created in three ways. In some cases, signers are filmed in a
studio performing isolated signs (e.g., LSA). In other cases, isolated signs are segmented from sign language
videos and then annotated (e.g., LSFB). In other instances, the signers self-record the signs in a video
with their equipment (e.g., ASL Citizen). In all scenarios, several issues occur: for signs recorded in a
studio, repositioning movements appear. For signs resulting from segmentation due to segmentation errors,
the beginning or end of a given sign often ends up in another sign. For the signs recorded by the signers
themselves, at the beginning of the signs, the signers often turn on the camera, then turn it off after the signs.
This leads to movements that are not truly useful for a model for an efficient and realistic discrimination.
These movements are neither the essence, nor the frames on which a model should base for the signs
discrimination.

To illustrate these movements, Figure 1 presents one instance of signs: Opaque (first), Sweet (second),
Also (third), randomly selected from the LSA, LSFB and ASL Citizen datasets. For each of these signs
steps, several elements emerge: (i) at the start of the signs, the frame sequences are continuous and follow
a consistent direction; (ii) at the end of each sign, repositioning movements are present (ASL Citizen) or
sometimes preparing for the start of another sign (LSFB). This illustrates that, to identify a sign neither the
initial position nor repositioning to the final position should matter, but rather what happens in between.
To learn useful representations, models should focus more on the relevant parts of signs rather than learning
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Figure 2: SL-FPN architecture: A sign and its augmented variants are passed through an encoder. SL-
FPN optimizes three objectives: (1) minimizing the distance between representations of the two augmented
variants; (2) minimizing the distance between representations of one augmented variant and the original
instance; and (3) minimizing the distance between representations of the original sample and the other
augmented variant using a predictor with a stop-gradient operator.

representations that are irrelevant for sign identification. The next section presents an efficient self-supervised
framework that leverages this argument to produce better representations for SLR.

5 Self-Supervised Framework For Sign Language Recognition (SSL-SLR)

This section presents the proposed self-supervised framework called SSL-SLR. This framework consists of
a new self-supervised approach and a novel data augmentation. The first part of this section presents the
self-supervised approach and the second the proposed data augmentation.

5.1 A novel self-supervised learning approach with free negative pairs: SL-FPN

The proposed SL-FPN aims to eliminate the need for negative pairs, additional clustering functions, or sup-
plementary encoders that increase model complexity, while achieving higher accuracy than other negative-free
methods. Generally, self-supervised methods use either positive pairs or positive and negative pairs without
leveraging the original instance. However, since both positive pairs and the original instance represent the
same concept (i.e., the same sign in this case), there is no reason not to use them simultaneously during the
learning process. This approach leverages both positive pairs and the original instance to enhance training.
Figure 2 presents the proposed architecture. For an input x, two augmented versions are generated by
randomly applying two different augmentations T and T ′ from an augmentation set. Then, the obtained
versions x1, x2 and the original instance x, are each passed through an encoder f and a projection head h.
The representations z1 = h(f(x1)), z2 = h(f(x2)), and z = h(f(x)) are thus obtained. The goal of SL-FPN
is to generate highly similar representations for an instance and its augmented versions. To achieve this, it
minimizes the distance between the representations of an input and its augmented counterparts, typically
using the Mean Squared Error (MSE) as the loss function. The smaller this distance, the better SL-FPN
can produce closely aligned representations in the embedding space for an instance and its augmented vari-
ants. Unlike other self-supervised methods such as BYOL (which uses two branches and two encoders) or
SimSiam (which uses two branches and a predictor), SL-FPN uses three branches, a single encoder and a
predictor. The novelty here does not simply consist of using three branches, but also lies in the way that
they are combined during training. Section 7 shows the effect of permuting the order of the three inputs on
the accuracy.

As shown in Figure 2, the SL-FPN loss is threefold and consists of: (i) an MSE between the representation of
positive pairs (L1); (ii) an MSE between the representation of one of the positive pairs (L2); and the original
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sample; (iii) an MSE between a predictor P that aligns the representation of the original sample with an
augmented variant. The stop-gradient operator defined as sg(z1) = z1 is used to consider one representation
as constant and prevent gradient propagation along this representation. Like SimSiam or BYOL, it is used
as an asymmetrical component, breaking the symmetry between the branches. In the SL-FPN architecture,
the asymmetry is ensured by L3; without it, SL-FPN does not benefit from any asymmetric component. For
n-sized embeddings, the final loss is given by:

L1 = 1
n
∥z1 − z2∥2, L2 = 1

n
∥z − z2∥2, L3 = 1

n
∥P (z)− sg(z1)∥2, L = L1 + L2 + L3 . (1)

The training objective aims to minimize L(θ), with θ the model parameters. For a set of N samples and ℓ
the MSE loss, L(θ) is defined as:

L(θ) = 1
N

N∑
i=1

[
ℓ(fθ(xi

1), fθ(xi
2)) + ℓ(fθ(xi), fθ(xi

2)) + ℓ(P (fθ(xi)), sg(fθ(xi
1)))

]
(2)

By minimizing Equation 2, SL-FPN generates the closest representations for a sign and its augmented
versions in the embedding space. During our experiments, we assigned a weight to each fold of the objective
function (equation 2), but this did not significantly affect the results. Therefore, for simplicity, we did not
include any penalty term.

In representation learning without negative pairs, representation collapse often occurs. It occurs when
the model produces the same representations for all input instances. To avoid this issue, several methods
exist. Wu et al. (2024) show that layer normalization and skip connections in a transformer encoder can
mitigate collapse. Chen et al. (2020a), and Grill et al. (2020) highlight the importance of stop-gradient
mechanisms coupled with a predictor to prevent collapse in self-supervised architectures like SimSiam and
BYOL. Hence, SL-FPN incorporates these components in its architecture to avoid the collapse solution. The
ablation study in Section 7 shows the impact of each of these components in avoiding collapse in the SL-FPN.
This approach can be applied to a wide range of computer vision tasks and can yield competitive results.
In particular, it can be useful in situations where there is a risk of semantic inconsistency between positive
pairs. This is a well-known issue in contrastive learning, where positive pairs may no longer share the same
semantic information (Guo & Shi, 2023). In such cases, by leveraging the original instance, SL-FPN can
prove to be very effective unlike other self-supervised approaches.

With the proposed SL-FPN architecture alone, the challenge of ensuring the relevance of the learned repre-
sentations remains. Indeed, there is no guarantee that it will focus on features truly discriminative for sign
identification. To address this issue, the next section introduces a new data augmentation strategy designed
to help SL-FPN focus on the most relevant parts of the signs.

5.2 A new augmentation method

In contrastive learning, the augmented variants are generally obtained by applying augmentations to all parts
of a sequence. By learning to produce similar representations between a sign and its augmented variant,
contrastive learning methods aim to build an invariant representation from the augmentations. (Madjoukeng
et al., 2025b) show that, for image-based SLR, applying augmentations while preserving the region of interest
(sign in the image) helps contrastive models to better focus on it and improve the performance in downstream
tasks. Hence, in the same way, the proposed augmentation method aims to generate positive pairs by
preserving the parts of the signs that are more discriminant for their identification. For image-based SLR,
the region of interest can be identified using segmentation methods such as Mask R-CNN (He et al., 2017)
or others. However, video-based SLR faces a major challenge: there is no established method to identify the
frames that are relevant for sign recognition. To fill this gap, the first step of the proposed augmentation is
to determine the relevant frames for the signs identification.

Determining the relevant frames for signs identification

In Section 4, it was shown that due to certain movements (repositioning, coarticulation, etc.), the information
truly useful for discriminating signs is not found throughout the entire sequence. The fundamental question
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is therefore to determine where these discriminative parts begin and end within the sequence. The main
objective of this step is to determine the boundary importance. It is the boundary that marks when frames
become and stop being relevant for sign identification. This step involves identifying (i) the point in the
sequence from which frames contain sufficient discriminative information (k∗

s); and (ii) the point until which
these frames remain useful before losing their discriminative ability (k∗

e). To date, to the best of our knowl-
edge, no standard method exists in the literature to locate these discriminative regions within a sequence.
In this research, we propose an intuitive approach based on a contrastive algorithm with a transformer as
backbone, combined with a temporal augmentation technique, denoted π.

A sign is a sequence of frames starting from an initial frame ks to a final frame ke. The objective is to
determine the optimal frames k∗

s and k∗
e , which represent the boundary importance. Transformer-based

architectures with positional encoding are particularly sensitive to the positioning of elements within the
sequence. Contrastive methods generate positive pairs through augmentations and learn representations that
are invariant to these augmentations. Thus, a contrastive approach equipped with a transformer encoder
offers two key properties: (i) invariance to augmentations, inherited from the contrastive loss; (ii) sensitivity
to the order of elements in the sequence, induced by the transformer positional encoding. Moreover, it
is well established that the performance of contrastive models in downstream tasks (SLR in this case)
strongly depends on the quality of the learned representations (Tian et al., 2020; Roschewitz et al., 2024).
The detection of relevant frames therefore relies on the combination of these two properties and on the
exploitation of this information.

The idea is to use a contrastive algorithm to progressively degrade a sign, first from the first to the last frame
(to determine the frame k∗

s), then from the last to the first frame (to determine k∗
e). The impact of each

degradation is then evaluated on linear evaluation. If the model becomes invariant to frames necessary for
identifying a sign, its performance during linear evaluation will be low. Conversely, if it learns to be invariant
to irrelevant frames, it will focus more on informative parts, leading to better downstream performance. For
the degradation, several augmentations can be applied. Due to its capacity of modifying the temporal order of
sequences while preserving the local distribution of the frames, temporal permutation is chosen. Additionally,
as a transformer encoder with a positional encoding is sensitive to the positioning of each element in the
sequence, temporal permutation will induce diversity between the positive pairs from the point of view of
the transformer encoder, without compromising the robustness of the transformer to local factors such as
pose estimation error or other local perturbations. Contrary to augmentations such as rotations, Gaussian
blur, flips that are applied at the local frame level. Algorithm 1 presents an overview of this method. It
takes as input a dataset D, a contrastive algorithm C, two augmentations π1 and π2 (typically two random
permutations). Its goal is to determine k∗

s and k∗
e (boundary importance) whose permutation maximizes the

classification accuracy of C. For k∗
s , the algorithm evaluates the accuracy after permuting the first ks frames,

increasing ks as long as accuracy increases. For k∗
e , it follows a symmetric procedure on the last ke frames.

The SegmentEval function applies π1 and π2 to the selected segment, inserts the modified segments back
into the sequence, and measures accuracy via C. The process stops for each parameter when further changes
no longer improve accuracy and returns (k∗

s , k∗
e) as the optimal lengths before stagnation. For datasets

containing long sequences of signs, instead of iterating over all frames, the evaluation can proceed in frame
steps (e.g., every p frame) which reduces computational cost.

After determining the boundary importance, the proposed augmentation consists of generating positive pairs
by applying augmentation on the first k∗

s and on the last k∗
e to help the contrastive model to be more focused

on the relevant part of the sign. The next part of this section presents two case studies as proof of concept
for determining k∗

s and k∗
e : one on the GSL and the other on the LSFB dataset.

Proof of concept: a study on the GSL and LSFB datasets

To give an overview on how Algorithm 1 performs and determine the default (k∗
s , k∗

e) parameters, this part
of the paper provides an empirical study of the application of this algorithm on the GSL (medium) and
the LSFB (large) datasets. The model parameters are described in section 6.2, and the contrastive method
used was SL-FPN trained five consecutive times for each permutation. Figure 3 shows the accuracy (linear
evaluation) variations when applying permutations to the first ks and last ke frames of a N -frame sequence.
We observe that when incrementally permuting ks initial frames, the accuracy evolves progressively until
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(a) (b) (c) (d)

Figure 3: Variation of the accuracy during linear evaluation protocol on the LSFB (3a, 3b) and GSL (3c,
3d) dataset based on the number of k shuffled frames at the beginning (from the left to the right (3a ,3c)
and at the end (from the right to the left (3b, 3d).
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ks reaches approximately N/3. Beyond this threshold (about the first third of the frames), the accuracy
begins to decrease continuously, collapsing completely when ks = N (all frames permuted), which seems
natural, as all temporal information is then lost. Similarly, when randomly permuting the ke last frames, the
accuracy remains stable until ke ≈ N/4 (the last quarter of frames). Beyond this point, accuracy decreases
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and eventually collapses when ke = N . These results suggest the model is robust to temporal order loss in
both the first third and last quarter of the sequence. Consequently, frame order appears most critical in the
central portion of the sequence (approximately between positions N/3 and N −N/4). These frames are thus
identified as the most useful in the signs identification according to the dataset. After identifying the key
frames, the generation of positive pairs is based on applying permutations at different stages. Specifically,
permutations are performed on the frames located between the first and N/3, as well as on those between
N −N/4 and the last one.

Choosing parameters that maximize overall accuracy seems like a reasonable idea, but it is important to note
that in a sign language dataset, not all signs usually follow the same temporal distribution (i.e., some may
become relevant at frame t, while others at t + 1). Hence, there exists a global temporal trend, and trends
that may be specific to certain classes or signs in the dataset. Therefore, it is important to measure the
impact of choosing k∗

s and k∗
e for the entire dataset. For this reason, two further experiments were carried

out. The first consists of visualizing the proportion of observations that achieve their best performance using
the parameters k∗

s and k∗
e , and those for which the best performances are not achieved with these parameters.

The second experiment consists of analyzing the effect of the parameters k∗
s and k∗

e on the signs that do not
follow the global temporal distribution of the dataset.

For the first experiment, Figure 4 shows two histograms, each showing the proportion of observations as a
function of their optimal ks (first histogram) and ke (second histogram) values on the LSFB dataset. From
this figure, we note that generally most observations reach their maximum at ks = k∗

s and ke = k∗
e . However,

we also observe that a subset of instances reaches its maximum at lower values, notably with ks = ke = 1
or with ks ̸= k∗

s and ke ̸= k∗
e . This indicates that a small but non-negligible proportion of signs relies

primarily on the initial or the last frames for correct identification. Since the augmentation uses the optimal
parameters for the global trend in the dataset, this proportion of signs represents the failure cases for the
proposed augmentation. For these failure cases, it is essential to assess the performance loss due to the
use of these global values instead of the sign-specific optimal ones. For this reason, for all signs si with
optimal parameters (ksi

s ̸= k∗
s , ksi

e ̸= k∗
e), we measured the difference between the accuracy achieved with

these parameters and that obtained with the global parameters (k∗
s , k∗

e).

Figure 5 reports the obtained results. From this figure, we note that when k∗
s and k∗

e are not optimal, it
incurs a modest loss (1 to 4%) depending on the observations. This loss reaches its maximum value for ks = 1
and ke = 1, which corresponds to signs starting from the first frame and extending to the last frame. These
cases represent the main failure cases for the proposed augmentation. We also observe that as the values of
ks and ke approach k∗

s and k∗
e , the loss becomes less significant. This indicates that the approach is not very

sensitive to small variations around the optimal parameters. The fact that most observations reach their
maximum at ks = k∗

s and ke = k∗
e shows that even though some failure cases may occur, choosing k∗

s and
k∗

e as optimal global parameters is justified. To account for these failure cases, new analytical augmentation
strategies based on the specific behavior of the observations need to be developed.

The parameters k∗
s and k∗

e can be modified according to each specific case and can be done as a preprocessing
task. For datasets containing long sign sequences, this procedure can lead to a considerable computational
cost. This cost can be estimated as 2 × k × T, where k is the number of tests, T is the execution time
per test, and the factor 2 accounts for the test being performed in both directions. To alleviate this issue,
one solution is to apply the procedure to subsets of the sequence (subsets consisting of a certain number of
frames), which significantly reduces the number of tests. Another approach is to generalize based on prior
information about the data. In our case repositioning movements and coarticulations are present across
different datasets. Since the sequences have similar lengths, include both native and non-native signers, and
maintain similar frame rates (GSL and ASL having identical FPS, while LSFB at 50 and LSA at 60 are
close), we will consistently apply the parameters ks = N/3 and k∗

e = N −N/4 across all our experiments.

Note that, this method can be apply beyond isolated sign recognition. For instance, in continuous sign
recognition, non-relevant movements (such as coarticulation and repositioning) are also present. In this
field, the goal is to minimize the Word Error Rate (WER) (Chen et al., 2022) which is the proportion
of signs that are inserted, substituted, or deleted relative to the reference sequence. These coarticulation
movements can sometimes be mistakenly interpreted as signs, leading to an increase in WER. By properly
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calibrating this augmentation method, it can therefore prove to be particularly useful in this domain, as it
helps to better handle the natural variations occurring in continuous signing. The next section evaluates the
SL-FPN, the proposed data augmentation and the SSL-SLR framework (SL-FPN architecture coupled with
the proposed augmentation).

Algorithm 1 Search for boundary importance k∗
s , k∗

e

Require: D (dataset), C (algorithm), N (sequence length), position ∈ {"first", "last"}
Ensure: k∗

s , k∗
e : the boundary importance

1: function FindOptimalK(D, C, N, position)
2: k ← 1
3: aprev ← SegmentEval(k,D, C, position)
4: k ← 2
5: acurr ← SegmentEval(k,D, C, position)
6: while k < N and acurr > aprev do
7: aprev ← acurr
8: k ← k + 1
9: acurr ← SegmentEval(k,D, C, position)

10: end while
11: return k
12: end function
13: k∗

s ← FindOptimalK(D, C, N, "first")
14: k∗

e ← FindOptimalK(D, C, N, "last")
15: return k∗

s , k∗
e

function SegmentEval(k,D, C, position)
for S = (f1, . . . , fN ) ∈ D do

if position = "first" then
seg1 ← π1(f1, . . . , fk) ▷ (f1, . . . , fk) are the frames.
seg2 ← π2(f1, . . . , fk)
S(1) ← (seg1, fk+1, . . . , fN )
S(2) ← (seg2, fk+1, . . . , fN )

else
seg1 ← π1(fN−k+1, . . . , fN )
seg2 ← π2(fN−k+1, . . . , fN ) ▷ π1, π2 are two independent random permutations.
S(1) ← (f1, . . . , fN−k, seg1)
S(2) ← (f1, . . . , fN−k, seg2)

end if
Apply C using (S(1), S(2)) as the positive pair

end for
return accuracy in linear evaluation

end function

6 Experiments

This section first introduces the datasets used, then provides a quantitative and qualitative evaluation
of different methods. Finally, it benchmarks the proposed approach against state-of-the-art methods on
different datasets. The quantitative analysis assesses representation quality through performance on a linear
evaluation protocol. This evaluation consists of pretraining a contrastive approach, freezing the backbone
and training a simple multilayer perceptron on top of it. The qualitative analysis offers a visualization of
the latent space and a measure of intra-class inertia for each method. For the comparison against the state-
of-the-art methods, the SSL-SLR approach was fine-tuned in the same way as the other methods and its
performance was then evaluated. The obtained results were subsequently compared with those reported in
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the literature for each dataset. Throughout this entire section, SL-FPN refers to the architecture described
in Figure 2 without the proposed augmentation, while SSL-SLR corresponds to the SL-FPN combined with
the proposed augmentation (described in Section 5.2).

6.1 Datasets and splits

This study uses five datasets with different sizes. These datasets are either made of video clips of signers
executing signs independently or sign language sentences with word annotations enabling the extraction of
the isolated words. First, we use the French Belgian Sign Language (LSFB) (Fink et al., 2021). It is one
of the largest sign language datasets in the world. It contains 4,567 different classes (signs). Second, the
Argentinian sign language (LSA) (Ronchetti et al., 2023) that is a partially recorded dataset in a studio with
a uniform background, it contains 64 different classes. Third, the Greek sign language (GSL) (Adaloglou
et al., 2021) that is captured in a studio with a consistent background and regulated lighting, it contains
310 classes. Fourth, the American sign language Citizen (ASL Citizen) dataset (Desai et al., 2023) that is a
crowdsourced dataset comprising videos of isolated signs performed at home by both native and non-native
signers, it contains 2731 different classes. Fifth, the Word Level American Sign Language (WLASL) (Li
et al., 2020a), a variant of ASL containing 21,803 signs across 2,000 classes.

For this study, the different datasets were split according to their original papers to ensure fair evaluation
and comparison. Some were split 70% for training and 30% for testing (e.g., LSFB), others 80% for training
and 20% for testing (e.g., LSA), and 80/10/10 for the GSL. For the LSFB and ASL datasets, the 500 most
represented classes were used for the linear evaluation; for GSL and the LSA all their classes were used.
For the WLASL dataset, we used the WLASL-100 and WLASL-300 subsets, as it is commonly considered a
benchmark for evaluating downstream tasks.

6.2 Training parameters

The experiments use the Python language, typically the PyTorch 2.6 + cu118. For the implementation
of the different contrastive learning approaches, we used the PyTorch Lightly library 1, which proposes
an implementation for the different methods. Given the sequential nature of data, a transformer encoder,
primarily the Vision Transformer (VIT) (Dosovitskiy et al., 2020) provided by Fink et al. (2023) was used as
the backbone for the different approaches. As a pre-processing task, the videos were first transformed into
skeleton sequences using MediaPipe (Lugaresi et al., 2019). This choice is based on the lower computational
cost and insensitivity to visual factors of skeletons compared to videos (Jiang et al., 2021). The batch size was
set to 512 signs, each with a maximum sequence length of 64 frames as usual (Desai et al., 2023). During the
unsupervised training, the models were trained on 200 epochs, each with parameters specified in their original
papers (Chen et al., 2020a; Chen & He, 2021; Grill et al., 2020; He et al., 2020). For the SSL-SLR pretraining,
the optimizer was SGD and the learning rate was fixed to 0.001. During the fine-tuning stage, the models
were trained for 1000 epochs using SGD optimizer, along with a linear warmup scheduler. The learning
rate was progressively increased during the first 600 iterations, then gradually decreased over the remaining
400 (Goyal et al., 2017). The temperature parameter used in the different contrastive learning variants was
fixed at 0.1. The transformer-based encoder consisted of 12 blocks, with 8 attention heads and an embedding
dimension of 512. We used two layer normalizations at the input embedding stage (Dosovitskiy et al., 2020).
The dropout rate was fixed at 0.1. The projection head of all the models was a 2-layer perceptron with a
512-dimensional input and a 128-dimensional output. The predictor P was also a 2-layer perceptron with a
ReLU activation function.

6.3 Quantitative and time evaluation

For the quantitative evaluation, several types of evaluations were conducted. First, a linear evaluation
was conducted that consists of training a classifier on the frozen backbone trained with the unsupervised
methods on the training set. For this step, the ASL, LSA, LSFB and GSL were used. For the LSFB and
ASL, the 500 most represented classes were used. To assess the proposed augmentation method, a linear

1https://docs.lightly.ai/self-supervised-learning/index.html
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protocol evaluation using the proposed augmentation and the classical augmentations (rotation, Gaussian
blur and flip) applied to the whole sequence with all the approaches was conducted. Second, a semi-
supervised evaluation with 30% of the annotated data (30% of the training set) was also conducted. For the
SLR, where the annotation process is scarce, a semi-supervised evaluation aims to demonstrate the value of
learning from unlabeled data to improve model performance when only a small amount of annotated data
is available. Third, an evaluation of the possible transfer of the learned representations from a represented
sign language to another not represented by the approaches was conducted. For each model, we performed
eight consecutive training runs and reported the average accuracy with 95% confidence.

Table 1 above presents the results obtained with the proposed SL-FPN compared to other contrastive
methods, using first the proposed augmentation method and second standard image augmentation strate-
gies applied to the entire sequence. From this table, we observe that the proposed augmentation helps
all the contrastive approaches to better learn meaningful representations. When standard augmentations
are applied, performance generally decreases across all methods. This indicates that the proposed data
augmentation strategy enables the models to learn more discriminative representations across the different
datasets. In some cases, the proposed augmentation yields substantial improvements, with gains of over 6%
for the recognition of 500 classes and over 12% for the recognition of 310 classes, highlighting its importance.
Therefore, in the following experiments, the proposed augmentation will be consistently applied to compare
all the approaches. As the SL-FPN will be coupled with the proposed augmentation, it will be referred to
as SSL-SLR.

To evaluate the transferability of learned representations from one sign language to another, we performed
unsupervised training on the represented datasets (LSFB and ASL) and conducted linear evaluation on
less represented sign language datasets. Table 2 presents the results obtained using different approaches.
The SSL-SLR method clearly outperforms the others. This result suggests that the representations learned
by SSL-SLR can also be more effectively transferable from one sign language to another compared to the
representations learned by approaches like SimCLR, MoCo, BYOL and SimSiam.

The importance of representations learned from unannotated sign language was also evaluated in low-resource
scenarios. To simulate such settings, a fine-tuning using only 30% of the training set is conducted. The
corresponding results are presented in Table 3. The proposed SSL-SLR consistently outperforms standard
contrastive methods. This highlights the robustness and transferability of the representations learned through
our method, even when limited labeled data is available.

The above results demonstrate the effectiveness of the proposed approach for SLR tasks compared to existing
contrastive and self-supervised methods. They also highlight the impact that contrastive learning can have
on reducing reliance on annotations in SLR. This advancement represents a significant contribution to the
development of models that offer acceptable performance while alleviating the tedious and costly process of
manual annotation.

To better position the SL-FPN approach within the self-supervised literature, it is essential to have an idea
of the execution time during contrastive training compared to other approaches such as BYOL and SimSiam,
which also do not use negative pairs. For this purpose, the execution time of the self-supervised training for
the SL-FPN, SimSiam, and BYOL approaches is reported in Table 4. On the different datasets, we observe
that SimSiam achieves the best execution time. This seems natural, as it employs a single encoder without
requiring negative pairs. In contrast, BYOL demonstrates longer execution times compared to both SL-FPN
and SimSiam. This can be explained by the fact that it employs two distinct encoders, one of which is
updated using an exponential moving average and the other during the backpropagation. SL-FPN shows
a slightly higher execution time than SimSiam, but lower than BYOL. This increase is due to the use of
the original instance. The fact that it does not require performing augmentation on the original instance
considerably moderates its execution time. This demonstrates that the SL-FPN can be effectively integrated
within self-supervised literature.

6.3.1 Qualitative Evaluation

The qualitative evaluation consists in general of visualizing the embedding space to evaluate at which points
the instances of the same class are close in the space. So, UMAP (McInnes et al., 2018) visualization was
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Table 1: Linear evaluation protocol with the proposed augmentation method (ours) versus classical image
augmentations (rotation, Gaussian blur, flip, translation) applied to all the frames.

Datasets SimCLR MoCo v2 SimSiam BYOL SSL-SLR
LSFB (our) 14.16%± 0.24 13.68%± 0.48 15.26%± 0.67 14.72%± 0.65 23.73%± 0.53
LSFB 11.22%± 1.04 10.91%± 1.86 11.84%± 1.71 11.15%± 1.12 16.07%± 1.41
ASL (our) 14.13%± 0.42 14.69%± 0.39 15.91%± 0.56 16.43%± 0.96 20.46%± 1.21
ASL 11.04%± 0.69 11.09%± 1.12 12.17%± 1.36 12.78%± 0.78 15.43%± 1.20
GSL (our) 34.19%± 0.85 36.15%± 0.69 32.01%± 0.54 34.09%± 0.93 47.76%± 0.79
GSL 31.09%± 1.75 30.15%± 1.56 30.11%± 1.47 30.89%± 1.11 35.13%± 1.34
LSA (our) 34.02%± 1.24 35.69%± 1.06 30.06%± 2.14 37.47%± 1.51 41.74%± 1.08
LSA 29.10%± 2.89 27.17%± 2.76 26.16%± 2.46 32.37%± 2.61 36.71%± 1.97

Table 2: Transferring from one sign language to another with the proposed augmentation method.

Datasets SimCLR MoCo v2 SimSiam BYOL SSL-SLR
LSFB to LSA 33.40%± 1.16 32.47%± 1.24 31.15%± 0.67 35.67%± 0.47 46.41%± 0.89
LSFB to GSL 33.24%± 0.68 35.24%± 0.70 40.24%± 0.44 34.22%± 0.51 54.78%± 0.56
ASL to LSA 34.74%± 0.47 31.53%± 0.36 39.16%± 0.39 38.96%± 0.63 43.84%± 0.37
ASL to GSL 32.46%± 0.43 33.58%± 0.43 35.25%± 0.65 34.89%± 1.45 39.73%± 1.21

Table 3: Fine-tuning with 30% of annotations with our augmentation.

Datasets SimCLR MoCo v2 SimSiam BYOL SSL-SLR
LSFB 42.69%± 3.36 42.23%± 2.14 43.69%± 2.69 41.40%± 2.04 49.93%± 2.98
ASL 47.43%± 0.77 47.49%± 0.54 47.23%± 0.63 47.02%± 0.51 49.28%± 0.79
GSL 78.82%± 2.96 77.42%± 2.87 77.02%± 2.95 78.04%± 2.65 83.86%± 2.01
LSA 87.69%± 1.48 88.04%± 1.69 87.96%± 1.36 88.64%± 1.36 92.76%± 1.63

Table 4:
::::::
Linear

:::::::::
evaluation

:::::
time

::
in

:::::::
second

:::
by

:::
the

::::::::
different

:::::::::::
approaches.

:::::::
Dataset

: ::::::::
SimSiam

: ::::::
BYOL

:::::::
SL-FPN

:

::::::
LSFB

::::::::::
2.49× 104

:::::::::
2.67× 104

: :::::::::
2.56× 104

::::
GSL

: ::::::::::
9.77× 103

:::::::::
1.04× 104

: :::::::::
1.02× 104

:

::::
LSA

: ::::::::::
2.67× 103

:::::::::
2.86× 103

: :::::::::
2.77× 103

:

::::
ASL

: ::::::::::
2.22× 104

:::::::::
2.46× 104

: :::::::::
2.43× 104

:

used to show the embedding space. Ideally, the signs with the same class should be closer in the embedding
space.

Figure 6 illustrates the 2D visualization of embedding spaces. Given the high number of classes, we randomly
select and show the different instances of a class across the datasets on the embedding space. On the
ASL, GSL, and LSA datasets, for the randomly chosen class (sign), the embeddings produced by SSL-SLR
are closer than those from the SimCLR, MoCo, BYOL, and SimSiam approaches. This demonstrates the
effectiveness of the proposed method in generating higher-quality representations compared to the other
approaches. However, on the LSFB dataset, the instances are scattered throughout the embedding space
across the different approaches. This can be attributed to the complexity of this dataset (many signs
are visually similar, several variants of the same signs, a large number of classes). Additionally to this
visualization, an intra-class inertia was computed for the different dataset. Table 5 presents the intra-class
inertia obtained by the different approaches on several datasets. It is observable from this table that the
proposed approach performs better than the others.
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(a) SimCLR (GSL) (b) MoCo v2 (GSL) (c) BYOL (GSL) (d) SimSiam (GSL) (e) SSL-SLR (GSL)

(f) SimCLR (LSA) (g) MoCo v2 (LSA) (h) BYOL (LSA) (i) SimSiam (LSA) (j) SSL-SLR (LSA)

(k) SimCLR (ASL) (l) MoCo v2 (ASL) (m) BYOL (ASL) (n) SimSiam (ASL) (o) SSL-SLR (ASL)

(p) SimCLR (LSFB) (q) MoCo v2 (LSFB) (r) BYOL (LSFB) (s) SimSiam (LSFB) (t) SSL-SLR (LSFB)

Figure 6: Visualization of the embeddings using SimCLR, MoCo, BYOL, SimSiam, and the proposed method
on four datasets: GSL, LSA , ASL and LSFB.

6.4 Comparison Against State-of-the-art Methods

To demonstrate the effectiveness of the proposed SSL-SLR in the SLR literature, a benchmark and a com-
parison against others state-of-the-art methods on different datasets are conducted. As in the literature (Hu
et al., 2021; 2023; Jiang et al., 2024; Zhao et al., 2023), SSL-SLR was first pre-trained and fine-tuned for the
comparison. The goal is to compare the proposed approach with previous works done in terms of accuracy
during the recognition task. Table 6 presents the obtained results, on this table the best results are in bold.
From this table, it is observable that, on the LSFB, LSA, ASL Citizen and the GSL dataset, the proposed
approach achieved several well-known state-of-the-art methods. On the WLASL and the ASL Citizen, de-
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Table 5: Intra-class inertia of different approaches

Datasets SimCLR MoCo v2 SimSiam BYOL SSL-SLR (Ours)
LSFB 1.86× 104 1.84× 104 1.36× 104 1.84× 104 0.57× 104

ASL 3.11× 103 1.37× 103 2.81× 103 1.54× 103 0.41× 103

GSL 1.25× 104 0.91× 104 0.69× 104 0.67× 104 0.17× 104

LSA 3.45× 102 2.72× 102 2.27× 102 1.22× 102 0.25× 102

Table 6: Top-1 and Top-5 accuracy of state-of-the-art methods and the proposed SSL-SLR on various sign
language datasets.

Dataset Method Top-1 (%) Top-5 (%)

ASL Citizen SignCLIP (Jiang et al., 2024) 46.00 77.00

::::::::
SignRep

:::::
(avg)

::::::::::::::::::
(Wong et al., 2025)

:::::
37.47

:::::
68.77

::::::::
SignRep

::::::::::
(weighted)

::::::::::::::::::
(Wong et al., 2025)

:::::
49.95

:::::
80.09

SSL-SLR (Ours) 47.06 78.96

LSFB (Fink et al., 2023) 54.40 -
SSL-SLR (Ours) 56.81 -

LSA

(Masood et al., 2018) 95.21 -
(Alyami et al., 2024) 98.25 -
SSL-SLR (Ours) 99.07 -

GSL (Adaloglou et al., 2021) 89.74 -
(Papadimitriou et al., 2024) 96.25 -
SSL-SLR (Ours) 96.73 -

WLASL-100

PSLR (Tunga et al., 2021) 60.15 83.98
SignBERT (Hu et al., 2021) 76.36 91.09
BEST (Zhao et al., 2023) 77.91 91.47
SignBERT+ (Hu et al., 2023) 79.84 92.64
SSL-SLR (Ours) 77.95 93.02

WLASL-300

PSLR (Tunga et al., 2021) 42.18 71.71
SignBERT (Hu et al., 2021) 62.72 85.18
BEST (Zhao et al., 2023) 67.66 89.22
SignBERT+ (Hu et al., 2023) 73.20 90.42
SSL-SLR (Ours) 71.21 90.74

spite the fact that the other approaches (SignRep, SignBERT, SignBERT+) are pretrained on a vast amount
of data, the proposed SSL-SLR surpassed several of them in top-5 accuracy on the WLASL.

7 Ablation Study

We examined the impact of the predictor equipped with the stop-gradient operator, the use of the original
sample, layer normalization, and the permutation of the components of the proposed SL-FPN during training.
We used the LSFB dataset due to its size and diversity. Feature collapse occurs when the model produces the
same representations for different signs. To determine when a model collapses, (Chen & He, 2021) showed
that, given d the embedding size within the interval [0, 1√

d
], the standard deviation of the model drops to zero.

Following their protocol, we examine the model output in the same way. To investigate this, we trained the
model in four different settings: (i) without the predictor, the stop-gradient and layer normalization (without
(p, st & LN)); (ii) without the predictor, the stop-gradient and with layer normalization (without p, st &
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Figure 7: Standard deviation and linear evaluation accuracy of the model with ablation of predictor, stop-
gradient, original sample and layer normalization on the LSFB dataset.

with LN); (iii) without the original sample (without o); and (iv) by permuting the original sample and one
of the positive pairs (perm) in the proposed SL-FPN. Figure 7 shows the results obtained. When both the
predictor and the layer normalization are used, there is no sign of feature collapse. However, when both are
removed, the standard deviation drops to zero after a few training steps, clearly indicating collapse. When
only layer normalization is used, the standard deviation gradually decreases, which suggests that it slows
down the collapse but does not fully prevent. This is in line with the result of (Wu et al., 2024), which
shows that layer normalization only does not prevent feature collapse. We also note that during the training,
when the original sample is not used and by permuting the order of the inputs in the proposed SL-FPN, the
accuracy decreases significantly. This suggests that using the original input, when it is well-calibrated, can
significantly improve the quality of the representations.

8 Conclusion

This paper introduces a new self-supervised framework for sign language recognition. The framework is
based on a novel self-supervised approach and a new augmentation designed to degrade the non-informative
part of a sign. The self-supervised approach leverages both positive pairs and the original sample. It is
designed to be invariant to non-informative parts of signs while producing similar representations for a
sign and its augmented variants. To validate the effectiveness of the proposed approach, several evaluation
protocols, including linear evaluation, cross-lingual representation transfer and semi-supervised learning have
been conducted. The results demonstrate the effectiveness of the proposed method compared to existing
contrastive and state-of-the-art approaches across these different settings. This advancement represents a
significant contribution to the development of models that offer acceptable performance while alleviating the
tedious and costly process of manual annotation. Despite its effectiveness, the performance still has room
for improvement on large-scale datasets. Furthermore, the proposed method to determine the boundary
importance is currently determined empirically. In future work, we plan to develop a non-empirical method
to determine boundary importance. This will enable to mitigate the failure cases that face the current
version. We also plan to extend this work for the cases like continuous sign language.
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