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Abstract

We investigate the in-context learning capabilities of transformers for the d-dimensional
mixture of linear regression model, providing theoretical insights into their existence, gen-
eralization bounds, and training dynamics. Specifically, we prove that there exists a trans-
former capable of achieving a prediction error of order O(4/d/n) with high probability,
where n represents the training prompt size in the high signal-to-noise ratio (SNR) regime.
Moreover, we derive in-context excess risk bounds of order O(L/+/B) for the case of two
mixtures, where B denotes the number of training prompts, and L represents the number
of attention layers. The dependence of L on the SNR is explicitly characterized, differing
between low and high SNR settings. We further analyze the training dynamics of transform-
ers with single linear self-attention layers, demonstrating that, with appropriately initialized
parameters, gradient flow optimization over the population mean square loss converges to a
global optimum. Extensive simulations suggest that transformers perform well on this task,
potentially outperforming other baselines, such as the Expectation-Maximization algorithm.

1 Introduction

We investigate the in-context learning (ICL) ability of transformers for the Mixture of Regression (MoR)
model (De Veaux, 1989} [Jordan & Jacobs, [1994). The MoR model is widely applied in various domains,
including federated learning, collaborative filtering, and healthcare (Deb & Holmes, [2000; |Viele & Tong,
2002; Kleinberg & Sandler, [2008; [Faria & Soromenho) [2010; |Ghosh et al.| |2020) to address heterogeneity
in data, often arising from multiple data sources. In particualr, we consider linear MoR models where
independent and identically distributed samples (z;, ;) € R? x R, for i = 1,...,n, are assumed to follow the
model y; = {B;,x;) + v;, where v; ~ N'(0,9?) represents observation noise, independent of z;, and 3; € R?
is an unknown regression vector. Specifically, there are K distinct regression vectors { B,’:}f:p and each f;
is independently drawn from these vectors according to the distribution {71';:}521. The goal for a new test
sample, x,1, is to predict its label y,11. Specifically, we are interested in the ICL setup for MoR (Kong
et al., |2020; Pathak et al., [2024)).

Classically, the Expectation Maximization (EM) algorithm is a widely used method for estimation and
prediction in the MoR models (Balakrishnan et al.,|2017; [Kwon et al., 2019} [Kwon & Caramanis|, [2020; Wang
et al., 2024). A major limitation of the EM algorithm is its tendency to converge to local maxima rather
than the global maximum of the likelihood function. This issue arises because the algorithm’s performance
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crucially depends on the initialization (Jin et all |2016). To mitigate this, favorable initialization strategies
based on spectral methods (Chaganty & Liang, 2013; [Zhang et al., |2016; |(Chen et all 2020)) are typically
employed alongside the EM algorithm.

In an intriguing recent work, through a mixture of theory and experiments, Pathak et al.| (2024) examined
the performance of transformers for ICL MoR models. However, their theoretical result suffers from the
following major drawback. They only showed that the existence of a transformer architecture that is capable
of implementing the oracle Bayes optimal predictor for the linear MoR problem. That is, they assume the
availability of { ﬁ,’:}le, which are in practice unknown and are to be estimated. Hence, there remains a gap
in the theoretical understanding of how transformers actually perform parameter estimation and prediction
in MoR. Furthermore, their theoretical result is rather disconnected from their empirical observations which
focused on ICL. Indeed, they leave open a theoretical characterization of the problem of ICL MoR (Pathak
et al., 2024} Section 4).

In this work, we first demonstrate that transformers are capable (in an existence sense) of in-context learning
for linear MoRs by effectively implementing the EM algorithm, a double-loop algorithm in which each inner
loop consists of multiple steps of gradient ascent. We derive in-context excess risk bounds for the global
solution of the empirical in-context risk minimizer, precisely quantifying the number of pre-training tasks
required to achieve accurate predictions. While the aforementioned existence result and in-context excess
risk bounds provide insight into capability of transformers for in-context learning MoR modes, from the
practical point of view, it is more important to understand the training dynamics of transformers under the
MoR models. Towards that, we also analyze the performance of gradient flow (in the population setting)
for ICLL MoR models with linear self-attention transformers. Furthermore, through our experiments, we
empirically show that trained transformers achieve efficient prediction and estimation in the MoR model
while substantially mitigating the initialization challenges typically associated with the EM algorithm. To
summarize, we make the following contributions:

o We demonstrate the existence of a transformer capable of learning MoR models by implementing
the dual-loops of the EM algorithm. This construction involves the transformer performing multiple
gradient ascent steps during each M-step of the EM algorithm. In Theorem [3.1] we derive precise
bounds on the transformer’s ability to make prediction in high signal-to-noise (SNR) regimes. In
the special case of two mixtures, Theorem [3.2] also provides the precise high-probability bound for
the estimation of the parameters by the constructed transformer in the high and low-SNR settings.

o In Theorem [{.I] we analyze the sample complexity associated with pretraining transformers using
a finite number of ICL training instances. Additionally, Theorem [£.2] provides guarantee that the
gradient flow of the parameters of single linear self-attention layers will eventually converge to the
global optimum under population mean squared loss with appropriate initializations.

e As a byproduct of our analysis, we also derive convergence results with statistical guarantees for
the gradient EM algorithm applied to a two-component mixture of regression models, where the
M-step involves T steps of gradient ascent. We extend this approach to the multi-component case,
improving upon previous works, such as [Balakrishnan et al.| (2017)), which considered only a single
step of gradient ascent.

1.1 Related works

Transformers and optimization algorithms: |Garg et al| (2022)) successfully demonstrated that trans-
formers can be trained to perform ICL for linear function classes, achieving results comparable to those
of the optimal least squares estimator. Beyond their empirical success, numerous studies have sought to
uncover the mechanisms by which transformers facilitate ICL. Recent investigations suggest that transform-
ers may internally execute first-order Gradient Descent (GD) to perform ICL, a concept explored in depth
by |Akytrek et al. (2023)), Bai et al.| (2024)), Von Oswald et al. (2023a)), [Von Oswald et al.| (2023b]), |Ahn
et al.| (2024)), [Huang et al| (2024) and |Zhang et al.| (2024). Specifically, Akytrek et al. (2023)) identified
fundamental operations that transformers can execute, such as multiplication and affine transformations,
showing that transformers can implement GD for linear regression using these capabilities. Building on
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this, Bai et al| (2024) provided detailed constructions illustrating how transformers can implement convex
risk minimization across a wide range of standard machine learning problems, including least squares, ridge,
lasso, and generalized linear models (GLMs). Further, |Ahn et al.| (2024) demonstrated that a single-layer
linear transformer, when optimally parameterized, can effectively perform a single step of preconditioned
GD. [Zhang et al.| (2024) expanded on this by showing that every one-step GD estimator, with a learnable
initialization, can be realized by a linear transformer block (LTB) estimator.

Moving beyond first-order optimization methods, [Fu et al.| (2023) revealed that transformers can achieve
convergence rates comparable to those of the iterative Newton’s method, which are exponentially faster than
GD, particularly in the context of linear regression. These insights collectively highlight the sophisticated
computational abilities of transformers in ICL, aligning closely with classical optimization techniques. In
addition to exploring how transformers implement these mechanisms, recent studies have also focused on
their training dynamics in the context of linear regression tasks; see, for example, |Zhang et al.| (2023) and
Chen et al.| (2024)). In comparison to the aforementioned works, in the context of MoR, we demonstrate that
transformers are capable of implementing double-loop algorithms such as the EM algorithm.

EM Algorithm: The analysis of the standard EM algorithm for mixture of Gaussian and linear MoR models
has a long-standing history Wu/ (1983); McLachlan & Krishnan|(2007)); Tseng (2004)). Recently, Balakrishnan
et al.| (2017)) proved that EM algorithm converges at a geometric rate to a local region close to the maximum
likelihood estimator with explicit statistical and computational rates of convergence. Subsequent works
(Kwon et al.; 2019; |2021]) established improved convergence results for mixture of regression under different
SNR conditions. [Kwon & Caramanis (2020) extended these results to mixture of regression with many
components. Gradient EM algorithm was first analyzed by Wang et al.| (2015) and [Balakrishnan et al.
(2017). It is an immediate variant of the standard EM algorithm where the M-step is achieved by one-step
gradient ascent rather than exact maximization. They proved that the gradient EM also can achieve the local
convergence with explicit finite sample statistical rate of convergence. Global convergence for the case of
two-components mixture of Gaussian model was show by |Xu et al.| (2016])), Daskalakis et al.| (2017) and Wu &
Zhou| (2021)). The case of unbalanced mixtures was handled by |Weinberger & Bresler| (2022). Penalized EM
algorithm for handling high-dimensional mixture models was analyzed by |Zhu et al.| (2017), Yi & Caramanis
(2015) and Wang et al.| (2024)), showing that gradient EM can achieve linear convergence to the unknown
parameter under mild conditions.

2 Preliminaries

Mixture of regression model: We now formally describe the MoR problem. The underlying true model
is described by the equation:

yi = x; Bi + vy, (1)

where z; ~ N(0,14), v; ~ N(0,9%1;) denotes the noise term with variance 92, and $3;’s are i.i.d. random
vectors that taking the value 8 with probability m} for k£ = 1,..., K. The vectors §; are unknown. For
the MoR model equation |1} we define R;"j = H BF — ﬁj’-" H2 as pairwise distance between regression vectors, and
Rumin = min;; R;“j, Riax = max;,; R;"j as the smallest and largest distance respectively. The SNR, of this
problem is defined as the ratio of minimum pairwise distance versus standard deviation of noise

7 = Rumin/9. (2)

When the number of the components K = 2 and we represent 7 = —p3 = *, the SNR reduces to
1 = 2||*|2/9. In Section [3] we will show that the performance of the constructed transformer solving the
MoR problem in general depends on the SNR condition of the problem.

Transformer architecture: We focus on transformers that handle the input sequence H € RP*N by
integrating attention layers and multi-layer perceptrons (MLPs). These transformers are structured to
process the input by effectively mapping the complex interactions and dependencies between data points
in the sequence, utilizing the capabilities of attention mechanisms to dynamically weigh the importance of
different features in the context of regression analysis.
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Definition 2.1. An attention layer with M heads is denoted as Attng(-) with parameters 8 =
{(Vin, Qur Kin) Yimear) € RP*P. On any input sequence H € RP*N | we have

M

H = Attng(H) := H + % S (ViH) x o((QuH) " (KnH)) € RPN

m=1

where o : R — R is the activation function and D is the hidden dimension. In the vector form,

B M 1 N
hi=hi+ Y, 5 2, 0((Qmhis Kmbj)) - Vinh;.
m=1"" j=1

Remark 2.1. The prevalent choices for the activation function include the softmax function and the ReLLU
function. In our analysis in Section [3] the attention layer (defined in Section employs a normalized
ReLU activation, ¢t — o(t)/N, which is used for technical convenience. This modification does not impact
the fundamental nature of the study. There are various works on transformers that use non-softmax function
as activation, (e.g. |Shen et al| (2023)), [Bai et al.| (2024) for ReLu activation, |Luo et al.| (2021) for kernel
attention, (Qin et al.| (2022)) for cosFormer).

Definition 2.2 (Attention only transformer). An L-layer transformer, denoted as TFy(-), is a composition
of L self-attention layers,

TFy(-) = Attngr o Attngr—1 0--- o Attng: (H)

where H € RP*¥ is the input sequence, and the parameter 6 = (91, ceey HL) consists of the attention layers
¢ £ -t
00 = {(Va), QW Ki)}eparion = RPXP.

Our theory counsists of two parts, (i) the existence of the theoretical transformer that can internally implement
the EM algorithm, and (ii) the dynamics of transformers with a single linear self-attention layer trained by
gradient flow on mixture of regression tasks. In the first part, the input sequence H € RP*(+1) has columns

hi = [2:,95,0p—a-3,1,4;] ",

! T
hpy1 = [xn+17 Yn+1> Op—4d-3,1, 1]

(3)

where y, = y;t; and ¢; := 1{i < n + 1} is the indicator for the training examples. Then the transformer TFy
produces the output H = TFy(H). The prediction §,; is derived from the (d 4+ 1,n + 1)-th entry of H,
denoted as §,11 = ready(ﬁ )= (ﬁnﬂ) di1 Our objective is to develop a fixed transformer architecture that
efficiently conducts ICL for the mixture of regression problem, thereby providing a prediction 41 for y, 41
under an appropriate loss framework. Besides, the constructed transformer in Section [2] can also extract an
estimate of the regression components, which is realized by operator readg(TF(H)) = [TF(H)]d+2:2d+2,n+1
extracts the estimate of 8* in the output matrix. In the second part, the embedded input matrix is given by

E— ( Ty T2 o Tp Tptd ) e Rd+1)x(n+1) (4)
y1 y2 ... yn O
and is fed into a single-layer linear self-attention layer frga : R(A+Dx(n+1) _ R{d+1)x(n+1)
ETQ'KE
fusa(B:0) = B4 vE 2O EE, 6

where 0 = {K,Q,V}. The prediction on the query sample x,,.1 is given by the bottom-right entry of the
matrix by fLSA7 ie. Ypi1 = [fLSA(E;G)]d+1,n+1'

Remark 2.2. We highlight the key ideas of our work. In Section [B] Theorems [3.1]and [3.2] provide an explicit
construction of a transformer that executes gradient-EM within its forward pass—an E-step followed by T
gradient updates in the M-step—along with the SNR and prompt-length regimes where the error bounds
hold. This is an existence result. In Section [4 we pre-train transformers by minimizing MSE. Thus, the
learning mechanism is not tied to our constructive parameterization and can match or surpass it. Our
experiments report end-to-end excess MSE, showing the effectiveness of trained transformers, though this
does not by itself certify that they use EM internally—even though they are capable of doing so.
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Remark 2.3. Equation equation [3| is used only for theoretical convenience, not as a data-preprocessing
recipe. It specifies a per-token “register” layout that lets the proof show how one attention layer can
read /write quantities needed for an EM step, with zero blocks serving as scratch space and ¢; as position
tags. In practice, we feed standard embeddings for (x;,y;) and a masked query x,.1, while a single input
projection can create the scratch dimensions automatically. Writing the prompt as E in equation [4] is just
a compact reformatting of inputs (matching common implementations) for technical convenience and does
not introduce new assumptions.

Notation: Given two functions g(n) and f(n), we say that f(n) = Q(g(n)), if there exist constants ¢ > 0
and ng >= 0 such that f(n) = c*g(n) for all n = ny. We say that f(n) is O(g(n)) if there exist positive
constant C' and ng such that 0 < f(n) < Cg(n) for all n = ngy. For a vector v € R, its f5 norm is denoted
by |[v[2. For a matrix A € R¥4 | A],, denotes the operator (spectral) norm of A. We denote the joint
distribution of (z,y) in model equationby P,y and the distribution of x by P,. Besides, we denote the joint
distribution of (z1,y1,-..,%n, Yn, Tn+1,Yn+1) by P, where {x;,y;}7, are the input in the training prompt
and x,,41 is the query sample. Besides, in Section [3} we use y; € R defined as y; = y;t; and t; = 1,41y for
i=1,...,n,n+ 1 to simplify our notation.

Evaluation: Let f: H — g € R be any procedure that takes a prompt H as input and outputs an estimate
§ on the query y,,.1. We define the mean squared error (MSE) by MSE(f) := Ep[(f(H) — yn+1)2].

3 Existence of transformer for MoR

In this section, we show the existence of a transformer that can approximately implement the EM algorithm
internally in Theorem and Theorem [3.:2] Note that under model Theorem [I the oracle vector that
minimizes the mean squared error of the prediction Ep[(x,),18 — yn+1)?] is given by

K
9% = arg i B, (a8~ ] = X 72
=1

Generally, the transformer constructed in Theorem H will provide a prediction that is close to x, 1 BOR.

Theorem 3.1. Given the input matriz H in the form of equation[3, there exists a transformer TF with the
number of heads M©) < M = 4 in each attention layers. This transformer TF can make prediction on yn1
by implementing gradient EM algorithm of MoR problem where T steps of gradient descent is used in each
M-step. When L is sufficiently large and the prompt length n satisfies following condition

2 2 2
n = C’max{dlogQCL?,(Ig)l/S, d log <I§)},
Tmin

under the SNR condition
n = CKprlog(Kpy), for a sufficiently large C > 0, (6)

equipped with O(T log (n/d)) attention layers, the transformer has the prediction error A, =
|read, (TF(H)) — 2}, 8°F| upper-bounded by

of 1og<d/5)<\/‘”ff’%log2<"?2)+ W))

with probability at least 1 — 99, where p, = max; 7}/ min; 7}

is the ratio of maximum mizing weight and
minimum miring weight, Tmin = min; 7r;‘ and ready(f[) = (ﬁnﬂ) extracts the prediction on query

sample.

d+1

Theorem demonstrates the feasibility and theoretical guarantees of transformers in solving a general
mixture of regression problems under the high SNR condition specified in equation [6} The error between
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the transformer’s prediction and the true response for the query sample is bounded with high probability in

the order of \/ 1og(d/§)% log?(n/d). This error decreases as the prompt length n increases and is affected by

factors like the dimension d and the number of components K. The ratio p, = max; 7¥/min; 77 quantifies
the imbalance in mixing proportions. Larger imbalances p, degrade the error bound, indicating that the
transformer’s performance could worsen when mixture components are highly unbalanced.

In the special case of MoR problems with two components 8§ = —835 = 8* and 7§ = 75 = 1, we have
BOR = 0. While predicting zero is not quite meaningful, estimating the true regression coefficient vector 5*
is of interest. Hence, in Theorem [3.2] below, we provide more refined results focusing both on the low and
high SNR regimes.

Theorem 3.2. Given input matriz H whose columns are given by equation [3, there exists a transformer
TFy, with the number of heads M) < M = 4 in each attention layers, that can make prediction on Y1
by implementing gradient EM algorithm of MoR problem where T steps of gradient descent are used in each
M-step. When T is sufficiently large and the prompt length n satisfies

n > Cdlog® (1/6), (7)

the transformer can approximates B* by the second-to-last layer with probability at least 1 — 0

e Whenn < C(dlog? n/n)%, |reads (TF(H)) — 8*[2 < O((dIOgQ(n/é)/n)i);

, then | readg (TF(H)) — 8% < (’)(\/dlogQ(n/&/n) ;

extracts the estimate of B*.

Rl

o Whenn= C’(dlog2 n/n)

where readg(TF(H)) = [TF(H)]d+2:2d+27n+1

In Theorem [3.2] the error depends on the SNR, 7, and exhibits two distinct behaviors: In low SNR set-
tings, the error scales as O((dlogz(n/é)/n)1/4), reflecting the inherent difficulty of recovering §* in noisy

environments. In high SNR settings, the error scales as O( dlog?(n/s) /n), showing better performance
due to stronger signals dominating the noise. According to Theorem [3:2] the architecture of the constructed
transformer varies primarily in the number of layers it includes. In general, with the prompt length n and
dimension d held constant, the constructed transformer needs more training samples in the prompt in the low
SNR settings to achieve the desired precision. The prediction error is order of (’5(« /d/n) under the high SNR
settings, and is @((d/n)%) in the low SNR settings. Besides, under the high SNR settings, the constructed
transformer needs O(log(n/d)) attention layers, while it needs O(y/n/dlog(log(n/d))) attention layers in
the low SNR settings.

The proof of Theorem [3:1]is provided in Appendix[A-7]and details of the proof of Theorem [3.2] can be found
in Appendix [A75] In Theorem [3.1] and B:2] the variance parameter ¥ in equation [I] and equation [2] in the
noise is assumed to be a fixed known constant, since it is used in the construction of the transformer. The
SNR condition required in Theorem is stricter than that in Theorem due to technical reasons in the
proof. However, in our simulations (presented in Figure[l|in Section , we see that the actual performance
of the transformer is still good in the low SNR scenario when the number of components K > 3.

Finally, in Theorem [3.3] we provide the excess risk bound for the transformer constructed in Theorem [3.2]

Theorem 3.3. For any T being sufficiently large and the prompt length n satisfies condition equation [7
Define the excess risk R = Ep [(ynﬂ — ready(TF(H)))Q] — infg Ep[(z) 18 — yns1)?]. Then the ICL
prediction read, (TF(H)) of the constructed transformer in Theorem satisfies

R_{ O(y/dlog?n/n) 0 <

n < C(dlog?(n/s)/n)"*
O(dlog®n/n) n = C(dlog*(n/s)/n)

A ®)

Furthermore, infg Ep [(JL‘IHB — yn+1)2] =92 + | B*|3.
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Theorem Theorem and Theorem provide the first quantitative framework for end-to-end ICL in
the mixture of regression problems, achieving desired precision. The excess risk of the constructed trans-
former is (’)(dlog2 n/n) under the high SNR settings, and is (’)(«/d/n log n) under the low SNR settings.
These results represent an advancement over the findings in |Pathak et al.[ (2024]), which do not offer explicit
error bounds like equation [§

The transition on the error rate appears in Theorem due to the switch of the analysis regime. In high

SNR n = (dlog2 (n/d)/n) A : the population EM map is strongly contractive (curvature ~ n? ). Balancing
this contraction with sampling noise ( ~ 4/dlog?(n/d)/n) gives the parametric rate O(y/dlog?(n/8)/n). In
low SNR n < (d log?(n/d) /n) Y4 the map is nearly flat; progress is driven by a cubic drift, yielding an
n~4-scale neighborhood: O ((dlog2 (n/é)/n) 1/4> The threshold at = (dlog?(n/d)/n)"/* is exactly where

curvature (ocn?) overtakes sampling error. Plugging this 7 into the high-SNR bound recovers the n~='/* order,
so the two regimes meet smoothly.

4 Understanding Transformer Training on MoR tasks

4.1 Analysis of pre-training

We now analyze the sample complexity needed to pretrain the transformer with a limited number of ICL
training instances. Prior results from [Bai et al.| (2024) are only applicable to linear models and are not
immediately applicable to the linear MoR models that we focus on in this work. We consider the square loss
between the in-context prediction and the ground truth label:

lia1(0;Z) = %[ymrl —clipp (ready (TFQ(H)))F’

where Z := (H7 yn+1) is the training prompt, 6 = {(K%),Qm) V(e)) {=1,....,.Lim=1,.. .,M} is the
collection of parameters of the transformer and clipg(t) := Proji_g r ](t) is the standard clipping operator
with (a suitably large) radius R > 0 that varies in different problem setups to prevent the transformer from
blowing up on tail events, in all our results concerning (statistical) in-context prediction powers. Additionally,
the clipping operator can be employed to control the Lipschitz constant of the transformer TFg with respect
to 6 (see Bai et al. (2024)). In practical applications, it is common to select a sufficiently large clipping
radius R to ensure that it does not alter the behavior of the transformer on any input sequence of interest.
Applying clipping operator on the objective functions when training LLM is used in RLHF (see Ziegler et al.
(2019), |Ouyang et al.| (2022))). Denote [|@] as the norm of transformer given by

M
o1 = mas{ e {1Q12 Ly 1Koy} + 25 V0L -

Our pretraining loss is the average ICL loss on B pretraining instances Z(:5) id m, and we consider the
corresponding test ICL loss on a new test instance:

B
1cl . Z 101 9 Z(J)

Licl(o) =Ep [Eicl (91 Z)]

Our pretraining algorithm is to solve a standard constrained empirical risk minimization problem over
transformers with L layers, M heads, and norm bounded by M’:

0 : =arg min L, (0), 9)

GEGM/

Orrr {6 = (KL0,Q.VO) : max M < 0, 6] < '}
te[L]
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Theorem 4.1 (Generalization for pretraining). For MoR problem given by equation suppose that
max;<k |82 < C with some absolute constant C, then with probability at least 1 — 3¢ (over the pretraining

instances {Z(j)} ]), the solution 0 to equationB satisfies

je[B

Lid(é) < ei%f Lia(0) + O((l + 4/(TminKn?)) x log (
€O/

2nBY\ [(L)2(MD?2). + log(1/€)
)

where v = log (2 + max {M’, B, By, (2B,)™'}), By = y/log(ndB/¢), B, = \/log (%)02 log(2nB/¢€), D is

the hidden dimension and M is the number of heads.

Remark 4.1. The proof of Theorem is provided in Appendix Under the low SNR settings, the
constructed transformer generally requires more attention layers than those in the high SNR settings to
achieve the same level of excess risk. Besides, the theorem highlights a fundamental trade-off: while larger
models (more layers, heads, and hidden dimensions) increase have the capacity to learn complex patterns,
they also require more pretraining datasets (B).

4.2 Dynamics of single linear self-attention layer

Next, we investigate the training dynamics of gradient flow for MoR models. For this subsection, we consider
transformers with linear self-attention layers. Given the input matrix in the form of equation [, appropriately
sized key, query and value matrices K,Q,V, the output of a linear attention block is given by §,11 =
[ fusa(E; 9)] d4lng1- Forour technical analysis, following [Zhang et al.| (2023), we only consider training the
model equationlﬂ over population squared loss between 4,41 and y,41, i.e.

. 1 N
0% = arg %élél{LSA(Eve) = 5P [(Int1 — yn+1)2]}'

And we assume that Eg = Zf; w8 = 0 on the MoR task equation [1| The gradient descent gives
9t+1 =0; — EVLSA(E, 9t)

when minimizing Lga (E, 6) and this could simplified as

do

— = —VLga(E;0).

dt sa(E50)

Letting € — 0 and setting 6(¢) = 0 at time t = ke, we recognize the left-hand side above as the discrete
derivative of 6(¢) at time t. Hence, we get a continuous-time ordinary differential equation (i.e. the gradient

flow of the parameters)

do

— = —VLga(E;0
It captures the behavior of gradient descent when we running the gradient descent with small step size. In
the remaining of this section, we start by rewriting the output of the linear attention module in an alternative

form. Following [Zhang et al.| (2023)), we define
® * Uiy =
V= , KTQ =
( ug Uy ) © ( uly * )

therefore, the prediction on the query sample is given by

. 1 1

Ynt+1 = [U2T1 : EXTX “Un + ug; - EXTY “ufy (10)

1 1
+u_q- ﬁyTX U +u—y - EYTY : Ul—z] “Tpt1

where X = [21,...,2,]T and y = [y1,...,9n] . We will consider gradient flow with an initialization that
satisfies the following assumption
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Assumption 4.2.1 (Initialization). Let =y > 0 be a parameter, and let © € R?*¢ be any matrix satisfying
OTEBBT 4 0 and tr (@@T (]EﬁBT) 00" (E ( )) 1

4(0) =
U12(0) ( ) =0, (11)
U (0) = (EB8T)? 007 (EBST)? .

Theorem [£.2] below proves that gradient flow will converge to a global optimum under suitable initialization.

Theorem 4.2. Under initialization condition equation[11], when the parameter v satisfies the condition

mln (Eﬁﬁ—r)
VS \/\f nEdtly o (BBAT) + L) (12)

and Ef = Zk LTEBE =0, we have uzi(t) = u12(t) = 0 for all t = 0, and the gradient flow converges to a
global minimum of the population loss. Moreover, Ui1 and u_y converge to Uy, and u* | respectively, where

n )

F

-1
1) ESBT

E|B]3 + 92
n

‘ nJrl]EﬂﬂT

-1
U = (u*y) " <”“EW I) EBS". (14)

With w*; and Uj; specified in equation [13|and equation the linear self-attention layer makes prediction
on T,1 as

. n+1 E|B)2 +v2 \ 1
Yn+1 = tTZH ( ]EﬁﬁT “5”2—7) EﬁﬂT n Z YiZi | -
i=1

When n is sufficiently large, it holds that u* Uy ~ I; and 23"  y;2] ~ E,  yx. Therefore, when n is
large, the prediction made by linear self-attention layer ,.1 ~ xZHId (]E:chﬁ + va) = a:IHﬁOR. This
shows that the linear self-attention layer effectively learns the optimal predictor in the large-sample limit.

Theorem 4.2 provides crucial insights into the convergence of gradient flow under structured initializations
and zero mean assumption for the coefficients. Larger noise variance 92 or smaller sample size n necessitates
smaller v (scaling of u_1(0)). The initialization U1, (0) and the trace condition on © encode prior knowledge
of the input distribution E [ﬁﬁ—r], acting as a preconditioner for efficient learning. In particular, the trace
condition in equation 11} ensures © is scaled to interact stably with the data covariance, preventing explod-
ing/vanishing updates. Finally, we remark that if ES # 0, there are additional terms affecting the dynamics,
possibly complicating the convergence. We leave this problem as a possible future direction.

Compared to Theorem 4.1 in [Zhang et al.| (2023)), our results are applicable for the case when label noise is
present. Furthermore, we generalize the distribution assumption proposed on the the coefficient 5. Indeed,
in Zhang et al. (2023), the sample on the prompt are generated based on the noiseless model y; = ] 3 with
B ~ N(0,1;). Whereas, our analysis only relies on the moment information E3 and EZ3 " on the distribution
of 8. Besides, as mentioned above, our assumption equation |L1| precisely characterizes how the initialization
condition on the parameters depends on the covariance structure EG5T.

5 Simulation study

In this section, we present numeric results of training transformers on the prompts described in Section
We train our transformers using Adam, with a constant step size of 0.001. For the general settings in the
experiments, the dimension of samples d = 32. The number of training prompts are B = 64 by default (B is
other value if otherwise stated). The hidden dimension are D = 64 by default (D is other value if otherwise
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stated). The training data x;’s are i.i.d. sampled from standard multivariate Gaussian distribution and the
noise v;’s are i.i.d. sampled from normal distribution A/(0,92). The regression coefficients are generated
from standard multivariate normal and then normalized by its l> norm. Once the coefficient is generated, it
is fixed. The excess MSE is reported. Each experiment is repeated by 20 times and the results is averaged
over these 20 times. We also point out that assumptions regarding n and d in Section |3|is for theoretical
constructions. It is not related to the trained transformer in practice. The performance of the trained
transformer will be better than the constructed transformers in Theorem B.1] and B2
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Figure 1: Plot of excess testing risk by the transformer (and EM algorithm) v.s. prompt length with different
SNRs on MoR tasks with K = 2,3, 5,20 components.

The initializations of the transformer parameters for all our experiments are random standard Gaussian.
As we will see from our results, transformers provide efficient prediction and estimation errors despite
this global initialization. A possible explanation for this fact might be the overparametrization naturally
available in the transformer architecture and the related need for overparametrization for estimation in
mixture models (Dwivedi et al., |2020; Xu et al., [2024)); we leave a theoretical investigation of this fact as
intriguing future work.

Performance with different prompt length: In this experiment, we vary the number of components
K = 2,3,5,20. For each case, we run the experiment with different SNR (n = 1,5,10). The z-axis is the
prompt length, and the y-axis is the test MSE. The number of attention layers is given by L = 4. The
performance results of the transformer are presented in Figure [I]

From Figure [1} we observe the following trends: (1) With the number of prompt lengths and other parame-
ters held constant, the trained transformer exhibits a higher excess MSE in the low SNR settings. (2) When
the prompt length is very small, indicating an insufficient number of samples in the prompt, the resulting

10
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excess test MSE is high. However, with a sufficiently large prompt length, the performance of the trans-
formers stabilizes and is effective across all SNR settings, leading to a relatively small excess test MSE. (3)
Additionally, when the prompt length and SNR are fixed, an increase in the number of components tends to
result in a larger excess test MSE.

Performance with different number of training prompts: In this experiment, we vary the number of
training prompts B from 64 to 512. For each case, we run the experiment with two components (K = 2),
different SNR (n = 1,5,10). The z-axis is the number of training prompts, and the y-axis is the test MSE.
The length of training prompts is n = 64.

—— test MSE SNR=1
—— test MSE SNR=5
0.04 - —— test MSE SNR=10

0.034

Excess MSE

0.02

0.01

T T T T T
100 200 300 400 500
number of training prompts B

Figure 2: Plot of excess testing risk of the transformer v.s. the number of prompts with different SNRs.

— test MSE SNR=1
— test MSE SNR=5

0.08 — test MSE SNE=10

0.06

: /%/

Excess MSE

0.00 1

T T
40 60 80 100 120
Dimension

Figure 3: Plot of excess testing risk of the transformer v.s. the dimension d with different SNRs.

Figure [2] gives the performance of trained transformer with different number of training prompts under
three different SNR settings. Based on Figure [2] we observe that when the number of training prompts is
already sufficiently large, the excess MSE is relatively small. Furthermore, as the number of training prompts
increases, there is a general trend of decreasing in the excess MSE.

Performance with different dimension d of samples: In this experiment, we fix the hidden dimension
D = 256, the number of components K = 2, the number of prompts B = 128 and the prompt length
is given by n = 64. The z-axis is the dimension d of the input sample x; and y-axis is the excess test
MSE. In this experiment, we evaluate the performance of the trained transformer for various dimensions
d = 32,48,64,80,96,112,128. The performance of the transformer are presented in Figure [3] Observations

11
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from this figure indicate that increasing the dimension d significantly raises the excess test MSE. Notably,
this increase becomes more pronounced at the lower SNR levels.

An additional experiment on the performance with different number of hidden dimension is provided in
Section [D.2]

6 Conclusions

We have explored the behavior of transformers in handling linear MoR problems, demonstrating their in-
context learning capabilities through both theoretical analysis and empirical experiments. Specifically, we
showed that transformers are capable of implementing the EM algorithm for linear MoR, tasks. Additionally,
we have examined the sample complexity involved in pretraining transformers with a finite number of ICL
training instances and the training dynamics of gradient flow, offering valuable insights into their practical
performance. Our empirical findings also reveal that transformer performance is less susceptible to initial-
izations. For future work, understanding the training dynamics of general transformers for MoR, problems
remains a highly interesting and challenging task. Furthermore, extending our results to non-linear MoR
models would be a natural direction.

Prior work (e.g., Raventds et al.| (2023)) studied ICL for linear regression with coefficients sampled from
a prior, measuring task difficulty by the minimum distance across all regression vectors in the pretraining
corpus. In contrast, our paper defines SNR, per task, based on the separation of the K mixture components
within a single prompt relative to noise, so having many distinct tasks in pretraining does not automatically
reduce SNR. For technical convenience, we assume fixed ground-truth coefficients 3}, but one could instead
model them with priors (e.g., Gaussian or uniform on the sphere), which would reduce to Raventds et al.
(2023) in the K = 1 case. Extending our results to this random-effects setting requires re-deriving several
lemmas and adapting the proofs of Theorems which we leave as promising future work.

12
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A Proof of Theorems in Section

In this section, we illustrate that the transformers constructed in Theorem and Theorem Theorem
can solve the MoR problem by implementing the EM algorithm internally while GD is used in each M-step.
Previous works (e.g. [Balakrishnan et al.| (2017)), Kwon et al.| (2019) and Kwon et al.| (2021)) focused on the
sample-based EM algorithm, typically employing closed-form solutions or one-step gradient approaches in
the M-step. We start with detailed explanation on the existence of the transformer in MoR problem with
two symmetric components (K = 2,7 = 75 = % and Bf = —p5 = *). For general analysis, we explore the
performance of the transformer using a gradient descent in steps T within the EM algorithm. To simplify

the analysis, we restrict our stepsize « € (0, 1) in each gradient descent step in M-step.

Attention layer can implement the one-step gradient descent. We first recall how the attention
layer can implement one-step GD for a certain class of loss functions as demonstrated by Bai et al.| (2024).
Let £ : R? — R be a loss function. Let Zn(ﬁ) = %Z?Zlé(ﬁTxi,yi) denote the empirical risk with loss
function £ on dataset {(x;,¥:)}ic[n], and we denote

Bri1 = Br — aV L, (Bk) (15)

as the GD trajectory on fm with initialization 8y € R? and learning rate o > 0. The foundational concept of
the construction presented in Theorem is derived from [Bai et al.|(2024). It hinges on the condition that
the partial derivative of the loss function, ds¢ : (s,t) — 05£(s,t) (considered as a bivariate function), can be
approximated by a sum of ReLLU functions, which are defined as follows:

Definition A.1l (Approximability by sum of ReLUs). A function g : R¥ — R is (capprox B, M, C)-
approximable by sum of ReLUs, if there exists a “(M, C)-sum of ReLUs" function

M
fuco(z) = 2 cmo(a)[z;1])  with Z lem] < C max lam|1 < 1,a, € R¥ ! ¢, eR

such that sup,e[_ |g( ) — fm,c(2)] < approx-

Suppose that the partial derivative of the loss function, ds¢(s,t), is approximable by a sum of ReLUs. Then,
T steps of GD, as described in equation can be approximately implemented by employing T attention
layers within the transformer. This result is formally presented in Proposition

Transformer can implement the gradient-EM algorithm: Proposition illustrates how the trans-
former described in Theorem is capable of learning from the MoR problem. Using Proposition
we can construct a transformer whose architecture consists of attention layers that implement GD for each
M-step, followed by additional attention layers responsible for computing the necessary quantities in the E-
step. Here is a summary of how the transformer implements the EM algorithm for the mixture of regression
problem. Following the notation from Balakrishnan et al.| (2017)), we consider the mixture of regression with
two symmetric components and define the weight function:

exp{— 5= (y—278)"} .
exp{— gz (y—278)"} +exp{ — 5hz (v +275)°}

wg(z,y) =

Denote f®) as the current parameter estimates of 3* in the EM algorithm for the MoR problem. During
each M-step, the objective is to maximize the following loss function:

(5 | B t) 71 Z (U)g(t) TiyYi ( Yi — %-Tﬁ')z + (1 — W) (Cﬂi,yi)) (yz + IEiT/B')Z)- (16)

The update 3¢+ is given by S+ = argmaxgeq Qn (8 | 3). Lemma below, demonstrates that the

7 (1) (B)

function L%) minimized in each M-step is approximable by a sum of ReLUs.
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Lemma A.1. For the function L\ (5) = Ly 1O(z] B,y;), where

(@] B,y:) = wgw (5, y:) (i — 2 B)2 + (1 — wseo (w4, 3:)) (yi + 2] B)?,

it holds that (1) 1()(s,t) is convex in first argument; and (2) d,1()(s,t) is (0, 40, 4, 16)-approximable by
sum of ReLUs.

Proof of Lemma[A1l Note that

1D (s,t) = wa (zi,43) (= 8)* + (1 — wgw (25, 4:)) (E+ 5)°.

Taking derivative w.r.t. the first argument yields

051V (s,t) = waw (i, yi) (—2) (t — 8) + (1 — wgeo (5, 4:)) 2(¢ + 5),
0210 (s,t) = 2wgo (6, y:) + 2(1 — wpe (24, 4:)) = 2.

Hence, {(s,t) is convex in the first argument and

051V (5,) = 2wy (4, 9i) (s — t) + 2(1 — wae (4, 9:)) (s + 1)
= 2w5<f>(xwy2)[20'(<5 —1)/2) = 20(—(s — t)/2)]
+2(1 = wge (i, y:)) [20((s + 1) /2) — 20(—(s + 1)/2)].

Here ¢1 = dwg (74, y:), c2 = —4wpe (i, Yi), c3 = 4(1 — wge (24,y:)) and ¢4 = —4(1 — wgw (T4,¥:)). Now,
we have |c1| + |ea| + |e3] + |ca] < 16 and 05i(s, t) is (0, +00,4, 16)-approximable by sum of ReLUs. O

By Lemma we can design attention layers with T layers that implement the T steps of GD for the
empirical loss ﬁﬁf)(ﬁ’ ) as outlined in Proposition We provide a concise demonstration of the entire
process for MoR with two symmetric components below. Starting with an appropriate initialization 5%,
the first M-step minimizes the loss function:

2 {wmo) i, Yi) (Vi Tﬁ) + (1 — wgo (@4, 9:)) (v + x;ﬁ)z}

Following Proposition given the input sequence formatted as h; = [z;;¥}; 04; 0p—24—3; 1; t;], there exists
a transformer with T attention layers that gives the output h; = [2;; Yl ﬁ(TO ), Op—24—3; 1;t;]. Furthermore,
the existence of a transformer capable of computing the necessary quantities in the M-step is guaranteed by
Proposition 1 from [Pathak et al.| (2024) and we restate this proposition in section |C|in appendix.

It is worth mentioning that computing wse) (2;,%;) in each M-step can be easily implemented by affine and
softmax operation in Proposition Similar arguments can be made for the upcoming iterations of the
EM algorithm and we summarize these results in Lemma [A72) and Lemma [A73]

(T+1) _ [hgT-H) h(T+1)

Lemma A.2. In each E-step, given the input H el ] where

T .
n{Y = [xiSy;B;’t)EODfoS;15ti§wﬁ(t71> (ziy)] , i=1,....m,

hgj:il) = [x“ n+1BT ) (t ;0p—24-3;1; 15 0]

0

there exists a transformer TF(E that can compute w 5 (24,y;). Furthermore, the output sequence takes the
T

form of
- T
hETH) = [xi;yé;ﬁc(ﬁ);OD—gd_z;; 1§ti§w5(t>(xi7yi)] , t=1,...,m, (17)
715,7:51) = [%;xLlﬁ(Tt)' M 0p 24 4,1,1,0] (18)
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Proof of Lemma

.
1 —[asi;xLlﬂ(Tt);ﬂéf);OD_zd_s;1;1;0] )

[hgTH), cey hgjl | where
BT+ _
(T+1)
hyy =
ie.
_ "
0
Br
HTHY = Op_24-3
1
tq

After copy down and scale operation, the output is given by

H(T+1) (1) —

1
vi
(t)
T
a0
T
Op_34-3
1
t1

T2

Yy
(t)
T
Op_24-3
1

to

W 5(t—1) (»Tl,yl) w <t71>(9€27y2)
| Br By

T2
Yy
By
By
Op_34-3
1
to

_wﬁ;jfl)(xlayl) wB(Tt—n(m,yz)

T,
Yy,
(t)
T
O0p_24-3
1
tn
wﬁ(tfl) (xna yn)
T

Tn
Yn,
t
Y
_ p0)

T
Op_34-3
1
tn

wﬂ(th) (xnv yn)

| Note that the output of M-step after t¢-th iteration is given by H(T+D

T
= [$i§y;§ﬁq(f)§0D—2d—3§1§ti§w@(Tt—1)(miayi)] , t=1,...,n

In this step, the negative of Bg) is copied down. After affine operation, the output is given by

H(T+1) (2) _

T
yh
t
oy
0
T
1

O0p_34-4
1
ty

Wg(t-1) (z1,91)
- T

to

wB(Tt—n (IEQ, y2)

Ln

Y/
(t)

o)
— B
Tn
O0p_34—4
1
tn
U)B(tfl) (xna yn)
T

Tn+1

xIHﬂ(Lt)
t
o

Y
0
Op_34-4
1
1
0

Here, 71 is computed in the next row. After another affine operation, the output is given by

H(T+1) (3) _

T
vi
(t)
5()
— B!
1
Ty
0p_34—5
1
3]

Wge-1) (1’17 yl)
- T

T2
Yy
t
By
¢
By
T2
T
O0p_34-5
1
ta
Wg(t-1) (IQa y2)
T

18

Tn

Yn
t

Y

_ p(0)
T

Tn
Tn
0p_34—5
1
tn
wﬁ(t—D (Ivu yn)
T

Tn+1
t
x;[+1ﬁ(T)
(t)

T
_p®
T




Published in Transactions on Machine Learning Research (11/2025)

Similarly, 71 is computed in the next row. After softmax operation, the output is given by

x
/

Y1
(t)
HO
—B
HTD@y | N
T1
Op_3d—5
1
tq

T2
/

Y2
(t)
T

_ﬁgf)
T2
T
Op_34-5
1
to

_w5<Tt>(3317y1) wﬁ;t)(xg,yg)

T,
Yn
(t)
(1)
-
T,

’FTL
Op_34—5
1
tyn

wﬂ’(;) (xna yn)

xn+1
T g®)
$n+1ﬁT

e
_ pt)

T

The only change is that the responsibility register is updated: the row/column containing w 5D (zi,y5) 18
T

overwritten by w 50 (x4,y;) for all tokens . This update is exactly the E-step computed by the forward pass
T

at that stage. After copy over operation, the output is given by

T
Y1
t
G
Op_24—3
1
tq

H(T+1) (5) _

1)
Yo
t
G
Op_24—3
1
to

;w5<Tt>(5€17y1) w5<Tt>(w2,y2)

O0p-—24-3
1
tn
wﬁ(t) (mnv yn)
T

Finally, this transformer gives the output matrix H ](\;H) as equation

Tn4+1
xlﬂﬁg)
By
Op_24-3
1
1
0

(19)

O

Lemma A.3. In each M-step, given the input matrix as equation and equation there exists a
transformer TFS\? with T 4+ 1 attention layers that can implement T steps of GD on the loss function

Ly (B) =230 1 (2] B,y;), where I (2] B,y;) = w@)(??n?/i)(% —z]B)?+(1- Wao (i, yi) (yi + z] B)2.

Furthermore, the output sequence takes the form of

T T .

hE +1) = [%,y;, ¥+1);0D72d73;1;ti;w5¥)(xi7yi)] 9 1= 1)"'7”7
T T

hgwil) = [xi;xLlB(Tt“);ﬁ(Tt“);Oszdfg; 1;1;0] .

Proof of Lemma[A-3 The conceptual basis of the proof draws from the theorem discussed in [Bai et al.
(2024). By Proposition C.2 in [Bai et al. (2024), there exists a function f : R? — R of form

4 4
f(s,t) = Z CmO (ams + byt + dyy)  with Z |em| < 16, |am| + |bm| + |dm| < 1,Ym € [4],

m=1 m=1

such that sup(, /epe |f(s,t) — 04l(s,t)| < e. Next, in each attention layer, for every m € [4], we define
matrices Qun, Kom, Vi € RP*P such that

amﬁ 33; Od
ri 1 (N +1) 0
B dm, _ 1 (N + D)ney, _
thi - -9 ) Kmhj - R(l _ LL]) ) th] - N x]
0 0 Op—_2p—1
0
0 0
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where D is the hidden dimension which is a constant multiple of d. In the last attention layers, the heads

{( 55“),[(5,?“), ,SLTH))}m:L2 satisfies

QD = 00, KA = (305 i), VITOHD = [0s51:0p ],
QErHORM _ [2:0p— a1, K2(T+1)h§T) “[- ﬁ}t“);ﬂpfd} VZ(T-H)h;T) = [04;—1;0p_4].

The output of this transformer gives the matrix

T ) . Tn Tn+1
t+1
Yl v v, A
(t+1) (t+1) (t+1) (t+1)
T+ _ T T T T
= Op_24-3 O0p_24-3 . Op_24-3 Op_24-3
1 1 1 1
t1 to tn 1
W 5(t) ($1,y1) W (1) (ﬂfz,yz) s Whe) (wmyn) 0
L Br Br Br i

O

Combining all the architectures into one transformer, we have that there exists a transformer that can
implement gradient descent EM algorithm for Ty iterations (outer loops) and in each M-step (inner loops),
it implements T steps of GD for function defined by equation [I6] Finally, following similar procedure in
Theorem 1 of Pathak et al.| (2024), the output of the transformer will give BOR = mﬂgﬁl) — Ta FEFTDH),
which is an estimate of 3R = m,4* — 7,4* that minimizes the prediction MSE. The output is given by
H e RP*(+1) whose columns are

z T
hi = [24, v}, (T°+1),0D—2d—47 1,t;]

AOR To+1
i1 = [2ng1, 20 8O, BT 05 0q4,1,1]7.

T -
, 1=1,...,n,

In the remaining part of Section [3] we give the proof of the estimation and prediction bound presented
in Theorem [3.1] and Theorem [B:2] The transformer described in Theorem [AZ3] which is equipped with
T + 1 layers, implements the M-step of the EM algorithm by performing T steps of gradient descent on the
empirical loss iﬁf ) (8). Therefore, it is sufficient to analyze the behavior of the sample-based EM algorithm
in which T steps of gradient descent are implemented during each M-step.

To begin, we define some notations that are utilized in the proof. We denote 5(%) as any fixed initialization for
the EM algorithm. The transformer described in Theorem [3.2] addresses the following optimization problem:

argmin {ﬁ;o)(ﬁ) = % Z {wso (@i, 9:) (yi — ] B)* + (1 — wgo (w4, ) (i + x:ﬁ)z}}
=1

for some weight function wgew) € (0,1). The transformer generates a sequence ﬁ%o), éo), ..., with ﬂ]io) —
BM = argmin IA/%O)(B) as k — o0. More generally, we denote ) as the minimizer of the loss function
IA/Sf _1)([3) at each M-step. Additionally, Bit_l), cee ;f_l) represents the sequence generated by applying

T + 1 attention layers of the constructed transformer in Lemma on the loss L™ (8).

The approach to analyzing the convergence behavior of the transformer’s output, TF(H), involves examining
the performance of the sample-based gradient EM algorithm. This analysis is conducted by coupling the
finite sample EM with the population EM, drawing on methodologies from Balakrishnan et al| (2017) and
Kwon et al| (2019).

A.1 Results in population gradient EM algorithm for MoR problem

In this section, we present some results regarding the population EM algorithm. Given the current estimator
of the parameter 3* to be (). The population gradient EM algorithm maximizes (see Balakrishnan et al.

20



Published in Transactions on Machine Learning Research (11/2025)

(2017) and Kwon et al.| (2019))
Q3| 8) = _%E[wmt) (X, V) (Y = (X, B)) + (1 — wseo (X, V) (Y + (X, 5>)2],

whose gradient is given by E[tanh (ﬁYX T,B(t))YX - B]. Rather than using the standard population EM
update

_ 1
B — argmax (5 | ) = B[ tanh (55 Y X 50 v X | 20)

the output after applying T steps of gradient descent is employed as the subsequent estimator for the
parameter 3%, i.e.

1

B = (1—a)TAO 4 (1 (1— a)T)IE[tanh (192

YXTﬂ(t))YX], (21)

where a € (0, 1) is the step size of the gradient descent.

In each iteration of the population gradient EM algorithm, the current iterate is denoted by 3, the next
iterate by 3’ and the standard EM update based on equation 20| by 8’. We concentrate on a single iteration
of the population EM, which yields the next iterate 8. Consequently, equation 21| becomes:

B=1-a)f8+(1-01-a)")p. (22)

We employ techniques similar to those used in [Kwon et al| (2019) for basis transformation. By selecting
vy = B/| B2 in the direction of the current iterate and vy as the orthogonal complement of v; within the span
of {B, B*}, we extend these vectors to form an orthonormal basis {v1,...,vq} in R%. To simplify notation,
we define:

bl = <val> = ”ﬂ”% b>1k = <6*7U1> b; = <ﬂ*’ v2>7 (23)

which represent the coordinates of the current estimate S and 8*. The next iterate 5’ can then be expressed
as:

d
B =(1—-a)Tbuv + (1-(1- a)T)]Eltanh (02;21 Y)Y Z Oéﬂ)z'] (24)
i=1

based on spherical symmetry of Gaussian distribution. The expectation is taken over a; ~ N(0,1) and
Y | i ~ N(a1b¥ + agb}, 9?). Without loss of generality, we assume that by, b, b5 > 0.

Lemma is analogous to Lemma 1 from Kwon et al.| (2019). It provides an explicit expression for 8’ within
the established basis system, demonstrating among other insights that 8’ resides within the span{g, 5*}.
Consequently, all estimators of 3* generated by the population gradient EM algorithm remain confined
within the span{3(®), g*}

Lemma A.4. Suppose that o € (0,1). Define 93 := 92 + b3%2. We can write 3 = bjv; + bhve, where b} and
bl satisfy
by =1—a)"by+ (1—(1—a)")(biS+R), (25)
by=(1-(1—a)")bis. (26)

Here, S = 0 and R > 0 are given explicitly by

S =B, n01) ooz ] tanh (B2 (y + anb)) + B8 (y + anb) tanh’ (B2 (y + a1b}))]  (27)

and

2b b

Moreover, S = 0 iff b = 0 or bF = 0.
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Proof. The proof of Lemma [A.4]is directly adapted from the argument used in Lemma 1 from [Kwon et al.
(2019), applying equation for our specific context. In equation the inner expectation over y is
independent of «; for i > 3. Consequently, taking the expectation over «; for i > 3 results in zero, confirming
that 8’ remains within the plane spanned by v1,ve. This allows us to express 5’ as 5’ = bjvy + byvy with

V= (1—a)Th + (1-(1- OZ)T)]Eal,az []EYlalm [tanh (51;;41 y)Y]al], (29)
by = (1—(1—)7)Eayan [Ey\al,az [tanh (bigl Y) Y] 042]7 (30)

where the expectation is taken over a; ~ N'(0,1), and y | a; ~ N (a1bf + b, 9?). The computation from
equation [29] and equation [30] to equation [27] and equation [28]is identical to that in Lemma 1 of Kwon et al.
(2019). O

The findings in Lemma align with Lemma 1 from [Klusowski et al.| (2019). As the number of iterations
T approaches infinity, the estimator 3’ converges to the standard population EM update

B = Ex no.n) [(EY|X~N(<X7B*>J92) [tanh (<X7?9(2tl)>y> YDX]'

For any number of steps T', the angle between 5’ and §* is consistently smaller than that between 8 and
£*. This can be observed by noting that:

b/2 B (1 —-(1- a)T)bg,S' < g _ tané(ﬂ*7ﬂ)~ (31)

0< tani(ﬂ',ﬂ) = E = (1—a)Th + (1 —(1- a)T) (b’fs +R) by

These relationships demonstrate the geometric convergence properties of the estimation process. Motivated
by equation we examine the behavior of the angle between the iterates 3(Y) and 8*. For clarity, we use
00,0, and 0’ to denote the angles formed by A* with 8(9) (the initial iterate), § (the current iterate), and 3’
(the next iterate), respectively. Using the coordinate representation of 8’ equation [25(and equation the
cosine and sine of 6’ can be expressed by

(1-) "1 b¥ +(1—(1-)") (5] B*[ 3+ RbT)

8% Hg\/(1—a)2Tb§+(1—(1—a)T)2 (R2+52( 8% [3+2RSb¥ ) +2(1—) Tby (1-(1-)7) (b¥ S+ R)

cosf' =

bl

(1-a)Tbib¥+(1—(1—a)T)RbF

sinf'= )
Hﬁ*l\z\/(l—a)sz?Jr(l—(l—a)TV (R2+52|8% |2+2RSb¥) +2(1-a)Tby (1-(1-)7) (b¥ S+ R)
Lemma A.5. There exists a non-decreasing function ¢(A) on A € [0, 1] such that

1
Y e R PR
p(1) = 1.

As long as 6 € [%,5) and a € (0,1), it holds that

sind’ < ¢((1—a)?)sinf

and

1
_ 1 21 2
A= TGRS <\/1 BT 9) =t

Similarly,

cos® = ¢((1 —a)T) cosh
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where

b32(3]8*[3 + 292)
0) = 4/1 2 2 1,
oo \/ T 0 o5 E + 20%)

p(1) = 1.

Proof. We provide the proof for the sine case, and the proof for the cosine case follows a similar approach.
Define A = (1 — )7 € (0, 1], we have

s b Aby+ (1 =MNR
sinf = —=
18502 [y + (1 = N(0ES + R)? + (A -0+ (1= N (559))°
_ sind Abp+ (1=MNR

Vb + (=008 + B) + (A-0+ (1= A)(839))°
Then we define the function ¢()\) to be
Aby + (1— MR
\/(Abl +(1=NGFS+ R) + (A-0+ (1— A)(b’;S))Q.

P(A) =

By symmetry, one can assume that the angles £(3, 8%, Z{(f', *) < 5. The non-decreasing property of ¢(\)
can be easily verified by the fact that 8’ is located on the line segment between the current iterate 3 and
standard population EM updates  based on equation O

In the remainder of this section, we discuss the convergence of the gradient population EM algorithm in
terms of distance, as presented in Lemma [AT]

Theorem A.1. Assume that 0 < /8, and define 93 = 9% + b32. If b < ¥ or g—%bl < b¥, then we have
18" = B*2 < (1 —a)" + (1= (1 —a)")&) 8 — 5%

+(1—(1—a) )k (16sin® 6) [ 8% |2 14_7727

.02 2 a0\ .
where Kk = ( 1 + min (52b1, b}) /192) . Otherwise, we have

18" = 8% < (1= a)" +0.6(1 = (1 —a)"))[8 — 5.
Proof. The proof of this theorem is a direct corollary of Theorem 4 from Kwon et al.| (2019)) by noticing that

18" = B*l2 = [(1 —a)TB+ (1~ (1 —a)") 5"~ %,
<SA=a)TB =2+ (1= (1= a)) B~ B*.

A.2 Results in sample-based EM algorithm for MoR problem

In this section, we present results concerning the convergence of the sample-based gradient EM algorithm.
We begin by deriving the update rule for the sample-based gradient EM algorithm, which 1ncorp0rates T
steps of gradient descent. Starting from the previous estimate, 5=V, we define v=1 ZZ 1 Tiz; . The new

estimate, 5, is obtained by applying T steps of gradient descent to the loss function L% )(5)7 specifically:
8O =g
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( Z ;T ) (Tt 11) + % Z tanh (%yixzﬂ(t*”)yixi
—(I— af])l([ —ad)pith + 2 Z tanh ( —yix] B 1)>y x}
+ % itanh (Eyixjﬂ(tfl))yixi
(I —a2)Tpt 4. (ai)fl(l — (I —ax)T Z tanh ( YT T,B(tfl))yﬂ?i

For the analysis in the remainder of this section, we denote the current iteration as 3, the subse-
quent iteration resulting from T steps of sample-based gradient descent as ', and the iteration follow-

ing T steps of population-based gradient descent as 3. By define ji := %Z?:l tanh (ﬁ%yl:cjﬂ)yixl and
= Etanh ( XT[?)YX we have

<

=(I-aD)"B+E7HI—(I-a2)")p,

= ([ —aD)"B

<

]
g
In the previous analysis,

B —p*=(I—-a2)T(B-p*)+ (I (I—a%)") (i—lg - B%),
Sla—p* = < Z y;7; tanh (yz<19127 5>> E,— Z y;7; tanh (yl< 1;725 >)>

= 2,_, ( Z y;z; tanh (yl@l’ 5>) Z y;x; tanh <y1<?912, ﬂ>)>

=1 i=1

=11
& IR yi<zi, B) yilwi, B*)
1 ’ )
:=EI

Then |I]op =1+ C’)(\/7) by standard concentration result and it requires n > O(dlog*(1/6)) in the end.

Conditioning on the sample covariance matrix has bounded spectral norm, [II]s = O( i). Finally, for

: ,
16*12 o, with n = O(%), 111y <

each fixed g satisfying |52 = z.,

(0.95 + ¢/vd) |8 = B*[2.
This can be improved by

, and its angle with $* 6 is less than

B —p*=0U- ozf])TB + ! (I— — aZ Z tanh( S YiT; B)ylml B*

= - az) (B—p* )+ ( - - ai)T) l; i 57! tanh (192%-75 B)yzmz ﬁ*]a

-

=A

. 1
A=S""Exy[XYAxy)(B)]+ - ZX'L'EA(XI»,YI')(ﬁ) —Exy[XYAxy)(8)]

2:A1

=As
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+% Z ziy; tanh (yz; 5*/9%) — By, [% 2 x;y; tanh (yixiTﬁ*/ﬁQ)] ] )

=Ajz
where A(x y)(B) := tanh (yz " 8/9?) — tanh (yz " 8*/9?). Then
Ay <098 — B*.,
Ay < (18— B*1 + 1)y /dlog? (n] 8 [2/5) /n.
Az < C+/dlog(1/8)/n,

with probability at least 1 — §.

A.3 Convergence result in Theorem [3.2| under the high SNR setting

We first present the results for parameter estimation under the high SNR regime.

Lemma A.6 (Lemma 2 in Kwon et al.| (2021))). For any given r > 0, there exists a universal constant ¢ > 0
such that with probability at least 1 — 4.

sup Hf)flﬂ - MH2 < erq/dlog?(n/d)/n

I8l2<r
where
= E[XY tanh (YXTﬁ)],
o1 i,
n= ;; anh( )yzxm
.1

Lemma A.7 (Lemma 5 in |[Kwon et al. (2021)). For each fixed 3, with probability at least 1 — exp(—cn) —
64 exp ( — %2)

Hf Z y;x; tanh (yz<xl, ﬁ} 1 Zn] E,, yl:cZ tanh (yl<xl, B>)] H <t

n

for some absolute constant ¢ > 0.

Theorem A.2. Suppose that n > O(dlogz(n/(S)/n) e for some absolute constant C' and || = 0.9]5*|

and cosL(ﬂ*,ﬂ(O)) > 0.95., let {8} be the iterates of sample-based gradient EM algorithm, then there
exists a constant 3 € (0,1) such that

1
1B = B2 <% + =

2
- o( dlog?(n/8) /n)
holds with probability at least 1 — 59.

Proof. Without loss of generality, we can assume that ¥ = 1. Denote § as the current iterate, and 5’ as the
next sample-based iterate. We first consider

B —p*=(I-a%)"8+ 2_1(] - - OCE)T)% 2 tanh (%yﬁjﬁ)yz% - p*

i=1

= (I — aZ) (B —B*) + ( — (I - ozf])T) li Z S~ ltanh (%yﬂ:jﬁ)ymz ﬂ*] .

i=1

~~ i

=A
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We prove the results in two cases, i.e. n > 1 and Cy(d log? (n/8)/n) 1/ < n < 1 for some universal constant
Cp. When n > 1, based on the analysis in [Kwon et al.| (2021)), with probability at least 1 — 54,

4l < (0.9+ y/dlog? (n]512/5)/m) ) |8 — B*| + Cry/dlog? (nl|3%]2/8) /n
<18 — B*2 + Ciy/dlog? (n]5*]/6) /n (32)

where v = 0.9 + \/dlog2 (n||B*[2/8)/n). By standard concentration results on 3 — I, it holds that with

n = O(dlog?(1/8)), [(I — a®)T|op < (1 — a/2)T with probability at least 1 — d for appropriately small .
Along with equation [32]

I = Bl < (1= 2)T18 = Bl + (1 - (1 = )AL,
<[0-9)"+ (- -9"]Is -5
(1= (1= 5))CryJdlog? (n]3#]2/6) /n. (33)

Define €(n,d) = (1 — (1 — %)T)C'l\/dlog2 (n||B*]2/8)/n and 72 = (1 — %)T +(1-(1- %)T)fy. As long as
v < 1, we can iterate over t based on equation [33|and obtain

189 = 5* < 22087 = B2 + e(n,6) < 31847 = B*[2 + (1 + 72)e(n, 6)

1
<189 — ¥ + 1,7726("’5)'

In the remaining part of the proof, we present an analysis of the convergence behavior of the sample-based

gradient EM algorithm when Cj (d logQ(n/é)/n) 1/ < 1n < 1. By Lemma 3 from Kwon et al.|(2021)), it holds
that

[E tanh (Y X B)Y X] - 8% < (1 - g8*3) 6 — 6%

To systematically analyze the convergence, we categorize the iterations into several epochs. We define
Co = |B© — *|, and assume that during each I** epoch, the distance |3 — 3* | lies within the interval
[Co27!71, Cy27!]. This stratification is conceptual and does not impact the practical implementation of the
EM algorithm. The key idea in this part is the same as [Kwon et al| (2021). During the I*® epoch, the
improvement in the population gradient EM updates must exceed the statistical error for convergence to

occur, formalized as:

1

(1= (= )T)IB*I318 = B*|2 > 2er/dlog? (n/3) /n

where ¢ is the constant in Lemma By setting 7 = ||3*|| + Co2~" and using triangle inequality |3]2 <
8% 2 + I3 — B8%|2, in I*® epoch when

1 « =
S (1= (= 552Gz = 2ery/[dlog? (n/8)/m
> 4c(|*] + Co2 ™)\ /dlog?(n/6)/m,
is guaranteed to be true, then it holds that
1
4l < (1= 518*13) 18 = B*12

18 -5 < [(1 -9+ (- (1= D)) (1 - 7 18°3) 18— 671
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Recall that n > (’)((d10g2(n/(5)/n)%)7 then with appropriately set constants

1617 = (c1 + 1)4/ dlog®(n/6)/n,

we can deduce that 3 moves progressively closer to 3* as long as Cp2~! < ca|3*||5 "1/ dlog?(n/d)/n. This
process requires O (||3*|;?) iterations per epoch, and after O(log(n/d)) epochs, the error bound |8 — 5% s <

_ 2(n/8
oo %[5 14/ LoE2 (/D)

- is expected to hold. Thus, the convergence rate for ) towards 8* is quantified as:

1
180 = 82 < 418 = B2 + =1/ dlog?(n/3)/m.

A.4  Convergence result in Theorem [3.1] under Low SNR settings

We present several auxiliary lemmas that will be utilized in analyzing the convergence results for sample-
based gradient EM iterates.

Lemma A.8 (Lemma 6 in |Kwon et al.| (2021))). There exists some universal constants ¢, > 0 such that,

18l2(1 = 41813 — cull8*(3) < [E[ tanh (YXTB)YX]|, < [Bl2(1 — 813 + cul 8*]3)-
Theorem A.3. When n < Co(dlog®(n/d)/n)"*, there exist universal constants Cs,Cy > 0 such that the
sample-based gradient EM updates initialized with |5y < 0.2 return 3 that satisfies
89 = 5*12 < O((dlog* n/n)*)

with probability at least 1 — & after t = Cy(1— (1 — 04/2)T)_1 log(log(n/d))/n/(dlog?(n/8)) iterations.

Proof. The proof argument follows the similar localization argument used in Theorem Define €(n, d) =
Cy/dlog?(n/8)/n with some absolute constant C' > 0. We assume that we start from the initialization region

where ||3]2 < €0 (n,d) for some ag € [0,1/2). Suppose that e*+1(n,8) < 8|2 < €*(n,d) at the I*" epoch
for I = 0. We let C' > 0 sufficiently large such that

€(n,0) = 4c,|B*|3+4  sup  [u—S7 i, m
BeB(B*,r;)

with 7 = €3'. During this period, from Lemma on contraction of population EM, and Lemma
concentration of finite sample EM, we can check that

1742 < 1812~ 05151 + cul a1 5B+ sup |n= 57"
N

eB(B
1 1
< |82 — 563(1”1(’”,5) + Ze‘”“(n,&),
~ a\T a\T &—1 A
130 < (1= 5) 181+ (1= (1= 5))IE 4l

<182 + (1 —(- %)T)[_ %esam(m 5 + ieaﬁl(n’é)]_

Note that this inequality is valid as long as €*+1(n,d) < ||B]2 < €*(n,d). Now we define a sequence «; by
ap = (1/3)!(ag = 1/2) +1/2
and oy — 1/2 as | — co. With this choice of oy, €t — (d/n)"/*. Hence during the I** epoch, we have

(07

> 1
131, <1812 = (1= (1= 5)7 e+ (n,0).
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Furthermore, the number of iterations required in I*" epoch is
(e (n,8) — e*+1(n, 0))
(1 - (1- %)T)ealﬂ(n,é)

When it gets into (I + 1)** epoch. the behavior can be analyzed in the same way and after going through 1
epochs in total, we have |2 < €*+!(n,d). At this point, the total number of iterations (counted in terms
of steps of gradient descent) is bounded by

(== o).

By taking [ = C(1— (1— a/Z)T) log(1/6) for some universal constant C' such that a; is 1/2 — 6 for arbitrarily
small 6 > 0, it holds that

< (1 -1~ %)T)ile”(n, 5).

t; =

18D < €270 (n, 5) < ¢(dlog(n/6)/m)"* "

with high probability as long as t > e~ !(n, 0)l 2 1/d/n(1— (lfoz/Q)T) log(1/0) where ¢ is some universal con-
stant. By taking 6 = C'/log(d/n) and using triangle inequalities, it holds that ||3®) |2 < c(dlog?(n/d)/n) 1/
and [|8®) — B*|2 < ¢1 (dlog®(n/8)/n) Y4 Where ¢y is some universal constant under low SNR settings.

To finish the proof, we replace ¢ by d§/log(1/0) and take the union bound of the concentration of sample

gradient EM operators for all [ = 1,...,C(1 — (1 — a/2)T) log(1/6), such that the argument holds for all
epochs. O]

A.5 Proof of Theorem

Proof of Theorem[3.3 The existence of the transformer follows directly from Lemma and Lemma
O

A.6 Proof of Theorem [3.3]

For the data generated based on model equation [1| with two components, 5,11 = —B* with probability %
and f,41 = % with probability 1. For any choice of 8 € R?,
Em,y[(ynﬂ - xLlB)Q] = EPM[(xIHﬂnH - 937TL+1ﬂ + Un+1)2]
=9 + Ep, , [(l‘lﬂﬁnﬂ - xlﬂﬁ)Q]
= 9> +Ep,  tr Tr1%0 1 (Bns1 — B)(Bus1 — B) T
= 9>+ Ep, , tr(Bus1 — B)(But1 — B)"
=02+ Ep, , |Bns1 — BI3

1 1
=" + §H/3* — B3 + §H/3* + 3.
Therefore, Ep,  [(yn+1 — 2.} 1)?] is minimized at

1 1
OR * *
=—p% - = 34
R = 55 - 28 (34)
the optimal risk is given by 92 + |#*||3. And same results holds if the estimator 3 depends on previous
training instance (x1,y1,...,%n,yn) and the expectation is taken w.r.t. P. And in general MoR problem,
the vector that minimizes the mean squared error of the prediction is given by

K
ﬁOR = arg min ]E’pm)y [(xTﬂ - y)2] = Z W;ﬁ;-
Ber? =1
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Proof of Theorem[3.3 The oracle estimator that minimizes the MSE, i.e. MSE(f) = E'p[(f(H) — yn+1)2]
is given by equation The output of the transformer is given by

On+41 = ready (TF(H)) = :EIHBAOR

where BOR is given by

~ ~

BOR =B —(1—m)B

with 3 = readg(TF(H)) for L = O(T(l —(1- 04/2)T)71 log(log(n/d)) n/(dlogz(n/é))) in the low SNR
settings and O(Tlog ("log")) in the high SNR settings. Note that [|[FOR — fOR|y < m1|8* — B2 + (1 —
)8 = Blla < 8% = Bo-

o Under thelow SNR regime, after Ty > O(log(log(n/d)) n/(dlog” (n/é))) outer loops,

oo <o (450

with probability at least 1 — 50.

e Under the high SNR regime, after Ty > O(log (mon log ")) outer loops,

2
89F — 3OR, < 0< ‘“gWé))

n
with probability at least 1 — 50.
We would like to bound
2 . T 2
Ep [(ynH — read, (TF(H))) ] - 1%f Ep [(mnﬂﬁ — Yn+1) ]

Note that the ]Ep[(ynﬂ - ready(TF(H)))Q] is given by

EP[(IlﬂﬂAOR - yn+1)2] = EP[(IZH(BOR - 5OR + 5OR) - yn+1)2]
—Ep [ (2141 8°% = 89%))*] + 2B | (3R = BOR) T 1 (27418%% = 1) | + B[ (27:28%% = ysn)?]

Hence, when m = mp = %, BOR = 11 8% — my3* = 0,

[ Ynt1 — read, (TF(H))) ] meP[( n+15—yn+1)2]
B[ (]2 (3% = 89%)° ] + 2B [ (3% — %) 17,17
—Ep| (37 = 8°%) T 1wl (BOR - 6°F)

_E, [tr (mmx““ (7O% — 5OR) (308 _ BOR)T)]

~Ep| %% - 4%

o Under the high SNR settings, it holds that

P(JI3°F — 8%z < O(/dlog*(n/8)/n) ) = 1 - 4.
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Hence, by integrating the tail probabilities we have

A +w A
EJ|39% — BOR | = f P(|AOR — BOR|, > vi)dt

0

“ i AOR OR
[+ Pasm 58, = Vi
< rl 1dt + FOCP(}/B’OR - B%|, = Vt)dt

0 c1

+00
<ot [ B(IBT - 58], = Vi)

Cc1

Setting v/t = (’)( dlogQ(n/é)/n) and solving for 0 give us § < nexp{ — +/nt/d}. By taking

c1 = Cdl+g2" for some absolute constant C', it holds that

n

2
_O<dlog n) +O<(2d+1)1ogn>
n n
:O<dlog2n>.
n

e Under the low SNR settings, it holds that

JOR _ 3OR2 dlog® n o 3
E|B BNz <O + nexp { —/nt/d}dt

IP’(HBOR — BR|, < O(d7 1og%(n/5)/n%)) >1-4.
Hence,
. +00 .
BIG — 4% = [ PR - %%, > Vi)ar
C1 +0o0 R
([T o - 5%, = Vi
0 c1
C1 +00
< J Ldt +j P(|8OR — 58|, > Vi)dt
0 c1

+00
<crt | B(IFR - 8%, > vt

Cc1

Similarly, setting v/t = O(d% log% (n/d)/n%> and solving for § give us ¢ < nexp{ - q/n/dt}. By

taking ¢; = Cy/dlog? n/n for some absolute constant C, it holds that

~ dl 2 +o0 .
EIIBORB°R|§<O<W>+J nexp{—d*z\/i}dt

:(’)(\/%logn).

Combining everything together, it holds that

Ep | (a1 — read, (TE(H)))* | — inf Ep[ (218 — yns1)?]
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_ O(%) n = C(dlog*(n /5)/n)%
O(Mlogn) n < C(dlog?(n/d)/n)

[

A.7 Proof of Theorem 3.1

In this section, we illustrate the existence of a transformer that can solve MoR problem with K > 3
components in general. Given the input matrix H as equation [3|and initialization of 7rj(.0)

a transformer that implements E-steps and computes

1 .
= ¢, there exists

() Tn B B
vy _ " Lo (= ot (e = 5")’) D _ }725 ey, (35)
ij n 2\’
Z?’=1 ](f) [Te—1exp ( — gz (ye — xlﬁﬁf ) ) =

since the computation in equation [35 only contains scalar product, linear transformation and softmax op-

eration. Next, following same procedure as before, one can construct 7" attention layers that implement
gradient descent of the optimization problem

i D (yy — BTay)” for all j e [K
gg@{ZZ’Y Bxe)}, or all j € [K],

i=1¢=1

as the gradient of loss I(x] 3,y¢) = S 1%2”1)( Yo — ﬂTasz)Q is convex in first argument and 0,l(s,t) is
(0, +00,4,16) approximable by sum of ReLUs. Hence, the construction in Lemma and Lemma also
holds.

(t—1) (t—1)

Given the estimate ﬁj and M , at step t — 1, the population EM algorithm is defined by the updates
(t—1) 1 T p(t—1)y2
e expd —5(Y — X
wj(.t)(X,Y): J p{ ( 6 ) }

Zee[K] ”é eXP{ Y XTB@)}
B = (E[w @(X,Y)XXT]) HE[w (X, Y)XY)),

~(t) (t)
i =E[w; (X, Y)].
(t)
ij
estimate, 8(), is obtained by applying L steps of gradient descent to the loss function

In the sample version of the gradient EM algorithm, we define 58 = Ly w (ziyi)zix] . The new

Zw xuyz z_x;‘rﬁ)Q
starting from ﬁj(t_l). Specifically,

0 = (1=e80) A (1 (- 030)T) D S S ) e

In the finite sample gradient version of EM, the estimation error at the next iteration in this problem is
oNT An T[] < reisy1—1
B =8 = (1=aS0) (80 = 1) + (1= (1= aS0) ") [~ 2 [B0] 0l (@i, y)wias - 87 .
i=1

Define
mFexp (— §(Y - X755)°)

wi(X,Y) = ,
’ S wEexp (— L (Y — XTp5)%)
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then we have
E[wf (X, V)X (Y - XT85)] = afE[X (Y - X3F)] =
since true parameters are a fixed point of the EM iteration. Hence,
ﬂf)—/ﬁ‘=(f oSG (B0 < 81) + (1 (1 - aS0)") (50) " [en + B]
ep = — Z wi (@i, y:) (i — 2] Bz — E[wl) (X, V)X (Y - XT5%)],
B-= E[@” (X, )X (Y - XT85)] - E[wf(X, V)X (Y — X 5)].

In Kwon & Caramanis| (2020), the following results are proved.
Lemma A.9 ((Kwon & Caramanis, 2020)). Under SNR condition

n = CKprlog(Kpr)

with sufficiently large C' > 0 and initialization condition

m?x |7Tét—1) _ 7T2<| < ﬂ'r;in’
(t=1) _ g en
e |5 il < Kprlog(Kpr)’

for sufficiently small ¢ > 0. Given n > O(max {dlog(dK?/5), (K?/5) 1/3}) samples, we get

Kn*? [g
les[2 < \/7\/log—nK2/5max‘,8(t 2 ,81*24_\/7 ﬁlogQ(nKQ/é)

with probability at least 1 — 4.
Lemma A.10 ((Kwon & Caramanis| |2020))). Under SNR condition

1= CKpylog(Kpx)

with sufficiently large C' > 0 and initialization condition

max |7Té V¥ < Wr;in,
(t—1) * n
max |3 B0l € ——F—7—,
x| 2l K prlog(Kpr)

for sufficiently small ¢ > 0. There exits some universal constant ¢’z € (0,1/2)
t—1
B < et max [ — 57,

Now, it remains to bound the maximum eigenvalue and minimum eigenvalue of the weighted sample covari-
ance matrix 3. Define the event

& = {the sample comes from j-th component}.

and pjp 1= 7 /7 for j # £. Note that

Zw xz,yla:x—rlg <Et)— Zw (T4, yi) i, <72xz
i=1
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By standard concentration results on 32 — I, it holds that with n > O(dlog(1/6)),

)‘max(ig)) < )‘max(i) <

N W

(t)

ij
centration argument for random matrix with sub-exponential norm [Vershynin| (2018). Since w(]) € (0,1) and
x; is standard multivariate Gaussian, then by Appendix B.2 in [Kwon & Caramanis| (2020), it holds that

H Zwt)xz Tle, —E[wl (X, Y)XXTlg f«/dlog K2/<5

with probability at least 1 — 4. By Lemma A.3 in [Kwon & Caramanis| (2020, it holds that under the same
SNR condition

with probability at least 1 — d. The concentration of + Zl L w; (2, yi)xixiTlgj comes from standard con-

*
T

® T
Amin (E[w;” (X, Y)XXT]) = 5
Therefore, as long as n = O(dlog(K?/8)/mmin), it holds that

~ ¥
)\min(z = m1n< Zw(f)mlmjlgl) > ZJ

Therefore, we have under the same SNR and initialization condition, as long as
n> (9( max {dlog?(dK?/5), (K2/3)"*, dlog(K2/6)/7rmin})7

it holds that for appropriately small «,

H (I HZ < maX{\l - 30‘/2‘ 7Trnln0‘/4)} =T, (36)
/ d [Kn |
lesl2 < log K2/(5 max Hﬂ(t b - B H2 + Wﬂlj %log2 (nK2/5)7 (37)
7T*
B < o mpx Hﬁ“ D8, (39)
A _ 4
=07, < — (39)

For appropriately small «, we have v € (0,1) Therefore, combining equation equation equation
and equation |39 together, we have

Kr¥ [g ot
B~ 5 < [”T Hmo (F log? (nK?/8) + 2)1 max |50 - ¢
K?T*2\/d—
J el 2 2
+\/; nlog (nK2/5)

with probability at least 1 — 54.

To derive the concentration results for |1 Y, wgi)(gci, Yi) — E[w§t)(X ,Y)]|, we define following events

5@ 1= {|U| Tg}
Eea = {4(CX ADI v KX, A0) < KX, BF = BDI},
Ea = {|(X. B8 = BDI > 4V2me},
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&, good = &1 N &2 N &3,

where Ay = Bétil) — BF, then we have the decomposition

t
w( (zisyi) (Z W, (Tiy Vi) Le,ner gooa + ng)(wi,yi)lgmszgooJ +w!! )(xi, yi)le, .
L+

Therefore, we could bound
)1 —Elw (2, y:)1
w zlayl ErnE good W5 (w4, y:) EinEe, good ||
t
_ ]E[w(j) ($“ yz)lgzmgz good]

Zw xzayz 1£gm€°

£,good

Zw xzayz 8 _E[ ()(wuyz)lg]

respectively. For the first part, note that

sz(j (4, yz)lé'gmgi good

/p
vy Supp_l/QE“wg‘) (xi7yi)’p | 5@ N gf,good]
p=1
< Cpgiexp (—77).

Therefore, with probability at least 1 — §/K2,

< O(pgj exp (— Tg)\/ﬁq/%log(lﬂ/&).

% Zz wz(;) (xia yi)lgz nE¢ good E[wz(gt) (xia yi)lfzf\c‘:z,good]

For the second part, note that

1/p
”1!12 _ supp 1/2ED[| ( )<.’17“y1)| | Er N g@c’ good ] < 1,
p=1

]P)(gZ N gfc, good ) = (’/TZ /(Kpﬂ'))

lw (zi, yi)lesmes .,

Therefore,

Z U) (xuyz)lggmg E[wg)(muyz)lggmgl qood] <

£,good

O( \/ I lato) \/ log(1£2/3) )

Similar to the second part, we have the following concentration result for the last part:

o< \/W; , log(K2/d) \/1og(K2/5))_

Zw Jz‘u% 5 _E[ ()(9617%)15]

Combining three parts together, we have
)—Zw (25,1:) — E[w ]@)(X Y)]‘ (9( ilog(KWd)(Zﬁjpgjexp(—TEQ) W;;H/f) + W)
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with probability at least 1 — 3. Therefore,

1 B%% = 21 BOR| < a2 BOF — BORl2

< [l salo (mae [y — f | masc B} 2 + mae{e; ) max | ; - 87 )

K log(K? |Kn¥? |
<«/log(d/6)< ww;u % %log2 (nK2/(5)>

with probability at least 1 — 94.

B Proof of Theorems in Section [4

B.1 Proof of Theorem [4.1] in Section [4.1]

Proposition B.1 (Proposition A.4Bai et al.|(2024)). Suppose that {Xg}geo is a zero-mean random process

given by
1 XN
Xo = 55 > f(2:0) = E:[f(2:0)],
i=1
where z1,- -+ ,zn are i.i.d samples from a distribution P, such that the following assumption holds:

(a) The index set © is equipped with a distance p and diameter D. Further, assume that for some constant
A, for any ball ©" of radius r in O, the covering number admits upper bound 1ogN(5;@’,p) <
dlog(2Ar/0) for all 0 < 0 < 2r.

(b) For any fized 0 € © and z sampled from P, the random wvariable f(z;0) is a SG(BO) -sub-Gaussian
random variable.

(¢) For any 6,0" € © and z sampled from P, the random variable f(z;0) — f(z;0') is a SG (Blp(Q, 9’))-
subGaussian random variable.

Then with probability at least 1 — 0, it holds that

dlog(2Ak) + log(1/6)
N )

sup ‘Xg’ < CBO\/
0O

where C' is a universal constant, and we denote k = 1+ B'D/BO.

Furthermore, if we replace the SG in assumption (b) and (c) by SE, then with probability at least 1 — ¢, it
holds that

sup |X9‘ <CRB°
0O

\/dlog(QAKa) +1log(1/6) dlog(2Ak) + log(1/6)
N * N '

1/p
For any p € [1,0], let |H|z, := (21;1 thHg) denote the column-wise (2, p)-norm of H. For any radius
R > 0, we denote Hp := {H H 2,00 < R} be the ball of radius R under norm || - |2,00.

Lemma B.1 (Corollary J.1 Bai et al.| (2024)). For a single attention layer Oagn = {(Vin, Qm, Km)}me[M] c

RP*P and any fixed dimension D, we consider

Outtn, B’ := {Battn : Hgattn H < B'}.

35



Published in Transactions on Machine Learning Research (11/2025)

Then for H € HR, Oattn € Oaten, B, the function (Battn, H) — Attng,,, (H) is (B2R3)-Lipschitz w.r.t. attn
and (1 + B3R?)-Lipschitz w.r.t. H. Furthermore, for the function TFR given by

TF®: (0, H) — clipg (Attng,,,, (H)).

aven (

TFR is Beo-Lipschitz w.r.t 8 and Lg-Lipschitz w.r.t. H, where Bg := B?R3 and By := 1 + B3R2.

Proposition B.2 (Proposition J.1 Bai et al.[(2024)). For a fired number of heads M and hidden dimension
D, we consider

Orrrm = {0 =045 : MY = M, DO = D[] < B'}.
Then the function TFT is (LBfI_lB@)—Lipschitz w.r.t @ € Orp 1 B for any fived H.

Proof of Theorem[{.1} Define events

Ey = {z [ninla}](e[g] {|y ’} < By}v
. @)
£ooe { s 1) <.
and the random process
B
E Z 1cl Z(J) Z[gicl(0§ Z)]

where Z(:B) are i.i.d. copies of Z ~ P, drawn from the distribution P. The next step involves applying
Proposition to the process {Xg} conditioning on events £, N &,. To proceed, we must verify the following
preconditions:

(a) By [Wainwright| (2019), Example 5.8], it holds that log N'(6; By (r), | - [) < L(3MD?)log(1 + 2r/5),
where B).j(r) is any ball of radius r under norm | - .

b) |€ic1 (; Z)‘ < 435 and hence 4B§—sub—Gaussian.

) |€icl(0; Z) — 6101(5; Z)| < 2By(LBIIle@)H0 - 0~H by Proposition where Be := B2R3 and
By =1+ B3R2.

Therefore, by Proposition @ conditioning on &, N &€, with probability at least 1 — ¢,

sup | Xo| < 0<B§\/L(MD2)L + log(1/£)>
]

B
where ¢ = 20Llog (2 + max {B’, R, (2B,)~'}). Note that

K
Var(e] 8:) = Eg, | Var(a] ;| 8:)| + Var (E.,[o] 8| 8:]) = 2, w161

K

g oers] - $ ot B[ | < 3wt exp {5N715113).

k=1 k=1
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. K
Denote 7; to be the sub-Gaussian parameter of x]3;. Then we have \/Zk=1 mr¥IBEE < o<

max;<x |Bf[2. Besides, y; is sub-Gaussian with parameter at most /77 + ¥?. Finally, note that
18F = B3 < 2(18F15 + [185[3). Summing over i and j for all 7 4 j, we have

K
2188 = BFl5 < 4K —1) Y 18715,
itj i=1

which implies K (K — 1) ming4; |55 — 8F[3 < 4(K — 1) Zfil |B#(3. Thus, we can derive a lower bound of
the subGaussian parameter 7; as below

K K
2= 3 B3 = mnin O 18F13
i=1 i=1

Tmin .
> TS min |37 — 85 3 -

7Tmiml(
4

Rmin .

Therefore, \/72 + 92 = /(1 + (9/7)2)7i < /1 + —2L—C = \/1 + 4/(TminKn?)C. Then by taking

. 2
Tmin Kanin

B, = +/dlog(nB/£),
By, = \/2(1 +4/(mminKn?))C? log(2nB/§),
R = 2max{B,, B,},

we have P(Ey) >1—¢and P(Em) > 1 — £ by union bound. Hence, with probability at least 1 — 3¢,

L(MD?). + log(1
sup|Xo| < O ((1 4 (i ) (2| FULD2) LBl 5))
where
L =20Llog (2 + max {B’, R, (2B,)'})

is a log factor. O
B.2 Proof of Theorem
B.2.1 Computation of the risk
Given the prompt in the form of

F = [ 1y X2 ... Tp Tptl e R+ x(n+1) (40)

vy Y2 - ye 0

appropriately sized key, query, and value matrices K, @, V', the output of a linear-attention block is given by
1
A:=FE+ -VE(KE)"(QE).
n

We start by rewriting the output of the linear attention module in an alternative form. Following [Zhang

et al.| (2023)), we define
% % Ui =
Wpy = , Wko = ) 41
v ( ugy U ) e ( uly ) =

therefore, the prediction on the query sample is given by

. 1 1 1 1
Un+l = [u; CEXTX U+ u; . —XTy . ulTQ +u_q - —yTX U +u_q - —yTy . u1T2] C Tyt
n n n n
1
= [(Um Ui fogr) ﬁXTX' (U + 5n+1u1T2)] “Tp1

1 1 2 1
+ ule X T Ul—z +Uu_q - ol X - Uin +u_q- fUTXBnHuE + v u,lufz “Tpt1-
n n n n
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B.2.2 Gradient of Loss w.r.t. Parameters

In this section, we compute the gradient of the population loss w.r.t. parameters {us1,u12,Ur1,u—1}.To
simplify the presentation, we define v = [v1,...,v,]T € R?, X = [z],...,2]]T € R"*4 and following
notation

1
2 = (uz1 + u_1Bns1) " - EXTX - (Un1 + Brraudy)

1 1 2
T T T, .. T T T T
Zg = Ugq - ﬁX V- Ujg + U7 Y X U +u_q- o X Brnt1Uqa,

1
Zy = =0 V- U_ Uy
n

Since X, v, 8,41 are independent, we have

2LSA(E79) (yn+1 <ﬂn+laX> Un+1)
:E[<21 + z9 +23—ﬁn+1,X> ] +192
= <Id,E(21 + 2o + 23 — ﬁnJrl) (Z1 + 29 + 23 — Bn+1)T> + 192.

=92 + <Id,E (21 = Bn+1) (21 = Bn+1) >+ <Id’E2222 >+ <Id’Ez3Z3 >+ 2{Ia,E (21 = Bny1) 23 ) -

~—

S2 Ss3 Sa

S1

We first compute Si. Note that X is independent of v and 3,41, then by making use of Lemma [C.1]
<Id, EZl ZI>

=Etr |:(U11 + ﬂn_;_luig)

n+1

T 1 1
: ﬁXTX (uzr + u—1Bpar) (uar +u_1Br1) EXTX (Un1 + Bay1ulsy) Id]

.
Eﬁnﬂ tr [ Uni + Baritly)  (uor +u_1Bns1) (uor + u_1Bns1) I (Ur1 + Brs1udy) Id]

n+1

(
T TyT T
+ Eﬁnﬂ tr [t ( u21 + U—1Pn41) (u21 + u—1Bn41) Id) (Un1 + Br1uly) La (Unn + Bri1ulsy) Id]
Eﬁn+1 tr [(Ull + /5’n+1u12)T (21 + u—1Bns1) (21 + u_1Bns1) " (U1 + ﬂn+1U1Tz)]

+ Eﬂnﬂ tr | (uo1 + u—1Bnt1) (g1 + u_1Bni1)’ Id] tr [(Un + ﬁn+1u12) (Un1 + Bns1uls) Id]
n+ 1 1

(1) + (1),

n n

where
() =Eg,,, tr [UlTlugluLUH] +2Eg, , tr [(ﬁnHuB)T ugluQTlUu] +2Eg, ., tr [UlT1 (u—1Bn+1) UQTIUH]
+ 2Eg, ., tr [(57L+1U1T2)T (u—1B8n+1) UleUll] + 2Eg,,, tr [(5n+1U1Tz)T uz1 (u—15, 1) Ull]
+Eg,,, tr [(5n+1ulg) Ug1 Ugy (5n+1u12)] +Eg, ., tr [Uu (u—1Bn+1) (u—l/Bn-H)T Ull]
+ 2Eg,,,, tr [ (u_1Bns1) (U_1Bns1) " (ﬁnﬂuu)] +2Eg, ., tr [(5n+1u1Tz)T g1 (u—1Bps1) (5n+1U1Tz>]
(

+Eg, ., tr[ ﬂn+1u12) U-1Bns1) (U-1Bns1) (ﬂn+1U1Tz)]
= tr [U11u21u21U11] + 2E tr (ulgﬁzﬂquu;Un) + 2u_1Etr (Uﬂﬁnﬂu;Ull)
+2u_1Eg, [@Lﬂﬂnﬂ] ug Ururz + 2u_1Eg,, | tr [U125;+1U215;+1U11]
+ “1T2“12E6n+1 tr [“21U2Tlﬁn+152+1] +ul 1Eg,, ., tr [ﬁ”‘*'lﬁ;JrlUllUlTl]
+ 2u? Z1Eg, ., tr [U116n+1,8n+1ﬁn+1u12] + 2u_ 1“12U12Eﬂn+1 tr [ﬁn+1u21ﬁn+lﬂn+1]
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4
+ u271U1TzU12]EBn+1 1Bn+1ll2

and

(1) = Eg, ., (u21 +u_1Bns1) | (21 +u_1Bps1) tr [(Un + ﬂn+1U1Tz)T (U + 5n+1U1Tz)]

=Ep,,, [ugitor + 2u_1B, yus1 + v By 1 Brrt ] tr [UN Urs + 2u12f,, 4 Unt + w128, 1 Bni1tigs ]
= u;uzl tr [UlTlUu] + 2U;—1u21E5;+1U11U12 + 2u,1]EBI+1uz1 tr [UlTlUu]

+ U us1ulpu12EB) 1 B + Au1 BB yus B Uniure + u?y tr Un U EB,L L Brsa

+ 21/«—1UIQU12E5;+1U216;+157L+1 + 2u311E,6’I+1,6’n+1ﬁL1U11U12

+ u? juyu o Hﬁn-HH;l'

For the cross term in S7, we have

1
C(Ury, g, uon,ur) = (Ig,Bz18, 1) = E {(U21 tu1fpi1) gXTX (Ur1 + Brs1uly) 5n+1}

=E {(Um +u_1Bns1) " (Unn + Busru,) 5n+1}

=Eg,,, [U2T1U115n+1] +Eg, .\ [“2T15n+1U1Tan+1]
+u_1Bg, ., [Bos1Ut1Bns1] + u—1Ep, s [Bri1Bnr1tiiaBns1] -

Finally,

{10, EBns1Bni1) = EB, 11 Bnt1,

1
Sy = EE u;—lXTvuIQulgvTXum + uz_lvTXUnUlTlXTv
T T 2 T T T T
+2u_y v XUpuigv’ Xugy +4uZ v X B2, 1 X v

T T T T T T
+ 4u_qv X,Bn+1u121L12U Xuor +4u_qv X,Bn+1u12U11X v

1 02

2U 1T X TX e b (X B rulyunsBT, X

2 [v" XU uipv' Xugi | + 2 tr (X Bni1uiptiaf, 1 X ")
qu —1 4u_

+ TL2 E [UTXﬁn_;,_l’U,IQuleTXU,Ql] + n ! E [UTX,@n+1UIzU11XTU]

2
192
= Z [u;1u21u12’1l12 + u2_1 tr (UllUlTl) + 2u_1uIQU1T1u21 + 4U2_1UIQU12 tr (Eﬁn_,_lﬁ;l:_'_l)]

4’LL,1

qu_
+ 2 E [UTXﬁnHuszulgvTXugl] + n21E [UTXBnHuIQUuXTUL

4
o'(n+2) 5 1
S3 = - U U qU12,

and
Sy = 2<Id,E (21 — Bn+1) Zz;r>
1 1
=2E { [(um +u_1Bs1) EXTX (un + Busruty) - ;“] anvu_ﬂLm}

= QﬂQU—lE{[(Um tu1Bps1) (Ui + Brgrudy) — 554-1] Ulz}
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2 T T T T T T T

= 20%u_1E {{ug, Ur1 + ugy Brsruds + u—1B,y Ut + u—1B, 11 Bns1tily — By i1 ui2}
2 T 2 T T

=20 U,1u21U11U12 + 29 u,lEuzlﬁnHulQulg

+—202u31EB;;1CH1u12%—2ﬂ2u31u15u1ﬂﬁﬁ1415n+1——202u_1Eﬁl;1u12

Now we compute the derivative of the risk R w.r.t. parameter Uy, u_1,u12 and us;, where

n+1
n

1
2Lga(E,0) — 92 = (1) + — (1) = 20(Un, waz, ua, un) + EBps1Bnt1 + S2 + S5 + Sy.

We first calculate the derivative of all components in risk w.r.t. the scalar u_;.

o)

8u,1

= 2E tr (U, Bps1ug,Un1) + 2E [ B 1 Bn+1] ugi Uniurz
+ 2B tr (w28, 4 1u21 B4 Uni | + 2u_1ufyuinE| Bata |3,
> = 2EB,, juoy tr (U Ur) + 4EB, qus1 By Uniurz + 2u_y tr [Un UL | EB. 1 Bnst
+ 2ulyuaEB, 1 u2a By 11 Bnst + Au1EB, 1 Bni1 B 1 Uniwns + 2u_quiyuisE ||5n+1H§ ,

0C(Ur1,u12,u21,U_1)
6u,1

=E[Bp1U11B8n+1] + E[Bi1Bn+1uiaBnr1] s

and

0S. 4992 2092 8192
2 _ TU,l tr (U11U1T1) + TUBUEUH + Tu,lulTQuu tr (E/Bn+1ﬂ,;lr+1) ,

6u_1
4 4
+ EE [UTXB,LHuEumvTXugl] + EE [vTXﬁnHulTQUuXTv] ,
0Ss  20%(n+2) T

A T U (ufpurz),

0S4

6u_1

= 20%uj, Unyuiz + 20°Bug, B ufyuns
+—4§2u,1E6241LH1u124—4ﬁ2u71uiﬂq2E5;;1ﬁn+1——2§2Eﬂl;lu1}

Next, we calculate the derivative of all components in risk w.r.t. the matrix parameter Uj;:

a(h)

= 2uoiugy Un1 + 2E [u21ugy Bri1uls| + 2uiE [Bny1ud, Uny + ug1 By 41 Uti ]

U4
+ 2u_1up1 BB 18,4 uly + 2u 1B tr [ Brytig) Brrus]
+‘2u§1Eﬂn+lﬁg;1lhl4‘2u31Eﬂn+15;;1ﬂn+1u;b
o(ll
@((]7) = Q’U,QTl’U,QlUU + 2u2Tlu21Eﬂn+1ulTQ + 4u_1EﬂZ_~_1’UJ21U11
11
+ 4u_1 BBy 1ug; Bry1ufs + 2 UEB, 1 Bni
+ 2u2—1]Eﬁn+1ﬁ71—+16n+1uIQa
0C (Ur1, u12, ua1, u—1
( F ) _ Eu1By 41 + u—1EBns1B 41,
and
oS, 207 , 292 T du, e
=2 U+ ;g XTou X,
T —uZ Ui+ ——uoqunugy + 3 [u128, 1 X Tov' X
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083
=0
oUn ’
054 = 20%u_quaiuly + 20%u? | EB, 4 1ud,.
oUn

Then we calculate the derivative of all components in risk w.r.t. the parameter uio:

ol
A R UT uagtds Bt + 20 sEBL ) Brosa Ul yuins

Oura

+2u_1U{) Bns1ugy Bns1 + 2uinEtr [usiugy Bns1 8y 41

+ 2U2—1EU1T15n+152+15n+1 +4du_jupEtr [67;r+1u21ﬂ7;r+1ﬂn+1] + 2u2—1u12]E Hﬂn+1H3 )
ol
ai ) = 2U\EBpiuguar + 2udyusiuiaEB, Bt + 4u_1U) EBny1ugy B

12
+ 4u71u12E62—+1u216¢1—+15n+1 + 2U%1EUﬂﬁn+lﬁZ+1Bn+l + 2u31u12E HBnJrlug s
0C (Ur1,u12,u21,U—1)
au12 =E [ﬁn+1u;—1ﬁn+l] +u_q- E [Bn-‘rlﬁ;zr-&-lﬁn-‘rl]
and
055 202, + 2092 T 892 T
= — —u_ — E
E " (U21U21) U2 + " u_1Uj u21 + o u_q tI‘[ 6n+16n+1] U2
du_y T T, T vT T T du_y T,.T
2 E [ulgﬁnHX VU X U+ u12v Xug1v Xﬂnﬂ] + 2 EU1 X "vv' XBna,
0S5 2(n + 2)o?
au12 = ( o ) U2,1U127
054 2 T 2 T
E 207 u_1 U uo1 + 40 u_q1u12EB, | u21.
12

Finally, we calculate the derivative of all components in risk w.r.t. the parameter wus;:

ol

(9’[57) = 2U11U1T1U21 + 2 [Unulgﬁlﬂ + ﬂn+1uIQU1T1] U1 + 2u_1]EU11U1T1ﬂn+1
21

+ 2u 1 BB r1ufpUr1 Bnit + 2 (ufatinz) EBns1 8y fquz1 + 2u_1uipu12B B 18, 11 Bns1,

ao(ll

a’i ) = 2tr [UHUlTl] Uy +4 (Eﬁ;+1U11U12) Uoq + 2u_1q tr [UHUlTl] Eﬁn-&-l
21

+ 2ujyurn (BB, 41 Bn+1) o1 + du 1 EByy1ulyU) Bnst + 2u_1ufyuinEBni1 8y 41 Bt

0C(U11,u12,U21, U
(Ut1, w12, uz 1) ZEU116H+1+]E5n+1U1T25n+1’

Ougy
and
6?5;21 - 27192 (U1Tzu12) uz1 + 2719211—1(]111112 + 4un_1E [XTUUlT?umﬁZ“XTU] ’
oS,
5“231 -0
6?5;41 = 20%u_Upuia + 20%u_1EBp 4 1uipura.

When EfS,, 11 = 0, then by taking the derivative to zero and solving the equations, we have

k0 *
ujy = Uy =0
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and

n+1 2192
202 EBpi1 By 1 Ui + — 202 BB 1 Bns1Ut1t — 2u_1EBny1 By + 7“ Ui =0,

which implies

2

n+1 1 Y B
EBn+1Bni1 + (n]Eﬁ;zr-&-lﬁn-&-l + n) 1] EBnt1Bmi1-

* k
uZ Uy = [

B.2.3 Dynamics of parameters

Lemma B.2. Let E € RU+D*(+1) he an embedding matrix corresponding to a prompt of length n and
define

U= ( (uUlﬁT Z” ) e RUTDX(HD) ) — Vee(U) e R+, (42)
21 —1

When ES; = 0, then starting with w12 = ug; = 04, the dynamics of parameter U follows

O v | s+ (LeaTs 4 L) 1] umimss, (43)
dl;: - _tr [u1U11U1T1 (n * 1EﬁﬁT < EBTB + 192) I) - U11Eﬁ5T] (44)

and Ugl(t) = ulg(t) =0 forall ¢ = 0.

Proof. Based on the calculation in Section we see that if we initialize ujs = ug; = 0 at t = 0 and use
the identities

duyo
el ~Vuy, Lsa(E;0),
du
= = Vuy Lsa(E:6),
we can see that % = dzgl = 0. The expression of ¢
and ES = 0 in the gradient Vy,, Lsa (F,0) and ﬁLSA(E 9) O

Remark B.1. One can show that with uys = us; = 0g,

dU- n+1 1 92
dt“ U, = [—u21U11 [ EBBT + <]EBTB + ) I] + ulEﬁﬁT] Uy,
n n
du_ +1 1 92
thlu_l = —tr [u21U11U1T1 (” + (EﬁTﬁ + ) I) — u_lUll]EﬁﬁT] .
n n
Hence,
d d

Besides, the loss function could be simplified as

2

(Ui, u_y) = %u%l tr [(n + 1E55T (TlLEﬁT»B + i) I) UnUlTl] —u_qtr [UuEﬁﬁT] +EBTB + 92

and thus,
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Lemma B.3. Under initialization condition equation when the parameter v satisfies the condition

2>\min (Eﬂﬂ—r)
TS \/ Vi (B (EBBT) + Z) 10

we have:

e Forallt =0

n+1

——EBBT + <iEﬂTﬁ + ljj) I

2 T T2
2IOTEBSTI (2_@72

eoT 0. (47
2Vd[ES5T],, | 'F>> o

op
o {(U11(t),u_1(t)) satisfies the PL-inequality, i.e. there exist p > 0 (free of ¢) such that
~ 2 ~ . ~
||V€ (Ull(t), u_l(t))H2 = 1% (E (Ull(t), u_l(t)) — min ¢ (Ull, ’U,_l)) . (48)

Then gradient flow converges to a global minimum of the population loss. Moreover, WV and WK®
converge to WV and Wf Q respectively, where

-1 3
wh* - ‘ (“tmsom+ (18575 + 2 ) 1) 67| (49)

F

—1
WK — (why)” (”“WT ( ST + 192) I) EBST (50)

Proof. We first characterize the behavior of £(Uy;(t),u_1(t)) on the gradient flow. Define

_nt 1E55T < ESTS + 192) . (51)

Note that

L—F

r[T (usUny = TUBART) (uaUn — TEBST) |

u? U U, —2u_1Un T 'EBBT + T 'EBB T EBBT)]

t+

[
—

=
—~

l\D\»—tw\Hl\DM—'l\DM—A

tr [u? U U\ T — 2u_1UnEBBT + EBB T ERAT ]
2 tr [Un UL P — uy tr [UnEBBT | + %tr [F*l (Eﬂ/@T)Q] :
Hence,
I (Up,u_y) = %tr [T (u_yUny — TEBBT) (u_rUyy — T'EBRT)] — %tr [r—l (EﬁﬁT)g] +EBTB + 9.

Besides, by chain rule, we have

d7l7_ df dU11 dU ou—1
dt — \dUp;’ du du_y’
_ <dU117dU11> <du 1’du 1><0.
dt

Also, 7 is a quadratic function w.r.t, u_, and ((Ui,u_y) = EBTB + 92 when u_; = 0. Hence, if we can
show that for all t > 0, £ < EST 3+ 92, we can claim u_;(¢) = 0 by the property of quadratic function. Now
under the initialization condition equation |11 with tr (@@T (EBBT) 0o’ (EﬁﬁT)) =1, at t = 0 we have

£ (U11(0),u—1(0))
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=%'}/4 tr [F (Eﬁﬁ—r)% @@T (Eﬁﬁ—r) @(—)T (Eﬁﬁ—r)%] — 72 tr I:(EﬁﬁT)Q GGT] + Eﬁ—rﬁ + 192

:%74 tr [T (E387) 007 (BABT) 007] — 42 tr | (EB8T)" 007 | + ESTH + v

s%fy‘*\/&urnop |E88TOOTESRTOOT|, — 42 H@T (E58T)? i YEBTS + 0

=57 107 (887}, (VAT I,y |00 |, —2) + ESTS + 07

where the second equality follows from the fact that ES3T commute with I'. Therefore, as long as

2 T ; 2 : .
Va2 |T|op |06 | <2 ie v < \ Variaeet then we will have u_1(¢) = 0. Now we just show

that condition equation |12]is a sufficient condition by finding a lower bound for m.

1

tr (EB8'©O0'EBB 0O T)

tr (@@TEﬁﬂTG)@T) >\min (EB/BT)
tr[(©07)*| X2, (EB5T)

= 007 [ X0 (EB5T)

min

A\

A\

min

we have W > A2, (EBBT). Besides, [Top = 2 A ax(EBBT) + L (92 + EBT B). Hence, under condition
F
equation [I2] we have

< 2Amin (EBT) < 2Amin (ESST)
VA (5 A (BBET) + 52) | Vil (B A (BBBT) + ZEEET 4 22)

n

2
<
\/ VT, 1067

and ¢ < EST B +192. Next, we prove equationby contradiction. Note that we can lower bound ¢(Uy1,u_1)
as

. 1

(Ui, u—1) = tr §u2_1FU11U1T1 - U—lEﬁBTUﬂ] +EBTB + 9
> —tr[un EBBTULL | + EBT B + 0
> —Vdu_, H]EﬂﬂTHOp 10U lp + ETf+ 0

where the first inequality follows from that I' and Uy Uy are positive definite. Besides, at time ¢ = 0, we
have

F(U(0),u1(0)) < 5710 BB} (2~ VA [T,y 007, ) +EBT 5 + 2

Suppose that the opposite of equation [47] holds, i.e.

YV |OTEBBT|%
u_q < 4 |[—=—"C F (9 \/dv2||IT|,, |[©OT ,
! \/2\/3|1E65T|0p ( VT ler | ”F>

then we will have
1
—Vau2, [EB8T],, > ~57° 10 TEBBTIE (2~ Var*ITl.p 007 )
and thus,

Z(UH, u_1) > Z(UH(O), u_l(O)) .
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However, we also have d/, /dt < 0. Therefore, we must have

V2|OTESLT|3,
> E (9 g2 T, 007 ) > 0.
' \/2\/3|1E55T|0p ( VI | ”F)

Now we prove PL-inequality. Note that

) ~ 1
£(Urr,u—q) —minf (Uyg,u_q) = 3 tr [ (u—1Uyy =D 'EBT) (uoiUnn —T7'EBBT)]
1.2 - ’
T2 HF2 (urUn =T 1]EﬂﬂT)HF'
Besides
ol AU, _ T
o T~ vhUnl —uaEssT
~ 9 ~ 2
i ) o ol
[VE U (1), ua ()] = HaUu P
> |u?,UnT — UflEﬂﬁTHQF
=, Ju_ U —EBBT HQF :

Since EBBT commutes with I', we have

u_ Ul —EBBT = u_Un I =T 'TEBBT
—u_ U I =T7'EBB'T

= (u1Uyy —T'EBBT)T.

Therefore, it holds that
% (u_yUyy —DT'EBBT) =% (u_y Uy L —EBBT) I
and

fu_y UL —EBET|2 T

7 ~ 2
E(Ulhufl) - minE(Uu,u,l) < HF% F{

1
2
Now if we set p such that

1 2
w2 [usUnT —EBA7 [} > Sp 03| JusaUnl —EB8T [ T

then PL-inequality holds, i.e.
[V (Ut us )]s = w2, [u_aUnl — EBBT[

1 2
> S0 Justnr — B85 [T

= [ [E(Un,u_l) - ming(Un,u_l)] .
In particular, using lower bound of u_1, we can set
= VQJIGTEBWII%
va|r| e essTl,,

(2= V2Tl [007[ ) > 0.

Now, by the dynamics of gradient flow,

2 2

d U < [T U (1), ur(t)) — mind (Ui, u_1)].

S U #),u ()] = — ' 0 du_,

dt

F
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Hence,
0 < 0 (Upi(t),u_y1(t)) —minl (U1, u_y) < exp(—put) [Z(UH(O),U,1(O)) - ming(Ull,u,l)] -0

lim [E(Uu(t),u,l(t)) — ming(Ulhu,l)] = tlirgo ‘]_—‘% (uflUll — F_lEﬂﬂT) H — 0.

2
t—0o0 F
Hence, we have u_1U;; — I'"'EBBT. Besides, u?; = tr (UnUlTl) = HUIIHiw we have as t — o
I;

F,

1

I 'EBBT.

u_y — [T 'EBBT

Un — [LT'EBBT

C Auxiliary Results

Proposition C.1 (Proposition C.2 in|Bai et al.|(2024)). Let £(-,-) : R> — R be a loss function such that o1/
is (e, R, M, C)-approzimable by sum of relus with R = max {Bwa,By, 1}. Let L, (B) := %Z?ﬂ E(ﬁTxi,yi)
denote the empirical risk with loss function £ on dataset {(xi,yi)}ie[n]. Then, for any € > 0, there exists
an attention layer {(Qm, K,,, Vm)}me[M]

h; = [.’Ei;y;;ﬁ;OD_Qd_g; 1;ti] with ||B|2 < By, it gives output

with M heads such that, for any input sequence that takes form

hi = [ Attng(H)], = [2i3 /5 B: Op—2a—3; 1; t:]
for all i € [N + 1], where
|5 = (8 =nVLu(B®)], < (nB.).

Proposition C.2 (Proposition 1 in [Pathak et al.| (2024)). Given any input matriz H € RP*9 that output a
matriz H' € RP*9, following operators can be implemented by a single layer of an autoregressive transformer:

copy_down(H; k, k",@,l’) : For columns with index 1 € Z, outputs H' where
Hl,e’:l’,i = kaﬂ'

and the remaining entries are unchanged. Here, ¢! = k' + ({ — k) and k' = k, so that entries are
copied "down" within columns i € Z. Note, we assume £ = k and that k' < q so that the operator is
well-defined.

. copy_over(H; k, k’,E,I) : For columns with index i € I, outputs H' with
Hyrpry = Hrio1
The remaining entries stay the same. Here entries from column i — 1 are copied "over" to column 1.
e mul (H; kK, k‘”,ﬁ,I) : For columns with index 1 € I, outputs H' where
H,;//_H,i = HiveiHpgii, forte{0,...,0—k}.

Note that " = k" + 6" where W € R0 W' € R > qnd ¢ = k + 6,0 = Kk + 8. We assume
0,0",8" = 0. The remaining entries of H are copied over to H', unchanged.

. scaled_agg(H; ok, l, k’,i,I) : Outputs a matriz H' with entries

Hirge :aZHk+t,j forte{0,1,...,0—k}.
JjeT

The set T is causal, so that T < [i—1]. The remaining entries of H are copied over to H', unchanged.
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Figure 4: Plot of excess testing risk of the transformer v.s. the hidden dimension D with different SNRs.

e soft (H; k, /0, k’) : For the final column q, outputs a matriz H' with entries

eHk+t.q
H, =
E'+t,qg = -k
t'=0€

,  fJorte{0,1,...,0—k}.

Hk+t/,q

The remaining entries of H are copied over to H', unchanged.

Lemma C.1 (Lemma D.2 in |Zhang et al.| (2023)). If x is a Gaussian random vector of d dimension, mean
zero and covariance matrix I, and A € R%*? is a fixed matrix. Then

E [XXTAXXT] =(A+A") +tr(A),.

If A is symmetric and the rows in X € RM*9 are generated independently from X; ~ N(0, 1), then it holds
that
E[X"XAXTX] = M -tr(A) - Iy + M(M +1)A.

D Additional Details in Simulation

D.1 Batch EM Algorithm

The procedure of EM algorithm is given by Algorithm In our implementation we stop (or declare the
algorithm converged) if the maximum iteration is attain, or if max; HBA]@) - 3§t71)|\2 < &, where ¢ = 0.0001
and the maximum iteration T, = 10000.

D.2 Performance with different number of hidden dimension

In this experiment, we vary the hidden dimension D = 34,64, 128. For each case, we run the experiment
with two components (K = 2), different SNR (n = 1,5,10). The z-axis is the hidden dimension D, and
the y-axis is the excess test MSE. The performance of the trained transformer is presented in Figure [d In
the low SNR settings, increasing the hidden dimension helps in improving the transformer’s ability to learn
the mixture of regression problem. However, excessively large hidden dimensions can lead to sparsity in the
parameter matrix, which may not significantly enhance performance further.
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Algorithm 1 Batch EM algorithm for Mixture of Regression Problem

Input: Number of prompts B > 0, prompts {F® : i = 1,..., B} of length n + 1 containing the data
{(xs,9:), Tny1 1 @ = 1,...,n} generated based on Mixture of regression tasks with noise variance ¥ > 0,
number of components K > 0.

Initialize 7(®) € [0,1]%, drawn uniformly on the probability simplex.

Initialize ﬂ](o) e R?, drawn uniformly on the sphere of radius 1 for j € [ K] such that cos Z( ¥, 5?) > 0.8.

Initialize %(jq) =0forallie[B],je[K].
while have not converged do

Update prompt-component assignment probabilities, for all i € [B],j € [K].

‘ (-2 B0y
w§>nz_1exp{—w
(t+1) _

g K = 52 } '

t
=1 T‘—J(") [To—i exp {_ 207

Update the marginal component probabilities for all j € [K]
(t+1) _ 1 ZB (t+1)
t+1) t+

i B 1:1%]’ :

Update the parameter estimates for all j € [K]

B : N2
gyt = arg min {Z DAt (u” - 8Tal”) } :

i=1/0=1

Update the iteration counter, t «— ¢ + 1.

end while
K

Return: Final set of component centers, { ﬁj(-t)}
Jj=1
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