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Abstract

Knowledge graph-based retrieval-augmented generation seeks to mitigate hallucina-
tions in Large Language Models (LLMs) caused by insufficient or outdated knowl-
edge. However, existing methods often fail to fully exploit the prior knowledge
embedded in knowledge graphs (KGs), particularly their structural information
and explicit or implicit constraints. The former can enhance the faithfulness of
LLMs’ reasoning, while the latter can improve the reliability of response generation.
Motivated by these, we propose a trustworthy reasoning framework, termed De-
liberation over Priors (DP), which sufficiently utilizes the priors contained in KGs.
Specifically, DP adopts a progressive knowledge distillation strategy that integrates
structural priors into LLMs through a combination of supervised fine-tuning and
Kahneman-Tversky optimization, thereby improving the faithfulness of relation
path generation. Furthermore, our framework employs a reasoning-introspection
strategy, which guides LLMs to perform refined reasoning verification based on
extracted constraint priors, ensuring the reliability of response generation. Exten-
sive experiments on three benchmark datasets demonstrate that DP achieves new
state-of-the-art performance, especially a H@1 improvement of 13% on the Com-
plexWebQuestions dataset, and generates highly trustworthy responses. We also
conduct various analyses to verify its flexibility and practicality. Code is available
at https://github.com/mira-ai-lab/Deliberation-on-Priors.

1 Introduction

Large Language Models (LLMs) [1–4], distinguished by their massive parameter scale and training
on vast amounts of diverse, unlabeled data, have demonstrated impressive capabilities across a wide
range of natural language understanding and generation tasks. They have also achieved substantial
success in practical applications, such as intelligent virtual assistants and customer service systems.
However, recent research [5–7] has revealed that LLMs are prone to hallucinations, producing
plausible-sounding but incorrect or outdated responses, especially in real-world scenarios. This
issue, often stemming from insufficient or obsolete knowledge, can lead to serious consequences and
undermine the reliability of LLMs in high-stakes domains such as legal decision-making and medical
diagnosis [8, 9].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/mira-ai-lab/Deliberation-on-Priors


The movie Life of Pi, directed by Ang Lee and starring Chow Yun-fat, won the Golden Horse Award in 2001.

The movie directed by Ang Lee and starring Chow Yun fat win the Golden Horse Award in 2000. 
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Path 1: Ang Lee ⇨️ directed ⇨ E ⇨ won_award ⇨ CVT ⇨ arward_name ⇨ E

Path 2: Ang Lee ⇨ directed ⇨ E ⇨ won_award ⇨ CVT ⇨ arward_time ⇨ E

Path 3: Chow Yun Fat ⇨ starred ⇨ E

Type Cons.
1. The answer must be a year number.
Multi-Entity Cons.
2. The film is directed by Ang Lee. | 3. The film is starred by Chow Yun Fat.
4. The award won by the movie is the Golden Horse Award.

Constraints ExtractionStructural Information Collection

Question: In which year did the movie directed by Ang Lee and starring Chow Yun fat win the Golden Horse Award?

Figure 1: An illustration of LLM reasoning over knowledge graphs based on exploiting priors
sufficiently. We collect weak supervision signals of the mapping from questions to relation paths by
identifying the shortest traversal sequence from topic entities to answers. We predefine 5 constraints,
such as type, multi-entity, and ordinal constraints, following [17] which employs them to develop the
ComplexQuestions dataset but does not leverage the prior in reasoning.

To equip LLMs with up-to-date, domain-specific knowledge, an emerging line of research [10–12] has
focused on knowledge graph-based retrieval-augmented generation, which aims to enhance response
generation through the dynamic retrieval of relevant external knowledge. Current methods [7, 8,
13, 14] employ an end-to-end or step-by-step manner to retrieve and reason on Knowledge Graphs
(KGs). The former retrieves the top K triples based on the semantic similarity between questions
and knowledge facts, while the latter transforms complex questions into multiple subquestions by
step-by-step retrieval. After obtaining sufficient knowledge, they utilize LLMs to generate responses
directly.

However, existing approaches [7, 8, 13–16] fail to exploit the prior knowledge embedded in KGs
fully, particularly (1) the structural information and (2) the explicit and implicit constraints. In
particular, relation paths that connect topic entities in questions to their corresponding answers, such
as the path "Ang Lee → directed → . . . E" in Figure 1, can be leveraged not only to enhance
the structural pattern awareness within KGs but also to support response generation. This, in turn, can
significantly improve the faithfulness of LLM reasoning over KGs. Additionally, constraints, such as
the multi-entity and type constraints, can serve a dual purpose: they can be used to filter candidate
relation paths (select path 2 in Figure 1 considering the mentioned two types of constraints) and
also to guide LLMs in backtracking during inference, thereby improving the reliability and robustness
of reasoning processes. Motivated by these, we propose a trustworthy reasoning framework over
KGs named DP (Deliberation on Priors). The framework comprises four key modules: Distillation,
Planning, Instantiation, and Introspection, which guide LLMs to generate faithful and reliable
responses through a two-stage process: offline and online.

In the offline stage, DP first collects weak supervision signals in the form of mappings from questions
to corresponding sets of relation paths. The paths are constructed by identifying the shortest traversal
sequences from topic entities to answer entities in KGs. This prior structural knowledge is then
distilled into the LLM through a combination of fine-tuning and Kahneman-Tversky optimization
[18]. The former is supervised using the weak supervision signal, while the latter is optimized by
maximizing the expected utility of generation under the human utility model that Kahneman and
Tversky proposed to describe how humans make decisions about uncertain monetary outcomes. This
process enhances the ability of LLMs to plan and reason over the KG structure effectively.

During the online stage, the trained LLM is used to Plan for reasoning and generate faithful candidate
relation paths. Subsequently, DP utilizes LLMs to perform relation path selections by evaluating the se-
mantic relevance between the candidate path and the input question. Next, to obtain a complete reason-
ing path, the framework retrieves topic entities and relations from KGs and instantiates the selected re-
lation path in the Instantiation module, such as the transformation from "{directed, won_award}"
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Table 1: Constraint definitions and samples.

Category Definition & Sample

Type
The question specifies a required type or category for the answer.
e.g. What city did Esther live in?

Multi-
Entity

The question demands the answer to satisfy the condition for multiple entities.
e.g. Which team owned by Malcolm Glazer has Tim Howard playing for it?

Explicit
Time

The question clearly defines a specific time period or date to be referenced.

e.g. Who was the governor of Arizona in 2009 that held his governmental position
before 1998 ?

Implicit
Time

The question implies a temporal frame that the answer should consider.
e.g. Who was the Secretary of State when Andrew Jackson was the president ?

Ordinal
The question contains the sorting rule and requires the answer in a specific order.
e.g. Lou Seal is the mascot for the team that last won the World Series when?
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Figure 2: Constraint distribution
on three datasets.

to "Ang Lee directed−−−−−→ Crouching Tiger won_award−−−−−−→ Compound Value Type 2". After obtain-
ing the reasoning path, current frameworks [7, 8, 13–16] utilize LLMs to generate responses based on
them without deliberation. In contrast, to enhance reasoning reliability, DP employs the Introspection
module to verify whether the selected reasoning path satisfies the constraints extracted from questions,
where the constraints, such as multi-entity and ordinal constraints, are predefined following [17].
Feedback is then provided to the LLM to guide subsequent decisions. If the reasoning path passes the
verification, the LLM is instructed to generate a response. Otherwise, the information about which
constraints are violated is fed back to the LLM to trigger relation path backtracking.

To evaluate the effectiveness of DP, we conduct extensive experiments on three benchmark Knowledge
Graph Question Answering (KGQA) datasets. The experimental results on WebQuestionSP [19],
ComplexWebQuestions [20], and MetaQA [21] show that, compared with baselines, our method
achieves state-of-the-art performance while minimizing interaction frequency with LLMs and gener-
ates more faithful and reliable responses.

The main contributions of this work are summarized as follows:

• We introduce a trustworthy reasoning framework DP that empowers large language models
to generate faithful and reliable responses through deliberate reasoning over the priors
embedded in knowledge graphs.

• We propose a progressive knowledge distillation strategy, enabling LLMs to generate faithful
relation paths by exploiting prior structural information.

• We propose a reasoning-introspection strategy that enhances the reliability of large language
model generation by incorporating predefined constraint priors as guidance.

• We conduct extensive experiments on three public datasets to verify the effectiveness and
superiority of DP. Furthermore, we demonstrate the flexibility of DP in integrating with
various large language models, as well as its practicality in scenarios requiring fewer
interactions with them.

2 Preliminary

KGQA Task Formulation. Given a question q, a knowledge graph G, and a topic entity es mentioned
in q, KGQA requires the intelligent system, such as LLMs, to generate responses a based on a set of
knowledge triples (facts) retrieved from G. It should be noted that question q may contain multiple
topic entities.

Relation Path Definition. A relation path is formally defined as an ordered sequence of relations
P = {r1, r2, . . . , rl}, where each ri ∈ R denotes the i-th relation in the path and l represents the
path length. Here, R denotes the set of all possible relations in G.

Path Instantiation. Given a relation path P , an instantiation path is called a reasoning path, denoted
by P = e0

r1−→ e1
r2−→ e2

r3−→ · · · rl−→ el, where each ei ∈ E denotes the i-th entity in the path and ri
corresponds to the i-th relation in the relation path P . Here, E represents the set of all entities in the
KG. It should be noted that a relation path P may have multiple instantiations in G.
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Answer： 

Relation path 1: ( r1,1, r1,2, r1,3 )

Relation path 2: ( r2,1, r2,2, r2,3 )

Relation path 3: ( r3,1, r3,2, r3,3 )
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Figure 3: Trustworthy reasoning framework DP of LLMs over KGs. In Part 1, DP employs a
progressive knowledge distillation strategy to enhance the structural pattern awareness of KGs for
LLMs. In Part 2, the reasoning path is produced by relation path generation and instantiations. In
Part 3, DP utilizes a reasoning-introspection strategy to verify whether the reasoning satisfies the
extracted constraint.

Constraint Predefining. The constraints listed in Table 1 were initially introduced by [17] to
facilitate the development of complex questions. In this paper, we leverage these constraint priors
for reasoning verification. Specifically, we utilize multiple constraints like "type" and "multi-entity"
extracted from questions in Figure 1 to assess whether a selected reasoning path satisfies the required
conditions. To this end, we define a constraint base C and conduct a statistical analysis across three
datasets, sampling 200 examples from each. Figure 2 demonstrates that most datasets encompass a
range of constraint categories, with the "type" constraint being the most frequently occurring in each.

3 Methodology

Our proposed framework, DP, as illustrated in Figure 3, is composed of four key components.
Distillation: This module employs a progressive knowledge distillation strategy to guide LLMs in
capturing the structural patterns of KGs from a set of demonstrations. Planning and Instantiation: In
this stage, DP first generates a diverse set of candidate relation paths, which are subsequently grounded
into KG triples to obtain instantiated paths. Introspection: This component performs a deliberative
selection and verification of reasoning paths by evaluating whether they meet the constraints derived
from the input question. Once a satisfactory instantiated path is identified, the LLM is employed to
generate responses accordingly.

3.1 Distillation

DP employs a progressive knowledge-distillation strategy to guide LLMs in exploiting the struc-
tural information and enabling faithful reasoning over KGs. This is achieved by a combination
of Supervised Fine-Tuning (SFT) and Kahneman-Tversky Optimization (KTO) [18]. The former
fine-tunes the LLM using collected weak supervision signals, while the latter further refines it based
on automatically derived preference data.

Specifically, DP leverages weak supervision signals in the form of question-to-path mappings, which
are derived from the annotations within training splits. Given a question q and a topic entity es
identified in q, we define a function M that maps q ∈ Q to a set of plausible relation paths P , where
each P ∈ P is a sequence of relations such that traversing from es via (r1, . . . , rl) leads to the answer
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entity et in the KG G = (E ,R). To extract these paths, our framework first extracts a k-hop subgraph
Gk(es) centered on es, where k is the maximum reasoning depth allowed by the dataset. Then, the
Dijkstra algorithm is employed to identify all shortest relation paths from es to the ground-truth
answer entity et within Gk(es). These shortest paths constitute the weak supervision set Pw(q) for
question q, serving as structurally mapping relation exemplars. While not exhaustive, Pw(q) captures
plausible multi-hop reasoning trajectories within the KG structure and provides guidance for the
LLM to generalize to similar questions. The weak supervision of question-to-path mappings Pw(q)
can be defined as follows:

Pw(q) = M(q, es,G, k) = ShortestPathDijkstra(Gk(es), es, et). (1)
We then apply SFT to train the LLM to generate relation paths conditioned on the input question q
and its corresponding topic entity es. This training stage encourages LLMs to align the semantic
content of the question with structural relation traversals over G. Let P ∗ = (r∗1 , r

∗
2 , . . . , r

∗
T ) denote a

gold relation path extracted using Equation (1) for question q. The objective of SFT is to maximize
the conditional log-likelihood LSFT of the target path sequence P ∗ given the input (q, es):

LSFT(θs) =

T∑
t=1

logPθs (r
∗
t | r∗<t, q, es) , (2)

where θs represents the parameters of the LLM and r∗<t denotes the prefix subsequence (r∗1 , . . . , r
∗
t−1).

This formulation enables the LLM to learn to autoregressively generate faithful relation paths that
connect es to plausible answer entities within the KG.

To further enhance the reliability of relation path generation, we incorporate a preference optimization
stage to explicitly encourage LLMs to prefer semantically coherent and structurally faithful relation
paths. Specifically, we construct relation path data D consisting of positive paths and negative paths
given question q. The negative or undesirable path is synthetically generated from the original weak
supervision data Pw(q) through targeted perturbations for the positive path:

• Path Truncation. Removing the final hop r∗T from a gold relation path P ∗ to yield an
incomplete relation chain.

• Entity-Path Swapping. Swapping relation paths between different topic entities associated
with the same question, resulting in semantically inconsistent paths.

• Relation Deletion. Randomly deleting the relation path of a certain topic entity, resulting in
incomplete paths.

These synthetic negative paths are constructed to superficially valid relation paths while being
semantically invalid due to violations of critical structural or semantic constraints. Notably, such
perturbations introduce severe class imbalance in path data, where positive paths constitute only
1
4 of the dataset, and negative paths account for 3

4 . This imbalance poses significant challenges to
conventional preference optimization like direct preference optimization. Therefore, we train the
LLM using KTO [18], a more robust approach that accommodates imbalanced supervision. KTO
maximizes the expected utility of generation under the human utility model that Kahneman and
Tversky proposed to describe how humans make decisions about uncertain monetary outcomes. This
utility maximization objective is equivalent to minimizing the KTO loss LKTO:

LKTO(πθ, πref) = E(x,y)∼D [λy − v(x, y)] . (3)

Here, we define the key components of the KTO loss formulation. Let x = (q, es) denote the input,
and let y represent its corresponding relation path label, where y ∼ Yp and y ∼ Yn indicate a positive
and negative label, respectively. πθ(·) is the current LLM’s output distribution and πref(·) is the
reference model supervised by SFT. The parameter λy takes the value λp (for positive y) or λn

(for negative y), controlling class-specific weighting. The value function v(·) models human utility
perception, defined as:

v(x, y) =

{
λpσ (β(rθ(x, y)− z0)) if y ∼ Yp | x,
λnσ (β(z0 − rθ(x, y))) if y ∼ Yn | x. (4)

where σ(·) denotes the logistic function, β modulates risk aversion, rθ(x, y) = log πθ(y|x)
πref(y|x)

represents the implied reward and the reference point z0 is obtained via the KL divergence
z0 = KL (πθ(y

′ | x) ∥πref(y
′ | x)). In brief, the progressive knowledge distillation strategy equips

DP with reliable structural priors of KGs, enabling faithful online reasoning in the subsequent stages.
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3.2 Planning and Instantiation

In this stage, DP utilizes the path generator, which has been trained through the aforementioned
progressive knowledge-distillation strategy, to generate multiple candidate relation paths. One of
these paths is then selected and instantiated by retrieving entities from the KG, beginning with the
given topic entity es. Importantly, the selection of the relation path at this stage is guided solely by its
semantic alignment with the input question, without imposing any constraints.

More formally, given a question q and its associated topic entity es, DP invokes the path generator to
produce a set of candidate relation paths {P1, P2, . . . }, where each Pi denotes a traversal sequence
of relations representing a multi-hop reasoning trajectory over the KG. In scenarios where a question
contains multiple topic entities, the path generator independently produces candidate paths for each
entity. These paths are subsequently merged into a unified pool, thereby enriching semantic diversity
and increasing the probability that at least one reasoning trajectory satisfies the implicit or explicit
constraints embedded in the question. For a given relation path P , the corresponding instantiated
reasoning path P is obtained by traversing the KG starting from the topic entity es. The instantiation
process is described in detail in Section 2.

3.3 Introspection

To ensure the reliability of LLM reasoning, our framework utilizes a reasoning-introspection strategy
to verify whether the reasoning path satisfies the extracted constraint from questions. As introduced
in Section 2, we predefine 5 constraint types, which are prior knowledge embedded in KGs and
can be employed to guide LLMs. Specifically, given question q, DP first prompts LLMs to extract
the contained constraint C(q) from the predefined constraint base C: C(q) = Fcons(q, C, Icons),
where Icons represents the prompt and in-context exemplars. Subsequently, the LLM is prompted to
determine whether the instantiated reasoning path P satisfies C(q) given q and es. The verification
outcome is formalized as:

J (q, es,P) =
{
1, if P |= C(q);
0, otherwise.

(5)

If the constraint is satisfied, DP instructs the LLM to generate a reason and produce a final response
grounded on the validated reasoning path. Conversely, if the constraint is violated, the LLM is
prompted to provide explicit feedback identifying the unsatisfied condition. This feedback subse-
quently triggers a backtracking mechanism, wherein the framework iteratively re-executes the process
of relation path selection, instantiation, and introspection. This mechanism can reduce the negative
impact of false-positive reasoning paths, promoting the reliability of response generation. The
iterative loop continues until either a constraint-satisfying reasoning path is found or the candidate
relation path set is reduced to a singleton.

4 Experiment

We conduct various experiments on three benchmarks to verify the following aspects: (1) the
superiority of DP; (2) the flexibility in integrating different LLMs; (3) the effectiveness of individual
components; (4) the necessity of deliberation on prior knowledge; and (5) the practicality of DP.

4.1 Experimental Setting

Dataset and Evaluation Metric. We evaluate our approach on three public multi-hop KGQA
datasets: WebQuestionSP (WebQSP) [19] and ComplexWebQuesions (CWQ) [20], and MetaQA
[21]. WebQSP is developed by gathering semantic parses in SPARQL from the WebQuestions dataset.
CWQ features a large collection of compositional questions, requiring reasoning over up to 4-hop
relation paths based on multiple web snippets. MetaQA is built upon a movie ontology derived
from the WikiMovies dataset and provides question-answer pairs spanning 1-hop, 2-hop, and 3-hop
queries. The KGs used in WebQSP and CWQ are a subset of Freebase. To account for computational
constraints, we uniformly sample 500 questions from the test set of WebQSP and CWQ, following
the setup in [22, 15]. A total of 600 instances are uniformly sampled from the MetaQA dataset, with
exactly 200 samples selected for each of the 1-hop, 2-hop, and 3-hop types. Evaluation is conducted
using three standard metrics: Hit, Hits@1, and F1 score, consistent with prior studies [8, 23, 24]. The
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Table 2: Comparison of KGQA performance (%) across three datasets with previous state-of-the-
art methods. DP results are averaged over three independent evaluations. We highlight the best
performance in bold and the second-best in underline. Baseline methods are categorized into three
groups: Supervised Learning (SL), In-Context Learning (ICL), and Hybrid Learning (HL). LM denotes
the language model used. ⋆ denotes the performance on 3-hop questions.

Type Method Year LM
WebQSP CWQ MetaQA

H H@1 F1 H H@1 F1 H H@1 F1

Vanilla Zero-shot
2022 ChatGPT 59.3 59.3 43.5 34.7 34.7 30.2 - - -
2023 GPT-4 67.4 67.4 49.5 50.8 50.8 46.1 - - -
2024 LLaMA3.1-8B 55.5 55.5 34.8 28.1 28.1 22.4 - - -

SL

EmbedKGQA 2020 RoBERTa - 66.6 - - - - - 97.0 -
TransferNet 2021 BERT - 71.4 - - 48.6 - - 99.2 -
UniKGQA 2023 RoBERTa - 77.2 72.2 - 51.2 49.0 - 99.4 -

RoG 2024 LLaMA2-Chat-7B 85.7 80.8 70.8 62.6 57.8 56.2 - 89.0⋆ 50.7⋆

AMAR 2025 LLaMA2-7B/13B 84.2 - 81.2 83.1 - 78.5 - - -
GNN-RAG 2025 LLaMA2-Chat-7B 90.7 82.8 73.5 68.7 62.8 60.4 - 98.6⋆ -

ICL

ToG 2024 ChatGPT 76.2 - - 58.9 - - - - -
GPT-4 82.6 - 36.4 69.5 - 31.8 - - -

PoG 2024 ChatGPT 82.0 - - 63.2 - - - - -
GPT-4 87.3 - - 75.0 - - - - -

Readi 2024 ChatGPT 74.3 - - 55.6 - - - - -
GPT-4 78.7 - - 67.0 - - - - -

DoG 2025 ChatGPT 88.6 62.6 54.2 58.2 49.4 56.6 95.4 85.1 87.2
GPT-4 91.0 65.4 55.6 56.0 41.0 46.4 98.3 90.1 93.1

HL

Interactive-KBQA 2024 GPT-4 - - 71.2 - - 49.1 - - 96.3
LightPROF 2025 LLaMA3-8B - 83.8 - - 59.3 - - - -

DP (Ours) 2025

LLaMA3.1-8B 87.9±0.2 82.8±0.4 75.7±0.8 70.8±0.3 61.1±0.4 58.5±0.9 90.2±0.1 87.4±0.2 84.1±0.5

ChatGPT 89.7±0.6 86.9±0.3 79.2±0.3 80.0±0.6 72.6±0.1 69.2±0.4 96.7±0.1 95.4±0.3 90.8±0.4

GPT-4 90.4±0.4 86.7±0.5 81.7±0.6 85.6±0.3 74.6±0.7 71.1±0.8 96.7±0.2 95.4±0.3 94.8±0.2

GPT-4o 90.7±0.6 87.5±0.8 81.4±0.5 85.2±0.4 74.6±0.5 70.5±0.5 96.5±0.6 95.2±0.4 94.4±0.4

GPT-4.1 90.6±0.5 86.7±0.4 80.1±0.8 87.2±0.2 75.8±0.7 69.4±0.9 96.8±0.2 95.5±0.3 94.9±0.1

Hit (H) metric assesses whether any of the ground-truth answers are present in the generated response.
Hits@1 (H@1) measures the proportion of questions for which the top-ranked predicted answer
exactly matches a correct answer. The F1 score accounts for scenarios with multiple correct answers
by computing the harmonic mean of precision and recall, thereby providing a more comprehensive
evaluation of answer quality.

Implementation Detail. During the Distillation stage, the path generator (LLaMA3.1-8B-Instruct) is
fine-tuned by the weak supervision signal in the form of question-to-path mapping for 2 epochs and
further optimized for 1 epoch through preference optimization with KTO [18]. We apply low-rank
adaptation [25] to adapt large-scale parameters during both SFT and KTO training efficiently. In
the Planning stage, we employ the trained path generator in a zero-shot manner to produce a set of
relation paths for each topic entity in the question. In the Introspection stage, DP guides LLMs to
perform path selection, constraint extraction, and verification under a few-shot setting. Specifically,
we provide one exemplar for each possible scenario within these three procedures, which consist of 3,
5, and 2 scenarios, respectively. The detailed settings are provided in Appendix B.1 and B.2.

Baseline Selection. Inspired by the setup in [15, 8], we compare DP against previous state-of-the-art
approaches, including Supervised Learning (SL), In-Context Learning (ICL), and Hybrid Learning
(HL). SL-based methods train models using the answer labels provided in KGQA datasets to directly
predict answers, including EmbedKGQA [26], TransferNet [27], UniKGQA [28], RoG [8], AMAR
[10], and GNN-RAG [24]. ICL-based methods employ chain-of-thought reasoning to generate
responses based on few-shot exemplars, including PoG [29], ToG [22], Readi [30], and DoG [15].
HL-based methods combine SL and ICL to produce responses, including Interactive-KBQA [31] and
LightPROF [32].

4.2 Reasoning on Different KGs

Main Result. We compare DP with previous state-of-the-art methods, categorized into three types:
SL, ICL, and HL. Based on the results presented in Table 2, we draw the following key insights. First,
incorporating deliberation over prior knowledge significantly enhances the reliability of response
generation. The results for DP are averaged over three independent runs. Our framework consistently
achieves new state-of-the-art performance across most datasets, with low variance. In contrast, the
vanilla LLMs (without DP) exhibit unstable performance and often fail to achieve competitive H@1
or F1 scores, particularly on CWQ and WebQSP, highlighting their limitations in complex reasoning
tasks. Notably, DP surpasses the HL-based method LightPROF by 16.5% in H@1 on the CWQ
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dataset. Second, existing methods struggle in scenarios where the correct answer must appear in the
top-ranked position or where the output is expected to contain accurate answers with high precision.
For instance, ToG exhibits a 46.2% gap between its H and F1 scores on the WebQSP dataset. In
contrast, DP narrows this gap to approximately 10%, further underscoring its robustness and reliability.
Third, we observe that some prior works have misinterpreted evaluation metrics such as H and H@1.
According to the code released by [10, 22], certain results reported as H@1 are actually H, potentially
leading to unfair comparisons and misleading evaluations. In this work, we rigorously report DP’s
performance using H, H@1, and F1 metrics, respectively. Overall, the DP framework demonstrates
robust and reliable performance across diverse datasets, validating the effectiveness of incorporating
prior knowledge deliberation.

Flexibility Verification. Table 2 also reports the integration experiments, which are designed to
evaluate whether DP can enhance the reasoning reliability of various LLMs, including LLaMA3.1-
8B, GPT-3.5, GPT-4.0, GPT-4o, and GPT-4.1. The results show that DP consistently improves the
reasoning performance of these LLMs across three benchmark datasets. Notably, our framework
enables GPT-4o and GPT-4.1 to achieve the best performance on the WebQSP and CWQ datasets,
respectively. Overall, these findings highlight the flexibility and effectiveness of DP in enhancing
diverse LLMs, with lower variance observed across multiple runs, indicating that the improvements
are stable and reliable.

4.3 Ablation Study

Table 3: Ablation experiments. PT, EPS, and RD
denote path truncation, entity-path swapping, and
relation deletion, respectively, which are pertur-
bations introduced in Section 3.1. "w/o CPD" in-
dicates the constraint is automatically induced by
LLMs rather than being manually predefined.

Setting WebQSP CWQ
H H@1 F1 H H@1 F1

DP (GPT 4.1) 90.6 86.7 80.1 87.2 75.8 69.4
GPT 4.1 74.0 71.0 54.6 56.0 53.0 48.9

w/o KTO 88.3 84.7 77.3 86.0 74.6 67.3
w/o PT 88.4 84.8 77.6 86.4 75.0 68.4

w/o EPS 90.0 85.8 79.4 86.6 73.8 68.1
w/o RD 88.3 84.8 77.8 87.2 74.1 67.7

w/o Introspection 86.6 82.0 75.7 85.3 70.8 65.2
w/o CPD 87.8 83.4 76.4 86.2 74.4 68.5

w/o feedback 88.0 83.0 76.5 85.4 73.2 67.1

We perform comprehensive ablation studies on
two benchmark datasets (WebQSP and CWQ)
to systematically evaluate the contribution of
each DP component. As shown in Table 3,
our analysis reveals five critical observations.
First, LLMs such as GPT-4.1 demonstrate sig-
nificant performance degradation when deprived
of knowledge augmentation. Specifically, the F1
score drops by 25.5% on WebQSP and 20.5%
on CWQ, highlighting the necessity of exter-
nal knowledge integration for complex question
answering tasks. Second, our progressive knowl-
edge distillation strategy effectively promotes
the prior awareness of LLMs for the structural
patterns of KGs. When removing KTO, we ob-
serve a 2.0% decrease in H@1 score on We-
bQSP and a 1.2% decrease on CWQ, confirming
its role in improving pattern recognition capa-
bilities. Third, among the three perturbation methods examined, relation deletion demonstrates the
most substantial impact on path generation. Fourth, the reasoning-introspection strategy proves to be
the most critical component for ensuring response reliability. Compared to other ablated conditions,
removing introspection leads to the most pronounced performance deterioration across both datasets.
Finally, both constraint predefinition and verification feedback contribute significantly to the overall
reasoning process. Notably, substituting manual constraint definitions with LLM-generated sum-
maries results in a 2.8% drop in H score on WebQSP and a 1.0% decrease on CWQ, underscoring
the value of human-defined constraints in guiding accurate reasoning. These findings collectively
demonstrate the complementary roles of different DP components in enhancing the faithfulness and
reliability of LLM reasoning.

4.4 Impact of Priors on LLM Reasoning

To investigate the impact of prior knowledge on LLM reasoning, we conduct extensive experiments
on two benchmark datasets: WebQSP and CWQ. First, Table 4 presents the results of path generation
and constraint extraction on 500 and 100 uniformly sampled examples from each dataset, respec-
tively. To improve the faithfulness of LLM reasoning, we collect all relation paths that satisfy the
condition defined in Equation (1) for each question. This leads to a one-to-many question-to-relation
mapping, in contrast to the one-to-one mapping adopted by RoG [8]. Our approach yields significant
improvements in the F1 score of path generation, with relative gains of 29.3% on WebQSP and 43.0%
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Table 4: Results of Path
Generation (PG) and Constraint

Extraction (CE).

Setting WebQSP CWQ
H F1 H F1

PG (1: 1) 83.0 59.3 81.2 49.8
PG (1: n) 93.0 76.7 94.0 71.1

CE 99.0 90.2 99.0 92.9

36.9%

1.5%
12.3%

4.6%

20.0%

24.7%

CWQ

64.0%

16.0%

10.0%
10.0%

WebQSP

Path Generation
Constraint Extraction
Path Selection
Verification
Reasoning
Instruction Following

Figure 4: Error distribution on two datasets.

on CWQ, demonstrating the benefits of leveraging priors. Second, we analyze the failure cases of
DP with GPT-4.1 in the main experiment. As shown in Figure 4, the majority of errors stem from
path generation, path selection, reasoning, and instruction-following. Among these, path generation
and selection are closely tied to the utilization of priors, underscoring the importance of effectively
incorporating prior knowledge. Reasoning errors, despite the correct path selection, indicate that
LLMs may rely excessively on their internal knowledge during response generation. Moreover, we
observe that LLMs occasionally fail to adhere to the required answer format—for instance, producing
"2008" instead of "2008 World Cup." We found that incorporating instruction-following exemplars
mitigates this issue and yields performance improvements, such as a 1.1% Hit@1 gain on CWQ.

4.5 Backtracking Analysis

Table 5: Average number of backtracking steps
per question across datasets and models.

Method Dataset Model Backtrack

DP
CWQ GPT-3.5 0.10

GPT-4.1 0.42

WebQSP GPT-3.5 0.07
GPT-4.1 0.21

Backtracking refers to the iterative re-execution of
relation path selection, instantiation, and introspec-
tion when a constraint violation is detected. To
explore the practical impact of backtracking, we
measure how often it is triggered during test time.
Table 5 reports the average number of backtrack-
ing steps per question across CWQ and WebQSP.
We observe that GPT-4.1 triggers backtracking
more frequently than GPT-3.5 (e.g., 0.21 vs. 0.07
on WebQSP), likely due to its stronger instruction-
following ability, which enforces stricter constraint checking. This aligns with the performance
differences presented in Table 2, suggesting that more reliable backtracking contributes to better
overall reasoning quality.

4.6 Analysis for LLM Interaction

Table 6: Practicality and efficiency Comparison.
Call denotes the number of LLM interactions. In-
put, Output, and Total represent the number of
corresponding tokens. The results of DP are aver-
aged over three independent runs.

Dataset Method Call Input Output Total

CWQ

ToG 22.6 8,182.9 1,486.4 9,669.4
PoG 13.3 7,803.0 353.2 8,156.2
DoG 12.7 8,298.0 384.6 8,682.6
DP 2.9 2,928.6 186.4 3,115.0

WebQSP

ToG 15.9 6,031.2 987.7 7,018.9
PoG 9.0 5,234.8 282.9 5,517.7
DoG 10.4 7,332.1 277.2 7,604.3
DP 2.5 2,552.8 146.7 2,699.5

We conduct experiments on CWQ and WebQSP
to evaluate the practicality and efficiency of DP.
Table 6 presents a comparative analysis of the av-
erage number of LLM calls and token consump-
tion required by different methods to answer a
question across the two datasets. The results
for DoG and DP are obtained using GPT-3.5,
while additional results of DP with other LLMs
are provided in Appendix B.5. Across both
datasets, DP consistently outperforms strong
baselines across all evaluation metrics. Specif-
ically, our framework requires only 2.9 and
2.5 LLM calls on CWQ and WebQSP, respec-
tively—highlighting its efficient utilization of
prior knowledge embedded in KGs. In terms
of token consumption, DP achieves the lowest
output token count while also requiring the least input token consumption. This reflects DP’s effec-
tiveness in reducing overall token usage during the reasoning process, relying on fewer instructions
and exemplars. These findings underscore the superiority of DP compared to existing baselines.
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5 Conclusion and Limitation

This paper presents a trustworthy reasoning framework, DP, which empowers Large Language Models
(LLMs) to generate faithful and reliable responses by deliberately reasoning over the priors embedded
in knowledge graphs. In the offline stage, DP enables LLMs to generate faithful relational paths
through a progressive knowledge distillation strategy. In the online stage, it enhances response
reliability via a reasoning-introspection strategy. These strategies effectively explore and leverage
structural patterns and constraint priors within knowledge graphs, respectively. Extensive exper-
iments conducted on three benchmark datasets demonstrate that DP achieves new state-of-the-art
performance, highlighting its effectiveness, flexibility, and practical applicability. Moreover, the
results emphasize the importance of prior exploitation, particularly path generation and constraint
extraction, in supporting trustworthy reasoning over knowledge graphs. While this work advances
trustworthy LLM reasoning by incorporating knowledge priors, it still relies on human intervention to
define constraints when applied to vertical domains. In future work, we plan to investigate automatic
methods for extracting and summarizing constraint types, aiming to further reduce manual effort and
enhance scalability.
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[2] A. Hogan, X. L. Dong, D. Vrandečić, and G. Weikum, “Large language models, knowledge graphs and
search engines: A crossroads for answering users’ questions,” arXiv preprint arXiv:2501.06699, 2025.

[3] J. Ma, Z. Gao, Q. Chai, J. Liu, P. Wang, J. Tao, and Z. Su, “Fortisavqa and maven: a benchmark dataset
and debiasing framework for robust multimodal reasoning,” arXiv preprint arXiv:2504.00487, 2025.

[4] R. Dominguez-Olmedo, M. Hardt, and C. Mendler-Dünner, “Questioning the survey responses of large
language models,” in NeurIPS, 2024, pp. 45 850–45 878.

[5] D. Yang, D. Xiao, J. Wei, M. Li, Z. Chen, K. Li, and L. Zhang, “Improving factuality in large language
models via decoding-time hallucinatory and truthful comparators,” in AAAI, 2025, pp. 25 606–25 614.

[6] V. Rawte, A. Sheth, and A. Das, “A survey of hallucination in large foundation models,” arXiv preprint
arXiv:2309.05922, 2023.

[7] M. Li, S. Miao, and P. Li, “Retrieval or reasoning: The roles of graphs and large language models in
efficient knowledge-graph-based retrieval-augmented generation,” in ICLR, 2025.

[8] L. LUO, Y.-F. Li, R. Haf, and S. Pan, “Reasoning on graphs: Faithful and interpretable large language
model reasoning,” in ICLR, 2024.

[9] X. Guan, Y. Liu, H. Lin, Y. Lu, B. He, X. Han, and L. Sun, “Mitigating large language model hallucinations
via autonomous knowledge graph-based retrofitting,” in AAAI, 2024, pp. 18 126–18 134.

[10] D. Xu, X. Li, Z. Zhang, Z. Lin, Z. Zhu, Z. Zheng, X. Wu, X. Zhao, T. Xu, and E. Chen, “Harnessing large
language models for knowledge graph question answering via adaptive multi-aspect retrieval-augmentation,”
in Proceedings of the AAAI Conference on Artificial Intelligence, 2025, pp. 25 570–25 578.

10



[11] M. Li, S. Miao, and P. Li, “Simple is effective: The roles of graphs and large language models in
knowledge-graph-based retrieval-augmented generation,” in ICLR, 2025.

[12] X. Liang and Z. Gu, “Fast think-on-graph: Wider, deeper and faster reasoning of large language model on
knowledge graph,” arXiv preprint arXiv:2501.14300, 2025.

[13] J. Jiang, K. Zhou, Z. Dong, K. Ye, W. X. Zhao, and J.-R. Wen, “Structgpt: A general framework for large
language model to reason over structured data,” in EMNLP, 2023, pp. 9237–9251.

[14] R. Zhao, F. Zhao, L. Wang, X. Wang, and G. Xu, “Kg-cot: Chain-of-thought prompting of large language
models over knowledge graphs for knowledge-aware question answering,” in IJCAI, 2024, pp. 6642–6650.

[15] J. Ma, Z. Gao, Q. Chai, W. Sun, P. Wang, H. Pei, J. Tao, L. Song, J. Liu, C. Zhang et al., “Debate on graph:
a flexible and reliable reasoning framework for large language models,” in AAAI, 2025, pp. 24 768–24 776.

[16] S. Ma, C. Xu, X. Jiang, M. Li, H. Qu, C. Yang, J. Mao, and J. Guo, “Think-on-graph 2.0: Deep and faithful
large language model reasoning with knowledge-guided retrieval augmented generation,” in ICLR, 2025.

[17] J. Bao, N. Duan, Z. Yan, M. Zhou, and T. Zhao, “Constraint-based question answering with knowledge
graph,” in COLING, 2016, pp. 2503–2514.

[18] K. Ethayarajh, W. Xu, N. Muennighoff, D. Jurafsky, and D. Kiela, “Kto: Model alignment as prospect
theoretic optimization,” arXiv preprint arXiv:2402.01306, 2024.

[19] W.-t. Yih, M. Richardson, C. Meek, M.-W. Chang, and J. Suh, “The value of semantic parse labeling for
knowledge base question answering,” in ACL, 2016, pp. 201–206.

[20] A. Talmor and J. Berant, “The web as a knowledge-base for answering complex questions,” in ACL, 2018,
pp. 641–651.

[21] Y. Zhang, H. Dai, Z. Kozareva, A. Smola, and L. Song, “Variational reasoning for question answering with
knowledge graph,” in AAAI, 2018, pp. 6069–6076.

[22] J. Sun, C. Xu, L. Tang, S. Wang, C. Lin, Y. Gong, L. Ni, H.-Y. Shum, and J. Guo, “Think-on-graph: Deep
and responsible reasoning of large language model on knowledge graph,” in ICLR, 2024.

[23] Z. Li, S. Fan, Y. Gu, X. Li, Z. Duan, B. Dong, N. Liu, and J. Wang, “Flexkbqa: A flexible llm-powered
framework for few-shot knowledge base question answering,” in AAAI, 2024, pp. 18 608–18 616.

[24] C. Mavromatis and G. Karypis, “Gnn-rag: Graph neural retrieval for large language model reasoning,”
arXiv preprint arXiv:2405.20139, 2024.

[25] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “LoRA: Low-rank
adaptation of large language models,” in ICLR, 2022.

[26] A. Saxena, A. Tripathi, and P. Talukdar, “Improving multi-hop question answering over knowledge graphs
using knowledge base embeddings,” in ACL, 2020, pp. 4498–4507.

[27] J. Shi, S. Cao, L. Hou, J. Li, and H. Zhang, “Transfernet: An effective and transparent framework for
multi-hop question answering over relation graph,” in EMNLP, 2021, pp. 4149–4158.

[28] J. Jiang, K. Zhou, X. Zhao, and J.-R. Wen, “Unikgqa: Unified retrieval and reasoning for solving multi-hop
question answering over knowledge graph,” in ICLR, 2023.

[29] L. Chen, P. Tong, Z. Jin, Y. Sun, J. Ye, and H. Xiong, “Plan-on-graph: Self-correcting adaptive planning of
large language model on knowledge graphs,” in NeurIPS, 2024.

[30] S. Cheng, Z. Zhuang, Y. Xu, F. Yang, C. Zhang, X. Qin, X. Huang, L. Chen, Q. Lin, D. Zhang et al., “Call
me when necessary: Llms can efficiently and faithfully reason over structured environments,” in Findings
of the ACL, 2024, pp. 4275–4295.

[31] G. Xiong, J. Bao, and W. Zhao, “Interactive-kbqa: Multi-turn interactions for knowledge base question
answering with large language models,” in ACL, 2024, pp. 10 561–10 582.

[32] T. Ao, Y. Yu, Y. Wang, Y. Deng, Z. Guo, L. Pang, P. Wang, T.-S. Chua, X. Zhang, and Z. Cai, “Lightprof:
A lightweight reasoning framework for large language model on knowledge graph,” in AAAI, 2025, pp.
23 424–23 432.

[33] J. Baek, A. F. Aji, and A. Saffari, “Knowledge-augmented language model prompting for zero-shot
knowledge graph question answering,” arXiv preprint arXiv:2306.04136, 2023.

11



[34] Y. Shu, Z. Yu, Y. Li, B. Karlsson, T. Ma, Y. Qu, and C.-Y. Lin, “Tiara: Multi-grained retrieval for robust
question answering over large knowledge base,” in EMNLP, 2022, pp. 8108–8121.

[35] M. Galkin, Z. Zhu, H. Ren, and J. Tang, “Inductive logical query answering in knowledge graphs,” in
NeurIPS, 2022, pp. 15 230–15 243.

[36] Y. Cui, Z. Sun, and W. Hu, “A prompt-based knowledge graph foundation model for universal in-context
reasoning,” in NeurIPS, 2024, pp. 7095–7124.

[37] G. Dong, R. Li, S. Wang, Y. Zhang, Y. Xian, and W. Xu, “Bridging the kb-text gap: Leveraging structured
knowledge-aware pre-training for kbqa,” in CIKM, 2023, pp. 3854–3859.

[38] M. Yasunaga, A. Bosselut, H. Ren, X. Zhang, C. D. Manning, P. S. Liang, and J. Leskovec, “Deep
bidirectional language-knowledge graph pretraining,” in NeurIPS, 2022, pp. 37 309–37 323.

[39] X. He, Y. Tian, Y. Sun, N. Chawla, T. Laurent, Y. LeCun, X. Bresson, and B. Hooi, “G-retriever: Retrieval-
augmented generation for textual graph understanding and question answering,” in NeurIPS, 2024, pp.
132 876–132 907.

[40] P. Jiang, L. Cao, C. D. Xiao, P. Bhatia, J. Sun, and J. Han, “Kg-fit: Knowledge graph fine-tuning upon
open-world knowledge,” in NeurIPS, 2024, pp. 136 220–136 258.

[41] J. Zhang, X. Zhang, J. Yu, J. Tang, J. Tang, C. Li, and H. Chen, “Subgraph retrieval enhanced model for
multi-hop knowledge base question answering,” in ACL, 2022, pp. 5773–5784.

[42] J. Kim, Y. Kwon, Y. Jo, and E. Choi, “Kg-gpt: A general framework for reasoning on knowledge graphs
using large language models,” in EMNLP, 2023, pp. 9410–9421.

[43] Y. Wu, Y. Huang, N. Hu, Y. Hua, G. Qi, J. Chen, and J. Pan, “Cotkr: Chain-of-thought enhanced knowledge
rewriting for complex knowledge graph question answering,” in EMNLP, 2024, pp. 3501–3520.

[44] Y. Ji, K. Wu, J. Li, W. Chen, M. Zhong, X. Jia, and M. Zhang, “Retrieval and reasoning on kgs: Integrate
knowledge graphs into large language models for complex question answering,” in Findings of the EMNLP,
2024, pp. 7598–7610.

[45] P. Yixing, Q. Wang, L. Zhang, Y. Liu, and Z. Mao, “Chain-of-question: A progressive question decom-
position approach for complex knowledge base question answering,” in Findings of the ACL, 2024, pp.
4763–4776.

[46] K. Liang, L. Meng, M. Liu, Y. Liu, W. Tu, S. Wang, S. Zhou, X. Liu, F. Sun, and K. He, “A survey
of knowledge graph reasoning on graph types: Static, dynamic, and multi-modal,” IEEE TPAMI, pp.
9456–9478, 2024.

12



Technical Appendix

A Related Work

End-to-end Reasoning. To achieve quick and efficient responses, several studies [31, 33, 34] directly
feed questions along with retrieved triples from Knowledge Graphs (KGs) into text decoders. These
approaches primarily focus on extracting critical knowledge to answer the questions. One line
of research [33, 35, 36] retrieves relevant facts by performing exact entity matching between the
input question and the knowledge graph. The retrieved facts are then provided to Large Language
Models (LLMs) through prompt engineering to generate answers. To support more semantically
rich queries, another line of work [37, 28, 38–40] incorporates knowledge facts into pre-trained
models inspired by masked language modeling and subsequently fine-tunes the retriever within
the KGQA task. However, such methods often retrieve only the facts associated with the explicit
information present in the question, overlooking implicit cues. To address this limitation, some studies
[41, 42, 9] propose decomposing complex questions into sub-questions and retrieving knowledge
based on semantic similarity between the sub-questions and triples. Nevertheless, these methods
often struggle with complex questions, particularly when a large number of retrieved facts are directly
input into the text decoder, which can overwhelm the model and impair answer quality. In contrast,
our proposed framework, DP, employs the reasoning-introspection strategy to perform path selection
and backtracking, effectively avoiding the introduction of false positive paths. It should be noted that
our work is the first to employ constraint priors in reasoning to the best of our knowledge.

Chain-of-thought Reasoning. With the remarkable success of chain-of-thought prompting, re-
searchers [14, 43, 44] have extended step-by-step reasoning to knowledge graph-based tasks. A
prevalent approach [13, 22, 45] first identifies the topic entity in the question, then iteratively retrieves
and refines a reasoning path until sufficient factual knowledge is gathered or the answer is obtained,
and finally leverages LLMs for answer generation. During the path refinement phase, methods such
as DoG [15] utilize in-context learning and multi-agent debate to improve the reliability of generated
answers. In contrast to this line of work that decomposes questions step-by-step, another research
direction [29, 46, 16] encourages LLMs to directly identify sub-goals of questions and perform rea-
soning over retrieved knowledge triples. However, both paradigms may produce unfaithful answers,
which is a critical issue in high-stakes domains like legal decision-making or medical diagnosis. To
mitigate this limitation, recent methods [8, 30] first prompt or fine-tune LLMs to generate relation
paths according to questions and then retrieve relevant knowledge triples based on those paths to
ground the final answer more faithfully. Unlike previous approaches [8, 30], DP adopts a progressive
knowledge distillation strategy to fine-tune LLMs, enabling them to generate more faithful relation
paths by more effectively exploiting structural information. This enhanced exploitation is achieved
through a more comprehensive collection of weak supervision signals and a preference-aware path
generation.

B Experiment

B.1 Experimental Setting

Training Detail. The path generator LLaMA3.1-8B-Instruct is loaded from Hugging Face1 and
trained using the LLaMA-Factory2 framework. All training is conducted on two NVIDIA A800-
80GB GPUs, with bfloat16 precision enabled to reduce memory usage and accelerate training. We
employ Low-Rank Adaptation (LoRA) to perform an efficient adaptation of large-scale parameters in
SFT and KTO. The LoRA configuration uses a rank of 16, an alpha of 32, and a dropout rate of 0.1
and applies to the query, key, value, and output of the self-attention layers. The initial learning rate of
SFT training is set to 5e-5, with a warm-up ratio of 0.1. The KTO training uses an initial learning
rate of 1e-5, with a preference beta of 0.1 and a warm-up ratio of 0.1. We use the default weights for
positive and negative samples, setting λp = λn = 1. The batch size of SFT and KTO training is set to
4. The datset statistics are shown in Table 7.

Baseline Introduction. We compare existing state-of-the-art SL, ICL, and HL-based methods with
DP to verify the effectiveness and superiority.

1https://huggingface.co
2https://github.com/hiyouga/LLaMA-Factory
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Table 7: The statistics of WebQSP, CWQ, and MetaQA.

Dataset KG Entities Relations Triples Train Test Hop
WebQSP Freebase 2,566,291 7,058 8,309,105 2,826 1,628 2

CWQ Freebase 2,566,291 7,058 8,309,105 27,639 3,531 4
MetaQA Wiki-Movie 43,234 9 133,592 329,282 30,903 3

The SL-based methods are introduced as follows. (1) EmbedKGQA [26] addresses multi-hop question
answering over sparse KGs by leveraging KG embeddings to predict missing links, effectively
mitigating KG incompleteness. Unlike prior approaches, it relaxes answer selection constraints,
significantly improving multi-hop reasoning performance on sparse KGs. (2) TransferNet [27]
is a transparent and effective model for multi-hop question answering that unifies reasoning over
labeled KG relations and textual relations. It iteratively attends to question components and transfers
entity scores along activated relations in a differentiable manner, achieving high improvements with
interpretable intermediate results. (3) UniKGQA [28] unifies retrieval and reasoning for multi-hop
KGQA through a shared model architecture and joint parameter learning. By combining semantic
matching with information propagation over KGs, it jointly optimizes retrieval and reasoning,
improving accuracy and efficiency on complex questions. (4) RoG [8] integrates LLMs with KGs via
a planning-retrieval-reasoning framework that generates KG-grounded relation paths as faithful plans
to guide reasoning. This approach enhances reasoning accuracy and interpretability by leveraging
structural KG information and supports flexible integration with diverse LLMs. Different from RoG,
our proposed framework DP collects question-to-path mappings in the one-to-many form rather than
one-to-one. (5) AMAR [10] is an adaptive multi-aspect retrieval framework that enhances LLM
reasoning by retrieving and embedding entities, relations, and subgraphs from KGs. It incorporates
self-alignment and relevance gating modules to reduce noise and selectively integrate pertinent
knowledge, significantly improving accuracy and logical form generation in KGQA tasks. (6) GNN-
RAG [24] integrates the graph reasoning capabilities of Graph Neural Networks (GNNs) with the
language understanding of LLMs in a retrieval-augmented generation framework. By extracting
dense subgraph reasoning paths via GNNs and verbalizing them for LLM reasoning, it effectively
addresses multi-hop KGQA and achieves state-of-the-art performance with efficient model sizes.

The ICL-based methods are described below. (1) PoG [29] presents a self-correcting, adaptive
planning framework for KG-augmented LLMs that decomposes questions into sub-goals and itera-
tively explores, updates, and refines reasoning paths over KGs. By integrating guidance, memory,
and reflection mechanisms, PoG improves reasoning efficiency and accuracy in complex KGQA
tasks. (2) ToG [22] proposes an interactive LLM-KG integration paradigm in which the LLM acts
as an agent performing beam search over KGs to identify and reason along promising paths. This
training-free, plug-and-play method improves reasoning, knowledge traceability, and correctability,
achieving good results with smaller LLMs and reduced computational cost. (3) Readi [30] enables
LLMs to efficiently perform multi-hop reasoning over structured data by generating and iteratively
editing reasoning paths only when needed. It improves reasoning accuracy and faithfulness while
minimizing unnecessary edits, outperforming prior LLM-based methods on both KGQA and TableQA
benchmarks. (4) DoG [15] is an iterative interactive KGQA framework that improves LLM reasoning
through a subgraph-focusing mechanism and a multi-role debate strategy. By reducing distractions
from long reasoning paths and mitigating false-positive relations, DoG enables more accurate and
reliable answers in complex KGQA scenarios.

The HL-based methods are summarized as follows. (1) Interactive-KBQA [31] enables LLMs to
generate executable logical forms through direct interaction with knowledge bases under minimal
supervision. By introducing general APIs and few-shot exemplars for complex questions, it supports
step-by-step reasoning and iterative refinement, achieving strong results in low-resource KGQA
settings. (2) LightPROF [32] is a lightweight and efficient framework for KGQA that enhances LLM
reasoning by structurally integrating KGs into prompts. It retrieves relevant subgraphs, encodes their
factual and structural information via a trainable Knowledge adapter, and maps them into the LLM
embedding space, enabling effective reasoning with minimal parameter updates.
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B.2 Instruction and Exemplar

We show the instructions and exemplars utilized in the module within the Planning and Introspection
stages.

B.2.1 Path Generation

Please generate relation paths that can help in reasoning to answer the question.
The relation paths must start from the topic entities mentioned in the question. The
question is: {question}, and the topic entities are: {topic_entities}

B.2.2 Constraint Extraction

You will be given a question. Your task is to identify and extract any constraints
present in the question.

**Types of constraints to extract:**

1. Type Constraint:
- The answer should be of a specific type or category.

2. Multi-Entity Constraint:
- The question contains multiple entities and requires the answer to
simultaneously satisfy conditions related to these entities.

3. Explicit Time Constraint:
- A specific time period or date is mentioned explicitly.

4. Implicit Time Constraint:
- A time period or date is indirectly implied.

5. Order Constraint:
- The question involves a sequence or ordering.

Instructions:
- **Extract only present constraints**: Do not add constraints not explicitly or
implicitly mentioned in the question.
- **Output Format**: Return a **List object** with the identified constraints. Each
constraint type should either contain the relevant information or an empty string if
not applicable.

In-Context Few-Shot
Example 1:
- Question: What country bordering France contains an airport that serves Nijmegen?
- Output: ["1. The answer should be a country", "2. The country borders France", "3.
The country contains an airport that serves Nijmegen."]

Example 2:
- Question: what did james k polk do before he was president
- Output: ["1. The question implies the time before James K. Polk was president"]

Example 3:
- Question: Who was the 1996 coach of the team owned by Jerry Jones?
- Output: ["1. The team is owned by Jerry Jones", "2. The person was the coach in
1996"]

Example 4:
- Question: What was the last World Series won by the team whose mascot is Lou Seal?
- Output: ["1. The team is the one whose mascot is Lou Seal", "2. The answer should
be a World Series", "3. The World Series is the last one won by the team"]

Example 5:
- Question: What genre is the movie Titanic?
- Output: ["1. The answer should be a genre of the movie"]
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#####
Input question: {question}
Output:

B.2.3 Path Selection

Based on the reasoning relation paths in Freebase, think step by step to select the
most one relevant path to answer the question.
You will be given:
- Question: The question to be answered.
- Topic Entities: The main entities identified in the question.
- Memory: Paths have been selected and the feedback of the previous step.
- Reasoning Paths: A set of reasoning paths starting from the topic entities.

In-Context Few-Shot
Example 1:
- Question: What sports team owned by George Steinbrenner did Deion Sanders play
baseball for?,
- Topic Entities: [’Baseball’, ’Deion Sanders’, ’George Steinbrenner’],
- Memory: [],
- Reasoning Paths: [’Path 1: Baseball -> base.sportbase.sport.played_by_clubs ->
Unknown Entity’, ’Path 2: Deion Sanders -> sports.pro_athlete.teams -> Unknown
Entity -> sports.sports_team_roster.team -> Unknown Entity’, ’Path 3: Deion Sanders
-> baseball.baseball_player.batting_stats -> Unknown Entity -> baseball.
batting_statistics.team -> Unknown Entity’, ’Path 4: George Steinbrenner -> sports.
sports_team_owner.teams_owned -> Unknown Entity’]

- Output: {{Path 2}} - This path starts from Deion Sanders, follows his professional
athlete teams, and connects to a specific sports team. Since the question asks for

the team he played baseball for, this path is the most relevant in identifying the
correct team.

Example 2:
- Question: What movie was Charlie Hunnam in that was about human extinction?,
- Topic Entities: [’Human extinction’, ’Charlie Hunnam’],
- Memory: [{{’selected_path’: ’Charlie Hunnam -> film.actor.film -> Unknown Entity
-> film.performance.film -> Unknown Entity’, ’feedback’: ’This path connects Charlie
Hunnam to films he has acted in, but we need to find which movie is about human

extinction.’}}],
- Reasoning Paths: [’Path 1: Human extinction -> film.film_subject.films -> Unknown
Entity’, ’Path 2: Charlie Hunnam -> film.actor.film -> Unknown Entity -> film.
performance.film -> Unknown Entity’, ’Path 3: Charlie Hunnam -> common.topic.
notable_types -> Unknown Entity’, ’Path 4: Charlie Hunnam -> tv.tv_actor.
starring_roles -> Unknown Entity -> tv.regular_tv_appearance.character -> Unknown
Entity’]

- Output: {{Path 1}} - The previous selected path connected Charlie Hunnam to films
he acted in but did not ensure the movie was about human extinction. This path
directly connects "Human extinction" to relevant films, making it the best choice to
identify the correct movie.

Example 3:
- Question: Which state with Colorado River that Larry Owens was born in?
- Topic Entities: [’Colorado River’, ’Larry Owens’],
- Memory: [{{’selected_path’: ’Colorado River -> location.location.
partially_containedby -> Unknown Entity’, ’feedback’: ’This path connects Colorado
River to a location, but we need to find the state Larry Owens was born in.’}}],
- Reasoning Paths: [’Path 1: Larry Owens -> people.person.spouse_s -> Unknown Entity
-> people.sibling_relationship.sibling -> Unknown Entity’]

- Output: {{no path}} - None of the available paths lead to information about the
state where Larry Owens was born.
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B.2.4 Constraint Verification

Given a question and the associated retrieved knowledge triplets from Freebase, your
task is to answer the question with these triplets and your knowledge.

You will be given:
- Question: The question to be answered.
- Topic Entity: The main entity identified in the question.
- Constraints: The constraints extracted from the question that should be verified.
- Reasoning Paths: Paths starting from the topic entity (contains only relations).
- Knowledge Triplets: The instantiated reasoning paths in the form of triplets (
entity, relation, entity).

Think step by step to answer the question:
- List all potential answers (**tail entities**) based on the knowledge triplets,
ranking them by how likely they satisfy the question and constraints, and placing
the most likely ones first.
- Check if the answer satisfies the constraints and provide an explanation detailing
the reasoning process and any missing knowledge needed for full verification.

Return a **JSON object** with the identified constraints.

Important:
- DO NOT output anything except the JSON result.
- DO NOT add explanations, headers, or markdown formatting.
- Return only the JSON object shown in examples.
- Output must be a valid JSON object. All strings and keys must be enclosed in
double quotes.
- Only return the JSON object, no explanation or prefix like "Output:".

Format of the output:
{{"answer": [...], "sufficient": "Yes"/"No", "reason": "..."}}

In-Context Few-Shot
Example 1:
- Question: what is the name of justin bieber brother
- Topic Entity: ["Justin Bieber"],
- Constraints: [],
- Reasoning Path: ["Justin Bieber -> people.person.sibling_s -> Unknown Entity ->
people.sibling_relationship.sibling -> Unknown Entity"],
- Knowledge Triplets: [[["Justin Bieber", "people.person.sibling_s", "m.0gxnnwp"],
["m.0gxnnwp", "people.sibling_relationship.sibling", "Jaxon Bieber"]]]

- Output: {{"answer": ["Jaxon Bieber"], "sufficient": "Yes", "reason": "Based on the
reasoning path, the answer is Jaxon Bieber, which is the sibling of Justin Bieber

."}}

Example 2:
- Question: What movie was Charlie Hunnam in that was about human extinction?,
- Topic Entities: ["Human extinction", "Charlie Hunnam"],
- Constraints: ["1. The movie is a film Charlie Hunnam acted in.", "2. The movie is
about human extinction."],
- Reasoning Path: ["Charlie Hunnam -> film.actor.film -> Unknown Entity -> film.
performance.film -> Unknown Entity"],
- Knowledge Triplets: [[[["Charlie Hunnam", "film.actor.film", "m.0jwksr"], ["m.0
jwksr", "film.performance.film", "Cold Mountain"]],[["Charlie Hunnam", "film.actor.
film", "m.0jy_sj"], ["m.0jy_sj", "film.performance.film", "Green Street"]],[["
Charlie Hunnam", "film.actor.film", "m.046168c"], ["m.046168c", "film.performance.
film", "Children of Men"]]]]

- Output: {{"answer": ["Children of Men", "Green Street", "Cold Mountain"], "
sufficient": "No", "reason": "The reasoning path connects Charlie Hunnam to films he
has acted in, but we need to find which movie is about human extinction."}}
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B.3 DP performance with various LLMs

The detailed DP performance with various LLMs, presented as mean values with standard deviations,
on WebQSP and CWQ is summarized in Table 8.

Table 8: DP performance (mean with standard deviation) on WebQSP and CWQ. The results are
averaged over three independent evaluations. We highlight the best performance in bold and the
second-best in underline. LM denotes the language model used.

LM
WebQSP CWQ MetaQA

H H@1 F1 H H@1 F1 H H@1 F1
LLaMA3.1-8B 87.9±0.2 82.8±0.4 75.7±0.8 70.8±0.3 61.1±0.4 58.5±0.9 90.2±0.1 87.4±0.2 84.1±0.5

Qwen3-8B 75.1±0.5 82.7±0.3 72.3±0.6 76.1±0.6 61.7±0.4 60.2±0.7 90.4±0.3 89.2±0.2 88.6±0.2

GPT-3.5 89.7±0.6 86.9±0.3 79.2±0.3 80.0±0.6 72.6±0.1 69.2±0.4 96.7±0.1 95.4±0.3 90.8±0.4

GPT-4o 90.7±0.6 87.5±0.8 81.4±0.5 85.2±0.4 74.6±0.5 70.5±0.5 96.5±0.6 95.2±0.4 94.4±0.4

GPT-4.1 90.6±0.5 86.7±0.4 80.1±0.8 87.2±0.2 75.8±0.7 69.4±0.9 96.8±0.2 95.5±0.3 94.9±0.1

B.4 Exemplar Impacts

We conduct experiments on CWQ and WebQSP to investigate how the number of exemplars influences
response generation. As shown in Figure 5, the performance, measured by H@1, declines as the
number of exemplars increases. This degradation may stem from two main factors: (1) A larger
number of exemplars results in a longer input context, making it more challenging for the model to
capture semantic information effectively. (2) The diversity of exemplars remains relatively unchanged
despite the increased quantity, which may cause LLMs to become less confident when encountering
out-of-distribution scenarios.
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Figure 5: Impact of the number of exemplars on response generation. The results are evaluated by
H@1.

B.5 Interaction with Different LLMs

Figure 6 presents the token consumption and LLM invocation statistics of DP when interacting with
various LLMs on the CWQ and WebQSP datasets. The results are averaged over three runs. We see
that DP with various LLMs consumes similar tokens and LLM calls to answer a question, except for
Qwen3-8B, which shows higher consumption due to its inherently slow thinking mechanisms. It is
worth noting that the token consumption for path generation is excluded from this analysis, as that
component is executed offline. Overall, these results further validate the practicality and efficiency of
the proposed DP framework in real-world scenarios.

B.6 Case Study

We conduct case studies to qualitatively analyze the strengths and limitations of the proposed
framework DP. Figure 7 and 8 illustrate successful cases, while Figure 9 and 10 showcase failure
cases. In the successful examples, DP effectively guides LLMs to generate accurate answers by
selecting appropriate reasoning paths. When a reasoning path fails to satisfy certain extracted
constraints, DP can provide informative feedback, explicitly indicating which constraint is violated.
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Figure 6: Average token usage and calls of different LLMs.

In contrast, the failure cases highlight two types of errors: incorrect path generation and flawed
reasoning. Notably, in the case of path generation errors, the generated paths by DP closely resemble
the ground-truth paths, implying that a more robust mechanism may be required better to capture
the structural patterns inherent in KGs. In the case of reasoning errors, we see that the LLM fails to
cover all accurate answers, although the reasoning paths contain the required knowledge facts.
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Question: [Mary] is a notable figure in which religion that is observed in [Indonesia]?

Path Generation:
Path 1: Indonesia -> location.statistical_region.religions ->Unknown Entity -> location.religion_percentage.religion -> 
Unknown Entity 
Path 2: Mary -> people.person.religion -> Unknown Entity
Path 3: Mary -> base.saints.saint.venerated_in -> Unknown Entity

Constraint Extraction: 
1. The answer should be a religion
2. The religion is observed in Indonesia
3. Mary is a notable figure in the religion

Path Selection: 
 {Path 1} - This path starts from Indonesia and connects to religions observed in the country. Since the question is 
asking about the religion that Mary is a notable figure in that is observed in Indonesia, this path is the most 
relevant to identify the correct religion.

Instantiation: 
[[[['Indonesia', 'location.statistical_region.religions', 'm.03xf2_w'], ['m.03xf2_w', 'location.religion_percentage.religion', 
'Islam']], 
[['Indonesia', 'location.statistical_region.religions', 'm.03xf301'], ['m.03xf301', 'location.religion_percentage.religion', 
'Protestantism']], 
[['Indonesia', 'location.statistical_region.religions', 'm.064szk2'], ['m.064szk2', 'location.religion_percentage.religion', 
'Catholicism']]]]

Constraint Verification: 
{ "answer": ["Islam", "Protestantism", "Catholicism"],
  "sufficient": "No",
  "reason": "The reasoning path connects Indonesia to religions observed in the country. However, we need to 
further verify which religion Mary, as a notable figure, is associated with in Indonesia."}
(Constraint 1:    Constraint 2:    Constraint 3:    )
==================================================Feedback==================================================
Path: 
Path 1: Mary -> people.person.religion -> Unknown Entity
Path 2: Mary -> base.saints.saint.venerated_in -> Unknown Entity

Path Selection: 
{Path 1} - This path starts from Mary and connects to her religion. Since the question specifically asks about the 
religion associated with Mary as a notable figure, this path directly provides the required information.

Instantiation: 
[[[['Indonesia', 'location.statistical_region.religions', 'm.03xf2_w'], ['m.03xf2_w', 'location.religion_percentage.religion', 
'Islam']], 
[['Indonesia', 'location.statistical_region.religions', 'm.03xf301'], ['m.03xf301', 'location.religion_percentage.religion', 
'Protestantism']], 
[['Indonesia', 'location.statistical_region.religions', 'm.064szk2'], ['m.064szk2', 'location.religion_percentage.religion', 
'Catholicism']]],
 [[['Mary', 'people.person.religion', 'Judaism']], [['Mary', 'people.person.religion', 'Catholicism']]]]

Constraint Verification: 
{ "answer": ["Catholicism"],
  "sufficient": "Yes",
  "reason": "Based on the reasoning paths, we find that Indonesia observes Islam, Protestantism, and Catholicism. 
Mary is associated with both Judaism and Catholicism. Considering the constraints, the answer is Catholicism, which 
is a religion observed in Indonesia and Mary, a notable figure, is associated with it."}
(Constraint 1:    Constraint 2:    Constraint 3:    )

Answer: "Catholicism" 

Figure 7: Successful case requiring path selection again.
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Question: What [German Language] speaking European country is also home to  the state of [Tyrol]?

Path Generation:
Path 1: Tyrol -> location.administrative_division.country -> Unknown Entity
Path 2: Tyrol -> location.location.containedby -> Unknown Entity
Path 3: Tyrol -> base.aareas.schema.administrative_area.administrative_parent -> Unknown Entity
Path 4: Tyrol -> location.administrative_division.first_level_division_of -> Unknown Entity
Path 5: German Language -> language.human_language.countries_spoken_in -> Unknown Entity

Constraint Extraction: 
1. The country is a European country
2. The country speaks Germanic languages
3. The country is home to the state of Tyrol

Path Selection:
{Path 1} - This path starts from "Tyrol" and leads to the country it is located in, which directly helps identify the 
European country that is home to the state of Tyrol. The question is asking for a country (that is in Europe, is 
home to Tyrol, and where Germanic languages are spoken); since Tyrol is a state/province, following the path from 
Tyrol to its country is the most direct and relevant way to answer. Path 5 may help identify Germanic language-
speaking countries, but combining the two criteria, starting from Tyrol to its country is primary; you can then 
check if that country is Germanic language-speaking.

Instantiation: 
[[[['Tyrol', 'location.administrative_division.country', 'Austria']]]]

Constraint Verification: 
{ "answer": ["Austria"],
  "sufficient": "Yes",
  "reason": "The reasoning path directly connects Tyrol to Austria as its country. Austria is a European country 
and, according to general knowledge, German is the official language of Austria. Therefore, Austria satisfies all the 
constraints: it is a European country, speaks a Germanic language, and is home to the state of Tyrol."}
(Constraint 1:    Constraint 2:    Constraint 3:    )

Answer: "Austria"

Figure 8: Successful case without another iteration.

Question: Before the Euro, what was the currency where [Louis-Eugene Cavaignac] was appointed to governmental 
position?

Path Generation:
Path 1: Louis-Eugène Cavaignac -> people.person.nationality -> Unknown Entity -> location.country.currency_used -> 
Unknown Entity
[Ground Relation Path: [people.person.nationality -> location.country. currency _formerly_used]

Constraint Extraction:
1. The answer should be a currency
2. The currency was in use before the Euro
3. The currency was used in the place where Louis-Eugene Cavaignac was appointed to governmental position
[Only one path, no need to select]

Instantiation: 
[[[['Louis-Eugène Cavaignac', 'people.person.nationality', 'France'], ['France', 'location.country.currency_used', 'CFP 
franc']], 
[['Louis-Eugène Cavaignac', 'people.person.nationality', 'France'], ['France', 'location.country.currency_used', 'Euro']]]]

Constraint Verification: 
{ "answer": ["CFP franc", "Euro"],
  "sufficient": "No",
  "reason": "The reasoning links Cavaignac to France and lists CFP franc and Euro as currencies. However, the Euro 
is excluded due to timing, and the CFP franc is mainly used in overseas territories, not mainland France where 
Cavaignac served. Thus, neither currency fully satisfies the constraints."}
(Constraint 1:    Constraint 2:    Constraint 3:    )
[No remaining path, end iteration]

Answer:  "CFP franc", "Euro" 
Ground truth of the question: ['Assignat', 'French franc']

Figure 9: Case of path generation error.
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Question: Which Super Bowl was won by the team that also won the AFC Championship Game in 2013?

Path Generation
Path 1: Super bowl -> freebase.type_profile.equivalent_topic -> Unknown Entity ->time.recurring_event.instances -
> Unknown Entity
Path 2: Super bowl -> freebase.type_profile.equivalent_topic -> Unknown Entity -> 
sports.sports_championship.events -> Unknown Entity
Path 3: 2013 AFC Championship Game -> sports.sports_championship_event.championship -> Unknown Entity -> 
time.recurring_event.instances -> Unknown Entity
Path 4:m2013 AFC Championship Game -> sports.sports_championship_event.championship -> Unknown Entity -> 
sports.sports_championship.events -> Unknown Entity
Path 5:m2013 AFC Championship Game -> sports.sports_championship_event.champion -> Unknown Entity -> 
sports.sports_team.championships -> Unknown Entity
Path 6: 2013 AFC Championship Game -> sports.sports_championship_event.season -> Unknown Entity -> 
sports.sports_league_season.championship -> Unknown Entity

Constraint Extraction:
1. The answer should be a Super Bowl
2. The team won both the Super Bowl and the AFC Championship Game in 2013

       Path Selection:
{Path 5} - This path starts from the 2013 AFC Championship Game, follows to the champion of the event, and then 
connects that team to their championships. Since the question asks which Super Bowl was won by the team that 
won the 2013 AFC Championship Game, this path is the most relevant to identify the Super Bowl won by that 
specific team.

       Instantiation:
[[[['2013 AFC Championship Game', 'sports.sports_championship_event.champion', 'Baltimore Ravens'], ['Baltimore 
Ravens', 'sports.sports_team.championships', 'Super Bowl XLVII']], 
[['2013 AFC Championship Game', 'sports.sports_championship_event.champion', 'Baltimore Ravens'], ['Baltimore 
Ravens', 'sports.sports_team.championships', '2001 AFC Championship Game']], 
[['2013 AFC Championship Game', 'sports.sports_championship_event.champion', 'Baltimore Ravens'], ['Baltimore 
Ravens', 'sports.sports_team.championships', 'Super Bowl XXXV']]]]}

       Constraint Verification: 
{"answer": ["Super Bowl XLVII"], 
 "sufficient": "Yes",
 "reason": "According to the triplets, the Baltimore Ravens were the champions of the 2013 AFC Championship 
Game and have won several championships, including Super Bowl XLVII, Super Bowl XXXV, and the 2001 AFC 
Championship Game. However, the constraints specify the Super Bowl won by the team that also won the AFC 
Championship Game in 2013. Only Super Bowl XLVII matches both constraints, as it was the Super Bowl played 
following the 2012 NFL season, with the AFC Championship Game played in early 2013 and both won by the 
Baltimore Ravens. The other listed championships do not satisfy the year constraint. Therefore, 'Super Bowl XLVII' 
is the only answer that satisfies both constraints."}
(Constraint 1:    Constraint 2:    Constraint 3:    )

Ground truth of the question: ['Super Bowl XXXV','Super Bowl XLVII']

Figure 10: Case of reasoning error.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We show the main claim in the abstract and introduction. Specifically, we have
concluded four contributions in Section 1.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed the limitation in Section 5. While this work advances
trustworthy LLM reasoning by incorporating knowledge priors, it still relies on human
intervention to define constraints when applied to vertical domains. In the ablation experi-
ment, we explore replacing the manual definition with automatic summarization. The results
present a significant decrease. In future work, we plan to investigate automatic methods for
extracting and summarizing constraint types, aiming to further reduce manual effort and
enhance scalability.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: NA.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have introduced the detailed settings such as implementation details
and baselines in Section 4.1 and B.1. We also have released the code with a detailed
"readme.md".

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have released the code in https://github.com/mira-ai-lab/
Deliberation-on-Priors with a detailed "readme.md." We have clearly described and
cited the work of datasets.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have described the training and test details in Section 4.1 and B.1.
The full details are shown in the released code https://github.com/mira-ai-lab/
Deliberation-on-Priors.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]
Justification: The results shown in Table 2 and 6 are obtained by computing the average
performance and the standard deviation based on three independent runs.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have shown the computing resources such as GPU in Section B.1.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our paper and code adhere to the NeurIPS Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We explore the integration of DP and various LLMs in Table 2. The societal
impact, such as generating trustworthy responses has been discussed in the analysis.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We propose a trustworthy framework for large language model reasoning,
which has been described in Section 3. The framework employs a progressive knowledge
distillation strategy to enhance faithfulness and a reasoning-introspection strategy to promote
the reliability of response generation. We have verified the effectiveness on various LLMs.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the corresponding work of the owners of assets used in this
paper.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have introduced our released code and model using a clear "readme.md."

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We have described the usage of LLMs in the analysis of Table 2 and 6.
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