
Implicit Optimization Bias of Next Token Prediction in Linear Models

Abstract
Next-token prediction (NTP) has become the go-
to training paradigm for modern language mod-
els, yet its optimization principles are not well-
understood. To bridge this gap, we initiate a study
of the structural properties of the solutions se-
lected by gradient-based optimizers among the
many possible minimizers of the NTP objective.
By framing NTP as cross-entropy minimization
across distinct contexts, each tied with a sparse
conditional probability distribution across a fi-
nite vocabulary of tokens, we introduce “NTP-
separability conditions” that enable reaching the
entropy lower bound. With this setup, we then
focus on linear models, for which we characterize
the optimization bias of gradient descent. Extend-
ing previous research on implicit bias in one-hot
classification to the NTP setting, highlights key
differences and prompts further research into op-
timization and generalization of NTP.

1 Introduction
We initiate an investigation when implicit optimiza-
tion biases in training language models under the NTP
paradigm, particularly in overparameterized regimes where
the empirical-loss reaches its lower bound and there is many
possible minimizers. To formalize the NTP paradigm, con-
sider autoregressive model qθ parameterized by θ trained to
predict the next-token on sequences of length T using the
cross-entropy (CE) loss:

min
θ

Êz∼Tn
[∑t∈[T ]

− log (qθ(zt ∣ z1, . . . , zt−1)) ]. (1)

Here, sequences z = (z1, . . . , zT ) consist of tokens zt from
a finite vocabulary V = {1, . . . , V } and Ê is expectation
over training set Tn of n such sequences sampled from
some underlying true distribution over sequences. Typ-
ically, the model qθ outputs probability of the next to-
ken computed via softmax applied on output logits, which
are computed by projecting d-dimensional embeddings
hθ′ to the V -dimensional space with a trainable linear
decoder W ∈ RV ×d. Formally, 1 qθ(zt ∣ z1, . . . , zt−1) =

1Throughout, ev ∈ RV is the v-th standard basis vector, and
Sz(u) = e⊺zS(u) = euz /∑v∈V euv the z-th entry of softmax.

Szt(Whθ′(z1, . . . , zt−1)) . The CE loss is then minimized
over (W ,θ′) using gradient-based methods.

We pose the question: Given training set Tn, what are the
structural properties of the weights θ found by minimizing
the NTP objective with gradient-based optimizers? As in
prior research in one-hot supervised classification 2 (e.g.
(Zhang et al., 2017a; Belkin et al., 2018; Soudry et al., 2018;
Ji and Telgarsky, 2018)), we specifically target this question
in an overparameterized setting, where the NTP objective
(1) may have an infinite number of solutions, representing
an infinite number of models θ that minimize the training
loss. The central challenge is to discern the particular solu-
tion the optimizer is inherently biased towards. Since this
‘bias’ is not explicitly introduced through regularization but
is instead ingrained in the training objective and algorith-
mic structure, it is termed ‘implicit bias’ (Neyshabur et al.,
2014). The exploration of implicit bias has a long history in
the traditional supervised one-hot classification (see Related
Work in Sec. 5). In this traditional scenario, the training
set comprises feature-label pairs (x, y), where x ∈ Rp is a
continuous feature, and y represents its unique label. The
optimization process minimizes the following training ob-
jective (over W ,θ′): Ê(x,y) [− log (Sy(Whθ′(x)))] .

At first glance, excluding the sequential format of Eq. (1),
the NTP training scenario might seem identical to traditional
one-hot prediction: both aim to minimize the same CE
loss across models that parameterize probabilities using the
softmax of logits. Consider predicting the next token over
fixed-length sequences, say sequences of length t−1, via op-
timizing: Êz [− log (Szt(Whθ(z1, . . . , zt−1)))] . The con-
text here acts as the feature, and the next token as the label.
Recent works (Liu et al., 2023; Malach, 2023) draw on such
apparent similarities to the traditional one-hot classifica-
tion paradigm to extrapolate known results from the latter
to the NTP setting. However, this comparison overlooks
a fundamental, yet critical difference in the nature of the
training data that distinguishes these two paradigms (even
when the sequential format of Eq. (1) is disregarded): In

2In NTP, the ground-truth next token is inherently embedded
within the underlying text, thus strictly speaking, it falls under the
self-supervised learning paradigm (Radford et al., 2018). Yet, the
utilization of the CE training objective bears striking resemblance
to supervised training. We leverage this resemblance and regard
NTP training as an instance of supervised learning, while also
emphasizing how it differs from one-hot encoding supervision.
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the traditional setting, each feature (e.g., image) is assigned
a single label (e.g., image category). In contrast, in the
NTP setting, contexts z1, . . . , zt−1 of finite length sampled
from finite vocabularies are naturally repeated in a (vast)
training set, potentially multiple times, each time followed
by different tokens zt (Shannon, 1951). Consequently, the
NTP paradigm involves training over m ≤ n distinct (non-
repetitive) contexts, each followed by a multitude of possible
next tokens, appearing at varying frequencies. For instance,
the context "She is excellent at her role as
a" may be followed by next tokens such as "doctor,"
"reviewer," or "mother," each with different frequen-
cies. Importantly, certain vocabulary tokens may not appear
after a given context; e.g., in the above example, tokens like
"run," "and," etc., will not follow.

Model. We study NTP training over a finite vocabulary em-
ploying the following model. Given a large training set of n
total sequences, we identify m ≤ n distinct contexts. Each
distinct context j ∈ [m] is linked to a V -dimensional empiri-
cal probability vector p̂j , which encodes the frequency with
which each vocabulary token follows the context throughout
its occurrences in the training set. Crucially, the probability
vectors p̂j are sparse, i.e., the support set Sj of p̂j satisfies
∣Sj ∣≪ ∣V ∣ = V . In an extreme where ∣Sj ∣ = 1,∀j ∈ [m], the
probability vector p̂j becomes one-hot, leading to a scenario
reminiscent of the traditional classification setting described
earlier. However, such an extreme is essentially improbable
in practical language modeling (Shannon, 1951).

1.1 Contributions and Organization

Formulation. Recognizing the differences between NTP
and one-hot classification, we study the question of implicit
optimization bias within the NTP setting. To facilitate this,
we utilize the model outlined in the previous paragraph and
detailed in Sec. 2. For concreteness, our analysis adopts
a ’top-down’ approach, training only the decoding (also
referred to as word-embedding) matrix W ∈ RV ×d while
keeping context-embeddings fixed. This approach mirrors
foundational studies on implicit optimization bias in one-hot
classification (Soudry et al., 2018; Ji and Telgarsky, 2018),
which first focused on linear models. It allows exploring the
complexities of the NTP training objective, distinct from
the embedding architecture3, and while it renders the logits
linear and the objective convex, it still poses a technical
challenge in terms of determining parameter convergence
(Soudry et al., 2018; Ji and Telgarsky, 2018; Ji et al., 2020).

Conditions for reaching entropy. In Sec. 3, we identify
the necessary and sufficient conditions for the logits of the
trained model to enable the CE loss to approach its lower
bound, the empirical conditional entropy. We introduce

3NTP is widely used across transformers (Radford et al., 2019),
state-space models (Fu et al., 2022), LSTMs (Beck et al., 2024).

two conditions: NTPH-compatibility and NTP-separability,
which impose constraints on mutually orthogonal subspaces
that are determined by the sparsity patterns of distinct con-
texts within the dataset. These conditions determine the nec-
essary and sufficient overparameterization a model needs to
achieve the empirical entropy lower bound during training.

Margin in NTP setting and Implicit bias of GD. Moti-
vated by the NTP-separability condition, Sec. 4 introduces
a margin concept for NTP, which extends the classical defi-
nition of margin used in one-hot supervised classification.
We further establish the relevance of this new margin notion
for GD optimization. Specifically, in the limit of iterations
k → ∞, we show the GD iterates grow undoubtedly in
norm and converge to a finite W ⋆ within a data subspace
F, while simultaneously aligning with a NTP-margin maxi-
mizing direction Wmm in the complementary subspace F⊥.
The finite component W ⋆ ∈ F solves a system of linear
equations associated with NTPH-compatibility.

2 Setup
Let vocabulary V = [V ] ∶= {1, . . . , V } represent a set of V
tokens (e.g. words) and z1∶t = (z1, . . . , zt) denote sequence
of t tokens zt ∈ V . To simplify presentation, we focus on pre-
dicting the T -th token zT given contexts z<T ∶= z1∶T−1 of
fixed length, and we further let x = z<t denote the context
and z denote the last token. See App. D for straightfor-
ward extension to the sequential format of Eq. (1). We
assume access to a training set consisting of n sequences
Tn ∶= {(xi, zi)}i∈[n], with xi ∈ X ∶= V

T−1 and zi ∈ V . Let
h ∶ X → Rd an embedding map that maps contexts (i.e.,
sequences of T − 1 tokens) to d-dimensional embeddings.
The map h is assumed fixed. The next-token is predicted via
a linear model fW ∶ X → RV parameterized by decoding
matrix W ∈ RV ×d, such that fW (x) = Wh(x). When
the model output passes through a softmax, it defines the
model’s probability mass function for the next-token predic-
tion, given as q̂W (⋅∣x) = S(fW (x)), where S(⋅) ∶ RV →

∆V −1 is the softmax and ∆V −1 is the V -dimensional sim-
plex. The decoder is trained by minimizing the empirical
CE loss CE(W ) ∶= 1

n ∑i∈[n] − log (q̂W (zi∣xi)) .

Given dataset Tn we denote x̄1, . . . , x̄m the m ≤ n dis-
tinct contexts among the (large number of) total n contexts
x1, . . . ,xn within Tn. Let π̂j be the empirical probabil-
ity of distinct context x̄j . That is, 1 ≤ n ⋅ π̂j ≤ n is the
number of contexts xi that equal x̄j . Furthermore, for
each distinct context x̄j , j ∈ [m] let p̂j ∈ ∆

V −1 denote
the probability vector of conditional next-token distribu-
tion, i.e., p̂j,z ∶= p̂ (z∣x̄j) , z ∈ V, j ∈ [m]. In other words,
n ⋅ π̂j ⋅ p̂j,z is the number of occurences of token z as a
follow-up to context x̄j . Finally, we denote the support set
and size of the support set of these conditional distributions
as Sj ∶= {z ∈ V ∣ p̂j,z > 0} and Sj ∶= ∣Sj ∣. Tokens z ∈ Sj and
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v ∉ Sj are referred to as ’in-support’ and ’out-of-support’
respectively. With these, 4 we express the NTP loss as

CE(W ) = − ∑
j∈[m]

π̂j ∑
z∈Sj

p̂j,z log (Sz(Wh̄j)) , (2)

where, we defined the shorthand h̄j = h(x̄j). Similarly,
we let hi = h(xi), i ∈ [n]. With some abuse of notation,
we then obtain the following equivalent descriptions of the
training set as Tm ∶= {(h̄j , π̂j , p̂j,z∈V)}j∈[m] that empha-
sizes distinct contexts and their respective sparse next-token
probability distributions.

The empirical T -gram entropy (referred to here-
after as entropy) of the dataset is (Shannon, 1948;
1951): HT ∶= H ∶= Ê(x,z)∼Tn [− log (p̂(z∣x))] =
−∑j∈[m]∑z∈Sj

π̂j p̂j,z log (p̂j,z) . It lower bounds the
CE loss since CE(W ) = H + KL (p̂ ∣∣ q̂W ) and the KL
divergence is nonnegative.

3 When is entropy reached?
Under what conditions on the training data can the CE loss
reach its entropy lower-bound? By the entropy lower-bound,
CE(W ) = H⇔ KL (p̂ ∣∣ q̂W ) = 0 iff for all j ∈ [m] and
all z ∈ V : q̂W (z∣x̄j) = p̂j,z . This leads to the following two
sufficient and necessary conditions.
Definition 3.1 (NTPH-compatible). Tm is NTPH-
compatible if ∃W p ∈ RV ×d satisfying ∀j ∈ [m]:

∀z ≠ z′ ∈ Sj ∶ (ez − ez′)
⊺W ph̄j = log (p̂j,z/p̂j,z′) . (3)

Definition 3.2 (NTP-separable). Tm is NTP-separable if
there exists V × d matrix W d satisfying the following:

∀j ∈ [m], z ≠ z′ ∈ Sj ∶ (ez − ez′)
⊺W dh̄j = 0 (4a)

∀j ∈ [m], v ∉ Sj ∶ (ez − ev)
⊺W dh̄j ≥ 1 . (4b)

The eqns. in (3) constrain W p with respect to a subspace of
V ×d matrices that is defined in terms of context embeddings
and their respective support sets:

F = span ({(ez − ez′)h̄
⊺
j ∶ z ≠ z

′
∈ Sj , j ∈ [m]}) , (5)

The subspace constraints in Eq. (4a) project W d onto the
subspace F⊥, which is the orthogonal complement of the
subspace F defined in (5). This leaves the softmax probabil-
ities of possible next tokens (in set Sj) intact, and fully de-
termined by W p as per the NTPH-compatibility condition.
Formally, W p +W d continues satisfying (3). Moving on
the halfspace constraints in (4b), their impact on the softmax
probabilities can be understood algebraically by consider-
ing Wγ ∶= γW d and v ∉ Sj . We have: Sv(W

γh̄j) =

(∑z∈Sj
eγ(ez−ev)

⊺W dh̄j +∑v′∉Sj
eγ(ev−ev′)

⊺W dh̄j)
−1

≤

e−γ , which approaches 0 as γ →∞.

4Please refer to Sec. E for list of notations.

Proposition 3.3. Assume training data Tm is NTPH-
compatible and NTP-separable, with the respective matri-
ces W p and W d satisfying conditions (3) and (4). While
all finite W satisfy CE(W ) > H, it holds for W γ =

W p + γ ⋅W d that CE(W γ)
γ→+∞
ÐÐÐ→H.

Thus, CE approaches its lower-bound in the limit of a di-
rection W d ∶= W d/∥W d∥ and offset W p satisfying the
constraints of NTP-separability and NTP-compatibility, re-
spectively. We remark that when d > m (overparameteri-
zation) then the two constraints hold generically (see App.
A.1).

4 Implicit Bias of GD
This section studies the implicit bias of GD. Denote the
GD iterates at time k by Wk = Wk−1 − η∇CE (Wk−1)

for arbitrary initial point W0 and constant step-size η >
0 small enough to guarantee descent. Under NTPH-
compatibility and NTP-separability, limk→∞CE(Wk) =H

and limk→∞ ∥Wk∥ = ∞. This is intuitive because the CE
loss is convex in W (thus, GD approaches the objective’s
infimumH), and, in view of Proposition 3.3, the CE loss at
all finite W is bounded away fromH. The relevant question
then becomes that of determining the limit of the direction
of the GD iterates. We need the following definitions: (i)
W ⋆ ∈ F is the unique solution of the NTPH-compatibility
equations on subspace F. (ii) For NTP-separable training
set Tm, Wmm ∈ F⊥ is the unique solution to

Wmm
∶= argminW ∥W ∥ (NTP-SVM)

subj. to W ∈ RV ×d satisfying (4a) and (4b).

This is a strongly convex quadratic program with
mV − ∑j∈[m] Sj linear inequality and ∑j∈[m] Sj − m
linear equality constraints. Its solution can be also
defined as the classifier that maximizes margin be-
tween in and out-of -support tokens while being con-
strained on the orthogonal compelemnt F⊥: Wmm =

argmax∥W ∥=1,W ∈F⊥minj∈[m],z∈Sj ,v∉Sj
(ez − ev)

⊺Wh̄j .

Theorem 4.1 (Implicit bias of GD). Assume NTPH-
compatible and NTP-separable training data Tm. Then,
it holds that limk→∞ ⟨

Wk

∥Wk∥
, Wmm

∥Wmm∥
⟩ = 1 . Moreover,

limk→∞PF(Wk) =W
⋆.

The theorem establishes that in the limit of iterations:
Wk ≈W

⋆ + ∥P⊥(Wk)∥Wmm, which is analogous to the
result we obtained previously for the regularization path.
The proof of the theorem’s main ingredient (Lem. F.3 in
the appendix) involves comparing the loss CE(Wk) for
large iterations k to the loss evaluated at a “genie” point
that is chosen so that: (i) On the subspace F, it agrees
with Wk. This is because it is easy to show that PF(Wk)
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converges to W ⋆ by standard gradient descent analysis for
convex functions; (ii) On the orthogonal subspace F⊥, it
follows the optimal (with respect to accelerating loss de-
crease) max-margin direction Wmm ∈ F⊥. To establish the
loss comparison, the ideas is to compare the values of the
adjusted loss CE⊥(W ) ∶= CE(W ) −CE (PF(W )).

See Sec. B for numerical examples verifying the theorem
and visualizing the GD parameters as word-embeddings
(e.g., Fig. 1, 2).

5 Related work
We build on the literature on implicit optimization bias of
CE loss in one-hot supervised classification. (Soudry et al.,
2018) show that for linear models and linearly-separable
data, GD converges in direction to the max-margin classifier.
This result strengthens (Rosset et al., 2003) that showed
the regularization path of CE minimization converges to
the same limit. Closer to us, (Ji and Telgarsky, 2018; Ji
et al., 2020) extend the analysis to encompass general bi-
nary data as follows: the data are linearly separable only
on a certain subspace, and they show that GD converges, in
direction, towards the max-margin classifier confined within
that subspace. On the orthogonal subspace, it converges
to a finite point. While operationally similar, our finding
in Thm. 4.1 cannot be directly derived from theirs since
our setting is neither binary nor one-hot. Nevertheless, our
proofs extend the foundational work of (Rosset et al., 2003;
Ji and Telgarsky, 2018; Ji et al., 2020), akin to numerous
other studies that explore extensions to nonlinear architec-
tures, (Lyu and Li, 2020; Ji and Telgarsky, 2020; Gunasekar
et al., 2018a;b; Tarzanagh et al., 2023b) and to stochastic
and adaptive algorithms, e.g. (Nacson et al., 2019; Pesme
et al., 2021; Damian et al., 2021; Sun et al., 2022). The im-
plicit bias viewpoint has also created opportunities to study
generalization in overparameterized settings. (Hastie et al.,
2019; Bartlett et al., 2019; Montanari et al., 2019) build
a two-stage approach initially leveraging implicit bias to
simplify the complexities of optimization before addressing
generalization. This narrows the generalization question to
the properties of the corresponding max-margin classifier
, e.g. (Muthukumar et al., 2020; Cao et al., 2021; Koehler
et al., 2021; Donhauser et al., 2022). The same strategy
has also been adopted to study model robustness to adver-
sarial perturbations (Javanmard and Soltanolkotabi, 2022;
Taheri et al., 2023; Chen et al., 2023), out-of-distribution
data (Tripuraneni et al., 2021), and imbalances (Sagawa
et al., 2020; Chatterji et al., 2021; Kini et al., 2021). Our
results motivate such extensions in the richer NTP setting.

Finally, while fundamentally different in nature, the form
of our convergence results echoes a recent conjecture by
(Tarzanagh et al., 2023a) regarding implicit optimization
bias in transformers. Unlike their conjecture, which focuses
on binary classification, our results are rigorously proven

and apply to the NTP setting. Further detailed discussion
on related follow-up work is deferred to Appendix C.

6 Future work
As the first study of implicit biases in NTP training, we use
several assumptions essential for establishing an initial foun-
dational understanding. The framework allows for various
exciting promising research directions, some of which we
outline below. Within the linear setting and GD:
● NTP-separability thresholds: Identifying exact thresh-
olds for NTP-separability under distributional assumptions,
akin to previous work on one-hot separability (Remark A.2).
● Generalization: Studying generalization in NTP settings
by examining statistical properties of the NTP-SVM so-
lution. Past research has successfully undertaken similar
investigations for one-hot classification (see Sec. 5). While
we acknowledge the importance of addressing specific chal-
lenges inherent to NTP —such as determining an appro-
priate measure of generalization, or establishing suitable
statistical models for context-embeddings that respect the
discrete nature of the underlying token subsequences—we
believe this direction holds promise for further exploration.

Also, towards relaxing the linearity assumption:
● Architecture-specific embeddings: In a bottom-up ap-
proach that considers architecture-specific embeddings, the
initial step involves modeling embeddings produced by, for
instance, a shallow transformer, and examining the effects of
regularization biases on the training of both the transformer
and the decoder weights. An important nuance in this ap-
proach is the need to restrict to shallow transformers in a
manner that still enables the NTP loss to attain the entropy
lower bound. This may necessitate limiting the training data
distribution, e.g. (Makkuva et al., 2024).
●Memory capacity in NTP settings: Without restricting
the data beyond the discrete nature of tokens from a finite
vocabulary, there is a strong case for investigating memory
capacity of transformers in NTP, where recent studies on
transformer memory capacity (Kajitsuka and Sato, 2024;
Kim et al., 2023) do not apply.
● Unconstrained features: Extending the top-down ap-
proach, one could consider freely optimizing context em-
beddings together with decoder vectors (also known as word
embeddings). The resulting log-bilinear model, reminiscent
of wor2vec models (Pennington et al., 2014; Mikolov et al.,
2013), extends the unconstrained features model, which has
recently been employed to investigate neural collapse ge-
ometry in one-hot classification settings. This idea offers a
promising avenue for uncovering structures in the geome-
tries of context and word embeddings when learned jointly,
potentially revealing new insights into the capabilities of
sufficiently expressive language models.
● Other optimizers: Exploring the NTP implicit bias of
adaptive algorithms, such as Adam.
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A Additional Results
A.1 On the role of overparameterization
We show that overparameterization provides a sufficient condition for the solvability of (3) and (4).

Start with the halfspace constraints in (3) for NTPH-compatibility. These can be compactly expressed as Ej,zjW
ph̄j = aj,z ,

where Ej,zj ∈ R(Sj−1)×V has rows ezj − e
′
z and aj,zj ∈ R(Sj−1) has entries log (p̂j,zj /p̂j,z′) for some anchor zj ∈ Sj .

Now, since the rows of Ej,zj are linearly independent, the question becomes equivalently that of determining when
W p[h̄1, . . . , h̄m] = [E

†
1,z1

a1, . . . ,E
†
m,zmam] has a solution. This is always the case when d > m and the d × m

embedding matrix H̄ = [h̄1, . . . , h̄m] is full rank (m). Then, there exists W p such that condition (3) holds. In fact, H̄⊺ has
a nullspace, implying the existence of an infinite number of solutions to (3). These solutions take the form W p =W ⋆+W p

⊥ ,
where W ⋆ ∈ F is the unique solution onto the subspace, and W p

⊥ ∈ F
⊥. In contrast to (3), the constraints in (4) involve

linear inequalities. However, a sufficient proxy for feasibility in this case is that the corresponding system of equations
(instead of inequalities) has a solution. By following the exact same argument as before, we arrive at the same sufficient
conditions for the existence of a solution W d. We summarize these findings.
Lemma A.1 (Overparameterization implies NTP-separability). Assume overparameterization d >m and full-rank embed-
ding matrix H̄ ∈ Rd×m. Then, there exists an infinite number of solutions W p and W d that satisfy conditions (3) and (4),
respectively.

Thus, d > m, 5 which also generically favors full-rankness of the embedding matrix (Vershynin, 2011), implies both
NTPH-compatibility and NTP-separability. Combined with Prop. 3.3, it also implies that there are infinitely many possible
directions W d along which the NTP loss approaches H, motivating the implicit-bias question: For a specific iterative
algorithm aimed at minimizing the NTP loss, which direction does it prefer? We will address this question in the remainder
of the paper.
Remark A.2. In the trivial case where Sj = 1,∀j ∈ [m] (one-hot classification), the entropy lower bound is zero and is
attained iff the data is linearly separable. Indeed, F reduces to the empty set, and NTP-separability simplifies to traditional
multiclass separability. For binary classification, (Cover, 1965) showed that d/m > 1/2 is sufficient and necessary for
data in general position to be linearly separable. More recently, several works have extended this analysis to structured
(random) data, including (Candès and Sur, 2018; Salehi et al., 2018; Montanari et al., 2019; Mignacco et al., 2020). The
exact threshold in corresponding mutliclass settings is more intricate, but (Cornacchia et al., 2023; Tan and Bellec, 2023;
Çakmak et al., 2024) have made progress in this direction. An interesting question is determining exact thresholds for
NTP-separability, which would improve upon the sufficient condition of Lemma A.1.

A.2 Regularization path
This section investigates the implicit bias of NTP by examining the minimization of CE loss through iterates defined as
follows for an increasing sequence of positive regularization parameters B:

ŴB ∶= argmin∥W ∥≤B CE(W ) . (6)

This involves minimizing a strictly convex function in a bounded domain; thus, ŴB is unique. This section’s main result
characterizes the limit of ŴB as B →∞ under NTP-separability/compatibility. Before that, we first define the next-token
prediction support-vector machines (SVM) problem.

Theorem A.3 (Implicit bias of the regularization-path). Assume training data Tm is NTPH-compatible and NTP-separable.
Let ŴB be defined as in (6). Then, it holds that limB→∞ ⟨

ŴB

∥ŴB∥
, Wmm

∥Wmm∥
⟩ = 1 .

B Experiments
All experiments were conducted on a MacBook Pro equipped with a 2.3 GHz Quad-Core Intel Core i7 processor and 32 GB
of memory. The experiments are of relatively small scale and were implemented in Matlab. The code is straightforward to
reproduce, following the detailed specifications provided in the subsequent sections.

5The necessity for such large d can be mitigated through the utilization of non-linear architectures (such as an MLP decoder), in which the
total number of parameters can be increased by augmenting the width or depth, rather than directly modifying the embedding dimension
d as in linear models.
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Figure 1: Vis. of NTP implicit optimization bias in a setting with m = 3 distinct contexts, embedding dimension d = 2,
vocabulary of ∣V ∣ = 5 words and support sets of length ∣Sj ∣ = 3, j ∈ [3]. Left: Vis. of context embeddings h̄j in circle black
markers (marked as A,B,C) and of their associated support sets Sj (colored text below each marker). Colored vectors (star
markers) represent max-NTP-margin vectors w⊺v ∶= e

⊺
vW

mm, v ∈ [5] found by GD. Interpreting decoder vectors as word
embeddings leads to intuitive findings on their geometry learned by NTP training. E.g., word embedding w3 (almost) aligns
with context-embedding A and the normal hyperplane it defines separates A from B and C, since word 3 only appears
after context A. The rest of the words follow two contexts each and their word-representation naturally belongs to the
cone defined by the embeddings of those respective contexts. The wider the cone, the larger the magnitude of the word
embedding to compensate for the large angle between context-representations that share the same next-word. Note that
geometry of depicted word embeddings only depends on support sets, but the conditional probabilities define another set of
word representations on an orthogonal (matrix) subspace; see text for details and vis. Right: Upper/lower graphs confirm
the predictions of Theorem 4.1.

B.1 2D visualization: Interpretation of word-embeddings

Figure 1 illustrates a toy 2d example where the embeddings and the hyperplanes defined by each row of Wmm can be
visualized. We used d = 2,m = 3, V = 5 and S1 = S2 = S3 = 3. The right subfigure shows results of GD training with respect
to training loss, norm growth, alignment with Wmm, and convergence to W ⋆ on F. See App. B for further implementation
details and additional experiments. The left subfigure illustrates: (i) In black markers, the context-embedding geometry along
with the associated support sets for each context A, B, and C. (ii) In colored markers, the geometry of word-embeddings, that
is the max-NTP-margin vectors (Wmm)⊺ev, v ∈ [5], to which GD directionally converges. See caption for interpretation.

Additionally, Figure 2 shows the matrix of conditional probabilities and visualizes next to each other (i) the rows of the
directional component Wmm (Middle) and (ii) those of the finite component W ⋆ (Right). Interpreting the V × d decoder
matrix as the matrix of learned word embeddings, this provides a visualization of their geometry. As per our results, the
two word-embedding matrices W ⋆ and Wmm lie on orthogonal subspaces. The geometry of the first depends on the
probabilities of in-support tokens, while that of the second depends only on the support set of these probabilities. See also
caption of Fig. 2.

B.2 Overparameterized setting

We examine the implicit bias of GD on NTP training with overparameterization on synthetic data generated as follows.
We construct dataset with n = 5000 sequences involving m = 50 distinct contexts. Each distinct context gets mapped to
a randomly generated embedding of dimension d = 60 > m. We set vocabulary size V = 10 and each context j ∈ [m] is
followed by Sj = 6,∀j ∈ [m] possible next-tokens. The support sets Sj ⊂ V and the probabilities p̂j,z, z ∈ Sj are chosen
randomly; see Fig. 3 for representative examples from the training dataset. For a fixed realization of the dataset (for which
H ≈ 1.445nats), we run GD, normalized GD (NGD), and Adam from random LeCun initialization. For GD, we use learning
rate η = 0.5 and for NGD and Adam η = 0.01. For Adam, we also set β1 = 0.9, β2 = 0.99. We run all algorithms for 1e4
iterations. For each case, we plot the following as a function of iterations:

1. Upper Left: CE loss versus entropy lower bound
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Figure 2: Same setup as Fig. 1. Left: Matrix P of conditional probabilities of words (cols.) per context (rows). Each row
corresponds to the conditional probability vectors pj , j ∈ [m]. Black entries correspond to off-support words. Middle:
Shown as wz, z ∈ [5], the rows of the NTP-SVM solution Wmm to which GD directionally converges. Right: Shown as
wz, z ∈ [5], the rows of the finite parameter W ⋆ to which GD iterates projected on F converge to. The geometry of Wmm

depends only on the support-set of P . On the other hand, the geometry of W ⋆ depends on the entries of P for in-support
tokens/words. As seen from visualization of P , the words 1 and 5 have the same support pattern (i.e., both follow the
same contexts A and B). Thus, w1 =w5 in the Middle plot. However, on the subspace F corresponding to the Right plot,
w1 ≠w5, which allows matching the different conditional probabilities with which each follows contexts A and B.

2. Upper Right: parameter norm growth

3. Lower Left: correlation of Wmm with iterates Wk and of “corrected” iterates Wk −W
⋆ after substracting the

component onH

4. Lower Right: convergence of the subspace component Wk,F = PF(Wk).

Fig. 4 shows an instance of these. As predicted by our analysis, in this overparameterized setting: CE loss converges to its
lower-bound, parameter norm increases, iterates align in direction with Wmm, and the subspace component converges to
W ⋆.

Figure 3: Eight randomly picked contexts with their associated next-token empirical conditional probabilities p̂j . The
indices shown on the x-axis define the support set Sj of each context.

Figure 5 illustrates the same plots, but this time for training over the same dataset with NGD and Adam. We observe same
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implicit bias, but faster convergence. For NGD, this is consistent with analogous findings (rigorous in that case) for one-hot
classification (Nacson et al., 2019; Ji and Telgarsky, 2021).

ℱ

Figure 4: Experimental illustration of the implicit bias of GD in NTP over synthetic data with overparameterization. See
App. B for detailed description of the experimental setting.

ℱ

NGD

ℱ

Adam

Figure 5: Implicit bias of normalized GD (Left) and of Adam (Right) in NTP over synthetic data with overparameterization.
Both exhibit the same implicit bias, but converge faster than GD, with Adam being slightly faster than NGD.

C Additional related work

Implicit bias in transformers. As already mentioned in Sec. 5, our work is closely related to (Tarzanagh et al., 2023a),
where the authors investigate the implicit bias of self-attention in transformers. The insight put forth in the prequel
(Tarzanagh et al., 2023b) is that softmax attention induces implicit-bias behaviors that bear similarities to vanilla implicit
bias of one-hot prediction. Concretely, (Tarzanagh et al., 2023a) studies GD optimization of one-layer self-attention with

11



Submission and Formatting Instructions for ICML 2024

fixed decoder and one-hot binary classification. They show that, in the limit, GD finds attention weights that converge in
direction to the solution of an SVM problem that separates optimal tokens from non-optimal ones. Their non-convex setting
introduces locally optimal SVM directions to which GD may converge depending on initialization. Different to them, the
NTP setting that we study involves predictions over multiple categories and is not one-hot. Also, while they fix the decoder,
here, we fix the embeddings. In these respects their results are rather different. More similarities arise when (Tarzanagh et al.,
2023a) replace the linear decoder with a MLP, which they note can induce multiple optimal tokens per sequence. This leads
them to formulate a more general token-separating SVM program, which similar to ours confines the separation on a certain
data subspace. However, the operational nature of the programs remains different as theirs optimizes attention weights and
separates tokens within a sequence, while ours optimizes decoder weights and separates context embeddings based on their
respective support sets. More importantly, while (Tarzanagh et al., 2023a) only conjectures the convergence of GD to their
general SVM program, we leverage convexity in our setting to prove an analogous statement rigorously. Eventually, as we
move lower in our top-down approach and consider architecture-specific embeddings generated by attention, we anticipate
to see integration of our ideas with theirs.

Beyond (Tarzanagh et al., 2023a), there is growing recent research investigating optimization and generalization principles
of transformers, e.g., (Sahiner et al., 2022; Edelman et al., 2021; Likhosherstov et al., 2021; von Oswald et al., 2022; Zhang
et al., 2023; Akyürek et al., 2023; Li et al., 2023; Tarzanagh et al., 2023b;a; Tian et al., 2023a; Chen and Li, 2024). These
efforts predominantly employ a ‘bottom-up’ approach that involves isolating shallow transformers, often with simplifications
such as removing MLPs, utilizing single heads instead of multiple, and fixing certain parts while training only a subset
of trainable parameters. Most of these studies have focused on classical one-hot supervised settings, and only a handful
(e.g., (Tian et al., 2023a;b)) have seeked extending these ’bottom-up’ analyses to NTP settings. Yet, their primary emphasis
remains on uncovering the role of attention and how attention weights evolve during training. Instead, our approach uniquely
emphasizes the NTP training paradigm itself, shifting the focus from the intricacies of specific transformer architectures.

Upon completing this paper, we became aware of independent contemporaneous research by Li et al. (Li et al., 2024)
that also examines the implicit bias of self-attention with a fixed linear decoder in next-token prediction scenarios. Unlike
our study which utilizes the widely adopted CE loss, their approach is based on log-loss, which renders the training loss
convex, a similarity shared with our model despite the inclusion of self-attention. Both our results and those of Li et al.
substantiate the conjecture posited by Tarzanagh and colleagues (Tarzanagh et al., 2023a), albeit in very distinct settings.
Notably, contrary to both (Tarzanagh et al., 2023b) and (Li et al., 2024), we unveil the optimization intricacies of the NTP
paradigm, even within the simplest linear settings.

Classification with soft labels. Unlike one-hot classification, soft-label classification associates each example with a
probability vector, where each entry represents the likelihood of a corresponding label characterizing the example. Although
arguably less prevalent than one-hot (or hard-label) classification, soft-label classification arises in various contexts, including
modeling human confusion during crowd-sourcing (Peterson et al., 2019; Sharmanska et al., 2016; Collins et al., 2022),
knowledge distillation (Hinton et al., 2015), label smoothing (Szegedy et al., 2016), and mixup (Zhang et al., 2017b). Our
model of last-token prediction also falls within this setting. Specifically, our approach is most closely related to soft-labels
generated by averaging annotators’ hard labels (Peterson et al., 2019), rather than following the winner-takes-all rule to
assign labels. (Peterson et al., 2019) and follow-up work have provided empirical evidence that using probabilistic soft labels
generated from crowd annotations for training leads to improved performance in terms of model generalization, calibration,
and robustness to out-of-distribution data. To the best of our knowledge, no prior work has investigated the implicit bias of
gradient descent in this or other soft-label classification settings; thus, our results are of direct relevance to these contexts as
well.

D Autoregressive setting
For concreteness and simplified notation, in the paper’s main body we focus on NTP over sequences of fixed length. We
show here that this encompasses the autoregressive (i.e., sequential) setting with minimal changes. This also emphasizes the
role played in our results by the sequence length.

As pointed in (1), the full autoregressive NTP objective averages T individual losses (without loss of generality assume
sequences of equal maximum length T ). In order to make our analysis applicable, we first need to express (1) in terms of
unique contexts. Mirroring the notations in Sec. 2, define the following for t ∈ [T − 1]:

• mt, t ∈ [T − 1] is the number of distinct contexts of size t. Note that m1 ≥m2 ≥ ⋯ ≥mT−1.
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• m = ∑
T−1
t=1 mt is the total number of distinct contexts in the dataset

• h̄t,j ∶= hθ(x̄j,t), t ∈ [T − 1], j ∈ [mt] is the embedding of the j-th (among all t-long contexts) distinct context x̄j,t.

• π̂j,t is the empirical probability of x̄j,t.

• p̂j,t,z is the empirical probability that context x̄j,t is followed by token z ∈ V.

• Sj,t is the support set of the next-token distribution of context x̄j,t.

With this notation, the NTP objective becomes

CE = − ∑
t∈[T−1]

∑
j∈[mt]

π̂t,j ∑
z∈Sj,t

p̂t,j,z log (Sz(Wh̄t,j)) .

To continue enumerate the multi-set I ∶= {i = (j, t) ∣ t ∈ [T − 1], j ∈ [mt]}. We may then rewrite the above as

CE = −∑
i∈I

π̂i ∑
z∈Si

p̂i,z log (Sz(Wh̄i)) .

At this point note that this is of identical form to (2). Consequently, the definitions (e.g., NTP-separability, NTP-margin) and
results derived in the main body for sequences of fixed length are applicable to the AR setting, extending mutatis mutandis.
Remark D.1 (The role of sequence length.). Despite the above reduction of the AR setting to the fixed-length setting, it
is crucial to recognize that sequence length remains a significant factor in the AR model. Specifically, it influences the
formulation through support sets and their associated probabilities. As sequences extend in length, their corresponding
support sets generally become sparser, indicative of less ambiguity in predicting the next token. This dynamic is captured by
Shannon’s inequality,

Ht ≥Ht+1, whereHt = − ∑
j∈[mt]

∑
z∈Sℓ

t,j

πt,j p̂t,j,z log(p̂t,j,z),

reflecting the incremental reduction in entropy as sequence length increases.

E Notations
Throughout, lowercase and uppercase bold letters (e.g., a and A) represent vectors and matrices, respectively. ⟨⋅, ⋅⟩ and ∥⋅∥
denote Euclidean inner product and norm, respectively. For matrix A, we denote its pseudoinverse as A†. All logarithms
are natural logarithms (base e). We denote ev the v-th standard basis vector in RV . ∆V −1 denotes the V -dimensional unit
simplex and S() ∶ RV →∆V −1 the softmax map:

S(a) = [S1(a), . . . ,SV (a)]
⊺, with Sv(a) =

ee
⊺

va

∑v′∈[V ] e
e⊺
v′
a
.

As explained in Section 2 we represent a training set as

Tm ∶= {(h̄j , π̂j , p̂j,z∈V)}j∈[m] .

We assume that embeddings are bounded and denote

M ∶=
√
2 max
j∈[m]

∥h̄j∥ .

Given Tm, let
F = span ({(ez − ez′)h̄

⊺
j ∶ z ≠ z

′
∈ Sj , j ∈ [m]})

a subspace of V × d matrices and F⊥ its orthogonal complement. Denote PF,P⊥ the orthogonal projections onto F and F⊥,
respectively. For convenience, for W ∈ RV ×d, we denote

WF ∶= PF(W ) and W⊥ = P⊥(W ) .

13
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Define

CEF(W ) = ∑
j∈[m]

π̂j ∑
z∈Sj

p̂j,z log(1 +∑
z≠z

e−(ez−ez′)
⊺Wh̄j) . (7)

Clearly, for all W ∈ RV ×d, it holds CE(W ) ≥ CEF(W ). Note also that for all W ∈ F and for all W d ∈ F⊥ that satisfy Eq.
(4a), it holds CEF(W ) = limR→∞CE(W +RW d). Thus, under NTP compatibility and NTP separability,

inf
W ∈F

CEF(W ) = inf
W

CE(W ) =H. (8)

F Proofs

F.1 Gradient Descent

Throughout we assume GD is ran with step-size η ≤ 1/(2L) where L is the smoothness of CE loss. This condition is not
explicitly mentioned thereafter.

F.1.1 AUXILIARY LEMMATA

The following result follows from standard optimization analysis for smooth convex functions specialized to functions that
do not attain their infimum. The version presented here is adopted from Lemma 2 (Ji et al., 2020).

Lemma F.1. It holds
lim
k→∞

CE(Wk) = inf
W

CE(W )

and also limk→∞ ∥Wk∥ =∞.

In the lemma below, we collect some useful and simple-to-show properties of the GD and regularization paths. Analogous
results, for the different setting of one-hot binary classification over general non-separable data have been established in (Ji
and Telgarsky, 2018).

Lemma F.2. Suppose conditions (4) hold for some W d. Also, that there exists W p =W ⋆ ∈ F satisfying condition (3). The
following hold:

1. CEF(W
⋆) = infW ∈F CEF(W ) =H,

2. W ⋆ is the unique minimizer of CEF on the subspace F,

3. limk→∞PF(Wk) =W
⋆, where Wk are GD iterates,

4. limk→∞ ∥P⊥(Wk)∥ =∞,

5. limB→∞PF(ŴB) =W
⋆, where ŴB is the reguarlized solution (6),

6. limB→∞ ∥P⊥(ŴB)∥ =∞.

Proof. It is easy to check by direct substitution of W ⋆ in (7) and use of (3) that CEF(W
⋆) = H. This and (8) show the

first claim.

The first claim shows W ⋆ is a minimizer. Suppose for the sake of contradiction there is a different minimizer W ⋆ ≠W1 ∈ F.
Then, since CEF(W1) =H, it also holds for WR ∶=W1 +RW d that limR→∞CE(WR) =H. In turn, this implies for all
j ∈ [m]:

lim
R→∞

Sz(WRh̄j) = p̂j,z,∀z ∈ Sj , and lim
R→∞

Sv(WRh̄j) = 0,∀v ∉ Sj .

The first condition gives then that W1 must satisfy (3). Since W ⋆ also satisfies these equations, denoting W∆ =W
⋆−W1 ≠

0, it holds:
⟨W∆, (ez − ez′)

⊺h̄j)⟩ = 0, ∀j ∈ [m], z ≠ z
′
∈ Sj .

14
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But W∆ ∈ F, so this forms a contradiction. Hence, W ⋆ is unique solution in F of (3) and unique minimizer of CEF on the
subspace F.

The proof of the third claim follows the same way as the proof of part (1) of Thm. 15 of (Ji et al., 2020). For completeness:
It follows by the lemma’s assumptions and Lemma F.1 that limk→∞CE(Wk) =H. Combining with the first claim of the
lemma yields limk→∞CE(Wk) = CEF(W

⋆). Since CEF(Wk) ≤ CE(Wk), this finally gives

lim
k→∞

CEF(Wk) = lim
k→∞

CEF (PF(Wk)) = CEF(W
⋆
).

Since W ⋆ is unique by the second claim, the desired then follows.

For the fourth claim, recall from Lemma F.1 that limk→∞ ∥Wk∥ = ∞. From the previous claim, we also have
limk→∞ ∥PF(Wk)∥ < C for some constant C > ∥W ⋆∥. Thus, the desired follows by applying the fact that ∥Wk∥ =

∥PF(Wk)∥ + ∥P⊥(Wk)∥.

The proof of the last two claim is exactly same as that of the third and fourth claim. Only now use the facts that
limB→∞CE(WB) =H and limB→∞ ∥WB∥ =∞ (see proof of Theorem A.3).

F.1.2 KEY LEMMA

Lemma F.3. Let Wk denote the GD iterate at iteration k. Recall the decomposition Wk = PF(Wk) + P⊥(Wk) =

Wk,F +Wk,⊥. Fix any α ∈ (0,1). There exists large enough R = R(α) and k0 = k0(R) such that for any k ≥ k0, it holds
that ∥Wk,⊥∥ ≥ R and

CE (Wk,F + (1 + α)∥Wk,⊥∥Wmm ) ≤ CE(Wk) . (9)

Proof. We drop the subscript k to lighten notation.

First, note by Lemma F.2.D that, for arbitrary R, we can pick k1 = k1(R) such that for all k ≥ k1: ∥W⊥∥ ≥ R.

Thus next, we will prove the main claim, i.e. for large enough ∥W⊥∥ inequality (9) holds. Denote R′ = ∥W⊥∥

∥Wmm∥
. Substituting

in CE expression (2), and using the fact that Wmm ∈ F⊥ by (4a) yield:

CE (WF + (1 + α)R
′Wmm )

= ∑
j∈[m]

π̂j ∑
z∈Sj

p̂j,z log
⎛

⎝
∑

z′∈Sj

e−(ez−ez′)
⊺WFh̄j + ∑

v∉Sj

e−(ez−ev)
⊺WFh̄j + ∑

v∉Sj

e−(1+α)R
′
(ez−ev)

⊺Wmmh̄j
⎞

⎠
.

= ∑
j∈[m]

π̂j ∑
z∈Sj

p̂j,z log
⎛

⎝
∑
v∈V

e−(ez−ev)
⊺WFh̄j + ∑

v∉Sj

e−(1+α)R
′
(ez−ev)

⊺Wmmh̄j
⎞

⎠
. (10)

Moreover, decomposing W =WF +W⊥, and defining

W̃⊥ ∶=
∥Wmm∥

∥W⊥∥
W⊥ =

1

R
W⊥ ,

we have

CE (W ) = ∑
j∈[m]

π̂j ∑
z∈Sj

p̂j,z log
⎛

⎝
∑

z′∈Sj

e−(ez−ez′)
⊺WFh̄j + ∑

v∉Sj

e−(ez−ev)
⊺WFh̄j + ∑

v∉Sj

e−R
′
(ez−ev)

⊺W̃⊥h̄j
⎞

⎠

= ∑
j∈[m]

π̂j ∑
z∈Sj

p̂j,z log
⎛

⎝
∑
v∈V

e−(ez−ev)
⊺WFh̄j + ∑

v∉Sj

e−R
′
(ez−ev)

⊺W̃⊥h̄j
⎞

⎠
, (11)

where we used that, by definition, W⊥ ∈ F
⊥. Thus, our goal becomes showing (10) ≤ (11), for large enough R. To do this,

we consider two cases as follows below.

For the remaining of the proof recall M ∶=maxj∈[m]
√
2∥h̄j∥ and use the logits shorthand:

ℓ̃j,v = e
⊺
vW̃⊥h̄j and ℓmm

j,v = e
⊺
vW

mmh̄j .
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Case 1: W⊥ is well aligned with Wmm. Suppose

∥Wmm
− W̃⊥∥ ≤ ϵ ∶=

α

M
. (12)

Using this, linearity of logits, and Cauchy-Schwartz, yields

ℓ̃j,z − ℓ̃j,v ≤ ℓ
mm
j,z − ℓ

mm
j,v + ϵM, ∀j ∈ [m], z ∈ Sj , v ∉ Sj .

Thus,

∑
v∉Sj

e−R
′
(ez−ev)

⊺W̃⊥h̄j ≥ e−ϵMR′
∑
v∉Sj

e−R
′
(ez−ev)

⊺Wmmh̄j = e−αR
′

∑
v∉Sj

e−R
′
(ez−ev)

⊺Wmmh̄j

Also recall by feasibility of Wmm that

ℓmm
j,z − ℓ

mm
j,v ≥ 1,∀j ∈ [m], z ∈ Sj , v ∉ Sj . (13)

Thus,

∑
v∉Sj

e−(1+α)R
′
(ez−ev)

⊺W̃⊥h̄j ≤ e−αR
′

∑
v∉Sj

e−R
′
(ez−ev)

⊺Wmmh̄j

Comparing the above two displays yields

∑
v∉Sj

e−(1+α)R
′
(ez−ev)

⊺W̃⊥h̄j ≤ ∑
v∉Sj

e−R
′
(ez−ev)

⊺W̃⊥h̄j ,

which implies the desired (10)≤(11) for any value of R′ (eqv. ∥W⊥∥).

Case 2: No alignment. Suppose now that (12) does not hold. Note that ∥W̃⊥∥ = ∥W
mm∥ and since (NTP-SVM) has a

unique solution it must be that W̃⊥ is not feasible. But W̃⊥ ∈ F⊥, thus it satisfies the equality constraints. This then means
that there exist δ ∶= δ(ϵ) and j⋆ ∈ [m], v⋆ ∉ Sj⋆ such that

ℓ̃j⋆,z − ℓ̃j⋆,v⋆ ≤ 1 − δ , ∀z ∈ Sj⋆ . (14)

(Note the above holds for all z ∈ Sj⋆ because ℓ̃j⋆,z = ℓ̃j⋆,z′ since W̃⊥ ∈ F⊥.)

To continue, we introduce the shorthand notation

Aj,z ∶= Aj,z(W ) = ∑
v∈V

e−(ez−ev)
⊺WFh̄j

as well as
Amin ∶= min

j∈[m],z∈Sj

Aj,z, and Amax ∶= max
j∈[m],z∈Sj

Aj,z .

Using (14) we may lower bound (11) as follows:

CE(W ) − ∑
j∈[m]

π̂j ∑
z∈Sj

p̂j,z log(∑
v∈V

e−(ez−ev)
⊺WFh̄j) ≥ π̂j⋆ ∑

z∈Sj

p̂j,z log
⎛

⎝
1 +

e−R
′
(ez−ev⋆)

⊺W̃⊥h̄j⋆

Aj⋆,z

⎞

⎠

≥ π̂j⋆ ∑
z∈Sj

p̂j,z log(1 +
e−R

′
(1−δ)

Amax
)

≥
e−R

′
(1−δ)

n(Amax + 1)
, (15)

where in the last line we used π̂j ≥ 1/n,∀j ∈ [m] as well as log(1 + x) ≥ x
1+x

, x > 0.
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On the other hand, using property (13) for max-margin logits, we can upper bound (10) as follows:

CE (WF + (1 + α)R
′Wmm ) − ∑

j∈[m]

π̂j ∑
z∈Sj

p̂j,z log(∑
v∈V

e−(ez−ev)
⊺WFh̄j) ≤ log(1 +

V e−R
′
(1+α)

Amin
)

≤
V e−R

′
(1+α)

Amin
, (16)

where in the last line we used log(1 + x) ≤ x,x > 0.

In view of the two last displays, it suffices that

V
e−R

′
(1+α)

Amin
≤

e−R
′
(1−δ)

n(Amax + 1)
⇐⇒ R′ ≥

1

δ + α
log(

nV (Amax + 1)

Amin
) .

All it remains is obtaining bounds for Amin,Amax specifically showing that they do not depend on R. By Cauchy-Schwartz:

V e−M∥WF∥ ≤Amin ≤Amax ≤ V eM∥WF∥

Further recall by Lemma F.2.C that if k is large enough then

∥WF −W
⋆
∥ ≤ ∥W ⋆

∥ Ô⇒ ∥WF∥ ≤ 2∥W
⋆
∥. (17)

Thus, there exists k⋆ = k⋆(∥W⋆∥) such that for all k ≥ k⋆:

V e−2M∥W⋆∥ ≤Amin ≤Amax ≤ V e2M∥W⋆∥.

Hence, the desired (16)≤(15) holds provided

∥W⊥∥ ≥
∥Wmm∥

α
log (2nV e4∥W

⋆
∥
) . (18)

Set R = R(α) = {RHS of (18)} and k0(R) ∶=max{k1(R), k⋆}. We have shown this guarantees for all k ≥ k0: ∥W⊥∥ ≥ R
and by choice of R also (16)≤(15). This in turn implies (10)≤(11), as desired to complete the proof.

F.1.3 PROOF OF THEOREM 4.1

For the subspace component, see Lemma F.2.C. For the directional convergence, the key ingredient of the proof is Lemma
F.3. After that, the proof follows identically to Thm. 15(2) (Ji et al., 2020). We include the details for completeness, but
there are no novel aspects in the rest of this section.

Let any ϵ ∈ (0,1) and choose α = ϵ/(1 − ϵ). By Lemma F.3, there exists k0 such that for any k ≥ k0, we have

∥Wk,⊥∥ ≥max{R(α),1/2}

and

⟨∇CE(Wk),Wk,⊥ − (1 + α)∥Wk,⊥∥Wmm⟩ = ⟨∇CE(Wk),Wk − (Wk,F + (1 + α)∥Wk,⊥∥Wmm)⟩

≥ CE(Wk) −CE(Wk,F + (1 + α)∥Wk,⊥∥Wmm) ≥ 0 ,

where we also used convexity of the loss.

Consequently,

⟨Wk+1 −Wk,Wmm⟩ = ⟨−η∇CE(Wk),Wmm⟩

≥ (1 − ϵ)⟨−η∇CE(Wk),Wk,⊥⟩

≥ (1 − ϵ)⟨Wk+1,⊥ −Wk,⊥,Wk,⊥⟩

≥ (1 − ϵ)⟨Wk+1,⊥ −Wk,⊥,Wk,⊥⟩

=
(1 − ϵ)

2∥Wk,⊥∥
(∥Wk+1,⊥∥

2
− ∥Wk,⊥∥

2
− ∥Wk+1,⊥ −Wk,⊥∥

2)

≥ (1 − ϵ) (∥Wk+1,⊥∥ − ∥Wk,⊥∥ − 2η(CE(Wk,⊥) −CE(Wk+1,⊥)) ,
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where the last step used ∥Wk,⊥∥ ≥ 1/2, the fact that x2 − y2 ≥ 2y(x − y),∀x, y and smoothness of the CE loss.

Telescoping the above expression and rearranging yields

⟨W k,Wmm⟩ ≥ (1 − ϵ)
∥Wk,⊥∥

∥Wk∥
−
⟨Wk0 ,W

mm⟩ − (1 − ϵ)∥wk0,⊥∥ − ηCE(Wk0)

∥Wk∥

≥ (1 − ϵ) −
∥Wk,F∥2 + ⟨Wk0 ,W

mm⟩ − (1 − ϵ)∥wk0,⊥∥ − ηCE(Wk0)

∥Wk∥

Now recall from Lemma F.2 that limk→∞ ∥Wk∥ =∞ and limk→∞ ∥Wk,F∥ = ∥W
⋆∥. Thus,

lim infk→∞⟨W k,Wmm⟩ ≥ 1 − ϵ. Since ϵ is arbitrary, the desired follows.

F.2 Regularization Path

We provide a detailed proof of Theorem A.3 filling in missing details from the proof sketch in the main paper.

F.2.1 PROOF OF THEOREM A.3

First, we show that ŴB is on the boundary, i.e. ∥ŴB∥ = B. Suppose not, then ⟨∇CE(ŴB),U⟩ = 0 for all U ∈ RV ×d.
Using the CE expression in (2) and a few algebraic manipulations, yields

⟨−∇CE(ŴB),U⟩ = ∑
j∈[m]

π̂j ∑
z∈Sj

p̂j,z( ∑
z′∈Sj

z′≠z

sj,z′ (ez − ez′)
⊺Uh̄j + ∑

v∉Sj

sj,v (ez − ev)
⊺Uh̄j), (19)

where we denote the output probabilities at ŴB as sj,v ∶= Sv(ŴBh̄j), v ∈ V, j ∈ [m]. Choose U =Wmm in (19). Then,
the first term in the parenthesis in (19) is zero by (4a), while the second term is strictly positive by (4b) and strict positivity
of softmax entries, leading to contradiction.

Now, consider point W ⋆
B = W ⋆ + R(B) ⋅Wmm, where, W ⋆ ∈ T satisfies (3), and R = R(B) is chosen such that

∥W ⋆
B∥ = B. Concretely, for B > ∥W ⋆∥, set

R =
1

∥Wmm∥

√
B2 − ∥W ⋆∥2.

Note also that R/B → 1/∥Wmm∥ as B →∞. We will show that W ⋆
B attains a small CE loss as B (hence, R) grows. To do

this, denote for convenience the logits for all v ∈ V, j ∈ [m] ∶

ℓ⋆j,v ∶= e
⊺
vW

⋆h̄j and ℓmm
j,v ∶= e

⊺
vW

mmh̄j ,

and note that e⊺vW
⋆
Bh̄j = ℓ

⋆
j,v +Rℓmm

j,v . By using (3) and (4a):

∑
z′∈Sj

e−(ℓ
⋆

j,z+Rℓmm
j,z −ℓ

⋆

j,z′
−Rℓmm

j,z′
)
=

1

p̂j
.

Moreover, using (4b)

∑
v∉Sj

e−(ℓ
⋆

j,z+Rℓmm
j,z −ℓ

⋆

j,v−Rℓmm
j,v ) ≤ e−R ∑

v∉Sj

e−(ℓ
⋆

j,z−ℓ
⋆

j,v) ≤ C e−R,

where we define constant (independent of R) C ∶= V e∥W
⋆
∥M , for M ∶=

√
2 ⋅maxj/∈[m] ∥h̄j∥.

Combining the above displays and using in Eq. (2), yields

CE(W ⋆
B) ≤ ∑

j∈[m]

π̂j ∑
z∈Sj

p̂j,z log (
1

p̂j,z
+C e−R) ≤ ∑

j∈[m]

π̂j ∑
z∈Sj

p̂j,z( log (
1

p̂j,z
) + p̂j,zC e−R)

≤H +C e−R , (20)
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where, the second line uses log(1 + x) ≤ x,x > 0, and the third line uses π̂j , p̂j,z are probabilities.

Next, towards arriving at a contradiction, we will show that if ŴB is not in the direction of Wmm, then it incurs a loss that
is larger than CE(W ⋆

B). Concretely, assuming the statement of the theorem is not true, we we will upper bound

CE(ŴB) −H = ∑
j∈[m]

π̂j ∑
z∈Sj

p̂j,z log (
p̂j,z

Sz(ŴBh̄j)
). (21)

By our assumption, there exists ϵ > 0, such that there exists arbitrarily large B satisfying:

∥
∥Wmm∥

B
ŴB −W

mm
∥ > ϵ. (22)

Define
Ŵ =

1

R′(B)
(ŴB −W

⋆),

where, R′ = R′(B) > 0 is chosen so that ∥Ŵ ∥ = ∥Wmm∥. Concretely, for large enough B ≥ 2∥Wmm∥, set

R′ =

¿
Á
ÁÀ B2

∥Wmm∥2
− 2B⟨WB ,Wmm⟩ + 1 .

Note that it holds limB→∞R′/B = 1/∥Wmm∥. Thus, we can always choose B large enough so that Eq. (22) guarantees
∥Ŵ −Wmm∥ ≥ ϵ′, for some ϵ′ > 0. Since Wmm is the unique minimizer of (NTP-SVM) and ∥Ŵ ∥ = ∥Wmm∥, it follows
that there exists δ ∈ (0,1) and j ∈ [m] such that at least one of the following is true

(i) ∃z and z′ ≠ z ∈ Sj such that

∣(ez − ez′)
⊺Ŵ h̄j ∣ ≥ δ , (23)

(ii) ∃z ∈ Sj , v ∉ Sj such that

(ez − ev)
⊺Ŵ h̄j ≤ 1 − δ. (24)

Case (i): Without loss of generality (ez − ez′)⊺Ŵ h̄j ≤ −δ (otherwise, flip z, z′). Thus, ignoring all but one term in (21)
gives

CE(ŴB) −H ≥ π̂j p̂j,z log (
p̂j,z

Sz(ŴBh̄j)
) ≥ π̂j p̂j,z log (p̂j,ze

(ℓj,z′−ℓj,z)), (25)

where we use ℓj,v = e
⊺
vŴBh̄j , v ∈ V to denote logits of ŴB . Using (3) and (23), yields

ℓj,z′ − ℓj,z = (ez′ − ez)
⊺(R′ Ŵ +W ⋆) h̄j ≥ R

′δ + log(
p̂j,z′

p̂j,z
) .

Put in (21) and using p̂j,z ≥ π̂j p̂j,z ≥ 1/n shows

CE(ŴB) ≥H +
1

n
log (

eR
′δ

n
)

Compare this with (20). For large enough B, it is clear that π̂j p̂j,z log (p̂j,z c e
R′δ) > Ce−R. Thus, CE(ŴB) > CE(W

⋆
B),

a contradiction.

Case (ii): We can assume Ŵ ∈ T⊥, since otherwise we are in Case (i). Now, again ignoring all but the (j, z) term in the CE
loss for which (24) holds for some v ∉ Sj , we find

CE(ŴB) −H ≥ π̂j p̂j,z log (p̂j,z( ∑
z′∈Sj

e(ℓj,z′−ℓj,z) + e(ℓj,v−ℓj,z))).
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Using PT (ŴB) =W
⋆ yields

∑
z′∈Sj

e(ℓj,z′−ℓj,z) = ∑
z′∈Sj

p̂j,z′

p̂j,z
=

1

p̂j,z
.

Moreover, by (24):
eℓj,v−ℓj,z ≥ e−R

′
(1−δ) eℓ

⋆

j,v−ℓ
⋆

j,z ≥ c′e−R
′
(1−δ),

for constant (independent of B) c′ ∶= e−∥W
⋆
∥M . Putting the above together yield:

CE(ŴB) −H ≥ π̂j p̂j,z log (1 + p̂j,zc
′e−R

′
(1−δ)
) ≥

c′e−R
′
(1−δ)

2n2
.

where the second inequality uses log(1 + x) ≥ x
1+x

, x > 0.

Compare this with (20). For large enough B, (recall R,R′ grow at the same rate) it holds c′

2n2 e
−R′(1−δ) > Ce−R. Thus,

CE(ŴB) > CE(W
⋆
B), a contradiction.

In either case, we arrive at a contradiction, which completes the proof.
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