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ABSTRACT

We present OpenMU-Bench, a large-scale benchmark suite for addressing the data
scarcity issue in training multimodal language models to understand music. To
construct OpenMU-Bench, we leveraged existing datasets and bootstrapped new
annotations. OpenMU-Bench also broadens the scope of music understanding
by including lyrics understanding and music tool usage. Using OpenMU-Bench,
we trained our music understanding model, OpenMU, with extensive ablations,
demonstrating that OpenMU outperforms baseline models such as MU-LLaMA.
Both OpenMU and OpenMU-Bench are open-sourced to facilitate future research
in music understanding and to enhance creative music production efficiency1.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) have successfully extended large language models
(LLMs) by enabling them to perceive, process, and understand data in modalities beyond text (Tsim-
poukelli et al., 2021; Liu et al., 2023b; Zhu et al., 2023; McKinzie et al., 2024; Zhang et al., 2023;
Gong et al., 2024), such as images, videos, and audio. However, there has been limited effort (Gard-
ner et al., 2024) focused on constructing MLLMs capable of effectively understanding the music
modality or addressing Music Information Retrieval (MIR) tasks. MIR is a research field focusing
on modeling, understanding and interpreting data relevant to music, aiming to improve the efficiency
of music production (Serra et al., 2013). Conventional machine learning algorithms (Wang, 2003;
Casey et al., 2008) sparked the success in music searching. Subsequently, deep learning models ex-
panded the success to music tagging (Won et al., 2020), transcription (Gardner et al., 2021; Toyama
et al., 2023) and representation learning (Castellon et al., 2021; Li et al., 2024; Won et al., 2024).

We aim to contribute to the MIR field by training an MLLM, dubbed OpenMU, for understanding
music clips. Building on the versatile capabilities of LLMs and pretrained audio encoders, OpenMU
effectively comprehends and reasons about input music clips, producing relevant answers accord-
ingly. We also enable OpenMU to leverage well-established music tools to encourage synergies
between OpenMU and creative practitioners through cooperation. OpenMU is expected to greatly
improve music production efficiency. Creative practitioners can instruct OpenMU to describe a
music clip’s contents and features, saving minutes of time compared to listening to the full track.

The major obstacle we faced when training and evaluating OpenMU was the issue of data scarcity in
the music modality (Serra et al., 2013; Seeger, 2003; Holzapfel et al., 2018). To address this issue,
we construct OpenMU-Bench, a large-scale benchmark for training and evaluating MLLMs in
music understanding. To construct OpenMU-Bench, we bootstrap new datasets using GPT-3.5, and
leverage existing datasets when available. As a result, OpenMU-Bench comprises approximately
one million training examples, covering various aspects of music understanding, such as music
captioning, reasoning, multi-choice question answering, lyrics understanding and music tool using.
To the best of our knowledge, no large-scale open-sourced benchmark comparable to OpenMU-
Bench currently exists, and we hope it will advance future research and development of MIR.

In summary, our contributions include: (1) Proposing OpenMU for music understanding. OpenMU
is an MLLM dedicated to the music modality, outperforming baseline models such as MU-
LLaMA (Liu et al., 2024) in tasks like music captioning, reasoning, and multiple-choice question an-
swering. We carefully evaluate various design choices for OpenMU and provide extensive ablations

1We will release the code, datasets, and model checkpoints upon acceptance.
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on key factors. (2) Constructing a large-scale benchmark suite, OpenMU-Bench, consisting of ap-
proximately one million music understanding data examples. We bootstrap new data from GPT-3.5
for rich annotations and also leverage existing datasets. (3) Open-sourcing OpenMU and OpenMU-
Bench. We hope that they will benefit future research and development in music understanding and
enhance creative music production by providing rich resources and consistent evaluations.

2 RELATED WORK

Understanding music goes beyond recognizing objective attributes of music such as tempo (Böck
et al., 2015; Sun et al., 2021) or instrumentation (Gururani et al., 2019; Zhong et al., 2023). It is
also subjective and highly context-dependent, like determining music genres (Kereliuk et al., 2015)
or moods (Bogdanov et al., 2019; Koutini et al., 2019). Researchers succeeded in understanding
music by classifying music clips into predefined tags (Li et al., 2024; Won et al., 2024). Recently,
music captioning (Manco et al., 2021) and reasoning (Gardner et al., 2024) tasks, where natural
language descriptions are employed to describe music clips, have earned increasing attention. Also,
the ability of selecting correct answers in multi-choice question answering is included in music un-
derstanding Weck et al. (2024). However, there has been limited exploration into enabling MLLMs
to utilize external digital tools (i.e., established music tools) for music analysis. We hypothesize
that a music understanding model can further boost the workflow of creative practitioners by deeply
integrating the set of widely adopted music tools. Last but not least, lyrics information processing
(Watanabe & Goto, 2020), such as semantic lyrics understanding (Zhang et al., 2022) enhances the
understanding of a music clip. Therefore, we integrate it in OpenMU-Bench. Overall, we broaden
the scope of music understanding by considering two extra aspects beyond music captioning and
reasoning: Music tool using and lyrics understanding.

Foundation models for music understanding. Multimodal LLMs (MLLMs) (Tsimpoukelli et al.,
2021; Liu et al., 2023b; Zhu et al., 2023; McKinzie et al., 2024; Gong et al., 2024) fuse non-textual
information into LLMs (Liang et al., 2022) to solve real-world tasks requiring the ability of per-
ceiving data in different modalities. The scope of MLLMs is recently expanded to include music.
MU-LLaMA (Liu et al., 2024) and MusiLingo (Deng et al., 2024) narrowed down their scope to
music captioning and question answering (QA); other critical aspects of music understanding, e.g.,
key and chord recognition, are not covered. Perhaps the closest to ours is Llark (Gardner et al.,
2024). However, neither the model itself nor the music understanding datasets from Llark have been
released. None of these models is capable of using music tools, an important ability to interact with
creators. In this paper, we propose OpenMU-Bench and OpenMU to advance the field of music un-
derstanding. OpenMU-Bench holistically measures various aspects of music understanding, while
OpenMU achieves state-of-art performance on the benchmark. Both OpenMU-Bench and OpenMU
are released to facilitate the future research and development in this field.

Music understanding datasets. The proliferation of LLMs has spurred the development of bench-
marks designed to holistically measure the genuine capabilities of LLMs. Benchmarks have been
designed for NLP tasks (BIG-bench authors, 2023; Hendrycks et al., 2021), and vision-language
tasks (Liu et al., 2023c; Fu et al., 2023; Ye et al., 2023). MMMU (Yue et al., 2023) included the mu-
sic modality into evaluation but at a very narrow scope (334 entries of sheet music). Researchers are
striving to address the data scarcity challenge of music: Doh et al. (2023) introduced LP-MusicCaps,
associating LLM-augmented captions with music clips from MusicCaps (Agostinelli et al., 2023).
Similarly, Liu et al. (2024) developed MusicQA, containing QA and captioning tasks for music
clips from MusicCaps, MagnaTagATune (Law et al., 2009b), and MTG-Jamendo (Bogdanov et al.,
2019). Concurrently, Deng et al. (2024) proposed MusicInstruct, which targets QA and captioning
for clips in MusicCaps. Weck et al. (2024) create MuChoMusic as a music understanding benchmark
containing 1,187 multiple-choice questions for evaluation. Building on existing datasets, we con-
struct OpenMU-Bench by additionally bootstrapping new datasets using GPT-3.5. OpenMU-Bench
contains about one million examples for training and evaluation across various music understand-
ing tasks. We also standardize evaluation metrics to ensure consistency2 in reporting results on
OpenMU-Bench. Table 1 provides the statistics for OpenMU-Bench.

2For example, we found that MU-Llama (Liu et al., 2024) reports BertScore-Recall, while LP-MusicCaps
(Doh et al., 2023) reports BertScore-F1. We standardize the metrics when reporting performance on OpenMU-
Bench, and hope this paves the way for consistent evaluations of music understanding MLLMs.
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Captioning Reasoning Lyrics Tool-Use MultipleChoice Music Clips
Train Test Train Test Train Test Train Test Train Test

MusicCaps 2640 2839 - - - - - - - - 5479
MusicInstruct 28670 30593 - - - - - - - - (5479)
LPMusicCaps 7920 - - - - - - - - - (2839)
LPMusicMTT 51531 13386 - - - - - - - - 25863

Music4all˚ 104268 5000 449711 21543 - - - - - - 109269
MusicQA-Fin. 31116 - 38895 - - - - - - - 12543
MusicQA-Test - 2240 - 2800 - - - - - - 500

GTZAN˚ 639 290 2329 1116 - - - - - - 1000
MusicNet˚ 3791 140 - - - - - - - - 330

MTT˚ - - 78839 16100 - - - - - - (25863)
MTG-Jamendo˚ 45129 5144 177771 20308 - - - - - - 50273

BART-Fusion - - - - 55262 800 - - - - 14985
Tool-Using˚ - - - - - - 1612 403 - - 0

MuChoMusic - - - - - - - - - 1187 1187
Total 275704 54632 747545 61867 55262 800 1612 403 0 1187 221429

Table 1: OpenMU-Bench tasks and dataset distributions. “MusicQA-Fin.”: MusicQA-Finetuning.
˚: datasets with our new annotations. Numbers in brackets are not included when calculating the
total number of music clips, as they represent captions annotated for the same set of music clips.

3 CONSTRUCTING OPENMU-BENCH

This section outlines the construction of OpenMU-Bench. We introduce the five types of tasks in-
cluded in OpenMU-Bench and explain the dataset construction procedures for each type. In addition
to incorporating existing music understanding datasets, we generate new annotations for music clips
from datasets that do not contain natural language annotations. Our goal is to integrate as many
datasets as possible to enable OpenMU-Bench to comprehensively and systematically evaluate mu-
sic understanding models. Furthermore, we specify the recommended evaluation metrics to ensure
consistent and fair benchmarking. Table 2 shows examples of different OpenMU-Bench task types.

3.1 OPENMU-BENCH TASK TYPES

Music captioning tasks a model with generating textual descriptions capturing musical contents
and key features of a music clip. A music understanding model excels at captioning can improve
the efficiency of music production by generating music descriptions in a short time, eliminating the
needs of listening to the entire music track by creators. Music reasoning, as defined by Gardner et al.
(2024), tasks the model with answering questions in two aspects. First, it examines the interaction
between different elements of a music clip, such as how a fast tempo is likely to correspond with a
high energy level. Second, it explores how the real-world can interact with the music clip, e.g., how
a creator can increase the energy level of a music clip by using faster tempos (see Table 2).

Tool using. The MIR community has developed a wide range of music technology tools for various
tasks, such as tempo estimation, key detection, chord recognition, and instrument identification3.
Unlike Llark (Gardner et al., 2024), which aims to address many MIR tasks using only the LLM,
OpenMU takes a different view. We aim for OpenMU to integrate and leverage the well-established,
rigorously tested MIR tools to solve practical, real-world problems. This approach is motivated by
the limitations of current LLMs, which often struggle with tasks like arithmetic (Qin et al., 2023). By
combining the strengths of established MIR tools (e.g., tempo estimator) with LLM-based method,
OpenMU aims to provide a more robust solution to music understanding.

Lyrics understanding. Lyrics, which carry rich semantic content, are often used to convey moods
and emotions (Watanabe & Goto, 2020). We incorporate a lyrics understanding task into OpenMU-
Bench. We consider a model that excels at understanding lyrics to be capable of producing inter-
pretations similar to those of humans, conditioned on the music input. This task is framed as a text
generation problem.

Multiple-choice questions. Text generation models are inherently difficult to evaluate due to their
open-ended nature (Celikyilmaz et al., 2020). This challenge extends to LLM-based music under-

3List of MIR software tools: https://www.ismir.net/resources/software-tools/
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Music Captioning
Question: Write a short description about the musical contents of this clip.
Answer: The music clip has a tempo similar to a walking pace and belongs to the blues genre. It features the
characteristic blues chord progression and soulful melodies often accompanied by instelements typical
of the blues genre are also evident in this clip.

Music Reasoning
Question: How would a music producer enhance the high energy of this track?
Answer: A music producer could enhance the high energy of this track by adding elements like driving
basslines, powerful drums, and energetic synthesizers. They could also increase the tempo slightly to create
a more intense feel and incorporate dynamic changes in volume and instrumentation to maintain ...

Lyrics Understanding
Question: Please help me to interprete this lyrics: {muisc lyrics}
Answer: Feel like it’s about being depressed about your life. You go to work on Monday, see all of the ...

Tool Using
Question: What are the chords between 10 sec and 20 sec of this music?
Answer: Here are the chords between 10 sec and 20 sec: [GetMusicChords(10, 20)].

Multiple Choice
Question: How would you describe the vocal performance in this piece?
Options: (A) Soft yet deeply emotional (B) Lamenting (C) Male vocals (D) Operatic
Answer: (A) Soft yet deeply emotional.

Table 2: Example data entires in OpenMU-Bench.

standing models as well. To ensure holistic evaluations, OpenMU-Bench also assesses these models
using multiple-choice questions developed by Weck et al. (2024).

3.2 INDIVIDUAL DATASETS

As introduced in §2, a few datasets already exist for music understanding. We incorporate these
datasets and create new annotations to ensure that OpenMU-Bench has both a large scale and broad
coverage. We describe each of the datasets, along with the applied modifications aligning them with
the OpenMU-Bench task types. We adhere to existing train/test splits of the datasets when available
(c.f. §A.4); Appendix §A.2 details the preprocessing and annotating details of OpenMU-Bench; we
highlight only the key information here.

MusicCaps, created by Agostinelli et al. (2023), is pivotal for the music captioning task. It contains
approximately 5.5K 10-second music clips sourced from AudioSet (Gemmeke et al., 2017), with
corresponding gold-standard text captions written by professional musicians. We incorporate Mus-
icCaps into OpenMU-Bench as part of the captioning task. LPMusicCaps & LPMusicMTT (Doh
et al., 2023) extend MusicCaps and the MagnaTagATune (Law et al., 2009a) dataset by generating
additional textual descriptions. The authors prompt GPT-3.5 to “write”, “summarize”, “paraphrase”,
and “predict attributes” new captions to the music clips. We integrate4 approximately 8K LPMus-
icCaps and 51K LPMusicMTT training captions into OpenMU-Bench. MusicInstruct (Deng et al.,
2024) also extends MusicCaps by creating question-answer pairs for the MusicCaps clips using
GPT-4. This dataset contains approximately 60K question-answer pairs, which are categorized into
two versions: a short version (MI-short) focusing on musical content such as tempo and genre, and
a long version (MI-long) that paraphrases the MusicCaps captions. We integrate MusicInstruct into
OpenMU-Bench as a captioning task, and report performance on both versions separately.

MusicQA, developed by Liu et al. (2024) by prompting MPT (MosaicML-NLP-Team, 2023), is em-
ployed to train their MU-LLaMA. MusicQA is composed of MusicCaps clips for pretraining, Mag-
naTagATune (Law et al., 2009a) clips for finetuning, and MTG-Jamendo (Bogdanov et al., 2019)
clips for testing. We incorporate MusicQA-Finetune and MusicQA-Test into OpenMU-Bench, while
MusicQA-Pretrain, which contains the test split of MusicCaps, is excluded to prevent potential train-
test leakage (Deng et al., 2024). Following Liu et al. (2024), we separate MusicQA into captioning
and reasoning parts.

Music4all, developed by Pegoraro Santana et al. (2020), consists of approximately 100K music clips
with rich metadata, including attributes like energy, valence, and genre. Based on this metadata, we
prompt GPT-3.5 to generate annotations for both the captioning and reasoning tasks. The prompts
used for these annotations are provided in the Appendix §A.3. GTZAN, developed by Tzanetakis
& Cook (2002), contains approximately 1K 30-second music clips, each labeled with genre tags
and we create extra tempo tags with Madmom (Böck et al., 2016). Based on these tags, we generate
captioning and reasoning annotations with prompting. MusicNet (Thickstun et al., 2017) contains 1

4We do not use the “attribute prediction” annotations, following the recommendation from the LPMusic
authors: https://huggingface.co/datasets/seungheondoh/LP-MusicCaps-MC
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million dense annotations at precise timestamps for 330 classical music recordings. The annotations
are of high quality, but primarily focus on instruments. As a result, we integrate MusicNet into
OpenMU-Bench as part of the captioning task, retaining only annotations that span three seconds
or longer. MagnaTagATune (MTT) has been included in OpenMU-Bench as part of the captioning
task, thanks to the annotations by Doh et al. (2023). Given its significance in the MIR commu-
nity (Won et al., 2020), we also create an additional 90K reasoning annotations for training and
testing. MTG-Jamendo (Bogdanov et al., 2019) consists of approximately 55K full music tracks,
each tagged with genre, instrument, and mood. We randomly select 30-second music clips5 and
generate annotations for captioning and reasoning tasks by prompting GPT-3.5.

Tool using. To the best of our knowledge, there is no existing dataset designed to train models in
leveraging MIR tools. To address this, we generate training and testing datasets for solving four
MIR tasks with tools: chord recognition, tempo estimation, key detection, and downbeat extraction.
We demonstrate that OpenMU quickly learns to utilize these tools to answer queries related to MIR
information. We implemented these tools by wrapping the Python package Madmom (Böck et al.,
2016); §A.5 shows implementation details.

For Lyrics understanding, we integrate BART-fusion (Zhang et al., 2022)’s annotations, containing
internet interpretations to the lyrics and music clips of Music4all. For Multiple-choice questions,
we integrate MuChoMusic (Weck et al., 2024) for evaluation. The task involves answering questions
about music knowledge and reasoning by selecting the correct option from four provided choices.

3.3 EVALUATION METRICS

OpenMU-Bench leverages common evaluation metrics for text generation tasks: captioning, rea-
soning, and lyrics understanding. BLEU-1, BLEU (Papineni et al., 2002)6, Meteor (Banerjee &
Lavie, 2005), Rouge-1, and Rouge-L (Lin, 2004) measure an answer’s textual overlap with the gold
standard, while BertScore (Zhang et al., 2020) measures similarity in the semantic representation
space of a pretrained BERT model. For all evaluations, we report the scores computed using the
F-measure. We report accuracy for the task of multiple-choice questions.

4 MODEL ARCHITECTURE AND TRAINING DETAILS

4.1 MODEL ARCHITECTURE

Encoding music clips. We use AudioMAE (Huang et al., 2022) to encode an input music clip
into vector representations. Specifically, we use the “ViT-B AS-2M pretrained + finetuned” version
of AudioMAE, which is a Vision Transformer (Dosovitskiy et al., 2021) initially pretrained with
a masked auto-encoding reconstruction loss (He et al., 2022), followed by finetuning on tagging
tasks (Gemmeke et al., 2017), both using the AudioSet2M (Gemmeke et al., 2017) dataset. The
choice of using AudioMAE over other music encoders, such as MERT (Li et al., 2024) or Jukebox-
5B (Dhariwal et al., 2020; Castellon et al., 2021), is motivated by two primary reasons. First,
more than half of the audio clips inAudioSet2M7 consist of music or musical instrument recordings,
resulting in approximately 3,137 hours of music data (compared to the 910 hours in the MERT-95M-
public model (Li et al., 2024)). Audio encoders pretrained on AudioSet have shown competitive
performance in music tagging tasks (Koutini et al., 2021; Niizumi et al., 2022). Second, the size
of the multimodal encoder is not a performance bottleneck (McKinzie et al., 2024). Instead, the
smaller number of parameters in ViT-B (86M) facilitates more efficient training.

LLM. We use the open-sourced Llama3-8B-instruct (Dubey et al., 2024) as our LLM. Compared to
previous Llama models (Touvron et al., 2023), Llama3 has been trained on higher-quality datasets
and at larger scales, achieving GPT-4-level performance (Achiam et al., 2023) on numerous tasks.

Music-language projector links the representation space of the music encoder with the LLM. Stud-
ies (McKinzie et al., 2024; Liu et al., 2023a) have shown that the architecture of the projector itself
has little impact on downstream task performance, while the number of tokens from the multimodal

5We provide scripts for extracting music clips identical to ours.
6Following the machine translation literature, our BLEU refers to BLEU-4.
7AudioSet2M Ontology: https://research.google.com/audioset/
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Frozen Parameters

Trainable Parameters

Llama3

Projector

Audio Encoder

“What do you hear in this music? Give a short summary.”

“This music clip features a fast tempo with high energy, 
creating a dynamic and lively atmosphere…”

Or w/ LoRA

Figure 1: Model architecture of OpenMU. In Stage (1), we only tune the music-language projector.
In Stage (2), LoRA adapters are added to the LLM and are tuned together with the projector.

encoder is significantly important. We use a two-layer MLP with GELU non-linearity (Hendrycks
& Gimpel, 2017) and evaluate the effect of varying the number of music tokens in §5.1.

Overall, OpenMU follows the well-tested architecture of MLLMs (McKinzie et al., 2024) as shown
in Figure 1. In contrast to previous music MLLMs such as MU-LLaMA, OpenMU is also capable
of interacting with external MIR tools such as tempo estimator (Böck et al., 2016).

4.2 TRAINING DETAILS

Dataset preprocessing. When processing the music clips, we limit their maximum length to 30
seconds and zero-pad those shorter than 30 seconds. All music clips are resampled to 16 kHz
and then converted to a 128-bin Mel-spectrogram with a 25-ms hann window and 10-ms hop size.
Consequently, each music clip is represented as a mel-spectrogram with a shape of (3072, 128).
Since AudioMAE is trained to encode inputs of up to 10 seconds, we segment each mel-spectrogram
into three parts, encode them separately, and then concatenate the results. As a result, each 30-second
music clip is encoded by 1536 tokens, with each token having a shape of (1, 768).

Throughout our experiments, we used between 8 and 16 A100 40GB GPUs, depending on the
experimental setup (c.f. §5). In all experiments, we set the maximum context length of the LLM to
2048 tokens. We utilized DeepSpeed ZeRO-3 (Rajbhandari et al., 2020) and FlashAttention2 (Dao
et al., 2022) to enable fast and efficient training. It took approximately three days to train OpenMU
on the captioning and reasoning subsets of OpenMU-Bench (around 1 million data examples).

Training setup of OpenMU-Bench largely follows the common practice of MLLM training (Yin
et al., 2023; Liu et al., 2023b; McKinzie et al., 2024), consisting of:

Stage (1) Captioning. We train OpenMU to generate captions, conditioned solely on the input
music clip. The goal of Stage (1) training is to align the representation spaces of AudioMAE and
Llama3, with the only trainable module in this stage being the music-language projector. We use
the captioning subset of OpenMU-Bench for training in this stage. A key configuration is the
number of music tokens fed into the LLM, which we discuss in detail in §5.1. The remaining
hyperparameters largely follow Liu et al. (2023b) and are provided in the Appendix §A.1.

Stage (2) Instruction Tuning. After aligning the music and text representation spaces, Stage (2)
training enables OpenMU to follow various instructions in the music domain, such as inferring
music genres or reasoning about the content of a music clip. In this stage, LoRA adapters
(Hu et al., 2022) are incorporated into OpenMU’s LLM, followed by fine-tuning on OpenMU-
Bench’s captioning and reasoning tasks. We focus on two critical research questions in this stage.
First, we extensively evaluate OpenMU’s task performance with respect to its LoRA parameters
(see §5.2). Second, we investigate in-depth OpenMU’s use of music information. Given the
large-scale pretraining data of OpenMU’s LLM, we hypothesize that OpenMU might be able
to make correct predictions for knowledge-intensive questions even without relying on musical
information within a music clip. We test this hypothesis and show that in order to achieve
higher performance, OpenMU indeed relies on information from the music clip, demonstrating
OpenMU’s genuine ability to understand music.

6
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Figure 2: Training trajectories of Stage (1) (top) and Stage (2) (bottom). The x-axis represents
the number of hours elapsed, and the y-axis shows the training loss on a log scale. We vary the
number of mean-pooling music tokens from 2 to 128 and experiment with different LoRA parameter
combinations, α{r. “MovingAvg” represents the moving average.

5 DESIGNING OPENMU AND DISCUSSIONS

In this section, we explore and discuss the critical factors involved in training OpenMU. We aim for
these detailed analyses to contribute to the research and development of future foundation models
for music understanding.

5.1 NUMBER OF MUSIC TOKENS

McKinzie et al. (2024) illustrate that the number of image tokens is more significant than the archi-
tecture of the vision-language projector in vision-language MLLMs. To the best of our knowledge,
no prior research has addressed this critical aspect in the context of training foundation models for
music understanding. This is particularly important because music clips can often be lengthy, lead-
ing to a large number of music tokens. For instance, the AudioMAE encoder outputs 1536 tokens
for representing a 30-second music clip. While using all available tokens ensures the maximum use
of music modality information, it may hinder training efficiency and limit the utility of the context
window of the LLM (2048 in our case). In this section, we extensively evaluate the impact of the
number of music tokens when training OpenMU.

Figure 2 displays the training trajectories (log-scale) of both Stage (1) and Stage (2) training, where
we apply mean-pooling to every 2–128 music tokens output by AudioMAE. For instance, mean-
pooling every 8 tokens means using only 1536/8 = 192 tokens to represent the 30-second input music
clip. The difference among mean-pooling 2, 8, and 32 tokens is small, suggesting that there may be
redundancies in the representations of the encoded music clip. Although aggressively mean-pooling
128 tokens significantly reduces the overall training time (7.5 hours when pooling 128 tokens vs.
20 hours when mean-pooling 2 tokens), the setting results in a weaker convergence. As a result,
we empirically focus on model variants with mean-pooling 8 tokens in the next sections to balance
between model convergence and training efficiency.
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Figure 3: Performance of OpenMU variants on the captioning and reasoning tasks of OpenMU-
Bench. For each evaluation metric, such as BLEU, we report the macro average of the model’s
performance across all OpenMU-Bench subtasks.

5.2 LORA, TASK PERFORMANCE, AND MUSIC INFORMATION UTILITY

As introduced in §4.2, Low-Rank Adaptation (LoRA; Hu et al. (2022)), is employed in Stage (2)
training to efficiently adapt OpenMU’s LLM for following instructions in the music domain. Given
an LLM weight parameter matrix W P Rdˆk, instead of directly modifying W , LoRA introduces
and trains two matrices, B P Rdˆr and A P Rrˆk for adapting W to a downstream task:

W Ð W `
α

r
BA.

The LLM weight matrix W remains unchanged; the LoRA rank r determines the number of train-
able parameters by controlling the size of B and A. The matrix multiplication result, BA, repre-
sents the changes introduced by adaptation to a downstream task, scaled by α

r . Here, α is a hyper-
parameter, and typically r ă α. For OpenMU, we fix α “ 128 following Liu et al. (2023b;a), while
varying the value of r. Intuitively, a smaller rank r imposes a stricter bottleneck on B and A, requir-
ing the learned parameter differences, represented by BA, to rely on fewer trainable parameters to
capture concise and genuine information about the downstream task, which are subsequently scaled
by a larger α

r . In contrast, a larger r introduces more trainable parameters, which may be prone to
learning shortcuts, redundant information, or noise (Geirhos et al., 2020) during adaptation to the
downstream task, subsequently scaled by a smaller α

r . In this section, we investigate how LoRA
configurations affect Stage (2) training, as well as reporting the evaluation results of OpenMU on
OpenMU-Bench.

OpenMU-Bench task performance. Figure 3 shows the performance of OpenMU variants on the
captioning (left) and reasoning (right) tasks of OpenMU-Bench. For each evaluation, we report
the macro-average performance of each OpenMU variant across all subtasks in OpenMU-Bench.
Additionally, Figure 4 (left) displays the evaluation results using BertScore (Zhang et al., 2020) as
the metric. Several observations can be made. First, the number of music tokens plays a critical role
in task performance, echoing the conclusion drawn by McKinzie et al. (2024). Mean-pooling every
8 tokens shows clear advantages over 32 and 128 tokens, likely due to its preservation of music
information. However, mean-pooling 32 tokens offers only limited improvement over 128 tokens,
and the performance decline appears to plateau. It is likely that crucial music information is already
lost when mean-pooling 32 tokens. Second, the effectiveness of LoRA parameters show limited
impacts on task performance, similar to the findings in Gong et al. (2024). As a result, we will focus
on the model variant with mean-pooling 8 tokens, and LoRA parameters 128/16 in the next sections.

Music information utility. Given the large-scale pretraining data of the LLM, which already con-
tains rich knowledge about music, an MLLM may be able to answer questions about music without
relying on the information in the music clip. Hence, this section addresses a key question: Does
OpenMU genuinely utilize information from the input clip to understand the music more effec-
tively? To investigate this, we evaluate OpenMU variants on MuChoMusic (Weck et al., 2024), a
dataset containing multiple-choice questions focused on music understanding. Questions such as
“Which sub-genre of rock music would best classify this piece?” require the model to select the
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Figure 4: Left: Performance of OpenMU variants on the captioning and reasoning tasks of
OpenMU-Bench using BertScore as the metric. Right: OpenMU performance on MuChoMusic.

BLEU-1 BLEU Rouge1 RougeL BertScore Meteor
OMU MUL OMU MUL OMU MUL OMU MUL OMU MUL OMU MUL

MusicCaps 25.62 9.78 2.89 0.73 27.99 21.22 18.56 15.64 86.63 86.85 21.83 11.03

MI-short 18.92 50.01 8.75 23.90 41.03 52.69 37.75 47.73 89.90 92.83 43.81 49.10
MI-long 36.66 2.13 4.18 0.18 38.74 19.34 21.70 13.55 87.24 85.90 24.43 8.83

LPMusicMTT 23.83 18.87 2.56 0.56 29.23 21.68 21.57 16.07 89.75 88.37 24.60 13.96

Music4all˚ 51.03 5.11 18.69 0.36 51.31 19.51 34.80 14.31 91.04 86.64 43.58 10.07

MusicQA-Test 19.60 19.65 2.22 5.08 23.96 31.74 17.39 28.07 87.30 89.45 26.34 21.73

GTZAN˚ 45.38 4.56 11.78 0.32 44.01 20.41 27.62 15.17 89.34 87.03 34.71 10.65

MusicNet˚ 52.68 1.17 22.14 0.00 56.44 14.49 38.11 12.25 91.97 85.59 45.92 6.56

MTG-Jamendo˚ 47.56 5.32 15.83 0.41 49.66 20.29 33.76 15.94 90.79 87.72 39.44 10.06

Table 3: OpenMU-Bench captioning results (in %) of OpenMU (OMU) and MU-LLaMA (MUL).

correct option from four candidates. Notably, such questions could be answered based on the most
common or probable sub-genre from the LLM’s pretraining data, allowing the model to perform rea-
sonably well without actually relying on the music input. Figure 4 (right) presents the MuChoMusic
results of OpenMU variants. The “No Music” condition refers to replacing the input music clip
with a white noise clip, while “OpenMU” displays the results when actual music clips are used. It
is evident that music information is crucial for OpenMU to achieve strong performance; OpenMU
effectively utilizes music information rather than relying on shortcuts (Geirhos et al., 2020).

6 OVERALL RESULTS

In this section, we compare OpenMU with MU-LLaMA, a widely used music understanding model,
on OpenMU-Bench. For OpenMU, we use the variant of mean-pooling 8 tokens with LoRA param-
eters 128/16. For MU-LLaMA, we use the checkpoint released by Liu et al. (2024).

Music captioning and reasoning results are presented in Table 3 and Table 4, respectively. We ob-
serve that OpenMU consistently outperforms MU-LLaMA across various captioning and reasoning
tasks. Interestingly, MU-LLaMA lags behind OpenMU on MusicCaps, despite the fact that the Mus-
icCaps test set was used during MU-LLaMA’s pretraining stage (Liu et al., 2024; Deng et al., 2024).
We believe this is due to the small size of MusicCaps—its effectiveness was likely overshadowed
by the larger finetuning datasets used for MU-LLaMA.

MU-LLaMA outperforms OpenMU on the MusicInstruct-short captioning task (Deng et al., 2024)
and the MusicQA-test reasoning task (Liu et al., 2024) in terms of surface form matching metrics by
a large margin. However, we found that the gold references in these two subsets are biased to contain

BLEU-1 BLEU Rouge1 RougeL BertScore Meteor
OMU MUL OMU MUL OMU MUL OMU MUL OMU MUL OMU MUL

Music4all˚ 49.20 18.13 23.31 5.97 53.26 34.11 41.08 25.01 92.34 89.63 49.96 22.51

MusicQA-Test 24.84 40.64 9.46 22.47 35.86 51.29 30.66 47.54 89.70 92.59 40.04 46.15
GTZAN˚ 50.26 16.16 22.07 5.95 52.96 35.18 38.57 26.20 92.02 89.89 46.87 21.84

MTT˚ 45.52 21.70 21.18 8.31 50.83 38.70 39.93 29.92 92.03 90.63 48.06 26.33

MTG-Jamendo˚ 45.87 23.69 21.12 8.59 50.78 38.45 39.74 29.27 92.01 90.47 47.97 26.42

Table 4: OpenMU-Bench reasoning results (in %) of OpenMU (OMU) and MU-LLaMA (MUL).
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Accuracy IFR
All Knowledge Reasoning All

MusiLingo 21.1 22.0 19.2 71.6
MU-LLaMA 32.4 32.3 31.3 79.4

M2UGen 42.9 44.9 41.2 96.4
OpenMU 51.8 51.4 51.4 94.8

Random 25.0 25.0 25.0 100.0

Table 5: MuChoMusic accuracy and instruction-following rate (IFR) of OpenMU and prior mu-
sic understanding models. Numbers are in %. MuChoMusic contains multiple-choice questions;
MusiLingo, MU-LLaMA, M2UGen performances are from Weck et al. (2024). “Random” shows
random guessing results. We assume “Random” will always select an option, hence its IFR is 100%.

a large portion of repeated parts from the questions. For example, in MusicQA-test reasoning, to
the question “What is the alternative genre of music in the audio?”, the gold standard reference is
“The alternative genre of music in the audio is postrock.” This observation is further supported by
objective metrics. Compared to the edit distance of 225 and the Jaccard similarity score of 23.9% for
MTT, MusicQA-test reasoning has an edit distance of 90 and a Jaccard similarity score of 36.2%.
Since MU-LLaMA tends to repeat the question before providing an answer, the behavior might
have inflated the surface-level form matching scores in these subsets. As a result, we recommend
practitioners downweight these subsets when evaluating music understanding models.

BLEU-1 BLEU Rouge1 RougeL BertScore Meteor

BART-Fusion 25.79 6.48 32.18 17.99 83.03 27.97
OpenMU 25.60 5.19 31.31 17.03 83.14 27.01

Chords 94.95

Tempo 95.83

Key 100

Downbeats 100

Table 6: Lyrics understanding results (left) and tool using accuracy (right). Numbers are in %.

Multiple-choice questions. We compare OpenMU with MU-LLaMA, along with other available
music understanding models, on the multiple-choice question dataset MuChoMusic. Deng et al.
(2024) is a concurrent work to MU-LLaMA while M2UGen (Hussain et al., 2023) adds music
generation ability to MU-LLaMA. Table 5 shows that OpenMU achieves state-of-the-art music un-
derstanding performance on MuChoMusic.

Lyrics understanding. Table 6 (left) compares OpenMU’s performance with BART-fusion (Zhang
et al., 2022), a model specifically designed for lyrics understanding. For simplicity, we reuse the
same hyperparameters from Stage (2) training, except for extending the training to 20 epochs.
OpenMU outperforms BART-fusion in BertScore but slightly lags behind on other metrics. Fu-
ture models could explore further hyperparameter tuning or architectural modifications to improve
performance. Tool using accuracy. Table 6 (right) reports the accuracy of OpenMU when calling
external MIR tools. We consider an exact match as a hit. For example, in chords estimation, if
the gold reference is “[GetMusicChords(10, 20)]”, the model must accurately output the type and
arguments of the tool call to be considered a hit. Extra calls are considered a miss. As expected,
OpenMU performs well on this task and learns to call MIR tools effectively. It is promising to
integrate more MIR tools to handle a broader range of task types and complexities.

7 CONCLUSION

We presented OpenMU-Bench, a large-scale benchmark suite containing approximately one mil-
lion examples for training and evaluating LLM-based music understanding models. We construct
OpenMU-Bench by creating new annotations as well as leveraging existing datasets. We trained
our music understanding model, OpenMU, with extensive ablations and demonstrated that it outper-
forms baseline models such as MU-LLaMA. Both OpenMU and OpenMU-Bench are open-sourced
to facilitate future research in music understanding and enhance the efficiency of creative music
production. Future work may explore extending OpenMU to support multiple music clips as input
and enable in-context learning for music understanding. Another promising direction is enabling
OpenMU to integrate more MIR tools, combining the strengths of LLMs and established tools for
deeper music understanding.
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Tempo Energy Valence Danceability Genre Mood Instrument Others
Music4all ⃝ ⃝ ⃝ ⃝ △ △ △ △
GTZAN ⃝ ˆ ˆ ˆ ⃝ ˆ ˆ ˆ

MusicNet ˆ ˆ ˆ ˆ ˆ ˆ ⃝ ˆ

MTT ˆ ˆ ˆ ˆ △ △ △ △
MTG-Jamendo ˆ ˆ ˆ ˆ △ △ △ △

Table 7: The metadata associated with each subtask dataset in OpenMU-Bench. ⃝: the metadata,
e.g., tempo, is available for the music clips. △: the metadata maybe available for some music clips,
but not for all of them. ˆ: the metadata is not available for the music clips.

A APPENDIX

A.1 TRAINING DETAILS AND HYPERPARAMETERS

In this section, we describe the detailed settings and hyperparameters used for training OpenMU.

All experiments were conducted using 8-16 A100 40GB GPUs, with BF16 enabled to ensure stable
training. We use DeepSpeed ZERO-3 (Rajbhandari et al., 2020) and Flash Attention 2 (Dao et al.,
2022) to reduce the memory consumption. We utilized the Adam optimizer and a cosine learning
rate scheduler, with a 30% warm-up ratio.

For Stage (1) training, we pretrained OpenMU for 15 epochs on the captioning subtask of OpenMU-
Bench, which consists of approximately 275K pairs of music clips and corresponding captions.
Stage (1) training took approximately 10 hours for the checkpoint we evaluated (i.e., mean-pooling
every 8 music tokens as illustrated in Figure 2. The initial learning rate was set to 1e-3, with a batch
size of 8 per GPU.

For Stage (2) training, we extended pretraining of OpenMU for 10 epochs on the captioning and
reasoning subtasks of OpenMU-Bench, which comprise roughly one million training examples. The
initial learning rate was set to 2e-5, with the same per-GPU batch size of 8. Stage (2) required
approximately 40 hours due to the increased size of training data.

For the lyrics understanding subtask, we trained OpenMU for 20 epochs, reusing the hyperparame-
ters from Stage (2). Similarly, for the tool using subtask, we reused the Stage (2) hyperparameters
but reduced the number of epochs to 5 due to the smaller dataset size for this task.

A.2 METADATA OF DATASETS

In this paper, we contribute to creating the large-scale benchmark suite OpenMU-Bench for music
understanding.

In contrast to other modalities such as images, where rich natural language descriptions are widely
available across the internet (Schuhmann et al., 2022), music clips are often accompanied by tags,
such as genre, year, and instruments. We consider these tags to be a form of metadata for the music
clips. When constructing OpenMU-Bench, we bootstrap captions and reasoning texts in natural
language about the music clips based on this metadata by prompting GPT-3.5.

Table 7 demonstrates the various types of metadata used in the OpenMU-Bench subtasks to create
music understanding examples. Due to the broad coverage, music clips from different OpenMU-
Bench subsets are associated with diverse types of metadata. Even within the same subtask, different
music clips may be tagged with only a limited set of metadata types. We detail how we process the
metadata of each music clip as follows.

Tempo. Music clips in two datasets, music4all and GTZAN, are associated with tempo, and we
convert the numerical values into natural language descriptions, following the Italian musical terms8

as shown in image Figure 5.

For energy, valence, danceability, which are float scores ranging from 0 to 1, we convert them
into natural language descriptions using empirical thresholds of 0.3 and 0.7. Taking energy as an

8Italian musical terms: https://www.musicca.com/musical-terms.
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Very Slow Slow

45BPM

Extremely Fast

200 BPM168 BPM

Very Fast

116 BPM

FastMedium

108 BPM76 BPM

Walking Pace

Figure 5: Converting numerical values (in beats per minute; BPM) of music tempo to natural lan-
guage descriptions. The conversion is done based on the Italian musical terms.

example, we consider a energy level s, where s ě0.7 as a high energy level, 0.7ą s ě0.3 as a
medium energy level, and 0.3ąs as a low energy level.

For genre, mood, and instrument of Music4all, MTT, MTG-Jamendo, we merge their original
metadata by manual annotations and corrections for consistency. Concretely, we keep the top
50 tags of MTT and MTG-Jamendo, following the recommendation of the authors (Law et al.,
2009b; Bogdanov et al., 2019), and use the top 166 tags of Music4all, as recommended by
music4all contrib9. The corrections involves actions such as de-compounding (“acoustic-
guitar” Ñ “acoustic guitar”), unifying (“Female vocalists” Ñ “female vocal”), expanding (“synth”
Ñ “synthesizer”) the tags, and the resulting metadata tags are list as follows:

Metadata of genre, instrument, mood, and others

Genre:
instrumental, triphop, world, pop punk, hardcore, metalcore, mb, 70s,
death metal, dream pop, brazilian, easylistening, classical, metal,
rock, instrumental pop, 90s, dance, reggae, acoustic, 80s, orchestral,
lounge, indie pop, british, electronic, pop, soul, experimental,
hip-hop, indian, indie, indie rock, heavy metal, 60s, punk,
progressive rock, synthpop, jazz, hard rock, post-hardcore, funk,
alternative rock, new age, post-punk, pop rock, trance, mpb, pop folk,
classic rock, techno, soundtrack, new wave, atmospheric, country,
lo-fi, downtempo, rap, folk, opera, house

Instrument:
harpsichord, piano, strings, choral, flute, vocal, keyboard, violin,
drums, computer, bass, harp, drum machine, acoustic guitar, electric
guitar, no vocal, electric piano, synthesizer, cello, female vocal,
guitar, male vocal, sitar

Mood:
psychedelic, soft, energetic, film, weird, ambient, loud, slow,
chillout, relaxing, quiet, fast, happy, emotional

Others:
beats, solo, singer-songwriter

As a result, a JSON formatted metadata is created for each of the music clips:

{
"dataset_name": "music4all",
"audio_filename": "4MqXFtyr1XwxrShX.mp3",
"tempo": "walking pace tempo",
"valence": "medium valence",
"energy": "high energy",
"danceability": "medium danceable",
"genre": [

"rock",
"pop",
"electronic"

],
"mood": [

"ambient"
]

}

9https://github.com/keunwoochoi/music4all_contrib
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which is then employed to prompt GPT3.5 to create examples for music understanding, as described
in the next section §A.3.

A.3 PROMPTS AND DATASET FORMAT

Based on the metadata of each music clip (§A.2), we prompt GPT-3.5 to generate examples for the
music understanding tasks. Our prompts are adapted from those used by Gardner et al. (2024), with
modifications tailored to the available metadata of different OpenMU-Bench subsets and subtasks.
As an example, we present the prompt used for the music captioning task in Music4All:

Example prompt used for Music4all

You are an expert AI assistant that is knowledgeable about music
production, musical structure, music history, and music styles, and
you are hearing audio of a short clip or loop extracted from a piece
of music. What you hear is described in a JSON-format shown below,
describing the same audio clip you are listening to. This description
is provided in a JSON dictionary, where the keys and values represent
attributes of the music clip. The JSON contains a set of fields
describing various features of the music clip.

Specifically, the JSON will contain:
- "tempo": the tempo of this music clip.
- "energy": the energy level of the music clip. High energy means

fast, loud, and noisy. For example, death metal has high energy,
while a Bach prelude scores low on energy. Perceptual features
contributing to this attribute include dynamic range, perceived
loudness, timbre, onset rate, and general entropy.

- "valence": the valence level of the music clip. Valence measures
the musical positiveness conveyed by the song. High valence
value means the song is more positive (e.g. happy, cheerful,
euphoric), otherwise the song is more negative (e.g. sad,
depressed, angry).

- "danceability": danceable level of this music clip. Danceability
measures how suitable a song is for dancing based on a
combination of musical elements including tempo, rhythm
stability, beat strength, and overall regularity.

Optionally, the JSON may contain the following OPTIONAL annotations of
the song:

- "genre": a list of genres of the music clip.
- "mood": a list of possible moods of the music clip.
- "instrument": a list of possible instruments used by the music

clip.
- "others": other informative factors of the music clip.

You should only use the optional annotations when provided. Otherwise,
you MUST NOT mention them in the description.

Based on the JSON, **provide a detailed musical description of the
clip, from the perspective of a musical expert describing the clip as
they hear it being played**. Use your knowledge about music to make
sure to describe the musical style and contents, and any unique
features of the music clip.

Describe the music clip using a tone of describing facts. DO NOT USE
languages such as "I hear ...". Just provide musical captions to the
clip.

Only provide details that are based on the provided metadata or your
background knowledge of music as an intelligent AI assistant. Explain
any musical concepts that would be unfamiliar to a non-musician. Do
not specifically reference the provided metadata in the response;
instead, respond as if you are hearing the song and reporting a rich
description of what you hear. Keep in mind that the music clip is only
a short clip, loop, or part of a song, and NOT THE COMPLETE SONG.

IMPORTANT!! DO NOT use the word "metadata" anywhere in your
descriptions. DO NOT disclose that metadata about the song is provided
to you. DO NOT use the phrase "song data" anywhere. Do not reveal that
you know details of how the music clip was produced; instead, use
phrases like "it sounds like XXX instrument" or "what I hear might be
a YYY microphone". Now please provide the musical description of the
clip, strictly following above requirements.
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In short, we ask GPT-3.5 to generate an informative caption that can describe the key features and
components of the music clip, based on its internal music knowledge accumulated during pretraining
and our provided rich metadata. The generated results of the example in §A.2 is:

{
"instruction": "Explain the contents of this song.",
"output": "This music clip features high energy with a

walking pace tempo. It combines elements from rock,
pop, and electronic genres, creating a dynamic and lively
soundscape. The medium valence contributes to a balanced
emotional tone, while the medium danceability suggests a
rhythmic and engaging quality, suitable for movement and dance.
The ambient mood adds a layer of atmospheric texture to the
overall vibrant and energetic composition.",

"local_audio_path": "4MqXFtyr1XwxrShX.mp3",
"task": "captioning",
"dataset": "music4all_test"

},

which is then leveraged to train or test OpenMU according to the dataset split.

A.4 DATASET SPLITS

In this section, we provide details about the train/test splits of the OpenMU-Bench subtasks. Specif-
ically, for MusicCaps, MusicInstruct, LPMusicCaps, LPMusicMTT, MusicQA, MusicNet, BART-
Fusion, and MuchoMusic, we follow the train/test splits proposed in the original papers. For
GTZAN, we used the widely accepted filter-fault split (Kereliuk et al., 2015), and the split from
MARBLE (Yuan et al., 2023) for MTT.

For Music4All, we start with the 800 music clips from BART-Fusion as the initial test set. We then
expand this set by randomly sampling music clips until the total reaches 5,000. The remaining music
clips and their annotations are used as training data. For MTG-Jamendo, we use annotations where
the music clips from folds 90 to 99 of the original dataset (Bogdanov et al., 2019) serve as the test
data, while the remaining clips and their annotations are treated as training data. For tool using, we
randomly sample 80% examples for training and 20% for testing.

A.5 TOOLS

We define simple tools for solving MIR tasks such as tempo estimator. They are implemented as
simple Python wrapper to the Madmom toolkit (Böck et al., 2016), which has been widely used in
MIR. For example, the tempo estimator can be implemented10 as:

from madmom.features.beats import RNNBeatProcessor
from madmom.features.tempo import TempoEstimationProcessor

def EstimateTempo():
wav = load_audio(AUDIO_FILE)
beat_proc = RNNBeatProcessor()
tempo_proc = TempoEstimationProcessor(fps=100)
beat_acts, tempo_acts = beat_proc(wav), tempo_proc(beat_acts)
tempo_est = round(tempo_acts[0][0], 1)
return tempo_est

OpenMU then calls for such a tool to estimate the tempo, when being asked questions such as “Let
me know the tempo of this music clip.” and replying with “The music has tempo [EstimateTempo()
Ñ n] beats per minute.”.

10In our implementation, we use pseudo names, such as F1, for the tools. We found that Llama3 tends to
hallucinate new tools when camel case names like ”EstimateTempo” are used, likely due to the presence of
code in its pretraining data (Dubey et al., 2024).
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