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ABSTRACT

Real-world machine learning systems are often are trained using a mix of data
sources with varying cost and quality. Understanding how the size and compo-
sition of a training dataset affect model performance is critical for advancing our
understanding of generalization, as well as designing more effective data collec-
tion policies. We show that there is a simple, accurate way to predict the loss in-
curred by a model based on data size and composition. Our work expands recent
observations of log-linear generalization error and uses this to cast model perfor-
mance prediction as a learning problem. Using the theory of optimal experimental
design, we derive a simple rational function approximation to generalization error
that can be fitted using a few model training runs. Our approach achieves nearly
exact (r2 > .93) predictions of model performance under substantial extrapolation
in two different standard supervised learning tasks and is accurate (r2 > .83) on
more challenging machine translation and question answering tasks where base-
lines achieve worse-than-random performance.

1 INTRODUCTION

The success of large scale machine learning systems depends critically on the quantity and quality
of data used during training, and we cannot expect these systems to succeed if there is not enough
training data or if that data does not cover all the phenomena contained in the test distribution (Ben-
David et al., 2010). Knowing this, the designer of a machine learning system might create multiple
sources of data, with each one targeting a different feature or domain that the model ought to do well
on (Crammer et al., 2007; Wang et al., 2019a). This data-driven design strategy provides powerful
tools to improve and evaluate model behavior, but also poses an additional challenge: what is the
right way to combine these various data sources? What is the optimal data collection policy for a
given budget?

Our goal is to answer these questions by quantifying the relationship between data sources and
model performance – how well will our model do if we were to train it on n samples using a data
mixture (q1 . . . qk) over ourK data sources. A precise model for predicting model performance will
allow us to both identify the optimal data collection policy and quantify cost-performance tradeoffs.

The starting point of our work is the recent observation across speech, vision and text (Hestness
et al., 2017; Kaplan et al., 2020; Rosenfeld et al., 2020) that the empirical performance of a model
is remarkably predictable, and follows the log-linear formula

log(error) ≈ −α log(n) + C. (1)

In this work, we expand this observation to the multi-data-source setting and discover the surprising
fact that the slope of the log-linear relationship (α) does not vary with data composition and that the
data composition only affects the intercept (C).

The simple dependence of log-error on data size allows us to reduce the problem of estimating
model error into a learning problem. Our approach is straightforward: we hypothesize that model
error follows V (n, q) := exp(−α log(n)+log(C(q))) for a simple parametric functional formC(q),
and fit this to observed pairs of (n, q, error) that we obtain by subsampling the dataset and re-training
a model. We show that there is a natural and simple choice of C(q) as a rational function that we
derive from optimal experimental design for linear regression, M-estimation, and nonparametric
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smoothing. The simple and parametric dependence of V (n, q) on n allows us to use our resulting
estimates to predict model performance under substantial extrapolation in data size.

Empirically, the resulting predictions are extremely accurate and hold under substantial extrapo-
lation. On the Amazon review prediction dataset (Mansour et al., 2009), we can learn to predict
model performance nearly perfectly (r2 = 0.96) from a small dataset of 1200 examples across 3
sources and extrapolate to predict the model error on datasets of up to 4000 examples. We show
this high accuracy continues to hold on a real-world task oriented dialogue system (r2 = 0.93), a
multi-domain machine translation system (r2 = 0.83), and boolean question answering with weak
supervision (r2 = 0.86). In each of the cases, our proposed approach substantially outperforms the
best baseline, with the baselines performing worse-than-random in both the machine translation and
question answering tasks.

Related work Quantifying the effect of data composition on model performance is closely re-
lated to the classical ideas of optimal experimental design, as well as more recent machine learning
methods such as active learning and data valuation.

Our work will draw inspiration from the classical V -optimal experimental design (John & Draper,
1975) as a way to understand how model performance will change with the data collection policies.
However, our approach differs substantially beyond this. Instead of making strong linearity assump-
tions and identifying closed form formulas for model performance, we treat identifying the impact
of data sources on errors as itself a prediction problem, which allows us to quantify these effects for
neural networks and non-separable objectives.

Active learning provides methods for incrementally selecting new points to rapidly reduce a loss
(Hanneke, 2007). These approaches only consider the problem of optimal data collection and do
not seek to predict model performance under all data collection strategies (including suboptimal
ones), which is critical when making cost-performance tradeoffs across data sources. The model
performance predictions produced in our work complements existing work on active learning by
providing accurate forecasts of model performance under different data collection strategies.

Finally, data valuation methods such as the Shapley value attempt to assign estimate the impact of a
data source on model performance (Ghorbani & Zou, 2019; Jia et al., 2019; Ghorbani et al., 2020;
Yoon et al., 2019). These approaches are natural when pricing data sources as part of a market
mechanism (Ohrimenko et al., 2019; Agarwal et al., 2019) due to the axiomatic properties of the
Shapley value. Our approach differs in that we seek simply to estimate the performance of a model
rather than to assign a single price to examples from a data source. This difference means that
axioms such as additivity that are critical for the Shapley value are not relevant for our goal. We
show that for the purpose of predicting errors, a rational function (rather than a linear cost) follows
naturally from optimal experimental design. Our experiments also show that our rational function
approximation provides better model performance predictions than a linear, additive model.

2 PROBLEM STATEMENT AND EMPIRICAL OBSERVATIONS

Our goal is to predict the performance of a model as a function of the number of training samples n
as well as the dataset composition q, where qk represents the fraction of the training data drawn from
data source k. We will now define this goal more formally in terms of the training data distribution,
model fitting, and test loss.

The training data consists of an n-sample training set pn,q that is created by sampling from the
mixture p :=

∑
k∈[K] qkpk where pk are data generating distributions for each of theK data sources

and qk are mixture weights with qk ≥ 0 and
∑
k∈[K] qk = 1. Using this dataset, we learn a

prediction model θ̂ that incurs loss `(θ̂;x, y) for a training example (x, y). The fitted model is the
empirical loss minimizer, which we define as

θ̂(pn,q) := arg min
θ∈Θ

Epn,q [`(θ;x, y)] .

The performance of this classifier is evaluated on a test distribution which may differ from the
training distribution by a covariate shift (i.e. p(y | x) = ptest(y | x)). We are interested in model
performance as a function of the data size and composition (and not a fixed empirical distribution
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pn,q) and thus our goal is to predict the model’s expected excess loss over draws in both the training
and test distributions,

L(n, q) := E
[
`(θ̂(pn,q);x, y)

]
− inf

θ
E [`(θ;x, y)] .

Estimating L requires that we hypothesize a relationship between (n, q) and the expected model
loss. Following earlier observations by Hestness et al. (2017), we expect a log-linear relationship
between L(n, q) and log(n) for any fixed q, which implies a possible approximation as

log(L(n, q)) ≈ log(V (n, q)) := α(q) log(n) + C(q). (2)

We now examine this hypothesis in a simple toy example.

Linear toy data: We will start with the simplest nontrivial example of linear least-squares regression
to study L(n, q). In this example, there are two data sources over x ∈ R2. The first data source has
substantial variability on the first coordinate x0 but not x1 and vice versa for the second data source.
The overall generative process is

y | x ∼ [0.5, 1]>x+ ε z ∼ Bern(q) ε ∼ N(0, 1)

x | z = 0 ∼ N
(

0,

[
1 0
0 0.001

])
x | z = 1 ∼ N

(
0,

[
0.001 0

0 1

])
.

Let L(n, q) be the excess squared loss of a linear least squares model trained with n samples from a
mixture q and evaluated on a test distribution with q = 0.5. What will L(n, q) look like? Figure 1a
shows a clear linear relationship between log dataset size (log(n)) and log(L(n, q)). The intercept
of the linear relationship seems to vary with the data mixture q, but the slope seems constant.
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(a) Log excess loss (y axis) is linear with log-
dataset size (x axis). Changing the data distribu-
tion by varying q (line color) changes the intercept
but not the slope.
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(b) Intercept (C(q)) of the loss-dataset log linear
relationship. The loss is lowest when the dataset is
a mix of both data sources (q ≈ 0.5) and rapidly
increases when exclusively using one data source.

Figure 1: The log-linear effects of data composition and size on the linear toy dataset.

Examining Figure 1a more closely, we find that the extremes of using either data source exclusively
(blue / purple lines) performs worse than a mix suggesting that log(L(n, q)) is unlikely to be linear in
q. Intuitively, we can think of each data distribution as having a different strength (i.e. more variance
in either x0 or x1) and combining the two results in a better data distribution than either alone. We
can see this more clearly when we estimate the intercept for each of these lines (Figure 1b). The
estimated intercepts show a U-shaped curve that rapidly increases as q → 0 or q → 1 and is generally
flat from 0.2 to 0.8.

3 METHOD AND THEORY

We have observed that in the case of a simple linear regression, the log-error not only follows the
relationship outlined in equation 2, but also that the slope α is constant as we vary the data com-
position (and we will further validate this claim on more complex tasks and models in subsequent
sections). This observation shows we may be able to further simplify the log-linear approximation
as

log(L(n, q)) ≈ log(V (n, q)) := −α log(n) + log(C(q)).

Now note that this functional form decouples the data size n and mixture proportions C(q) into two
terms. This is the key observation of our work: log(V (n, q)) has a very simple dependence on n,
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and the more complex term C(q) has no dependence on n. Therefore we can cast this as a learning
problem, where we learn α and a parametric function Cλ(q) based on the model’s error over a range
of q and small n, and extrapolate this for large n using the log-linear dependence of log V on n.

Concretely, given a dataset with {n1 . . . nk} we can generate a subsampled dataset with n̂k ∼
Unif(0, nk) samples from each source. This results in a training set with data size n̂ =

∑
k n̂k

and composition q̂k = n̂k
n̂ . We fit a model to this subsampled data and compute its loss L(n̂, q̂).

Given the triple (n̂, q̂, L(n̂, q̂)) we can now simply fit the hypothesized functional form,

min
λ,α

Eq̂,n̂
[
(log(L(n̂, q̂))− α log(n̂) + log(Cλ(q̂)))

2
]
.

The experimental data does not specify the functional form of Cλ(q) except that it should handle
convex functions like those seen in Figure 1b. We will now study V (n, q) theoretically and argue
that a natural choice is the rational function

Cλ(q) :=

M∑
i=1

(
K∑
k=1

λikqk

)−1

.

In the subsequent sections, we will study three settings: ordinary linear regression, M-estimation,
and nonparametric regression and show that our hypothesized log-linear approximation arises natu-
rally in all three cases.

3.1 LINEAR REGRESSION

We begin by characterizing L(n, q) in the linear regression case, where we can derive closed form
expressions for the expected loss as a function of training data. Our setting is d-dimensional, n-
sample linear regression, defined as y = x>β + ε with i.i.d. ε ∼ N(0, 1). Our training data follows
x ∼ p :=

∑
k∈[K] qkpk where each data source has full-rank second moments Σk := Ex∼pk

[
xx>

]
.

Define the ordinary least squares estimator β̂ := (X>X)−1X>Y in terms of the featuresX ∈ Rn×d
and Y ∈ Rn. The excess test loss of this estimator over any x∗ ∼ p∗ and y∗ := x∗>β + ε is defined
as

L(n, q) = E[‖x∗(β − β̂)‖22].

The theory of V-optimal experimental design(Pukelsheim, 2006) allows us to characterize this excess
loss.
Proposition 3.1. The excess expected loss for ordinary least squares trained on a mixture q with
data size n and subgaussian x follows

log(L(n, q)) = − log(n) + log

Tr

Σ∗

 ∑
k∈[K]

qkΣk

−1


︸ ︷︷ ︸
C(q)

+O

(√
log(1/δ)√

n

)
,

with probability at least 1− δ where Σ∗ := Ex∼p∗
[
xx>

]
and Σk := Ex∼pk

[
xx>

]
.

We will defer all proofs to the appendix due to space constraints. Clearly C(q) is not linear even in
this simple case, and the terms for qk appear within an inverse. Naively, we might hypothesize that
it behaves much more closely to a linear rational function (i.e. (

∑
i λiqi)

−1) and this intuition will
turn out to be correct whenever Σ∗ and Σk are approximately diagonalizable.
Corollary 3.1. Let P be an orthogonal matrix which approximately simultaneously diagonalizes
P−1Σ∗P = D∗, P−1ΣkP = Dk + Rk for diagonal some matrices D. Then for full-rank Σ∗ and
sufficiently small Rk,

Tr

Σ∗

 ∑
k∈[K]

qkΣk

−1
 =

∑
i∈[d]

D∗ii∑
k qkDk,ii

+ o

(
‖
∑
k

qkRk‖F

)
.
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The first order term exactly matches the hypothesized C(q) as a rational function with d terms and
validates this choice for linear regression. To interpret this corollary, the approximate diagonaliz-
ability condition states that the eigenvectors for Σ∗ and Σk coincide, and thatD∗ii andDk,ii are these
eigenvalues. The ratio D∗ii∑

k qkDk,ii
measures the ratio of variance in the test distribution to that of the

training distribution for the i-th eigenvector.

The key observation is that the variance (i.e. the information each data source contributes to a partic-
ular coordinate i) is linear, but the dependence of model error to training variance is inverse and that
there are d different coordinates making the overall dependence of errors on data composition non-
linear. There are clear qualitative differences between a linear and rational function approximation
to C(q), with the rational function being strongly convex with diminishing returns in q.

3.2 GENERAL M ESTIMATORS

We might rightfully ask whether this kind of approximation continues to hold for nonlinear models
and losses like neural networks. The same analysis as above can be extended to the asymptotic be-
havior of a substantially more general class of models known as M -estimators, which are empirical
loss minimizers of a differentiable loss.

For the regression case, we relied on a closed-form characterization of β. For M-estimators we will
use asymptotic normality under the sampling distribution,
Theorem 3.1 (van der Vaart (1998)). Consider a twice differentiable loss ` whose gradients are
bounded and Donsker. Let θn be an estimator which fulfills the approximate first-order optimality
condition with minimizer θ∞,

Epn [∇`(y, x; θn)] = o(n−1/2) and Ep[∇`(y, x; θ∞)] = 0.

If θn
p→ θ∞ and both I−1

θ∞
:= Ep[H`(y, x; θ∞)]−1 and Σθ∞ := Ep[∇`(y, x; θ∞)∇`(y, x; θ∞)>]

exist, √
n(θn − θ∞)→ N

(
0, I−1

θ∞
Σθ∞I

−1
θ∞

)
.

Now that we have the asymptotic distribution of the M -estimator, we can quantify the (asymptotic)
form of C(q) with respect to a test distribution p∗ simply by taking the Taylor expansion of the loss
at θ∞.
Corollary 3.2. Under the conditions of Theorem 3.1, let `(y, x; θ) = − log pθ(y | x) and there
exists some θ∗ = θ∞ such that pθ∗(y | x) = p(y | x) then

log(L(n, q)) = − log(n) + log

Tr

Σ∗

(∑
k

qkΣk

)−1
+ o(n−1)

 .

for Σk := Epk [H`(y, x; θ∗)] and Σ∗ := Ep∗ [H`(y, x; θ∗)]

This result relies on two additional assumptions: the loss is a log loss, and the model is well-
specified. The first assumption is weak, as many models today use log softmax type losses. The
well-specified assumption is stronger but may be reasonable for nearly nonparametric functions such
as neural networks. For a less simple but more general result, see Corollary A.1 in the appendix.

This has the same functional form as before: C(q) is the trace of a test distribution dependent matrix
Σ∗ and the inverse of data source matrices Σk. The difference now is that instead of covariances,
we are looking at the Hessian of the parameters with respect to the unknown optimal model θ∗.
Applying the simultaneous diagonalization argument from earlier once again results in a rational
function that is captured by C(q).

3.3 NONPARAMETRIC MODELS

Finally, we show that the same relationship holds for nonparametric models such as kernel smooth-
ing or binning. Our goal will be to estimate some ground truth map y = f(x) + ε for ε i.i.d N(0, 1)
and f a differentiable L-Lipschitz function. The quality of an estimate will be measured by some
twice-differentiable loss `(y, x) with bounded first two derivatives.
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Given n samples (x1, y1) . . . (xn, yn) ∈ [0, 1]d × R drawn i.i.d from some density p =
∑
k qkpk,

one natural estimator for this problem is the nonparametric binning estimator f̂ which we define in
terms of axis-aligned hypercubes Bδ(x, S) := {x′ ∈ S : bx′/δc = bx/δc}. Let Xn := {x1 . . . xn}
then we can define our estimator,

f̂δ(x) :=
1

|Bδ(x,Xn)|
∑

xi∈Bδ(x,Xn)

yi.

Assuming we choose δ and n sufficiently large that each bin concentrates to its expected value, we
have the following error estimate
Proposition 3.2. Let Bδ(x, pk) = Ex′∼pk [|Bδ(x, {x′})|] be the probability of drawing some x′ ∼
pk in the same bin as x, and assume Bδ(x, pk) is bounded away from zero. Then

L(n, q) := E[`(f̂δ(x), x)− `(f(x), x)]

= E
[

`′′(f(x), x)∑
k qkBδ(x, pk)

]
+O

(√
log(γ−1) + d log(δ)√

2n

)
+O(Lδ

√
d+ L2δ2d),

holds with probability at least 1− γ, where the expectation is taken with respect to draws of y.

Once again, we see a rational function in q, with no further approximation needed. Each bin is a
term in the rational function approximation with weight `′′(x).

4 EXPERIMENTS

We have seen that a rational function is a reasonable approximation to C(q) across 3 different set-
tings. We will now show that this is the case in practice, and additionally thatC(q) can be accurately
estimated using a few models trained on small datasets. The resulting estimates of model perfor-
mance are accurate for models with an order of magnitude more data.

Baselines and implementation Our evaluations focus on our ability to predict the loss incurred
by a model L(n, q). To do so, we will compare the rational function approximation procedure
against several natural baselines for predicting the loss of a model. Each of the baselines correspond
to a different assumption about the functional form of log(V (n, q)) that we use to approximate
log(L(n, q)).

Datasize: Assume a functional form of log(V (n, q)) = α log(n) + c ignoring the data composition
and dependence on q.

Linear: Assume a functional form of log(V (n, q)) = α log(n) + β>q + c. This is the natural
approach if we treat log(V (n, q)) as linear in q and log-linear in n.

Ablation and Shapley: further constrain the linear baseline by setting β to either the log-Shapley
value obtained as the marginal contribution of a data source (for the Shapley baselines) or the log-
ratio of losses obtained after removing a data source (ablation). We use this approach as we found it
to dominate the usual assumption of treating V (n, q) as being linear in the Shapley value.

As the baselines are all linear in log(n) and q we solve the optimal parameters for these models in
closed form with least squares regression. We will refer to our approach as Rational, and we fit this
using the Adagrad (Duchi et al., 2010) optimizer with 20000 steps and learning rate set via cross
validation over the interval [0.005, 0.5]. The number of terms in the rational function sum is set to
be one more than the number of data sources in all experiments.

4.1 FOCUSED EVALUATION: AMAZON SENTIMENT

We now consider the Amazon sentiment prediction dataset in (Mansour et al., 2009) where the goal
is to predict Amazon ratings for books (from 0 to 5 stars) using bag-of-words features from the
reviews. The training data comes from 3 domains that differ from the test data: kitchen, DVD, and
electronics reviews. The model is a standard ridge regularized regression model. Our experimental
setup for estimating model loss is the following: we uniformly randomly sample the dataset size for
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each source (resulting in between 0 and 1200 examples for each source), and train a model on this
dataset. We measure the test error via average squared loss on the books domain.

We fit V (n, q) with 4 terms for C(q) by minimizing the squared loss with respect to log-error on
models containing 0-1200 examples total. We then use V (n, q) to predict log-error on the models
trained on 1200-3600 examples from each domain. The results of this extrapolation task are shown
in Table 2. Our V (n, q) estimate is nearly perfect (r2 = 0.96) and extrapolate from the low data
to high data regime without issue. This correlation is substantially higher than either using data set
size (r2 = −0.65), a linear model (r2 = 0.76) and even better the training error of the best additive
model (r2 = 0.87).

Metric Datasize Ablation Shapley Linear Rational
Train 0.20 0.77 0.80 0.87 0.95

Extrapolation -0.65 0.43 0.51 0.76 0.96
Bootstrap interval (-1.86, -0.08) (0.018, 0.60) (0.15, 0.66) (0.58, 0.83) (0.94, 0.97)

Table 1. Accuracy of L(n, q) estimates on the Amazon review sentiment prediction task. Bold in-
dicates the best performing model under extrapolation, identified by a bootstrapped paired difference
test.

The data size predictor has a negative r2 on the extrapolation setting which may seem surprising.
However, this can happen whenever a predictor fails to perform better than predicting the mean of
the test set. It is nontrivial to predict the mean of the test set in an extrapolation setting, and in this
case, data size estimates are generally uninformative as data from the kitchen domain is not useful
for predicting book review scores.

4.2 BROAD EVALUATION: SEMANTIC PARSING, TRANSLATION, AND QUESTION ANSWERING

We now perform a broader evaluation of the 3 methods (linear, rational, and datasize) on 3 tasks that
violate our assumptions about model performance prediction. We excluded the two ablation based
methods as they are special cases of the linear model, and generally performed worse.

Task-oriented dialogue Machine Translation Multitask QA

method Train Extrapolation Train Extrapolation Train Extrapolation
Datasize 0.54 0.69 (0.52, 0.81) 0.05 -0.80 (-3.37, -0.03) 0.78 -1.39 (-6.4, -0.88)
Linear 0.99 0.91 (0.78, 0.96) 0.27 -0.69 (-3.10, -0.03) 0.98 -0.92 (-6.63, -0.17)

Rational 0.99 0.93 (0.83, 0.97) 0.98 0.83 (0.59, 0.92) 0.97 0.86 (0.66, 0.89)
Table 2. Accuracy of error estimates on 3 real-world tasks that pose challenges for performance predic-
tion due to their use of deep neural networks, non-separable losses such as BLEU, and weak supervi-
sion. In all cases, the rational function approximation provides good estimates of model performance.

Task-oriented dialogue We perform this analysis on a real world task-oriented dialogue system
based upon the SMCalFlow dataset and model (Andreas et al., 2020). The task differs from the
Amazon setting in two ways: the model is a nonlinear neural model for which there is no closed form
optimal experimental design and the task is semantic parsing which is a more complex structured
prediction problem. There are 105727 total dialogues across 4 data sources consisting of a wizard-
of-oz style crowdsourced dialogues, paraphrases of existing dialogues, on-policy dialogues between
the system and crowdworkers, and hand-crafted dialogues by expert data scientists. We sample the
number of dialogues for each source with a uniform distribution to determine q and then further
subsample each data source by [0.1, 0.3, 0.7, 1.0] to vary n. Test errors are measured by whether the
execution of the model matches human references.

We fit V (n, q) with 5 terms forC(q) on 10 models containing less than 16,000 examples, and testing
on 19 models containing between 16,000 and 100,000 examples. The results in Table 2 show our
approach is accurate (r2 = 0.93) and outperforms baselines including data size (r2 = 0.69) and
the additive model (r2 = 0.91). While the bootstrap intervals for the r2 for the rational function
approximation is sufficiently wide that it contains the mean r2 estimate of the linear model, a more
powerful paired difference test between the linear and rational approximations shows that this gap
is statistically significant at a 5% level for the bootstrap distribution.
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(a) Data size (b) Linear (c) Rational function

Figure 2. Performance prediction on a multi-domain machine translation task with BLEU as the
performance measure. There is little correlation between dataset size and loss (left panel) while the
rational function approximation provides reasonable predictions (right).

Machine translation Thus far, we have evaluated on separable losses such as mean squared error,
or model accuracy. We now show that our approach to predicting model performance continues
to work for non-separable losses such as BLEU for machine translation. Our task is the standard
multi-domain machine translation dataset from Koehn & Knowles (2017). We use the preprocessed
data, model, and hyperparameters from Hu et al. (2019) for a baseline sequence to sequence machine
translation model. The model is trained on 4 data sources: Acquis (legal text), EMEA (parliamentary
proceedings), IT (IT assistance), and Koran (translations of the Quran). Evaluation is performed on
the Acquis test set using sacrebleu to compute BLUE (Post, 2018).

To estimate the performance of models under varying data composition, we subsample up to 300,000
sentences from each data source, fit the estimators on 19 datasets of size less than 600,000 total
sentences, and evaluate on 11 datasets of size 600,000 to 1,200,000. Since BLEU is a similarity
measure and is penalized by reference ambiguity, we consider 50-BLEU to be the excess error. The
rational function approximation is the only procedure to achieve a positive r2 (0.83) among the
baselines. The difference in prediction accuracies is apparent when plotting predicted and observed
log-loss (Figure 2). The linear model even has low training set r2, suggesting that the relationship
between data composition and performance is fundamentally nonlinear.

Multitask question answering Finally, we consider a multitask learning problem where some of
the data sources are auxiliary tasks that may not directly be useful for the test time task. This breaks
the covariate shift assumption that has been implicit throughout this paper. The target task is the
BoolQ question answering dataset , and we train this model using a combination of 4 data sources:
the MNLI entailment task (Williams et al. (2018), 50,000 examples subsampled), STS sentence
similarity judgment task (Cer et al. (2017), 5749 examples), MRPC paraphrasing task (Dolan et al.
(2004), 3668 examples), and the BoolQ training set (Clark et al. (2019) 9427 examples). We use the
GLUE data with the Jiant package to train a baseline BERT based model for this task (Wang et al.,
2019b).

The challenge with this task is that only the BoolQ training set provides direct supervision for the
test-time task, and the other data sources provide weak supervision that may or may not be helpful in
the downstream problem. The model performance estimates are fitted on 6 datasets with up to 25,000
total examples and evaluated on 17 datasets with more than 25,000 examples. As expected, the data
size based performance estimates are catastrophically bad, resulting in negative correlations. The
linear estimates do not seem to extrapolate well to the test set. The rational function approximation
is the only one of the three to provide positive r2 on this task.

5 DISCUSSION

In this work, we’ve proposed a new approach to predicting the performance of a prediction model
as a function of training data composition that consists of measuring model accuracies for small n
and a range of q and fitting a parametric model V (n, q) := −α log(n) +

∑m
i=1(

∑K
k=1 λikqk)−1.

We show that this parametric model is a natural approximation to model performance for a range
of models, and accurately predicts the empirical performance of models in an extrapolation setting.
Our work is the first step in going beyond closed-form estimates of model performance or additivity
assumptions. It is an open question whether the same approach can scale to large numbers of data
sources, and we hope to explore this in future work.
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A APPENDIX

Proposition 3.1. The excess expected loss for ordinary least squares trained on a mixture q with
data size n and subgaussian x follows

log(L(n, q)) = − log(n) + log

Tr

Σ∗

 ∑
k∈[K]

qkΣk

−1


︸ ︷︷ ︸
C(q)

+O

(√
log(1/δ)√

n

)
,

with probability at least 1− δ where Σ∗ := Ex∼p∗
[
xx>

]
and Σk := Ex∼pk

[
xx>

]
.

Proof We will begin by deriving the excess loss for a fixed set of test examples X∗ ∈ Rm×d and
training examples X ∈ Rn×d. We are interested in the excess loss, which can be written in a simple
form due to strict exogenity of the least squares regression,

‖X∗(β − β̂)‖22/m = Tr(X∗>X∗
(
X>X

)−1
)/m.

This is a classic instance of V-optimal design. We reproduce this result for clarity. Let e := (β − β̂)
then,

‖X∗(β − β̂)‖22/m = Tr(e>X>∗X∗e)/m = Tr(X∗>X∗
(
X>X

)−1
)/m.

The challenge now is to bound the expected loss,

L(n, q) = E
[
Tr
(
X∗>X∗

(
X>X

)−1
)]
/m.

The expectation with respect to X∗ is straightforward, but the expectation with respect to X is
challenging as E[X>X]−1 6= E[

(
X>X

)−1
]. Since x is subgaussian, we can make use of ma-

trix concentration to show this term concentrates at appropriate rate. Let Σ := E[X>X] then by
Vershynin (2010, Corollary 5.50) for sufficiently large n,

‖X>Xn−1 − Σ‖op ≤ C
√

log(1/δ)√
n

with probability 1 − δ and constant C depending on the subgaussianity parameter of X . Now we
can expand the empirical covariance in terms of the expectation and a residual ∆ = X>X/n − Σ
using the identity (Σ + ∆)−1 = Σ−1 +

∑∞
t=1 Σ−1(∆Σ−1)t as

L(n, q) = Tr
(
Σ∗Σ−1n−1

)
+ n−1E

[
Tr

( ∞∑
t=1

Σ−1(∆Σ−1)t

)]
.

whenever the series is convergent (‖Σ−1‖op > ‖∆‖op).

For sufficiently large n, this series will converge (as σmin(Σ) is a constant and ‖∆‖op = O(n−1/2))
and the first term in the series is the dominant one. Using the trace inequality Tr(A−1BA−1) ≤
d2‖A−1‖2op‖B‖op,

L(n, q) = Tr
(
Σ∗Σ−1n−1

)
+O

(√
log(1/δ)

n3/2

)
.

Finally, we make use of the fact that X is drawn from a mixture with component moments Σk :=
Ex∼pk [xx>] and take the Taylor expansion of log(L(n, q)) at L(n, q) = Tr(Σ∗Σ−1n−1) to obtain,

log(L(n, q)) = − log(n) + log

Tr

Σ∗

(∑
k

qkΣk

)−1
+O

(√
log(1/δ)√

n

)
.

with probability 1− δ.
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Corollary 3.1. Let P be an orthogonal matrix which approximately simultaneously diagonalizes
P−1Σ∗P = D∗, P−1ΣkP = Dk + Rk for diagonal some matrices D. Then for full-rank Σ∗ and
sufficiently small Rk,

Tr

Σ∗

 ∑
k∈[K]

qkΣk

−1
 =

∑
i∈[d]

D∗ii∑
k qkDk,ii

+ o

(
‖
∑
k

qkRk‖F

)
.

Proof Since Σ∗ is full rank, we can apply the local expansion (A + B)−1 = A−1 +∑∞
i=1A

−1
(
BA−1

)i
along with the trace bound |Tr(A−1BA−1)| ≤ ‖A−1‖2F ‖B‖F

Tr

(
Σ∗(
∑
k

Σk)−1

)
= Tr

(
D∗(

∑
k

qk(Dk +Rk))−1

)

=
∑
i∈[d]

D∗ii∑
k qkDk,ii

+ o

(
‖
∑
k

qkRk‖F

)
.

Where the last line uses the local expansion and trace bound for sufficiently small B.

Theorem 3.1 (van der Vaart (1998)). Consider a twice differentiable loss ` whose gradients are
bounded and Donsker. Let θn be an estimator which fulfills the approximate first-order optimality
condition with minimizer θ∞,

Epn [∇`(y, x; θn)] = o(n−1/2) and Ep[∇`(y, x; θ∞)] = 0.

If θn
p→ θ∞ and both I−1

θ∞
:= Ep[H`(y, x; θ∞)]−1 and Σθ∞ := Ep[∇`(y, x; θ∞)∇`(y, x; θ∞)>]

exist, √
n(θn − θ∞)→ N

(
0, I−1

θ∞
Σθ∞I

−1
θ∞

)
.

Proof

First, we take the first order approximation to the population minimizer

Ep[∇`(y, x; θn)] = Ep[∇`(y, x; θ∞)] + Ep[H`(y, x; θ∞)]>(θn − θ∞) + o(‖θn − θ∞‖)

Assuming the existence of I−1
θ∞

and using the approximate first-order optimality conditions for both
θ∞ and θn we can solve for the parameter difference as

√
n(θn − θ∞)

=
√
nI−1
θ∞

(Ep[∇`(y, x; θn)]− Ep[∇`(y, x; θ∞)]) + o(
√
n‖θn − θ∞‖)

=
√
nI−1
θ∞

(Ep[∇`(y, x; θn)]− Epn [∇`(y, x; θn)]) + o(1 +
√
n‖θn − θ∞‖)

Now since∇` is Donsker over each coordinate and θn → θ∞ in probability, we can obtain uniform
concentration on the gradients (van der Vaart, 1998)
√
n (Ep[∇`(y, x; θn)]− Epn [∇`(y, x; θn)]− Ep[∇`(y, x; θ∞)] + Epn [∇`(y, x; θ∞)]) = o(1+

√
n‖θn−θ∞‖).

Substituting this into the earlier equality allows us to replace θn with θ∞,
√
n(θn − θ∞) =

√
nI−1
θ∞

(Epn [∇`(y, x; θ∞)]− Ep[∇`(y, x; θ∞)]) + o(1 +
√
n‖θn − θ∞‖).

Since ∇` is bounded and thus has finite third moments, Epn [∇`(y, x; θ∞)] obeys the central limit
theorem with distribution N(Ep[∇`(y, x; θ∞)],Σθ∞). Finally, the lower order terms on the right
asymptotically vanish since θn → θ∞ and we obtain the stated result.

Corollary A.1. Under the conditions of Theorem 3.1 and either Ep∗ [∇`(y, x; θ∞)] = 0 or E[θn] =
θ∞ + o(n−1),

L(n, q) := E[`(y, x; θn)]− E[`(y, x; θ∞)] = n−1Tr
(
Ep∗ [H`(y, x; θ∞)]I−1

θ∞
Σθ∞I

−1
θ∞

)
+ o(n−1).
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Proof Taking a second order Taylor expansion,

E[Ep∗ [`(y, x; θn)]] = Ep∗ [`(y, x; θ∞)]

+ E[Ep∗ [∇`(y, x; θ∞)](θ∞ − θn)>]

+ E[Ep∗ [(θ∞ − θn])H`(y, x; θ∞)(θ∞ − θn)>] + o(n−1)

The first-order term is at most o(n−1) by the additional assumption. Either our asymptotic param-
eter estimate is also a stationary point for the test distribution and Ep∗ [∇`(y, x; θ∞)] = 0, or our
estimator is unbiased and E[θ∞ − θn] = o(n−1). The second order term can be simplified via the
asymptotic normality of θn as

E[Ep∗ [(θ∞− θn)H`(y, x; θ∞)(θ∞− θn)>]] = n−1Tr
(
Ep∗ [H`(y, x; θ∞)]I−1

θ∞
Σθ∞I

−1
θ∞

)
+ o(n−1).

Corollary 3.2. Under the conditions of Theorem 3.1, let `(y, x; θ) = − log pθ(y | x) and there
exists some θ∗ = θ∞ such that pθ∗(y | x) = p(y | x) then

log(L(n, q)) = − log(n) + log

Tr

Σ∗

(∑
k

qkΣk

)−1
+ o(n−1)

 .

for Σk := Epk [H`(y, x; θ∗)] and Σ∗ := Ep∗ [H`(y, x; θ∗)]

Proof The statement follows almost definitionally. By the conditions of the corollary statement,
the model is a well-specified maximum likelihood estimator, and the fisher information and hessian
coincide, Σθ∞ = Iθ∞ . Simplifying the expression in Corollary A.1 and expanding Σθ∞ into its k
components gives the desired result.

Proposition 3.2. Let Bδ(x, pk) = Ex′∼pk [|Bδ(x, {x′})|] be the probability of drawing some x′ ∼
pk in the same bin as x, and assume Bδ(x, pk) is bounded away from zero. Then

L(n, q) := E[`(f̂δ(x), x)− `(f(x), x)]

= E
[

`′′(f(x), x)∑
k qkBδ(x, pk)

]
+O

(√
log(γ−1) + d log(δ)√

2n

)
+O(Lδ

√
d+ L2δ2d),

holds with probability at least 1− γ, where the expectation is taken with respect to draws of y.

Proof Note that by definition of y, whenever |Bδ(x,Xn)| > 0, f̂δ(x) has mean close to f(x) with
the deviation controlled by the Lipschitz constant of f ,

Ey|x[f̂δ(x)] = f(x) +O(Lδ
√
d)

and variance (considering |Bδ(x,Xn)| fixed),

Vary|x[f̂δ(x)] =
1 + Var [f(x) | x ∈ Bδ(x,Xn)]

|Bδ(x,Xn)|
=

1 +O(Lδ
√
d)

|Bδ(x,Xn)|
.

Taking the second order Taylor approximation to ` at f(x) we get

E[`(f̂δ(x), x)]− E[`(f(x), x)]

= E[`′(f(x), x)(f̂δ(x)− f(x))] + E[`′′(f(x), x)(f(x)− f̂δ(x))2/2] + o(E[(f(x)− f̂δ(x))2])

= O(Lδ
√
d+ L2δ2d) + E[`′′(f(x), x)Vary|x[f̂δ(x)]] + o(E[(f(x)− f̂δ(x))2])

= E
[
`′′(f(x), x)|Bδ(x,Xn)|−1/2

]
+O(Lδ

√
d+ L2δ2d).
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The third line follows from the expectation bound, as well as applying the bias-variance decompo-
sition to the second order term. The last line follows from the variance identity above, and applying
the same bias-variance decomposition on the o(E[(f(x)− f̂δ(x))2]) term.

As with the linear regression case, we cannot simply take expectations as there is a small but nonzero
probability that |Bδ(x,Xn)| is zero. We will show this happens with low probability. By Hoeffding’s
inequality, each of the δ−d bins will concentrate towards their expected values

P

(∣∣∣∣|Bδ(x,Xn)|n−1 − E′x∼p[Bδ(x, {x′})]
∣∣∣∣ >

√
log(2γ−1δ−d)√

2n

)
≤ 1− δdγ.

Applying the union bound, we have concentration at the same rate over all δ−d bins with probability
1− γ.

Now note that we can write

E
[
`′′(f(x), x)|Bδ(x,Xn)|−1

]
=

1

n
E
[
`′′(f(x), x)

1

E[Bδ(x, {x′})] + |Bδ(x,Xn)|n−1 − E[Bδ(x, {x′})]

]
.

We can take the Taylor approximation of the ratio at the expectation, which gives us

E
[
`′′(f(x), x)|Bδ(x,Xn)|−1

]
=

1

n
E
[
`′′(f(x), x)

1

E[Bδ(x, {x′})]
+O(|Bδ(x,Xn)|n−1 − E[Bδ(x, {x′})])

]
.

Now with probability at least 1− γ,

E
[
`′′(f(x), x)|Bδ(x,Xn)|−1

]
=

1

n
E
[
`′′(f(x), x)

1

E[Bδ(x, {x′})]

]
+O

(√
log(γ−1) + d log(δ)√

2n

)
.

Plugging this into our earlier expression, and expanding the expectation in terms of each of the data
sources completes the proof.
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