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ABSTRACT

Kolmogorov-Arnold Networks (KANs) have emerged as a promising alterna-
tive to traditional neural networks, offering enhanced interpretability based on
the Kolmogorov-Arnold representation theorem. While their empirical success is
growing, a theoretical understanding of their training dynamics remains nascent.
This paper investigates the optimization of a two-layer KAN in the overparam-
eterized regime, focusing on a simplified yet insightful setting where only the
first-layer coefficients are trained via gradient descent.

Our main result establishes that, provided the network is sufficiently wide, this
training method is guaranteed to converge to a global minimum and achieve zero
training error. Furthermore, we derive a novel, fine-grained convergence rate
that explicitly connects the optimization speed to the structure of the data labels
through the eigenspectrum of the KAN Tangent Kernel (KAN-TK). Our analysis
reveals a key advantage of this architecture: guaranteed convergence is achieved
with a hidden layer width of m = O(n?), a significant polynomial improvement
over the m = O(n®) requirement for classic two-layer neural networks using
ReLU activation functions and analyzed within the same Tangent Kernel frame-
work.. We validate our theoretical findings with numerical experiments that cor-
roborate our predictions on convergence speed and the impact of label structure.

1 INTRODUCTION

Neural networks have become the cornerstone of modern machine learning. However, their complex
non-linear structure—formed by composing linear transformations with fixed nonlinearities such as
ReLU—often renders them black boxes. This opacity makes it difficult to interpret their decision-
making processes, posing a significant barrier in high-stakes domains where trust and transparency
are paramount. Kolmogorov—Arnold Networks (KANs) (Liu et al., 2025)) offer a fundamentally dif-
ferent approach, with an architecture inspired by the Kolmogorov—Arnold representation theorem
(Kolmogorov, |1961}; Braun & Griebell |2009). This theorem establishes that any continuous multi-
variate function can be decomposed into a nested sum of univariate functions, which are far easier
to interpret.

Although the idea of building networks upon this theorem is not new, early attempts based directly on
its two-layer structure struggled due to the potentially non-smooth and complex nature of the inner
functions, making them difficult to learn in practice (Sprecher & Draghici, 2002 Koppenl [2002; |[Lin
& Unbehauen, |1993} Lai & Shen, 2021;|Leni et al.,[2013} [Fakhoury et al.,|2022). The key innovation
of modern KANSs was to extend this shallow structure into a deep, multi-layer architecture, analogous
to MLPs. This design mitigates earlier learning difficulties and shifts the paradigm: whereas MLPs
place fixed nonlinearities at nodes, KANs place learnable univariate activation functions on the
edges. This architectural choice not only improves interpretability but also enhances parameter
efficiency. These learnable edge functions are typically parameterized as linear combinations of
basis functions, such as B-splines (de Boor, 2001; |[Schumaker, 2007). More recent approaches
have expanded this idea using alternative basis families, including Rational Polynomials (Aghaei,
2024b), Chebyshev Polynomials (SS et al.,2024)), and Radial Basis Functions (RBFs) (Li,/2024). In
addition, recent works such as (Delis} 2024} |Hu et al.|, 2025; [Zhao et al., 2025; |Bozorgasl & Chen,
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[2024}[Seydil, 2024} [Aghaei, 2025) have introduced new classes of basis functions, further broadening
the expressive power and adaptability of KANs.

The rapid emergence of KANs has led to exploration across diverse application domains. In com-
puter vision, KAN-based convolutional architectures have demonstrated superior performance com-
pared to traditional CNNs (Bodner et al.| 2024} [Drokinl,[2024), and have been successfully integrated
into U-Net models for medical imaging (Li et al., 2025). For sequential data, Temporal KANs were
introduced in (Genet & Inzirillo, [2024), where KANs replace the standard neural components in
RNNS, yielding improved accuracy on complex time-series tasks (Han & Wul, 2024} [Xu & Wang],
[2024). KANSs have also been applied in reinforcement learning, achieving higher accuracy and per-
formance with significantly fewer parameters (Guo & Liul 2024; [Kich & Ohya, [2024), as well as in
time-series analysis tasks (Huang et al 2025}, [Zhou et al 2025)). Similar performance gains have
been reported in graph neural networks (Zhang & Zhang), 2024 [Fang et al, 2025}, [GuoguoAi et al.]
[2025). Beyond these, KANs have shown strong potential in scientific machine learning, particularly
for solving partial differential equations, where they outperform physics-informed neural networks
(PINNs) (Wang & Liul, 2024} [Toscano & Karniadakis), 2024} [Aghaeil, [2024a). The architecture has
also been adapted for Transformers, showing promise for large language models
[2025)). Furthermore, demonstrated that KANs outperform MLPs on datasets con-
structed from symbolic formulas. Comprehensive surveys and further results are available in (Ji

et al| 2024} Rigas et al.| 2024} [Howard et al.| 2024; |Cheon| [2024; [Qiu et al, 2024} [Polar & Poluek-
tov, 2021} [Lee et al., [2025).

Alongside these empirical successes, a growing body of theoretical work has begun to establish a
rigorous foundation for KANs. Several works have investigated the role of initialization, including
interpolation-based, random-based, and hybrid schemes designed to reduce the computational cost
of KAN initialization and ensure stable training across different basis functions 2025).
On the expressiveness side, showed that KANSs are at least as expressive as MLPs
and may exhibit reduced spectral bias. Generalization properties have also been studied
2025), and other works explore deep learning alternatives to the classical Kolmogorov—Arnold
representation theorem itself (Guilhoto & Perdikaris, 2023}, [Laczkovich| 202T]).

On the optimization side, a wide range of algorithms have been proposed for training machine
learning models (Kingma & Bal, 2015}, |[Carmon et al, [2018), with convergence guarantees typically

relying on smoothness, Lipschitzness, or convexity assumptions (Li & Orabonal, 2019} Nesterov &

Polyak| [2006; Duchi et al., 2011} Reddi et al., 2019} Ji & Telgarsky,[2019). For MLPs, (Zhang et al.,
2021) observed that gradient descent (GD) and stochastic gradient descent (SGD) often reach nearly

global minima in practice, driving the mean squared error toward zero. However, understanding why
simple gradient-based methods succeed in optimizing highly non-convex models such as MLPs and
KANSs remains a central challenge.

Substantial progress has been made in the overparameterized regime (Du et al., 2019} Jacot et al|
2018}, [Arora et all 2019} [Chizat & Bachl 2018a; [Soudry & Carmonl, [2016}, |Soltanolkotabi, 2017}
Xie et al.| 2017; |Chizat & Bach| 2018b; |Soltanolkotabi et al., 2018 [Vaswani et al., 2019; |(Oymak|
& Soltanolkotabil 2020} |Allen-Zhu et al., 2019} |Polaczyk & Cyrankal 2023), where neural tangent
kernel (NTK)-type analyses yield convergence guarantees for sufficiently wide networks. More
recently, overparameterization requirements for two-layer networks have been sharpened:
derive improved width bounds that ensure global convergence of GD through a
refined analysis of the empirical Gram matrix. Extending this line of work to the KAN setting,
prove that a two-layer KAN converges to a global minimum when all parameters are
jointly trained.

B

In this paper, we analyze the training dynamics of a two-layer KAN under a more constrained
setting: only the first-layer coefficients are trained, while the second-layer coefficients are fixed
after a random initialization. This setup, previously studied for standard neural networks
[2019} [Arora et al.,2019)), allows for a clearer analysis. Our contributions are as follows:

* We prove that for a two-layer KAN with only first-layer training, gradient descent con-
verges to a global minimum, driving the training error to zero, provided the hidden layer is
sufficiently wide.
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* We derive a novel, label-dependent bound on the convergence rate, showing that the speed
of convergence is determined by the projection of the label vector onto the eigenvectors of
the corresponding KAN Tangent Kernel (KAN-TK).

* We show that the required width of the hidden layer for guaranteed convergence in our
KAN setup is significantly smaller than that required for standard two-layer neural net-
works (Du et al.l 2019), highlighting a key parameter-efficiency advantage.

* We provide empirical evidence that corroborates our theoretical findings, demonstrating
the faster convergence for wider networks and the impact of label structure.

2 PRELIMINARIES AND SETUP

2.1 KOLMOGOROV-ARNOLD NETWORKS (KANS)

A KAN’s architecture is inspired by the Kolmogorov-Arnold representation theorem, which states
that any continuous multivariate function f : [0, 1]¢ — R can be written as:

2d+1

d
flz) = Z @, <Z ¢p,q(xp)>
qg=1 p=1

where ®, and ¢,, , are continuous univariate functions. While early attempts to build networks based
on this theorem struggled (Sprecher & Draghicil 2002; Koppen, 2002)), the key innovation of modern
KANSs was to extend the two-layer structure of the theorem into a deep network, analogous to MLPs
(Liu et al.;|2025)). In this architecture, learnable univariate functions, often parameterized as splines,
are placed on the edges of the computation graph, while nodes simply perform summation. This
is in stark contrast to MLPs, where linear transformations occur on the edges and fixed non-linear
activations are applied at the nodes.

The learnable edge functions are typically represented as a linear combination of basis functions,
¢(x) = >, ¢;Bi(x), where the coefficients ¢; are trainable parameters. A common choice for
the basis functions B;(x) is B-splines, which are piecewise polynomials with favorable mathe-
matical properties such as local support and controllable smoothness, making them well-suited for
function approximation (Schoenberg & Whitney, |1953; [de Boor, 2001; [Schumaker, 2007). The
original KAN architecture, for instance, uses cubic B-splines by default (Liu et al., [2025). To im-
prove computational performance and explore different inductive biases, various alternatives have
been proposed, including Radial Basis Functions (RBFs) (L1, [2024), Reflectional Switch Activation
Functions (RSWAF) (Delis, [2024), Chebyshev Polynomials (SS et al.,[2024), Rational Polynomials
(Aghaei}, |2024b), and Fractional Jacobi basis functions (Aghaeil, [2025)).

2.2 THE TwoO-LAYER KAN ARCHITECTURE

We focus on a two-layer KAN with a d-dimensional input «, a hidden layer of width m, and a scalar
output. The output f () is defined as:

g

m d g
flx) = \/% SO Budi(zp) where  zp = > ayine(zk).
p=11=1 k=1j=1

Here, {¢; ?:1 are a set of g basis functions (e.g., RBFs), oy, ;i are the learnable coefficients for the
first layer, and 3,,; are the coefficients for the second layer. The %n factor is a standard scaling term
used in overparameterization analysis (Jacot et al., 2018).

A schematic illustration of this two-layer KAN architecture is provided in Figure

2.3  TRAINING DYNAMICS IN OVERPARAMETERIZED MODELS

Our analysis is situated in the overparameterized regime, where the number of model parameters far
exceeds the number of training data points. In this regime, neural networks trained with gradient
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Figure 1: Two Layer KAN

descent often exhibit a phenomenon known as “lazy training” (Chizat & Bach| |2018a)), where the
network weights remain close to their initial values throughout training. This allows the network’s
output to be well-approximated by a first-order Taylor expansion around its initialization.

This linearization gives rise to the Neural Tangent Kernel (NTK) (Jacot et al.,2018)), a deterministic
kernel that governs the training dynamics of the network. For a two-layer MLP, it has been shown
that if the network width is polynomially large in the number of data points n, gradient descent finds
a global minimum, and the training dynamics are equivalent to kernel regression with the NTK (Du
et al.| [2019; |Arora et al., |2019). Our work applies a similar analytical framework to the two-layer
KAN architecture.

2.4 TRAINING SETUP AND PROBLEM FORMULATION
We analyze the network under the following training protocol:

1. Initialization: The first-layer coefficients «,;;, are initialized independently from a Gaus-
sian distribution N(0, 0%). The second-layer coefficients 3,; are initialized independently
and uniformly from the set {—1,41}.

2. Training: Only the first-layer coefficients o« = {1} are updated using full-batch gra-
dient descent. The second-layer coefficients 5 = {f3,;} remain fixed throughout training
(See Appendix [E|for more information).

Given a dataset {(x;, y;) }}_;, the goal is to minimize the mean squared error loss function:
1 s 1L )
L= §Hy —ullz = 3 > (i — f(=:))

i=1

where wu is the vector of network outputs for all data points.

3 THE KAN TANGENT KERNEL

Our analysis relies on the concept of the KAN Tangent Kernel (KAN-TK), which characterizes the
training dynamics of our two-layer KAN in the infinite-width limit. For a general model fg(x), the
tangent kernel is defined as H;; = (Vg fo(x;), Vo fo(x;)). In the lazy training regime, this kernel
remains nearly constant throughout training. Consequently, the complex, non-linear dynamics of the
network can be accurately described by the much simpler process of kernel regression with this fixed
kernel (Jacot et al.,|2018)). Additional explanations and details about tangent kernels are provided in

Appendix [A.1]

For our specific two-layer KAN with a 1D input and RBF basis functions, we can derive a closed-
form expression for the KAN-TK in the infinite-width limit (m — o0). Since we only train the
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first-layer coefficients «, the kernel is computed with respect to these parameters. In this section, we
assume the basis functions ¢, (x) are Radial Basis Functions (RBFs), defined as:

$;(z) = exp <_ % )

Proposition 3.1 (KAN Tangent Kernel with RBF basis). For a two-layer KAN with RBF basis
functions and fixed second-layer coefficients, the tangent kernel with respect to the first-layer weights
« in the infinite-width limit is given by H>. The entry (H>) 4, (for 1 < q,r < n) is:

9 ¢5(a1)d;(x )exp( “l)

J,l=1

where the auxiliary tensors are defined as follows:

Al = dui(2?) dr(x?) + du(a") pr (")
bj" = =2(du(2) + du(z"))
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The derivation of this kernel is provided in Appendix The expression is highly complex and
computationally intensive, scaling polynomially with the number of samples n. This makes it im-
practical for direct use in large-scale applications but provides a powerful tool for our theoretical
analysis. Despite this complexity, we can use the kernel to perform regression and empirically ver-
ify its expressive power. Moreover, in our experiments we relied on this proposition specifically
because it provides access to the eigenvalues and eigenvectors of the KAN-TK, which are essential
for analyzing label alignment and convergence behavior.

4 THEORETICAL ANALYSIS

In this section, we present our main theoretical results. We first prove that gradient descent on our
two-layer KAN converges to a global minimum with zero training error. We then refine this result
by deriving a label-dependent convergence rate. Our analysis relies on a few standard assumptions.

Assumptions. We assume the following conditions hold:
1. Basis Functions: The basis functions ¢; are bounded, |¢;(z)| < 1, twice differentiable
with bounded first and second derivatives, |¢;(x)|, |¢/ (x)| < 1, and satisfy ¢;(0) =

2. Positive Definite Kernel: The infinite-width KAN Tangent Kernel H *° is positive definite,
meaning its minimum eigenvalue )\ is strictly positive (Ag > 0).

;| < 1foralli.

3.

The assumption of a Positive Definite Kernel is standard in the analysis of overparameterized neural
networks (Du et al.| 2019; |Arora et al., [2019). In particular, (Gao & Tanl [2025)) shows that this
assumption holds for KANs equipped with appropriate polynomial basis functions. Their Lemma 1
states:
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Lemma 4.1 (Positive Definite Kernels). Assume that the basis functions are polynomials of degree
less than g and the transformation functions are hyperbolic tangent or sigmoid. Then Ay > 0 holds
when all training samples are distinct. If no transformation is used, Ao > 0 holds when the training
samples are linearly independent in the g-degree polynomial space:

2 g g \n
{l‘i’l, xi,l’ ey $i717 e 7xi,d7 e 7xi,d}i:1
where § = (g — 1)2

The transformation 1) (e.g., tanh or sigmoid) ensures the first-layer outputs lie within the domain of
the polynomial basis, so KAN variants using such nonlinearities satisfy the lemma when samples are
distinct. In the no-transformation case (¢)(z) = z), the lemma only requires linear independence in
the relevant polynomial space. Empirically, using FastKAN (Li, [2024), we observe strictly positive
minimum eigenvalues of the infinite-width KAN-TK across several input distributions (e.g., 3.29 X
10~ for 1inspace on [—1, 1]), supporting this assumption in practice.

4.1 GLOBAL CONVERGENCE

We first establish that under sufficient overparameterization, the training loss converges to zero.

Theorem 4.2 (Convergence to Global Minimum). Suppose the hidden layer width m is sufficiently
large and the initialization variance o2 is sufficiently small, i.e.,

d?¢%n? n ) )
m 2 max logl=),n]), c=0| — | .
~ ( A2 g(é) V/mng3d

Then, with probability at least 1 — O(0) over the random initialization, the gradient descent updates
satisfy a linear convergence guarantee:

Lt+1) < (1 - 77;‘)) L(t),

where n = O (#396) is the learning rate and Ao = Apin (H ) is the minimum eigenvalue of the
infinite-width kernel.

Proof Sketch. The proof of Theorem detailed in Appendix [B] proceeds by induction. The
core idea is to show that the network operates in the “lazy training” regime where the tangent kernel
remains stable. We first expand the loss at step ¢ + 1:

ly =t + D3 = lly = w(®)ll3 — 2(y — w(®)" (w(t + 1) —u®)) + [lu(t + 1) - u(t)|3

. The change in the output, u(t+1) —u(t), can be approximated by a first-order Taylor series, which
relates it to the tangent kernel at time ¢, H (t) [Jacot et al.| (2018)). Using stability Lemmas below, [4.3]
and we show that H () remains close to the deterministic, infinite-width kernel H *°. This
stability allows us to bound the terms in the expansion and demonstrate a consistent linear decrease
in the loss at each step.

Lemma 4.3 (Coefficient Stability). Under the assumptions of Theorem the first-layer coeffi-
cients remain in a small neighborhood of their initialization values throughout training. That is,

sge(t) = a(0)] < R where R = O (525 [u(0) ~ yll2).

Lemma 4.4 (Kernel Stability over Time). With high probability, the distance between the tangent
kernel at time t and at initialization is bounded: | H (t) — H(0)|]2 < 2n%d%¢*R.

Lemma 4.5 (Initial Kernel Concentration). With high probability, the distance between the initial

tangent kernel and the infinite-width kernel is bounded: || H(0) — H* ||y < dj;ll log (%)

4.2 LABEL-DEPENDENT CONVERGENCE RATE

Next, we refine the convergence rate to show its dependency on the structure of the data labels.
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Theorem 4.6 (Label-Dependent Convergence Bound). Under the same conditions as Theorem
let the eigendecomposition of the KAN-TK be H® = " | \iv;vl. Then the error vector at time
t can be bounded as:

ly —u(®)llz < | D (1 —nr)* (o] y)2 e
=1

where € is a small error term that vanishes as m — oo.

Proof Sketch. To prove Theorem .6 we start with the gradient descent update rule and show
that the change in the output can be approximated as u(t + 1) — u(t) = —nH>(u(t) — y). This
allows us to express the error vector at step ¢t + 1 as a recurrence relation: (u(t + 1) —y) ~
(I —nH®)(u(t) — y). Unrolling this recurrence yields u(t) — y ~ —(I — nH>)!(u(0) — y).
By assuming a small initialization variance o2, the initial output ||u(0)]|2 is negligible compared
to ||y||2- Taking the norm and applying the eigendecomposition of H*° gives the desired label-
dependent bound. The full proof is deferred to Appendix [C|

Remark 1 (Eigenstructure and Convergence Speed). Theorem demonstrates that the compo-
nents of the error aligned with eigenvectors (v;) corresponding to large eigenvalues ()\;) decay the
fastest. Consequently, if the label vector y has a strong projection onto these top eigenvectors (i.e.,
the labels have a structure that the kernel is well-suited to learn), the overall convergence will be
much faster than if the labels were random or aligned with eigenvectors of small eigenvalues.

5 EXPERIMENTS

We conduct a series of experiments using a two-layer KAN with RBF basis functions to validate
our theoretical claims. Our implementation is based on the FastKAN architecture (Li,2024). In all
experiments, we train only the first-layer coefficients using full-batch gradient descent, keeping the
second-layer coefficients fixed after their random initialization. Additional experimental results are
provided in Appendix

5.1 CONVERGENCE RATE VS. NETWORK WIDTH

To validate Theorem [d.2]and the underlying “lazy training” phenomenon, we study how the hidden
layer width m influences convergence.

Setup. We generate a synthetic dataset with n = 100 samples in d = 100 dimensions, where
each feature is drawn from a standard normal distribution. Labels are drawn independently from
N(0,1) to create a challenging learning task. We train KANs with varying hidden widths (m €
{500, 1000, 2000, 4000, 8000, 16000, 32000}) for 5000 epochs.

Results. Figure 23] reports the training error across epochs. As predicted by Theorem 4.2} larger
widths m yield faster convergence. Figure [2b] shows the maximum distance of the weight coeffi-
cients from initialization, ||a(t) — a(0)]|co. As m increases, the weights travel shorter distances,
empirically confirming the “lazy training” assumption in Lemma[4.3]

5.2 IMPACT OF LABEL STRUCTURE ON CONVERGENCE

We now empirically evaluate Theorem A.6] which predicts that the convergence rate of gradient
descent is determined by how the label vector y aligns with the eigenspectrum of the KAN-TK.

Setup for Figure [3af We generate a one-dimensional dataset with n = 50 points sampled uni-
formly from [—1,1]. After computing the infinite-width KAN-TK H®°, we project several label
configurations onto its eigenvectors. We compare structured labels of the form

 sin®(0.72/2)
V) v

with random labels drawn independently from N(0, 1).
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Figure 2: Convergence behavior across hidden widths m. (a) Training error decreases faster for
wider networks. (b) Wider networks exhibit smaller deviations from initialization, consistent with
the lazy training regime.
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Figure 3: Effect of label structure on convergence. (a) Structured labels align with top eigenvectors,
whereas random labels distribute across the spectrum. (b) Training converges fastest for structured
labels, slower for random labels, and slowest for anti-structured labels.

Setup for Figure@ We conduct a second experiment on a similar one-dimensional dataset with
n = 30 uniformly spaced points in [—1, 1]. We evaluate three label configurations:

1. Structured, given by Eq. equation|[T}
2. Random, sampled i.i.d. from A/ (0, 1);

3. Anti-structured, defined as the eigenvector of H *° associated with its smallest eigenvalue.

For all settings, we train a two-layer RBF-based KAN with hidden width m = 5000, updating only
the first-layer coefficients for 3000 epochs using full-batch gradient descent.

Results. Figure [3a]illustrates the projections of the structured and random label vectors onto the
eigenbasis of H°°. The structured labels concentrate most of their energy on the top eigenvectors,
whereas random labels distribute their mass more uniformly across the spectrum. Figure [3b]shows
the resulting optimization dynamics: networks trained on structured labels converge the fastest,
random labels converge at a moderate rate, and anti-structured labels converge the slowest. Together,
these observations provide strong empirical support for the label-dependent convergence behavior
predicted by Theorem 4.6}
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Table 1: Comparison of required hidden layer width and number of trainable parameters for global
convergence guarantees.

Network Type Hidden Layer Width (m) Trainable Parameters
Neural Network (Du et al., [2019)) () n—ﬁ (@) ﬁ
1 g3 PYIE
/9.3 _ /a'0n3d
KAN (Both Layers) (Gao & Tan, 2025) 6] (g A%L ) 0) <g ;;) )
d 6,,2 d3 7,2
KAN (First Layer Only) (Ours) (’)( ign ) (’)( ign )

6 COMPARISON AND DISCUSSION

We now compare the complexity of our proposed training scheme with two key benchmarks: (1)
standard two-layer neural networks (Du et al., 2019), and (2) two-layer KANs where both layers
are trained (Gao & Tan, |2025). This analysis highlights the trade-offs between parameter efficiency,
stability, and convergence speed.

6.1 PARAMETER AND WIDTH COMPARISON

Table [ summarizes the asymptotic requirements on hidden layer width and the number of trainable
parameters needed to guarantee convergence to a global minimum.

Our method substantially reduces the required network width (m) compared to standard ReLU-
activated Neural Networks (NNs) while employing the same Tangent Kernel (TK) stability analysis
methodology used for examining neural networks in the overparameterized regime (Du et al.||2019).
Specifically, classical two-layer NNs (often using ReLU) require a width of m = O(n°) to guar-
antee convergence, whereas our first-layer-only Kolmogorov-Arnold Network (KAN) achieves this
guarantee with m = O(n?), highlighting a parameter-efficiency advantage. This enhanced effi-
ciency stems directly from the superior expressive power of the learnable basis functions (such as
polynomials) inherent in KAN architectures, which alleviate the need for extremely wide layers.

Compared to training both layers of a KAN, our method achieves improved stability with respect to
Ao. In particular, the dependence on the minimum eigenvalue of the tangent kernel, A\, improves
from A\, Y to Ao 2. This weaker dependence is advantageous because A can be very small in prac-
tice, and guarantees that are less sensitive to its value are therefore more robust. For instance, if
\o decreases by a factor of k, a neural network would require k* times more width to maintain
convergence, whereas a KAN would require only k2 times more width. The trade-off is that our
bounds introduce a stronger dependence on the input dimension d and the number of basis functions
g. Nonetheless, since the dataset size n typically dominates in practical settings, we regard this as a
favorable trade-off between stability and parameter scaling.

Remark 2 (Why KANs Achieve Better Width Scaling than MLPs). KANs require only O(n?) width
for kernel concentration and convergence, whereas two-layer ReLU networks typically need O (n®).
The fundamental reason is the smooth and stable nature of KAN features during training. As empha-
sized in the original KAN paper, KANs replace neuron-level activations with learnable univariate
spline functions along edges. As a result, intermediate representations are compositions of smooth
one-dimensional functions rather than brittle, sign-dependent ReLU activations. This smoothness
ensures that the Neural Tangent Kernel (NTK) of a KAN depends only on bounded derivatives of
these splines and involves at most pairwise interactions between samples, yielding concentration
with width scaling that is only quadratic in the dataset size. In contrast, classical ReLU networks
must maintain stability of discrete activation patterns during training. NTK analyses (e.g., (Du
et al.,|2019)) show that preventing activation-pattern flips requires controlling higher-order interac-
tions among samples, which amplifies into the O(n®) width requirement. Thus, the structural design
of KANs—learnable smooth functions on edges, aligned with the Kolmogorov—Arnold representa-
tion—eliminates the combinatorial instability inherent to ReLU networks and leads directly to the
improved O(n?) scaling.
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Table 2: Comparison of required learning rates for guaranteed convergence.

Network Type Learning Rate (1))
A
Neural Network (Du et al.,[2019) O <g>
n
1
KAN (Both Layers) (Gao & Tan, [2025]) O <>
g
. Ao
KAN (First Layer Only) (Ours) O ———
n3d2gb

Remark 3 (More Advanced Methods). A recent work, |Polaczyk & Cyrankal(2023), introduced a
novel approach for characterizing the hidden-layer width necessary to guarantee global conver-
gence of gradient descent in the overparameterized regime. By leveraging properties of random
initializations alongside nonlinear analysis techniques—specifically Clarke subdifferentials and Dif-
ferential Inclusion (DI) Cauchy problems—they established a tighter bound of O(n*-*®) (Polaczyk
& Cyrankal |2023)). Adopting these techniques for KANs presents a promising avenue for future re-
search to further tighten our theoretical bounds. However, to ensure a fair comparison in the present
work, we benchmark against (Du et al.}|2019), as that study employs a proof methodology consistent
with our own.

6.2 CONVERGENCE RATE COMPARISON

While our approach is more parameter-efficient and stable, it requires a smaller learning rate, which
in turn leads to slower convergence. The key difference lies in the allowable step size 7.

As shown in Table [2] our method requires a smaller step size than either of the benchmarks. Since
the linear convergence rate scales with 1\, this smaller 7 results in slower learning. This trade-off
is expected: by simplifying the optimization to only the first layer, we obtain stronger guarantees on
parameter efficiency and stability, at the expense of convergence speed.

7 CONCLUSION

This work provides a theoretical analysis of the optimization dynamics of two-layer Kolmogorov-
Arnold Networks in the overparameterized regime. By focusing on a simplified setting where only
the first layer is trained, we prove that gradient descent converges to a global minimum, achieving
zero training error. We also provide a fine-grained, label-dependent convergence rate that connects
the optimization speed to the intrinsic structure of the learning task. Our results demonstrate that
KANSs are not only more interpretable but also significantly more parameter-efficient than classical
neural networks with ReLLU activations, requiring a polynomially smaller hidden layer width (m =
O(n?) vs. m = O(n®)) to guarantee convergence.

Our analysis opens several promising avenues for future research. An immediate next step is to
extend this theoretical framework to deep KANSs to understand the role of depth in the training dy-
namics and convergence rates. Another important direction is to analyze the behavior of KANs
under more practical, stochastic optimization algorithms like Adam. Furthermore, exploring alter-
native theoretical methodologies beyond the tangent kernel framework is crucial for deriving tighter
convergence bounds. We can also examine the interpretability of KANs specifically within the
overparameterized regime, connecting theoretical guarantees with explanatory power. Additional
research should focus on deriving closed-form expressions for the KAN Tangent Kernel for multi-
dimensional inputs and other basis functions, which would provide deeper insights into different
KAN architectures. Finally, we must also examine the impact of various initialization techniques on
the performance and theoretical guarantees of KANs in the overparameterized setting.
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A TANGENT KERNELS

A.1 BACKGROUND ON TANGENT KERNELS

The tangent kernel is a key concept for analyzing the training dynamics of overparameterized net-
works. Formally, for a model fg(x) with parameters 6, the tangent kernel is defined as

H;j = (Ve fo(xi), Vo fo(x;))

where x;, x; are data samples. Intuitively, H measures how similarly parameter updates induced by
different data points affect the model output.

In the so-called lazy training regime, which arises when the network is sufficiently wide, the tangent
kernel remains nearly constant throughout training. This stability means that the nonlinear training
dynamics of the network can be closely approximated by a linear model whose evolution is governed
by this fixed kernel. As a consequence, gradient descent on the network is equivalent to performing
kernel regression with the tangent kernel (Jacot et al., 2018)).

For standard neural networks, this leads to the well-known Neural Tangent Kernel (NTK). In our
case, where we focus on two-layer Kolmogorov—Arnold Networks (KANs) with only the first-layer
coefficients trained, the analogous object is the KAN Tangent Kernel (KAN-TK). The KAN-TK cap-
tures the interaction between input features and learnable basis-function coefficients. In the infinite-
width limit (m — o0), we can derive a deterministic closed-form expression for KAN-TK when
using RBF basis functions, which we employ throughout our experiments.

Finite- and infinite-width kernels. If we run an optimization algorithm, then the parameters 0
evolve with time, making the tangent kernel time dependent. We denote the kernel at step ¢ by
H(t) = (Hy(t))

n

ij=1

which is computed from the gradients at that point in training. If the network is initialized randomly,
then H (0) is itself a random matrix. Its expectation over random initialization defines the infinite-
width tangent kernel, denoted by H .

Networks Act Like Kernel Ridge Regression. To see why wide neural networks effectively be-
have like kernel methods, note that in the lazy training regime the features Vg fg (x;) remain nearly
constant during training. This means that the model output at time ¢ can be approximated by a linear
expansion around initialization:

fowy(®) ~ fo0) () + Ve foo) (x)" (8(t) — 6(0)).
Since the gradient features are fixed, learning reduces to finding linear coefficients on this (very high-
dimensional) feature map. By the representer theorem, this is equivalent to solving a kernel ridge
regression problem with kernel matrix H, where each entry H;; measures the similarity between
features induced by samples x; and ;.

In other words, training an infinitely wide neural network with gradient descent is mathematically
the same as performing kernel regression with its tangent kernel. The nonlinearity of the original
network is thus captured entirely through the structure of H °°, while the optimization itself is no
more complicated than linear regression in feature space.
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Figure 4: Two-Layer KAN With 1D Input

Connection to training dynamics. One of the main advantages of tangent kernels is that they al-
low us to describe the network’s dynamics explicitly. For example, under gradient flow optimization
(Du et al.} 2019), the output vector evolves according to

W 1) (g~ ulr).

This shows that the convergence behavior of the network is governed entirely by the spectral prop-
erties of H (t) (or H° in the infinite-width case).

Thus, the tangent kernel viewpoint bridges the gap between the nonlinear training of KANs and
a tractable kernel regression framework, offering both analytical insights and practical tools for
understanding their optimization behavior.

A.2 PROOF OF PROPOSITION [3.1]

Figure ] illustrates the two-layer Kolmogorov—Arnold Network (KAN) in the special case of a one-
dimensional input. This schematic clarifies the roles of the ;5 and 3;; coefficients, the intermediate
activations z;, and the final scaled aggregation —— \F > > Bidi(z;) that produces the network out-

put f(x). The subsequent analysis in this appendix derives the infinite-width kernel H*° associated
with this architecture by decomposing it into the contributions from the 3 parameters (H{*) and the
o parameters (H3®).

By definition, we have:

(H7?)qr (H3®)qr
oo _ Of(?) Of(z"), Of(x?) Of(x")
Hq7 _< 8ﬁ ) 85 >+< 80[ I aa > (2)

First, we compute the H° term. From the definition of our network, we know that aaféf) =
ij

ﬁcgﬁj (z;). From this, we can conclude:
1
Jar = m Z Z e
i=1 j=1
g
=E|> ¢;(z))0;(z 3)

Jj=1
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where the second line follows from the law of large numbers as m — oco. We can simplify this as:

(T =)+ (2 y)?
( )

g
(H{®)qr =E Zexp

j=1
g 203 + (29)% + (27)? — 2u (27 + 27)
= ZIE exp | — 52
i=1 7
s9"
2\ 9 2 2 r
M 2N+ (27) —2p5 (27 + 2
-wm&é)ZEmp—(>()%ﬂ“ ) @
j=1

Since 2¢ = -7, ay¢i(29) and a ~ N(0, I;), we can write SI" = a” A9"a + 11;(b7") " where
Afp = du(@)or (@) + Gi(x")r(x") and b = =2(¢(27) + @i (a")) 5)

Using the moment generating function for a quadratic form of Gaussian random variables
(A.M. Mathai, [1992), we get:

exp( L (berYT (T — 2tA‘")—1qu>

E [exp (tS}")] = det (I — 2tA7)

(6)

Setting t = —1/(20?) gives:

I

= 1
= \/det (I + — Aar
o

Next, we compute H$°. The derivative with respect to «;; is:

15 1
) exp (8 (67" (I + (ﬂAq")‘lbq”) %

Of(@) _ 1 S~
Pag = U ;ml(m@ (@) )
This leads to:
g
(H%)gr =B | D> BiBeti ()¢} (2") ¢ (2%) 5 (")
s,l,j=1
g
Z [61(z1) 81 (") (29); (") ©)
where the second line follows because E[3; 3] = ;5. Since ¢(z) = —=-F ¢;(z), we have:
~ ¢ (29), (") . .
Jor = g Bl =) (2" = )en(2?)du(2")] (10)

=1

The expectation term can be written as:
q __ 2 ro__ 2
(27 = )® + (2" — ) )] (11

E {(zq — ) (2" — pu) exp <_ 202

Let Z"(t) = E[exp(tS]")]. We can relate the expectation to derivatives of Z" (¢) with respect to
the components of b?".

oz (t ,

7t = tuBla, exp(is]) (12)
O*Z" (t) r
7817?/8[)? = (tu)*Elasay, exp(tS]T)] (13)
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And we know that (27 — ) (2" — ) = >, asapds(z?)dp(a”) + u? + >, b¥ . Putting
these pieces together, we can express the expectation in terms of Z lq"'(t) and its derivatives:

" bs(x ") 9*Z" (1)
E[(z4 — u)(2" — !
[(27 = ) (=7 — ju) exp {57} Z tm VT o7
r i oZ" (t
+ iz (¢ Z qu (14)

By defining G4 = (I — 2tA? )~ and T/"" = exp (t I (b4 (I - 2tA‘”")_1b‘”">, we can find

closed forms for the derivatives of Z/"(¢). Substituting these back gives the final expression for
(H$°)qr, which completes the proof. We have the following:

OZI" (1) (L - 20AT) " pr),

— = " 15
obs det (I —2tAa) ! ()
OZP (1) _ (L= 2A7) Yy g
b oby" det (I —2tAa)
thut (I — 2t AT) 19 (1 — 2t AT) b)),
" 16
+ det (I — 2tAd) ! (16)
By defining:
. 10Z1"(t .
=10 — i A @Gy, a7
qr 1 022" (t) ™ (G4 qr 4 42 2 ary (AT T arpary, TI"
Xoa = 2,2 6T 6T = /det (G9")(G?") o, T)"" + t"pj det(G?") (G b)) (G b)), T}
(18)
we can write:
E{(24 — u)(z" — ) exp {t5"}} = Z Gs(@)gp(@") X, + 1P Z{" + Z bIYY (19)
Substituting this back into the expression for (HS5°),, gives the final result:
(Vs (" uj
g 0 (@) ¢;(x") exp
-3 T e e - )
7,0=1 s
(20)
O

B PROOF OF THEOREM

We begin by recalling the two-layer Kolmogorov—Arnold Network (KAN) architecture analyzed in
this appendix (see also Figure|[T):

L m
f(x) = ﬁ Zp:1 Z?ﬂ Bpidi(zp),
2D
Zp = Zi:l Z?:l ik ds (k).

This formulation makes explicit the dependence of the network output f () on the coefficients o
and 3,;, which will be central in the stability analysis that follows.
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B.1 PROOF OF LEMMA [4.3] (COEFFICIENT STABILITY)

By the induction hypothesis we have

L(t) < (1 - J) L(t—1).
Hence N
() =yl < (1= 52) lutt = 1) - w3,

which implies
nAo
)~ wla < /12 Ju(t - 1)~ g,
A
Q—?fwm@—n—ym @mmﬂ—xﬁl—gmmgxgh

< (129 Ju0) ~ gl 22)

Now consider the gradient descent update for a single coefficient ;i

OL(t—1)
aiji(t) — aije(t —1) = —n “dags
= ——= > (ug(t—1) —y,) <ZZﬁpl ¢ zq> (23)
v Ocviji \ g 1
Taking absolute values and using |¢;(-)| < 1 from the assumptions,
Jasge(t) — oigp(t = 1)) < = Zwl \ \|uq<t—1> ~ 1l

_\FZM 215 (x) Sip lug(t — 1) — yg] (24)

q,p,l

A
‘ =

= \/*Z|uq t_ 1 |
< ”% [t — 1) = ylla, (25)

where in equation 24| we used d;, = I{¢ = p}, and in equationthe inequality |||y < /nl|z||2
for xz € R".

Summing these updates over 7 = 0tot — 1,

| (t) — i (0 |<Z|%k +1) — aiji(7)]

< ng\/Z Z Jutr) -yl

A .
<ngy/ = rﬂ ) lu(0) ~ yll2  (by equation22)

\/7 1-(1- UT/\O)
=ngy/ — lu(0) —yllz - ———
m nA
1-(1- TO)
< fgf 1u(0) — yllo. (26)

19



Under review as a conference paper at ICLR 2026

Defining
4gy/n
R = 0) —
S [(0) - Yl
we conclude that |ov;;5(t) — a;j,(0)] < R for all ¢, completing the proof. O

B.2 PROOF OF LEMMA [4.4] (KERNEL STABILITY OVER TIME)

By definition, the (g, ) entry of the tangent kernel at time ¢ is

7 0ug(t) Ou,(t)
Hgy(t) = < aqa " oa > 27
From Section we have already computed
Oug(t)
&juk \F Zﬁzl 012 (1)) &5 (). (28)
Substituting equation 28] into equation [27] gives
DRI PITEDITIEN [ SERAEDINE
i=1 j=1 k=1
Y BuBis 612 (6) b5 () S (=] (1)) 5 (). (29)
4,7,k,0,s
Therefore,
1
[Hor(t) — Hor (0)] < — Z |0 (21) 85 (@R 1= ()84 (2] (£)) — ¢1(={ (0) 5 (2] (0))]
,3,k,1¢
1 .
< — D A E)EGE (0) — 906 (1 (0))]
i,7,k,l,s
1 . o
<57 (19110 — SO + L) — S OD]), G0
igikls
where we used |¢;(-)] < 1 and [¢)(-)| < 1 and we now for a,b,c,d < 1 we have |ab — cd| <
la —c|+|b—d|.
From the network definition equation 21}
d g
28(8) = 210)] < DY 16(2)] ez (t) — aii(0)] < gdR, 31)
k=1j=1

where the last inequality follows from Lemmaand the bound |¢; (z})| < 1.

By Assumptions, the second derivative of ¢; is bounded, hence

|61(2 (1)) — d1 (= (0))] < [ (t) — 2{(0)] < gdR. (32)
Substituting equation [32]into equation 30 we obtain
1
[Hor(t) = Hyr(0) < — > 29dR =2d°g"R. (33)
i,5,k,l,s

Finally, taking matrix norms gives

|H(t) — H(0)[2 < [[H(t) -~ HO)|[r < > [Hep(t) = Hp(0)| < 20°d°g"R. (34)

q,r=1
This completes the proof. O
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B.3 PROOF OF LEMMA [4.5] (INITIAL KERNEL CONCENTRATION)

We begin by observing that
1 / / r T
Hor(0) = — i jEk . BiBis#1(2{(0)) ¢; (w3 )9 (27 (0)) ¢5 (). (35)

Since the coefficients «;;;, are independent across different 4, the expression above can be written as
the average of m i.i.d. random variables

X =) BuBisti(2(0)) 65 (x7) 84 (1 (0)) 5 (x7). (36)
J.k,l,s
By our assumptions, each variable is bounded in absolute value by

| X < dg®.

Applying Hoeffding’s inequality, we obtain

oo me>
]P’HHQT(O) —HY| > e] < 2exp _W . (37)
Taking a union bound over all n? entries of the kernel matrix, it follows that
0o 2 me2
P[Vq,r € [n] : [Hg(0) — Hop| < €] > 1—2n°exp “2ags ) (38)
Equivalently, setting
dg? 1 2n?
€= ——4/log| — |,
vm\ 8\ s
we obtain that with probability at least 1 — 6,
d?¢%n? 2n?
IB10) ~ F1 < |HO) - B2 < S0 hog(2 ) (39)
which establishes Lemma .31 O

B.4 PROOF OF THEOREM[4.2]

Step 1: Bounding the initial error. We begin by establishing an upper bound on the initial error.
By the triangle inequality,

ly — w(0)II3 < 2yl3 + 2[u(0)]3. (40)

From our assumptions, we have ||y||3 < n. We now derive a bound for the second term.

Step 2: Distribution of the initialization. By the definition of z, in equation we know that

zp(0) ~ N | 0, o2 Z qb?(xk)
gk

Therefore,

B0l = 2 0[S 0200 S 0V
J.k

Using assumptions, we obtain
1
Eluq(0)] < —= > El¢u(,(0))|
vm Dyl

< Vmdg*?o.
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By Markov’s inequality, with probability at least 1 — J, we have

vmd
[u(0)ll2 < [lu(0)]h S —5—ng*/%o. (41)
Substituting equation 4] into equation[40] we obtain
md
ly = w(0)3 S n+ 7 ng’0” (42)

Step 3: Error recursion. We now analyze the error at step ¢ + 1. Expanding the loss, we have
ly —w(t+ D)3 = lly —u(t) — (u(t +1) —u®)]3
= lly —w(®)ll3 = 2(y —u(®)) " (w(t +1) = u(t) + lu(t +1) — w(b)|3.
(43)
Step 4: Defining the error term. To control the update define the error term

eq(t) = uq(t +1) — +nZHqT up(t) = ). (44)

By expanding H,,(t), we obtain

nzﬂqr w®) =) = Y () = ) BB (D)5 ()6l (2 (1) 5 (a)
p,3,k,0l,s,7
= ;—% > Botlapit+1) = oy (0)] (5 (6) 65 (27)
p.J:k,l
Z/Bpl (t+1) = 28(6)) 0 (25 (1)). (45)

Substituting equation [45]into equation @ we find

(W)= 7= > n (10250 +1) = 61(=500)) — SO+ 1) — 25(0)].

Step 5: Bounding the Taylor remainder. By Taylor’s theorem and assumptions, we obtain

Azt +1)) — dul(z5(1) — (25 (1)) (25 (t + 1) — 25(1)) < %(ZZ(t +1) = 2()".
Moreover, from equation 23] one can bound
|zt +1) = 250 < D lopse(t + 1) — apgi ()]l (2]
ik
d
< D Plu(e) -yl 6)

Combining these estimates gives
ly —u(t+ 13 = lly —u@®)]3 - 2(y — w(t)" (-nH(u(t) - y) + €(t) + [ut + 1) - u(t)]2
< (1= 20min (H (1)) + 2]y — w(t)ll2lle®)]l2 + n*d?g°n?) [ly — u(®)]3.

47)
Step 6: Bounding the size of the update. Using equation 46} we find
1
Jug(t +1) — uq(t)] < ﬁ D 1zt +1)) = du(=4(t)]
p,l
leq (t+1) = 2z5(t)]
< ndg?’\/ﬁHU( ) = yll2 (48)
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Thus,
u(t+1) = w(t)|2 < lult + 1) — u(t)|1 < ndg®n®?|u(t) -yl

Substituting into equation 3] we obtain

ly —u(t+ D3 = lly - u®)]3 - 2(y — w(t)" (-nH(u(t) - y) + €(t) + [ut + 1) —u(t)]2
< (1= 20min (H (1)) + 2]y — w(t)ll2lle®)]l2 + n*d?g°n?) [ly — u(®)]3-
(49)

Step 7: Lower bounding the minimum eigenvalue. We now lower bound A, (H (t)). By
Weyl’s perturbation inequality [Bhatia| (2013) and Lemma[4.5] if

om0 ()

then ||[H(0) — H*||2 < X¢/4, and hence Ayin (H(0)) > %)\0- Furthermore, by Lemma if
R = O()\o/(n%d%g")), then

[ (0) = H(t)[|l2 < Xo/4.

Together these imply
Amin (H (t)) > Xo/2.

Step 8: Final convergence bound. Substituting this into equation 9] and using the induction
hypothesis [y — u(t)[|2 < [ly — u(0)]|2, we obtain
2.2 5
nn~d-g
Jy = e+ DIE < (1= %0 +colly = w(O) ™= +rPdg*n ) ly = w(o)|

n d
< (1 = 1o + enn?d* g\ — + SngPo? + n2d2g6n3) ly —u(t)]3. (50)

Finally, suppose that o = O (6/\/mng3d) and m = O(n). If we choose the learning rate
Ao
NS 5p06 255
then it follows that

nA
ly = w(t + DI < (1= 20) Jy - u(@) 3,

which establishes the desired linear convergence rate. O

C PROOF OF THEOREM

We prove Theorem [4.6) by relying on the lemmas established in Appendix [B] Starting from equa-
tion [44] we have, for each coordinate,

Ut + 1) = ug(t) = —1'>" Hor(8) (ur(6) = 1) + (1) (51)
r=1
In vector form this yields
u(t+1) —u(t) = —nH(t)(u(t) — y) + €(t), (52)
where €(t) = [e(t)];; is the coordinate-wise Taylor remainder.

Using Lemmas 4.5 and 4.4 we decompose H (t) = H*> + (H (t) — H>°) and rewrite equation [52]
as

u(t+1) —u(t) = —nH>™(ut) —y) —n(H() — H™)(u(t) — y) + €(t). (53)
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Define

X () = —n(H(t) = H*) (u(t) — y).
By the triangle inequality and the lemmas controlling H (0) — H> and H (¢t) — H(0) we obtain
the high-probability bound

Ix(®)ll2 < n| H* = H(®)|2llu(t) - Il
< n(|lH™ — H(O) |12 + [ H(0) = H)|2) [u(t) - yll2
< 202 R [u(t) - yllo, (54)

where the last inequality uses the concrete bounds from Lemmas [4.5] and [4.4] (see main text for the
precise dependence on m and R).

Set ¢(t) := x(t) + €(t). Then the one-step recursion becomes

u(t+1) —y = (I —nH>)(u(t) —y) + (). (55)
Unrolling this recursion for ¢ steps gives

u(t) —y = (I —nH>) (w(0) —y) + > (I —nH®)((t—1-7)
=0

t—1
= (I =nH*)'y + (I = nH*)'u(0) + 3 (T —qH)"¢(t=1-7).  (56)
7=0
The first term —(I — nH )%y is the label-dependent main term in the theorem; we must show the
remaining two terms are negligible.

Bounding the initialization term. From equation {4 1| we have (with high probability)

I =) () < (1= ) )l < (1 = o) Lg%

Thus for small initialization variance o2 the initialization term decays exponentially and is negligi-
ble.

(57)

Bounding the accumulated error term. Using equation and the bound on €(t) from Ap-
pendix [B| we obtain for the accumulated error

t—1 t—1
IS —nE*) ¢ —1=7)| <N = nH=) )¢t~ 1 =)
7=0 7=0
t—1
<D (1=nd0)" Cn2d’g'R u(t) -yl
=0
t—1
SnPd?g R (1= nXo) [[u(0) — yl2, (58)
=0
where C'is an absolute constant absorbed into < and we used the 1nduct10n bound ||u(t) — yll2 <
|| (0) — y||2 in the last line. Substituting the bound equation {2]for ||« (0) sz yields

HZ (I —nH>)¢ (t—l—r)‘ <SnPd?g' Ry n—i——an o2 Z 1—nXo)”
n?d’¢*R md
5 W n+ 5—2n2930'2 . (59)

Parameter choices and conclusion. If we choose the initialization variance and stability radius

as
§ nAo
Sy,) —— R=0( 10
g <m n93d> ) (n5/2d294) )

then both the initialization term equation[57)and the accumulated error above can be made arbitrarily
small. Under these choices the dominant term in equation [56|is —(I — nH )y, and the label-
dependent bound of Theorem [.6|follows. O
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KAN Kernel Regression on Linear Data KAN Kernel Regression on Polynomial Data
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Input Feature (x) Input Feature (x)

(a) Linear data (b) Polynomial data

Figure 5: KAN-TK regression results on synthetic datasets. Figure (a) shows performance on linear
data, while Figure (b) shows polynomial data.

D ADDITIONAL EXPERIMENTS

D.1 ADDITIONAL REGRESSION EXPERIMENTS WITH KAN-TK

As shown in Figure [5] kernel regression with our derived KAN-TK effectively fits both a simple
linear function (Figure[5a) and a more complex polynomial function (Figure 5b). This demonstrates
that the induced kernel captures the expressive function space of the underlying KAN. To avoid
overfitting, we apply Kernel Ridge Regression with a regularization parameter of A = 0.1.

Setup. For both experiments, we construct datasets of n = 50 samples with inputs drawn uni-
formly from the interval [—1, 1]. The linear dataset is generated from

y=5x+e ¢e~N(0,0.01),
while the polynomial dataset is generated from

y =052 —8.62% +1.3202 + 2z +¢, €~ N(0,0.01).

Results. Figure[5ashows that the KAN-TK regressor recovers the linear function almost perfectly
despite the additive noise. Figure [5b|further illustrates that the kernel can fit a substantially more
complex nonlinear target function with high accuracy. These results highlight the flexibility of KAN-
TK: even with a modest number of samples, it adapts effectively to functions of varying complexity
while maintaining robustness through regularization.

D.2 EXAMINING RESULTS ON MORE COMPLEX DATASETS

In this section, we evaluate our convergence and distance-from-initialization results on two standard
image classification benchmarks: MNIST [LeCun et al.| (1998)) and CIFAR-10 [Krizhevsky| (2009).

Setup. For MNIST, we considered model widths m € {32,128, 512,2048}, and for CIFAR-10 we
used m € {256,512,1024,2048}. All experiments were run for 20 epochs using the cross-entropy
loss.

Results. Figure [6] reports the training error and parameter deviation for MNIST, while Figure
provides the corresponding results for CIFAR-10. As shown in both cases, the empirical trends
observed previously—namely, improved convergence and reduced movement from initialization at
larger widths—persist even on these significantly more complex real-world datasets.

These results, utilizing the cross-entropy loss, also suggest a future direction: examining the be-
havior of network parameters under cross-entropy to show that they remain close to initialization,
consistent with the observations made using the MSE loss in this paper.
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Training Loss Parameter Distance from
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Epoch Epoch

(a) Training error (b) Weight distance from initialization

Figure 6: Convergence analysis on the MNIST dataset. (a) Training error and (b) ¢, distance of
weights from initialization.

Training Loss Parameter Distance from Initialization

00 25 50 75 100 125 150 175 0o 25 50 75 100 125 150 175
Epoch Epoch

(a) Training error (b) Weight distance from initialization

Figure 7: Convergence analysis on the CIFAR-10 dataset. (a) Training error and (b) /. distance of
weights from initialization.

D.3 ADDITIONAL PROJECTIONS OF LABEL VECTORS

In Section[d.2] we analyzed how the structure of the label vector y influences optimization by exam-
ining its projection onto the eigenspectrum of the KAN-TK. Here, we extend this analysis to several
additional structured label functions to further illustrate the relationship between label-kernel align-
ment and convergence behavior.

Setup. We construct one-dimensional datasets with n = 50 samples drawn uniformly from
[—1, 1]. We consider four structured label functions:

y = exp(x), y=1In|z| + 22 +1, y= x(l — %)71, y= sin_1(0.4sin(x)).

For each function, we compute the infinite-width KAN-TK, H°, and project the corresponding
label vector onto its eigenbasis.

Results. Figure 8| shows the projection profiles across all four functions. In every case, the struc-
tured label vectors place a substantial portion of their energy on the leading eigenvectors of the
kernel—those associated with the largest eigenvalues. Such concentration indicates strong align-
ment with the dominant kernel directions, which in turn predicts rapid convergence under gradient
descent, consistent with our theoretical characterization in Theorem @ By contrast, as shown
in the random-label experiments in the main text, unstructured labels distribute their energy more
uniformly across the spectrum, resulting in slower and more erratic convergence.

An additional observation is that highly nonlinear mappings (e.g., y = exp(x)) yield especially
concentrated projections on the top eigendirections. While this may seem counterintuitive, it re-
flects the fact that smooth monotonic functions align well with the principal components of many
kernel operators. Nevertheless, as the underlying label function becomes more intricate or oscil-
latory, the energy distribution spreads deeper into the spectrum, indicating reduced alignment and
correspondingly slower convergence.
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Figure 8: Projections of structured label vectors onto the eigenspectrum of the KAN-TK matrix.
Each plot shows how the label signal distributes across kernel eigenvectors: concentration on top
eigenvalues indicates more favorable alignment and thus faster convergence.

D.4 EXAMINING THE TIGHTNESS OF THE CONVERGENCE BOUND

To empirically assess the tightness of the linear convergence bound derived in Theorem £.2] we
compare the theoretical rate with the observed training loss. Recall that the theorem guarantees
a per-iteration contraction of the loss by at least a factor of (1 — nAg/2). We therefore plot this
theoretical upper bound (red dashed line) together with the empirical training loss (blue solid line)
on a logarithmic scale.

Setup. We use a two-layer Kolmogorov—Arnold Network with hidden layer width m = 5000. The
training set consists of n = 10 samples {(2?,y?)},2, where the inputs 7 are drawn uniformly from
[—1, 1], and the labels are generated according to

y = exp(—a?) + 22

Training is performed with full-batch gradient descent for 1000 epochs. Importantly, only the
first-layer coefficients ;3 are updated during training, while the second-layer coefficients j3;
are kept fixed, in line with the setting analyzed in Theorem 2] We vary the learning rate
n € {0.001,0.01,0.1,1}.

For visualization, we report
o ( L(t) )
£10 E(O) 9
that is, the base-10 logarithm of the ratio of the loss at iteration ¢ to the initial loss, and plot it against
the theoretical bound ¢ log; (1 — nAo/2).
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Figure 9: Comparison of the theoretical convergence bound (red dashed line) from Theorem
with the empirical training loss (blue solid line) for different learning rates.

Results. As shown in Figure[J] the empirical loss decreases consistently faster than the theoretical
prediction, confirming that our analysis provides a valid upper bound. The discrepancy between
the empirical and theoretical curves reflects the conservatism of the bound, which is derived un-
der worst-case assumptions. For small learning rates (n = 0.001 and n = 0.01), the loss exhibits
smooth, nearly linear decay. For n = 0.1, the initial convergence is significantly faster than pre-
dicted before flattening out. For = 1, training becomes unstable and the loss fails to decrease, in
accordance with the constraints on 7 imposed by the theory.

D.5 KAN vs. RELU NETWORKS ACROSS DIFFERENT SAMPLE SIZES

We conducted an additional experiment to demonstrate that a one-hidden-layer KAN can outperform
a one-hidden-layer ReLU network of the same width when the number of training samples is large.

Setup. We trained a standard neural network and a FastK AN model, each with a fixed hidden-layer
width of m = 1000, using varying numbers of training samples {500, 750, 1000}. The experiment
was performed on the synthetic dataset introduced in Section |5.1} with input dimension d = 100,
and all models were trained for 1000 epochs.

Results. The results, shown in Figure@ indicate that FastKAN exhibits substantially faster con-
vergence compared to a ReLU network of the same width across all sample sizes.

E RATIONALE FOR FIRST-LAYER TRAINING

In this section, we explain why we focused on first-layer training for KANs. As demonstrated in
Sections [E-J] and [E-2] training the first layer alone outperforms training only the second layer and
achieves performance comparable to full-network training. This observation supports our assump-
tion that training only the first layer is a reasonable and efficient approach.
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Convergence Rates (varying n, m=1000)
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Figure 10: Convergence of FastKAN and a ReLU network with width m = 1000 across different
sample sizes.
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Figure 11: Comparison of first-layer and second-layer training: (a) training error over all epochs,
and (b) final training error.

E.1 COMPARISON OF FIRST AND SECOND LAYER TRAINING

Here, we compare the effects of training only the first layer versus training only the second layer.

Setup. We follow the same experimental setup as in Section 5.1} The dataset consists of 100
samples drawn from a 100-dimensional unit sphere, with random labels assigned to the data points.
We consider network widths m € {500, 1000, 2000, 4000, 8000} and train for 2000 epochs. In the
first experiment, the second-layer coefficients are fixed while the first layer is trainable; in the second
experiment, the first-layer coefficients are fixed while the second layer is trainable.

Results. As shown in Figure[TT] training only the first layer yields significantly faster convergence
than training only the second layer, supporting the decision to focus on first-layer training.

E.2 COMPARISON OF FIRST AND FULL LAYER TRAINING

Next, we compare training only the first layer to full-network training.

Setup. The experimental setup is the same as in Section with 100 samples from a 100-
dimensional unit sphere and network widths m € {500, 1000, 2000, 4000, 8000}. Training is per-
formed for 2000 epochs. In the first experiment, only the first-layer coefficients are trained, while in
the second, both layers are trained.

Results. Figure [T2] shows that first-layer training achieves performance comparable to full-layer
training. Moreover, it is more parameter-efficient and converges faster.
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Training Loss: First Layer Only vs Full Training Final Loss vs Network Width

o - First Layer Only.
- Full Training

Final log10(Loss)

o 250 s00 750 1000 1250 1500 1750 2000 Wetsrark Width {m}

(a) Training error over all epochs (b) Final training error

Figure 12: Comparison of first-layer and full-network training: (a) training error over all epochs,
and (b) final training error.

F ROLE OF LLMsS IN THIS WORK

We used large language models (LLMs), including OpenAI’s GPT and Google’s Gemini, to assist
with writing tasks and commenting on code during the preparation of this manuscript. The models
were employed strictly under the direct supervision of the authors. All technical content, experi-
ments, results, and claims in this work are entirely the responsibility of the authors, and no output
from the language models was used without thorough verification.
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