

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ON THE CONVERGENCE OF TWO-LAYER KOLMOGOROV-ARNOLD NETWORKS WITH FIRST- LAYER TRAINING

Anonymous authors

Paper under double-blind review

ABSTRACT

Kolmogorov-Arnold Networks (KANs) have emerged as a promising alternative to traditional neural networks, offering enhanced interpretability based on the Kolmogorov-Arnold representation theorem. While their empirical success is growing, a theoretical understanding of their training dynamics remains nascent. This paper investigates the optimization of a two-layer KAN in the overparameterized regime, focusing on a simplified yet insightful setting where only the first-layer coefficients are trained via gradient descent.

Our main result establishes that, provided the network is sufficiently wide, this training method is guaranteed to converge to a global minimum and achieve zero training error. Furthermore, we derive a novel, fine-grained convergence rate that explicitly connects the optimization speed to the structure of the data labels through the eigenspectrum of the KAN Tangent Kernel (KAN-TK). Our analysis reveals a key advantage of this architecture: guaranteed convergence is achieved with a hidden layer width of $m = \mathcal{O}(n^2)$, a significant polynomial improvement over the $m = \mathcal{O}(n^6)$ requirement for classic two-layer neural networks *using ReLU activation functions and analyzed within the same Tangent Kernel framework.* We validate our theoretical findings with numerical experiments that corroborate our predictions on convergence speed and the impact of label structure.

1 INTRODUCTION

Neural networks have become the cornerstone of modern machine learning. However, their complex non-linear structure—formed by composing linear transformations with fixed nonlinearities such as ReLU—often renders them black boxes. This opacity makes it difficult to interpret their decision-making processes, posing a significant barrier in high-stakes domains where trust and transparency are paramount. Kolmogorov–Arnold Networks (KANs) (Liu et al., 2025) offer a fundamentally different approach, with an architecture inspired by the Kolmogorov–Arnold representation theorem (Kolmogorov, 1961; Braun & Griebel, 2009). This theorem establishes that any continuous multivariate function can be decomposed into a nested sum of univariate functions, which are far easier to interpret.

Although the idea of building networks upon this theorem is not new, early attempts based directly on its two-layer structure struggled due to the potentially non-smooth and complex nature of the inner functions, making them difficult to learn in practice (Sprecher & Draghici, 2002; Köppen, 2002; Lin & Unbehauen, 1993; Lai & Shen, 2021; Leni et al., 2013; Fakhoury et al., 2022). The key innovation of modern KANs was to extend this shallow structure into a deep, multi-layer architecture, analogous to MLPs. This design mitigates earlier learning difficulties and shifts the paradigm: whereas MLPs place fixed nonlinearities at nodes, KANs place learnable univariate activation functions on the edges. This architectural choice not only improves interpretability but also enhances parameter efficiency. These learnable edge functions are typically parameterized as linear combinations of basis functions, such as B-splines (de Boor, 2001; Schumaker, 2007). More recent approaches have expanded this idea using alternative basis families, including Rational Polynomials (Aghaei, 2024b), Chebyshev Polynomials (SS et al., 2024), and Radial Basis Functions (RBFs) (Li, 2024). In addition, recent works such as (Delis, 2024; Hu et al., 2025; Zhao et al., 2025; Bozorgasl & Chen,

054 2024; Seydi, 2024; Aghaei, 2025) have introduced new classes of basis functions, further broadening
 055 the expressive power and adaptability of KANs.
 056

057 The rapid emergence of KANs has led to exploration across diverse application domains. In com-
 058 puter vision, KAN-based convolutional architectures have demonstrated superior performance com-
 059 pared to traditional CNNs (Bodner et al., 2024; Drokin, 2024), and have been successfully integrated
 060 into U-Net models for medical imaging (Li et al., 2025). For sequential data, Temporal KANs were
 061 introduced in (Genet & Inzirillo, 2024), where KANs replace the standard neural components in
 062 RNNs, yielding improved accuracy on complex time-series tasks (Han & Wu, 2024; Xu & Wang,
 063 2024). KANs have also been applied in reinforcement learning, achieving higher accuracy and per-
 064 formance with significantly fewer parameters (Guo & Liu, 2024; Kich & Ohya, 2024), as well as in
 065 time-series analysis tasks (Huang et al., 2025; Zhou et al., 2025). Similar performance gains have
 066 been reported in graph neural networks (Zhang & Zhang, 2024; Fang et al., 2025; GuoguoAi et al.,
 067 2025). Beyond these, KANs have shown strong potential in scientific machine learning, particularly
 068 for solving partial differential equations, where they outperform physics-informed neural networks
 069 (PINNs) (Wang & Liu, 2024; Toscano & Karniadakis, 2024; Aghaei, 2024a). The architecture has
 070 also been adapted for Transformers, showing promise for large language models (Yang & Wang,
 071 2025). Furthermore, (Yu et al., 2024) demonstrated that KANs outperform MLPs on datasets con-
 072 structed from symbolic formulas. Comprehensive surveys and further results are available in (Ji
 073 et al., 2024; Rigas et al., 2024; Howard et al., 2024; Cheon, 2024; Qiu et al., 2024; Polar & Poluektov,
 074 2021; Lee et al., 2025).

075 Alongside these empirical successes, a growing body of theoretical work has begun to establish a
 076 rigorous foundation for KANs. Several works have investigated the role of initialization, including
 077 interpolation-based, random-based, and hybrid schemes designed to reduce the computational cost
 078 of KAN initialization and ensure stable training across different basis functions (Rigas et al., 2025).
 079 On the expressiveness side, (Wang et al., 2025) showed that KANs are at least as expressive as MLPs
 080 and may exhibit reduced spectral bias. Generalization properties have also been studied (Zhang &
 081 Zhou, 2025), and other works explore deep learning alternatives to the classical Kolmogorov–Arnold
 082 representation theorem itself (Guilhoto & Perdikaris, 2025; Laczkovich, 2021).

083 On the optimization side, a wide range of algorithms have been proposed for training machine
 084 learning models (Kingma & Ba, 2015; Carmon et al., 2018), with convergence guarantees typically
 085 relying on smoothness, Lipschitzness, or convexity assumptions (Li & Orabona, 2019; Nesterov &
 086 Polyak, 2006; Duchi et al., 2011; Reddi et al., 2019; Ji & Telgarsky, 2019). For MLPs, (Zhang et al.,
 087 2021) observed that gradient descent (GD) and stochastic gradient descent (SGD) often reach nearly
 088 global minima in practice, driving the mean squared error toward zero. However, understanding why
 089 simple gradient-based methods succeed in optimizing highly non-convex models such as MLPs and
 090 KANs remains a central challenge.

091 Substantial progress has been made in the overparameterized regime (Du et al., 2019; Jacot et al.,
 092 2018; Arora et al., 2019; Chizat & Bach, 2018a; Soudry & Carmon, 2016; Soltanolkotabi, 2017;
 093 Xie et al., 2017; Chizat & Bach, 2018b; Soltanolkotabi et al., 2018; Vaswani et al., 2019; Oymak
 094 & Soltanolkotabi, 2020; Allen-Zhu et al., 2019; Polaczyk & Cyranka, 2023), where neural tangent
 095 kernel (NTK)–type analyses yield convergence guarantees for sufficiently wide networks. More
 096 recently, overparameterization requirements for two-layer networks have been sharpened: (Polaczyk
 097 & Cyranka, 2023) derive improved width bounds that ensure global convergence of GD through a
 098 refined analysis of the empirical Gram matrix. Extending this line of work to the KAN setting, (Gao
 099 & Tan, 2025) prove that a two-layer KAN converges to a global minimum when all parameters are
 100 jointly trained.

101 In this paper, we analyze the training dynamics of a two-layer KAN under a more constrained
 102 setting: only the first-layer coefficients are trained, while the second-layer coefficients are fixed
 103 after a random initialization. This setup, previously studied for standard neural networks (Du et al.,
 104 2019; Arora et al., 2019), allows for a clearer analysis. Our contributions are as follows:

105
 106
 107

- We prove that for a two-layer KAN with only first-layer training, gradient descent converges to a global minimum, driving the training error to zero, provided the hidden layer is sufficiently wide.

- We derive a novel, label-dependent bound on the convergence rate, showing that the speed of convergence is determined by the projection of the label vector onto the eigenvectors of the corresponding KAN Tangent Kernel (KAN-TK).
- We show that the required width of the hidden layer for guaranteed convergence in our KAN setup is significantly smaller than that required for standard two-layer neural networks (Du et al., 2019), highlighting a key parameter-efficiency advantage.
- We provide empirical evidence that corroborates our theoretical findings, demonstrating the faster convergence for wider networks and the impact of label structure.

2 PRELIMINARIES AND SETUP

2.1 KOLMOGOROV-ARNOLD NETWORKS (KANs)

A KAN’s architecture is inspired by the Kolmogorov-Arnold representation theorem, which states that any continuous multivariate function $f : [0, 1]^d \rightarrow \mathbb{R}$ can be written as:

$$f(\mathbf{x}) = \sum_{q=1}^{2d+1} \Phi_q \left(\sum_{p=1}^d \phi_{p,q}(x_p) \right)$$

where Φ_q and $\phi_{p,q}$ are continuous univariate functions. While early attempts to build networks based on this theorem struggled (Sprecher & Draghici, 2002; Köppen, 2002), the key innovation of modern KANs was to extend the two-layer structure of the theorem into a deep network, analogous to MLPs (Liu et al., 2025). In this architecture, learnable univariate functions, often parameterized as splines, are placed on the edges of the computation graph, while nodes simply perform summation. This is in stark contrast to MLPs, where linear transformations occur on the edges and fixed non-linear activations are applied at the nodes.

The learnable edge functions are typically represented as a linear combination of basis functions, $\phi(x) = \sum_i c_i B_i(x)$, where the coefficients c_i are trainable parameters. A common choice for the basis functions $B_i(x)$ is B-splines, which are piecewise polynomials with favorable mathematical properties such as local support and controllable smoothness, making them well-suited for function approximation (Schoenberg & Whitney, 1953; de Boor, 2001; Schumaker, 2007). The original KAN architecture, for instance, uses cubic B-splines by default (Liu et al., 2025). To improve computational performance and explore different inductive biases, various alternatives have been proposed, including Radial Basis Functions (RBFs) (Li, 2024), Reflectional Switch Activation Functions (RSWAF) (Delis, 2024), Chebyshev Polynomials (SS et al., 2024), Rational Polynomials (Aghaei, 2024b), and Fractional Jacobi basis functions (Aghaei, 2025).

2.2 THE TWO-LAYER KAN ARCHITECTURE

We focus on a two-layer KAN with a d -dimensional input \mathbf{x} , a hidden layer of width m , and a scalar output. The output $f(\mathbf{x})$ is defined as:

$$f(\mathbf{x}) = \frac{1}{\sqrt{m}} \sum_{p=1}^m \sum_{l=1}^g \beta_{pl} \phi_l(z_p) \quad \text{where} \quad z_p = \sum_{k=1}^d \sum_{j=1}^g \alpha_{pj,k} \phi_j(x_k).$$

Here, $\{\phi_j\}_{j=1}^g$ are a set of g basis functions (e.g., RBFs), $\alpha_{pj,k}$ are the learnable coefficients for the first layer, and β_{pl} are the coefficients for the second layer. The $\frac{1}{\sqrt{m}}$ factor is a standard scaling term used in overparameterization analysis (Jacot et al., 2018).

A schematic illustration of this two-layer KAN architecture is provided in Figure 1.

2.3 TRAINING DYNAMICS IN OVERPARAMETERIZED MODELS

Our analysis is situated in the overparameterized regime, where the number of model parameters far exceeds the number of training data points. In this regime, neural networks trained with gradient

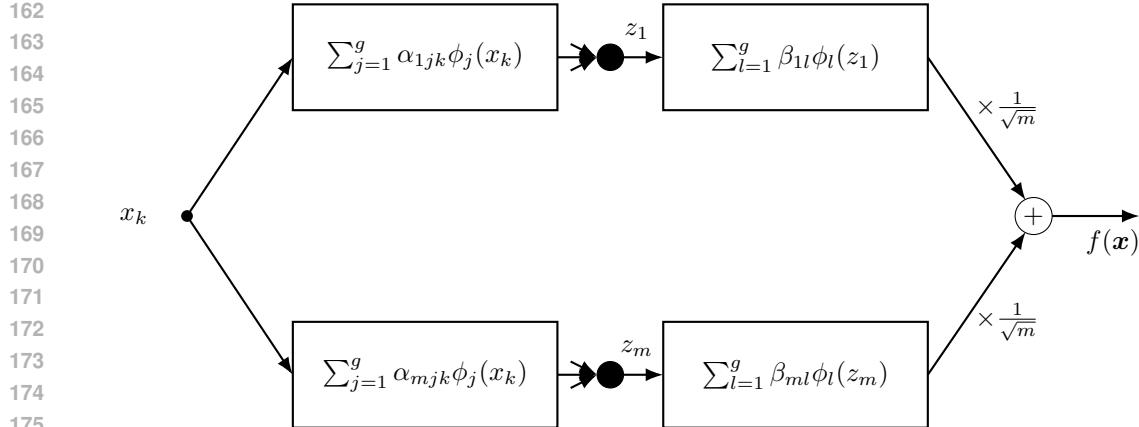


Figure 1: Two Layer KAN

descent often exhibit a phenomenon known as "lazy training" (Chizat & Bach, 2018a), where the network weights remain close to their initial values throughout training. This allows the network's output to be well-approximated by a first-order Taylor expansion around its initialization.

This linearization gives rise to the Neural Tangent Kernel (NTK) (Jacot et al., 2018), a deterministic kernel that governs the training dynamics of the network. For a two-layer MLP, it has been shown that if the network width is polynomially large in the number of data points n , gradient descent finds a global minimum, and the training dynamics are equivalent to kernel regression with the NTK (Du et al., 2019; Arora et al., 2019). Our work applies a similar analytical framework to the two-layer KAN architecture.

2.4 TRAINING SETUP AND PROBLEM FORMULATION

We analyze the network under the following training protocol:

1. **Initialization:** The first-layer coefficients α_{pjk} are initialized independently from a Gaussian distribution $\mathcal{N}(0, \sigma^2)$. The second-layer coefficients β_{pl} are initialized independently and uniformly from the set $\{-1, +1\}$.
2. **Training:** Only the first-layer coefficients $\alpha = \{\alpha_{pjk}\}$ are updated using full-batch gradient descent. The second-layer coefficients $\beta = \{\beta_{pl}\}$ remain fixed throughout training (See Appendix E for more information).

Given a dataset $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$, the goal is to minimize the mean squared error loss function:

$$\mathcal{L} = \frac{1}{2} \|\mathbf{y} - \mathbf{u}\|_2^2 = \frac{1}{2} \sum_{i=1}^n (y_i - f(\mathbf{x}_i))^2$$

where \mathbf{u} is the vector of network outputs for all data points.

3 THE KAN TANGENT KERNEL

Our analysis relies on the concept of the *KAN Tangent Kernel (KAN-TK)*, which characterizes the training dynamics of our two-layer KAN in the infinite-width limit. For a general model $f_\theta(\mathbf{x})$, the tangent kernel is defined as $H_{ij} = \langle \nabla_\theta f_\theta(\mathbf{x}_i), \nabla_\theta f_\theta(\mathbf{x}_j) \rangle$. In the lazy training regime, this kernel remains nearly constant throughout training. Consequently, the complex, non-linear dynamics of the network can be accurately described by the much simpler process of kernel regression with this fixed kernel (Jacot et al., 2018). Additional explanations and details about tangent kernels are provided in Appendix A.1.

For our specific two-layer KAN with a 1D input and RBF basis functions, we can derive a closed-form expression for the KAN-TK in the infinite-width limit ($m \rightarrow \infty$). Since we only train the

216 first-layer coefficients α , the kernel is computed with respect to these parameters. In this section, we
 217 assume the basis functions $\phi_j(x)$ are Radial Basis Functions (RBFs), defined as:
 218

$$219 \quad \phi_j(x) = \exp\left(-\frac{(x - \mu_j)^2}{2\sigma^2}\right)$$

$$220$$

221 **Proposition 3.1** (KAN Tangent Kernel with RBF basis). *For a two-layer KAN with RBF basis
 222 functions and fixed second-layer coefficients, the tangent kernel with respect to the first-layer weights
 223 α in the infinite-width limit is given by \mathbf{H}^∞ . The entry $(\mathbf{H}^\infty)_{qr}$ (for $1 \leq q, r \leq n$) is:*
 224

$$225 \quad (\mathbf{H}^\infty)_{qr} = \sum_{j,l=1}^g \frac{\phi_j(x^q)\phi_j(x^r) \exp\left(-\frac{\mu_l^2}{\sigma^2}\right)}{\sigma^4} \left\{ \sum_{s,p} \phi_s(x^q)\phi_p(x^r) X_{psl}^{qr} + \mu_l^2 Z_l^{qr} + \sum_s b_s^{qr} Y_{sl}^{qr} \right\}$$

$$226$$

$$227$$

228 where the auxiliary tensors are defined as follows:
 229

$$230 \quad A_{kl}^{qr} = \phi_l(x^q)\phi_k(x^q) + \phi_l(x^r)\phi_k(x^r)$$

$$231 \quad b_l^{qr} = -2(\phi_l(x^q) + \phi_l(x^r))$$

$$232 \quad \mathbf{G}^{qr} = (\mathbf{I} + \frac{\mathbf{A}^{qr}}{\sigma^2})^{-1}$$

$$233$$

$$234 \quad T_l^{qr} = \exp\left(\frac{\mu_l^2}{8\sigma^4}(\mathbf{b}^{qr})^T \mathbf{G}^{qr} \mathbf{b}^{qr}\right)$$

$$235$$

$$236 \quad Z_l^{qr} = \sqrt{\det(\mathbf{G}^{qr})} T_l^{qr}$$

$$237$$

$$238 \quad Y_{sl}^{qr} = -\frac{\mu_l^2}{2\sigma^2} \sqrt{\det(\mathbf{G}^{qr})} (\mathbf{G}^{qr} \mathbf{b}^{qr})_s T_l^{qr}$$

$$239$$

$$240 \quad X_{psl}^{qr} = \sqrt{\det(\mathbf{G}^{qr})} (\mathbf{G}^{qr})_{sp} T_l^{qr}$$

$$241$$

$$242 \quad + \frac{\mu_l^2}{4\sigma^4} \det(\mathbf{G}^{qr}) (\mathbf{G}^{qr} \mathbf{b}^{qr})_s (\mathbf{G}^{qr} \mathbf{b}^{qr})_p T_l^{qr}$$

$$243$$

$$244$$

245 The derivation of this kernel is provided in Appendix A.2. The expression is highly complex and
 246 computationally intensive, scaling polynomially with the number of samples n . This makes it im-
 247 practical for direct use in large-scale applications but provides a powerful tool for our theoretical
 248 analysis. Despite this complexity, we can use the kernel to perform regression and empirically ver-
 249ify its expressive power. Moreover, in our experiments we relied on this proposition specifically
 250 because it provides access to the eigenvalues and eigenvectors of the KAN-TK, which are essential
 251 for analyzing label alignment and convergence behavior.
 252

253 4 THEORETICAL ANALYSIS

$$254$$

255 In this section, we present our main theoretical results. We first prove that gradient descent on our
 256 two-layer KAN converges to a global minimum with zero training error. We then refine this result
 257 by deriving a label-dependent convergence rate. Our analysis relies on a few standard assumptions.
 258

259 **Assumptions.** We assume the following conditions hold:
 260

- 261 **Basis Functions:** The basis functions ϕ_l are bounded, $|\phi_l(x)| \leq 1$, twice differentiable
 262 with bounded first and second derivatives, $|\phi_l'(x)|, |\phi_l''(x)| \leq 1$, and satisfy $\phi_l(0) = 0$.
- 263 **Positive Definite Kernel:** The infinite-width KAN Tangent Kernel \mathbf{H}^∞ is positive definite,
 264 meaning its minimum eigenvalue λ_0 is strictly positive ($\lambda_0 > 0$).
- 265 **Bounded Data:** The training data labels are bounded, $|y_i| \leq 1$ for all i .

$$266$$

267 The assumption of a *Positive Definite Kernel* is standard in the analysis of overparameterized neural
 268 networks (Du et al., 2019; Arora et al., 2019). In particular, (Gao & Tan, 2025) shows that this
 269 assumption holds for KANs equipped with appropriate polynomial basis functions. Their Lemma 1
 states:

270 **Lemma 4.1** (Positive Definite Kernels). *Assume that the basis functions are polynomials of degree
 271 less than g and the transformation functions are hyperbolic tangent or sigmoid. Then $\lambda_0 > 0$ holds
 272 when all training samples are distinct. If no transformation is used, $\lambda_0 > 0$ holds when the training
 273 samples are linearly independent in the \tilde{g} -degree polynomial space:*

$$274 \quad 275 \quad \{x_{i,1}, x_{i,1}^2, \dots, x_{i,1}^{\tilde{g}}, \dots, x_{i,d}, \dots, x_{i,d}^{\tilde{g}}\}_{i=1}^n$$

276 where $\tilde{g} = (g-1)^2$.
 277

278 The transformation ψ (e.g., tanh or sigmoid) ensures the first-layer outputs lie within the domain of
 279 the polynomial basis, so KAN variants using such nonlinearities satisfy the lemma when samples are
 280 distinct. In the no-transformation case ($\psi(z) = z$), the lemma only requires linear independence in
 281 the relevant polynomial space. Empirically, using FastKAN (Li, 2024), we observe strictly positive
 282 minimum eigenvalues of the infinite-width KAN-TK across several input distributions (e.g., $3.29 \times$
 283 10^{-4} for `linspace` on $[-1, 1]$), supporting this assumption in practice.

284 4.1 GLOBAL CONVERGENCE

285 We first establish that under sufficient overparameterization, the training loss converges to zero.

286 **Theorem 4.2** (Convergence to Global Minimum). *Suppose the hidden layer width m is sufficiently
 287 large and the initialization variance σ^2 is sufficiently small, i.e.,*

$$288 \quad 289 \quad m \gtrsim \max\left(\frac{d^2 g^6 n^2}{\lambda_0^2} \log\left(\frac{n}{\delta}\right), n\right), \quad \sigma = \mathcal{O}\left(\frac{\delta}{\sqrt{m n g^3 d}}\right).$$

290 Then, with probability at least $1 - \mathcal{O}(\delta)$ over the random initialization, the gradient descent updates
 291 satisfy a linear convergence guarantee:

$$292 \quad \mathcal{L}(t+1) \leq \left(1 - \frac{\eta \lambda_0}{2}\right) \mathcal{L}(t),$$

293 where $\eta = \mathcal{O}\left(\frac{\lambda_0}{n^3 d^2 g^6}\right)$ is the learning rate and $\lambda_0 = \lambda_{\min}(\mathbf{H}^\infty)$ is the minimum eigenvalue of the
 294 infinite-width kernel.

295 **Proof Sketch.** The proof of Theorem 4.2, detailed in Appendix B, proceeds by induction. The
 296 core idea is to show that the network operates in the "lazy training" regime where the tangent kernel
 297 remains stable. We first expand the loss at step $t+1$:

$$306 \quad \|\mathbf{y} - \mathbf{u}(t+1)\|_2^2 = \|\mathbf{y} - \mathbf{u}(t)\|_2^2 - 2(\mathbf{y} - \mathbf{u}(t))^T(\mathbf{u}(t+1) - \mathbf{u}(t)) + \|\mathbf{u}(t+1) - \mathbf{u}(t)\|_2^2$$

307 . The change in the output, $\mathbf{u}(t+1) - \mathbf{u}(t)$, can be approximated by a first-order Taylor series, which
 308 relates it to the tangent kernel at time t , $\mathbf{H}(t)$ Jacot et al. (2018). Using stability Lemmas below, 4.3,
 309 4.4, and 4.5, we show that $\mathbf{H}(t)$ remains close to the deterministic, infinite-width kernel \mathbf{H}^∞ . This
 310 stability allows us to bound the terms in the expansion and demonstrate a consistent linear decrease
 311 in the loss at each step.

312 **Lemma 4.3** (Coefficient Stability). *Under the assumptions of Theorem 4.2, the first-layer coeffi-
 313 cients remain in a small neighborhood of their initialization values throughout training. That is,
 314 $|\alpha_{ijk}(t) - \alpha_{ijk}(0)| \leq R$, where $R = \mathcal{O}\left(\frac{g\sqrt{n}}{\lambda_0\sqrt{m}}\|\mathbf{u}(0) - \mathbf{y}\|_2\right)$.*

315 **Lemma 4.4** (Kernel Stability over Time). *With high probability, the distance between the tangent
 316 kernel at time t and at initialization is bounded: $\|\mathbf{H}(t) - \mathbf{H}(0)\|_2 \leq 2n^2 d^2 g^4 R$.*

317 **Lemma 4.5** (Initial Kernel Concentration). *With high probability, the distance between the initial
 318 tangent kernel and the infinite-width kernel is bounded: $\|\mathbf{H}(0) - \mathbf{H}^\infty\|_2 \leq \frac{d g^3 n}{\sqrt{m}} \sqrt{\log\left(\frac{2n^2}{\delta}\right)}$.*

321 4.2 LABEL-DEPENDENT CONVERGENCE RATE

322 Next, we refine the convergence rate to show its dependency on the structure of the data labels.

324 **Theorem 4.6** (Label-Dependent Convergence Bound). *Under the same conditions as Theorem 4.2,*
 325 *let the eigendecomposition of the KAN-TK be $\mathbf{H}^\infty = \sum_{i=1}^n \lambda_i \mathbf{v}_i \mathbf{v}_i^T$. Then the error vector at time*
 326 *t can be bounded as:*

$$327 \quad 328 \quad 329 \quad \|\mathbf{y} - \mathbf{u}(t)\|_2 \leq \sqrt{\sum_{i=1}^n (1 - \eta \lambda_i)^{2t} (\mathbf{v}_i^T \mathbf{y})^2} \pm \epsilon$$

330 where ϵ is a small error term that vanishes as $m \rightarrow \infty$.

332 **Proof Sketch.** To prove Theorem 4.6, we start with the gradient descent update rule and show
 333 that the change in the output can be approximated as $\mathbf{u}(t+1) - \mathbf{u}(t) \approx -\eta \mathbf{H}^\infty (\mathbf{u}(t) - \mathbf{y})$. This
 334 allows us to express the error vector at step $t+1$ as a recurrence relation: $(\mathbf{u}(t+1) - \mathbf{y}) \approx$
 335 $(\mathbf{I} - \eta \mathbf{H}^\infty)(\mathbf{u}(t) - \mathbf{y})$. Unrolling this recurrence yields $\mathbf{u}(t) - \mathbf{y} \approx -(\mathbf{I} - \eta \mathbf{H}^\infty)^t (\mathbf{u}(0) - \mathbf{y})$.
 336 By assuming a small initialization variance σ^2 , the initial output $\|\mathbf{u}(0)\|_2$ is negligible compared
 337 to $\|\mathbf{y}\|_2$. Taking the norm and applying the eigendecomposition of \mathbf{H}^∞ gives the desired label-
 338 dependent bound. The full proof is deferred to Appendix C.

339 **Remark 1** (Eigenstructure and Convergence Speed). *Theorem 4.6 demonstrates that the compo-*
 340 *nents of the error aligned with eigenvectors (\mathbf{v}_i) corresponding to large eigenvalues (λ_i) decay the*
 341 *fastest. Consequently, if the label vector \mathbf{y} has a strong projection onto these top eigenvectors (i.e.,*
 342 *the labels have a structure that the kernel is well-suited to learn), the overall convergence will be*
 343 *much faster than if the labels were random or aligned with eigenvectors of small eigenvalues.*

345 5 EXPERIMENTS

347 We conduct a series of experiments using a two-layer KAN with RBF basis functions to validate
 348 our theoretical claims. Our implementation is based on the FastKAN architecture (Li, 2024). In all
 349 experiments, we train only the first-layer coefficients using full-batch gradient descent, keeping the
 350 second-layer coefficients fixed after their random initialization. Additional experimental results are
 351 provided in Appendix D.

352 5.1 CONVERGENCE RATE VS. NETWORK WIDTH

354 To validate Theorem 4.2 and the underlying “lazy training” phenomenon, we study how the hidden
 355 layer width m influences convergence.

357 **Setup.** We generate a synthetic dataset with $n = 100$ samples in $d = 100$ dimensions, where
 358 each feature is drawn from a standard normal distribution. Labels are drawn independently from
 359 $\mathcal{N}(0, 1)$ to create a challenging learning task. We train KANs with varying hidden widths ($m \in$
 360 $\{500, 1000, 2000, 4000, 8000, 16000, 32000\}$) for 5000 epochs.

362 **Results.** Figure 2a reports the training error across epochs. As predicted by Theorem 4.2, larger
 363 widths m yield faster convergence. Figure 2b shows the maximum distance of the weight coeffi-
 364 cients from initialization, $\|\alpha(t) - \alpha(0)\|_\infty$. As m increases, the weights travel shorter distances,
 365 empirically confirming the “lazy training” assumption in Lemma 4.3.

366 5.2 IMPACT OF LABEL STRUCTURE ON CONVERGENCE

369 We now empirically evaluate Theorem 4.6, which predicts that the convergence rate of gradient
 370 descent is determined by how the label vector \mathbf{y} aligns with the eigenspectrum of the KAN-TK.

371 **Setup for Figure 3a.** We generate a one-dimensional dataset with $n = 50$ points sampled uni-
 372 formly from $[-1, 1]$. After computing the infinite-width KAN-TK \mathbf{H}^∞ , we project several label
 373 configurations onto its eigenvectors. We compare *structured* labels of the form

$$375 \quad 376 \quad 377 \quad \mathbf{y} = \frac{\sin^2(0.7x/2)}{\sin^2(x/2)}, \quad (1)$$

with *random* labels drawn independently from $\mathcal{N}(0, 1)$.

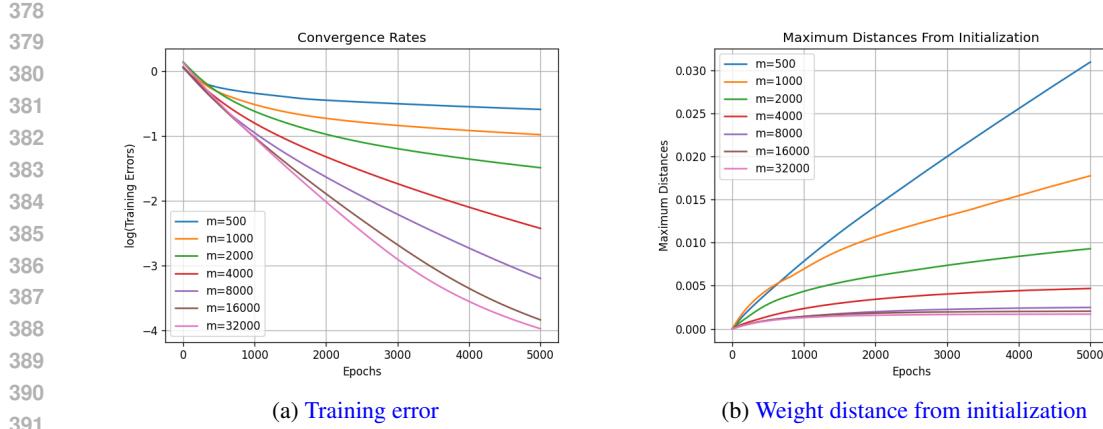


Figure 2: Convergence behavior across hidden widths m . (a) Training error decreases faster for wider networks. (b) Wider networks exhibit smaller deviations from initialization, consistent with the lazy training regime.

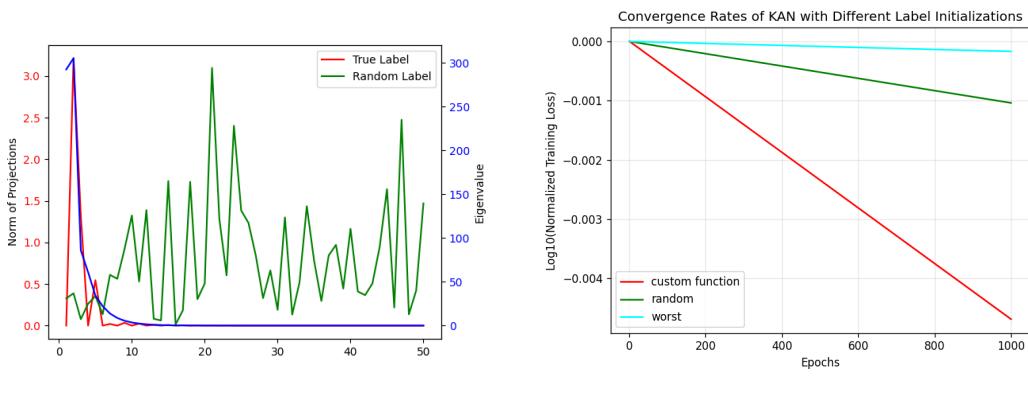


Figure 3: Effect of label structure on convergence. (a) Structured labels align with top eigenvectors, whereas random labels distribute across the spectrum. (b) Training converges fastest for structured labels, slower for random labels, and slowest for anti-structured labels.

Setup for Figure 3b. We conduct a second experiment on a similar one-dimensional dataset with $n = 30$ uniformly spaced points in $[-1, 1]$. We evaluate three label configurations:

1. *Structured*, given by Eq. equation 1;
2. *Random*, sampled i.i.d. from $\mathcal{N}(0, 1)$;
3. *Anti-structured*, defined as the eigenvector of H^∞ associated with its smallest eigenvalue.

For all settings, we train a two-layer RBF-based KAN with hidden width $m = 5000$, updating only the first-layer coefficients for 3000 epochs using full-batch gradient descent.

Results. Figure 3a illustrates the projections of the structured and random label vectors onto the eigenbasis of \mathbf{H}^∞ . The structured labels concentrate most of their energy on the top eigenvectors, whereas random labels distribute their mass more uniformly across the spectrum. Figure 3b shows the resulting optimization dynamics: networks trained on structured labels converge the fastest, random labels converge at a moderate rate, and anti-structured labels converge the slowest. Together, these observations provide strong empirical support for the label-dependent convergence behavior predicted by Theorem 4.6.

432 Table 1: Comparison of required hidden layer width and number of trainable parameters for global
 433 convergence guarantees.

435 Network Type	436 Hidden Layer Width (m)	437 Trainable Parameters
438 Neural Network (Du et al., 2019)	$\mathcal{O}\left(\frac{n^6}{\lambda_0^4 \delta^3}\right)$	$\mathcal{O}\left(\frac{n^6 d}{\lambda_0^4 \delta^3}\right)$
439 KAN (Both Layers) (Gao & Tan, 2025)	$\tilde{\mathcal{O}}\left(\frac{g^9 n^3}{\lambda_0^4}\right)$	$\tilde{\mathcal{O}}\left(\frac{g^{10} n^3 d}{\lambda_0^4}\right)$
440 KAN (First Layer Only) (Ours)	$\mathcal{O}\left(\frac{d^2 g^6 n^2}{\lambda_0^2}\right)$	$\mathcal{O}\left(\frac{d^3 g^7 n^2}{\lambda_0^2}\right)$

445 6 COMPARISON AND DISCUSSION

446 We now compare the complexity of our proposed training scheme with two key benchmarks: (1)
 447 standard two-layer neural networks (Du et al., 2019), and (2) two-layer KANs where both layers
 448 are trained (Gao & Tan, 2025). This analysis highlights the trade-offs between parameter efficiency,
 449 stability, and convergence speed.

450 6.1 PARAMETER AND WIDTH COMPARISON

451 Table 1 summarizes the asymptotic requirements on hidden layer width and the number of trainable
 452 parameters needed to guarantee convergence to a global minimum.

453 *Our method substantially reduces the required network width (m) compared to standard ReLU-
 454 activated Neural Networks (NNs) while employing the same Tangent Kernel (TK) stability analysis
 455 methodology used for examining neural networks in the overparameterized regime (Du et al., 2019).
 456 Specifically, classical two-layer NNs (often using ReLU) require a width of $m = \mathcal{O}(n^6)$ to guarantee
 457 convergence, whereas our first-layer-only Kolmogorov-Arnold Network (KAN) achieves this
 458 guarantee with $m = \mathcal{O}(n^2)$, highlighting a parameter-efficiency advantage. This enhanced efficiency
 459 stems directly from the superior expressive power of the learnable basis functions (such as
 460 polynomials) inherent in KAN architectures, which alleviate the need for extremely wide layers.*

461 Compared to training both layers of a KAN, our method achieves improved stability with respect to
 462 λ_0 . In particular, the dependence on the minimum eigenvalue of the tangent kernel, λ_0 , improves
 463 from λ_0^{-4} to λ_0^{-2} . This weaker dependence is advantageous because λ_0 can be very small in practice,
 464 and guarantees that are less sensitive to its value are therefore more robust. For instance, if
 465 λ_0 decreases by a factor of k , a neural network would require k^4 times more width to maintain
 466 convergence, whereas a KAN would require only k^2 times more width. The trade-off is that our
 467 bounds introduce a stronger dependence on the input dimension d and the number of basis functions
 468 g . Nonetheless, since the dataset size n typically dominates in practical settings, we regard this as a
 469 favorable trade-off between stability and parameter scaling.

470 **Remark 2 (Why KANs Achieve Better Width Scaling than MLPs).** *KANs require only $\mathcal{O}(n^2)$ width
 471 for kernel concentration and convergence, whereas two-layer ReLU networks typically need $\mathcal{O}(n^6)$.
 472 The fundamental reason is the smooth and stable nature of KAN features during training. As emphasized
 473 in the original KAN paper, KANs replace neuron-level activations with learnable univariate
 474 spline functions along edges. As a result, intermediate representations are compositions of smooth
 475 one-dimensional functions rather than brittle, sign-dependent ReLU activations. This smoothness
 476 ensures that the Neural Tangent Kernel (NTK) of a KAN depends only on bounded derivatives of
 477 these splines and involves at most pairwise interactions between samples, yielding concentration
 478 with width scaling that is only quadratic in the dataset size. In contrast, classical ReLU networks
 479 must maintain stability of discrete activation patterns during training. NTK analyses (e.g., (Du
 480 et al., 2019)) show that preventing activation-pattern flips requires controlling higher-order interac-
 481 tions among samples, which amplifies into the $\mathcal{O}(n^6)$ width requirement. Thus, the structural design
 482 of KANs—learnable smooth functions on edges, aligned with the Kolmogorov–Arnold representa-
 483 tion—eliminates the combinatorial instability inherent to ReLU networks and leads directly to the
 484 improved $\mathcal{O}(n^2)$ scaling.*

486
487
488 Table 2: Comparison of required learning rates for guaranteed convergence.
489
490
491
492
493
494
495
496
497
498
499

Network Type	Learning Rate (η)
Neural Network (Du et al., 2019)	$\mathcal{O}\left(\frac{\lambda_0}{n^2}\right)$
KAN (Both Layers) (Gao & Tan, 2025)	$\mathcal{O}\left(\frac{1}{g}\right)$
KAN (First Layer Only) (Ours)	$\mathcal{O}\left(\frac{\lambda_0}{n^3 d^2 g^6}\right)$

500 **Remark 3 (More Advanced Methods).** *A recent work, Polaczyk & Cyranka (2023), introduced a
501 novel approach for characterizing the hidden-layer width necessary to guarantee global convergence
502 of gradient descent in the overparameterized regime. By leveraging properties of random
503 initializations alongside nonlinear analysis techniques—specifically Clarke subdifferentials and Dif-
504 ferential Inclusion (DI) Cauchy problems—they established a tighter bound of $\mathcal{O}(n^{1.25})$ (Polaczyk
505 & Cyranka, 2023). Adopting these techniques for KANs presents a promising avenue for future re-
506 search to further tighten our theoretical bounds. However, to ensure a fair comparison in the present
507 work, we benchmark against (Du et al., 2019), as that study employs a proof methodology consistent
508 with our own.*

509
510

6.2 CONVERGENCE RATE COMPARISON

511
512 While our approach is more parameter-efficient and stable, it requires a smaller learning rate, which
513 in turn leads to slower convergence. The key difference lies in the allowable step size η .514 As shown in Table 2, our method requires a smaller step size than either of the benchmarks. Since
515 the linear convergence rate scales with $\eta\lambda_0$, this smaller η results in slower learning. This trade-off
516 is expected: by simplifying the optimization to only the first layer, we obtain stronger guarantees on
517 parameter efficiency and stability, at the expense of convergence speed.520

7 CONCLUSION

521
522 This work provides a theoretical analysis of the optimization dynamics of two-layer Kolmogorov-
523 Arnold Networks in the overparameterized regime. By focusing on a simplified setting where only
524 the first layer is trained, we prove that gradient descent converges to a global minimum, achieving
525 zero training error. We also provide a fine-grained, label-dependent convergence rate that connects
526 the optimization speed to the intrinsic structure of the learning task. Our results demonstrate that
527 KANs are not only more interpretable but also significantly more parameter-efficient than classical
528 neural networks with ReLU activations, requiring a polynomially smaller hidden layer width ($m =$
529 $O(n^2)$ vs. $m = O(n^6)$) to guarantee convergence.530 Our analysis opens several promising avenues for future research. An immediate next step is to
531 extend this theoretical framework to deep KANs to understand the role of depth in the training dy-
532 namics and convergence rates. Another important direction is to analyze the behavior of KANs
533 under more practical, stochastic optimization algorithms like Adam. Furthermore, exploring alter-
534 native theoretical methodologies beyond the tangent kernel framework is crucial for deriving tighter
535 convergence bounds. We can also examine the interpretability of KANs specifically within the
536 overparameterized regime, connecting theoretical guarantees with explanatory power. Additional
537 research should focus on deriving closed-form expressions for the KAN Tangent Kernel for multi-
538 dimensional inputs and other basis functions, which would provide deeper insights into different
539 KAN architectures. Finally, we must also examine the impact of various initialization techniques on
the performance and theoretical guarantees of KANs in the overparameterized setting.

540 REFERENCES
541

542 Aghaei. Kantrol: A physics-informed kolmogorov-arnold network framework for solving multi-
543 dimensional and fractional optimal control problems. *arXiv preprint arXiv:2409.06649*, 2024a.

544 Alireza Afzal Aghaei. rkhan: Rational kolmogorov-arnold networks. *arXiv preprint*
545 *arXiv:2406.14495*, 2024b.

546 Alireza Afzal Aghaei. fkan: Fractional kolmogorov-arnold networks with trainable jacobi basis
547 functions. *Neurocomputing*, 623:129414, 2025.

549 Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
550 parameterization. In *International conference on machine learning*, pp. 242–252. PMLR, 2019.

551

552 Serge B. Provost A.M. Mathai. *Quadratic forms in random variables: theory and applications*.
553 1992.

554 Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
555 timization and generalization for overparameterized two-layer neural networks. In *International*
556 *conference on machine learning*, pp. 322–332. PMLR, 2019.

557

558 Rajendra Bhatia. *Matrix analysis*, volume 169. Springer Science & Business Media, 2013.

559

560 Alexander Dylan Bodner, Antonio Santiago Tepsich, Jack Natan Spolski, and Santiago Pourteau.
561 Convolutional kolmogorov-arnold networks. *arXiv preprint arXiv:2406.13155*, 2024.

562 Zavareh Bozorgasl and Hao Chen. Wav-kan: Wavelet kolmogorov-arnold networks, 2024. *arXiv*
563 *preprint arXiv:2405.12832*, 2024.

564 Jürgen Braun and Michael Griebel. On a constructive proof of kolmogorov’s superposition theorem.
565 *Constructive approximation*, 30:653–675, 2009.

566

567 Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods for nonconvex
568 optimization. *SIAM Journal on Optimization*, 28(2):1751–1772, 2018.

569

570 Minjong Cheon. Demonstrating the efficacy of kolmogorov-arnold networks in vision tasks. *arXiv*
571 *preprint arXiv:2406.14916*, 2024.

572 Lenaic Chizat and Francis Bach. A note on lazy training in supervised differentiable program-
573 ming.(2018). *arXiv preprint arXiv:1812.07956*, 2018a.

574

575 Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
576 parameterized models using optimal transport. *Advances in neural information processing sys-
577 tems*, 31, 2018b.

578 Carl de Boor. *A Practical Guide to Splines*, volume 27 of *Applied Mathematical Sciences*.
579 Springer-Verlag, New York, revised edition, 2001. ISBN 978-0-387-95366-3. doi: 10.1007/
580 978-1-4612-0093-0.

581

582 Athanasios Delis. Fasterkan. <https://github.com/AthanasisDelis/faster-kan/>,
583 2024.

584

585 Ivan Drokin. Kolmogorov-arnold convolutions: Design principles and empirical studies. *arXiv*
586 *preprint arXiv:2407.01092*, 2024.

587

588 Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
589 over-parameterized neural networks. In *International Conference on Learning Representations*,
2019. URL <https://openreview.net/forum?id=S1eK3i09YQ>.

590

591 John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
592 stochastic optimization. *Journal of machine learning research*, 12(7), 2011.

593

Daniele Fakhoury, Emanuele Fakhoury, and Hendrik Speleers. Exsplinet: An interpretable and
expressive spline-based neural network. *Neural Networks*, 152:332–346, 2022.

594 Taoran Fang, Tianhong Gao, Chunping Wang, YihaoShang, Wei Chow, Lei CHEN, and Yang
 595 Yang. KAA: Kolmogorov-arnold attention for enhancing attentive graph neural networks. In
 596 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=atXCzVSXTJ>.

597

598 Yihang Gao and Vincent YF Tan. On the convergence of (stochastic) gradient descent for
 599 kolmogorov–arnold networks. *IEEE Transactions on Information Theory*, 2025.

600

601 Remi Genet and Hugo Inzirillo. Tkan: Temporal kolmogorov-arnold networks. *arXiv preprint*
 602 *arXiv:2405.07344*, 2024.

603

604 Leonardo Ferreira Guilhoto and Paris Perdikaris. Deep learning alternatives of the kolmogorov
 605 superposition theorem. In *The Thirteenth International Conference on Learning Representations*,
 606 2025. URL <https://openreview.net/forum?id=SyVPiehSbg>.

607

608 Li Guo, Li and Liu. Kan vs mlp for offline reinforcement learning. *arXiv preprint arXiv:2409.09653*,
 609 2024.

610

611 GuoguoAi, Guansong Pang, Hezhe Qiao, YuanGao, and Hui Yan. Grokformer: Graph fourier
 612 kolmogorov-arnold transformers. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=wFBBh8bc0C>.

613

614 Wu Zhang Han, Zhang and Wu. Are kan and kan-based models effective for time series forecasting?
 615 *arXiv preprint arXiv:2408.11306*, 2024.

616

617 Amanda A Howard, Bruno Jacob, Sarah H Murphy, Alexander Heinlein, and Panos Stinis. Finite
 618 basis kolmogorov-arnold networks: domain decomposition for data-driven and physics-informed
 619 problems. *arXiv preprint arXiv:2406.19662*, 2024.

620

621 Lexiang Hu, Yisen Wang, and Zhouchen Lin. Incorporating arbitrary matrix group equivariance into
 622 KANs. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=YtQCoUtWQ9>.

623

624 Songtao Huang, Zhen Zhao, Can Li, and LEI BAI. TimeKAN: KAN-based frequency decomposi-
 625 tion learning architecture for long-term time series forecasting. In *The Thirteenth International*
 626 *Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=wTLC79YNbh>.

627

628 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
 629 eralization in neural networks. *Advances in neural information processing systems*, 31, 2018.

630

631 Tianrui Ji, Yuntian Hou, and Di Zhang. A comprehensive survey on kolmogorov arnold networks
 632 (kan). *arXiv preprint arXiv:2407.11075*, 2024.

633

634 Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gradient descent to achieve arbi-
 635 trarily small test error with shallow relu networks. *arXiv preprint arXiv:1909.12292*, 2019.

636

637 Steinmetz Grando Yorozu Kich, Bottega and Ohya. Kolmogorov-arnold network for online rein-
 638 forcement learning. *arXiv preprint arXiv:2408.04841*, 2024.

639

640 Kingma and Ba. Adam: A method for stochastic optimization. In *International conference for*
 641 *Learning Representations*, 2015.

642

643 Andrei Nikolaevich Kolmogorov. *On the representation of continuous functions of several variables*
 644 *by superpositions of continuous functions of a smaller number of variables*. American Mathemat-
 645 ical Society, 1961.

646

647 Mario Köppen. On the training of a kolmogorov network. In *Artificial Neural Networks—ICANN*
 648 *2002: International Conference Madrid, Spain, August 28–30, 2002 Proceedings 12*, pp. 474–
 649 479. Springer, 2002.

650

651 Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
 652 of Toronto, 2009.

648 Miklós Laczkovich. A superposition theorem of kolmogorov type for bounded continuous functions.
 649 *Journal of Approximation Theory*, 269:105609, 2021.
 650

651 Ming-Jun Lai and Zhaiming Shen. The kolmogorov superposition theorem can break the curse of di-
 652 mensionality when approximating high dimensional functions. *arXiv preprint arXiv:2112.09963*,
 653 2021.

654 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 655 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.
 656

657 Jin Lee, Ziming Liu, Xinling Yu, Yixuan Wang, Haewon Jeong, Murphy Yuezhen Niu, and Zheng
 658 Zhang. Kano: Kolmogorov-arnold neural operator. *arXiv preprint arXiv:2509.16825*, 2025.

659 Pierre-Emmanuel Leni, Yohan D Fougerolle, and Frédéric Truchetet. The kolmogorov spline net-
 660 work for image processing. In *Image Processing: Concepts, Methodologies, Tools, and Applica-
 661 tions*, pp. 54–78. IGI Global, 2013.

662

663 Chenxin Li, Xinyu Liu, Wuyang Li, Cheng Wang, Hengyu Liu, Yifan Liu, Zhen Chen, and Yix-
 664 uan Yuan. U-kan makes strong backbone for medical image segmentation and generation. In
 665 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 4652–4660, 2025.

666

667 Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adaptive
 668 stepsizes. In *The 22nd international conference on artificial intelligence and statistics*, pp. 983–
 992. PMLR, 2019.

669

670 Ziyao Li. Kolmogorov-arnold networks are radial basis function networks. 2024.

671

672 Ji-Nan Lin and Rolf Unbehauen. On the realization of a kolmogorov network. *Neural Computation*,
 5(1):18–20, 1993.

673

674 Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacic,
 675 Thomas Y. Hou, and Max Tegmark. KAN: Kolmogorov–arnold networks. In *The Thirteenth
 676 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=Ozo7qJ5vZi>.

677

678 Yurii Nesterov and Boris T Polyak. Cubic regularization of newton method and its global perfor-
 679 mance. *Mathematical programming*, 108(1):177–205, 2006.

680

681 Samet Oymak and Mahdi Soltanolkotabi. Toward moderate overparameterization: Global con-
 682 vergence guarantees for training shallow neural networks. *IEEE Journal on Selected Areas in
 683 Information Theory*, 1(1):84–105, 2020.

684

685 Bartłomiej Polaczyk and Jacek Cyranka. Improved overparametrization bounds for global conver-
 686 gence of SGD for shallow neural networks. *Transactions on Machine Learning Research*, 2023.
 687 ISSN 2835-8856. URL <https://openreview.net/forum?id=RjZq6W6FoE>.

688

689 Andrew Polar and Michael Poluektov. A deep machine learning algorithm for construction of
 690 the kolmogorov–arnold representation. *Engineering Applications of Artificial Intelligence*, 99:
 104137, 2021.

691

692 Qi Qiu, Tao Zhu, Helin Gong, Liming Chen, and Huansheng Ning. Relu-kan: New kolmogorov-
 693 arnold networks that only need matrix addition, dot multiplication, and relu. *arXiv preprint
 694 arXiv:2406.02075*, 2024.

695

696 Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. *arXiv
 697 preprint arXiv:1904.09237*, 2019.

698

699 Spyros Rigas, Michalis Papachristou, Theofilos Papadopoulos, Fotios Anagnostopoulos, and Geor-
 700 gios Alexandridis. Adaptive training of grid-dependent physics-informed kolmogorov-arnold net-
 701 works. *IEEE Access*, 2024.

702

703 Spyros Rigas, Dhruv Verma, Georgios Alexandridis, and Yixuan Wang. Initialization schemes for
 704 kolmogorov-arnold networks: An empirical study. *arXiv preprint arXiv:2509.03417*, 2025.

702 I. J. Schoenberg and A. Whitney. On Pólya frequency functions. III: The positivity of
 703 translation determinants with an application to the interpolation problem by spline curves.
 704 *Transactions of the American Mathematical Society*, 74(2):246–259, 1953. doi: 10.1090/
 705 S0002-9947-1953-0055379-9.

706 Larry L. Schumaker. *Spline Functions: Basic Theory*. Cambridge University Press, 3rd edition,
 707 2007. ISBN 978-0-521-70512-7.

709 Seyd Teymoor Seydi. Exploring the potential of polynomial basis functions in kolmogorov-
 710 arnold networks: A comparative study of different groups of polynomials. *arXiv preprint*
 711 *arXiv:2406.02583*, 2024.

712 Mahdi Soltanolkotabi. Learning relus via gradient descent. *Advances in neural information pro-*
 713 *cessing systems*, 30, 2017.

715 Mahdi Soltanolkotabi, Adel Javanmard, and Jason D Lee. Theoretical insights into the optimization
 716 landscape of over-parameterized shallow neural networks. *IEEE Transactions on Information*
 717 *Theory*, 65(2):742–769, 2018.

718 Daniel Soudry and Yair Carmon. No bad local minima: Data independent training error guarantees
 719 for multilayer neural networks. *arXiv preprint arXiv:1605.08361*, 2016.

721 David A Sprecher and Sorin Draghici. Space-filling curves and kolmogorov superposition-based
 722 neural networks. *Neural Networks*, 15(1):57–67, 2002.

723 Sidharth SS, Keerthana AR, Anas KP, et al. Chebyshev polynomial-based kolmogorov-arnold
 724 networks: An efficient architecture for nonlinear function approximation. *arXiv preprint*
 725 *arXiv:2405.07200*, 2024.

727 Maxey Cierpka Toscano, Kaufer and Em Karniadakis. Inferring turbulent velocity and temper-
 728 ature fields and their statistics from lagrangian velocity measurements using physics-informed
 729 kolmogorov-arnold networks. *arXiv preprint arXiv:2407.15727*, 2024.

730 Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of sgd for over-
 731 parameterized models and an accelerated perceptron. In *The 22nd international conference on*
 732 *artificial intelligence and statistics*, pp. 1195–1204. PMLR, 2019.

734 Bai Anitescu Eshaghi Zhuang Rabczuk Wang, Sun and Liu. Kolmogorov arnold informed neural
 735 network: A physics-informed deep learning framework for solving pdes based on kolmogorov
 736 arnold networks. *arXiv preprint arXiv:2406.11045*, 2024.

737 Yixuan Wang, Jonathan W. Siegel, Ziming Liu, and Thomas Y. Hou. On the expressiveness and
 738 spectral bias of KANs. In *The Thirteenth International Conference on Learning Representations*,
 739 2025. URL <https://openreview.net/forum?id=yd1DRUuGm9>.

740 Bo Xie, Yingyu Liang, and Le Song. Diverse neural network learns true target functions. In *Artificial*
 741 *Intelligence and Statistics*, pp. 1216–1224. PMLR, 2017.

743 Chen Xu and Wang. Kolmogorov-arnold networks for time series: Bridging predictive power and
 744 interpretability. *arXiv preprint arXiv:2406.02496*, 2024.

745 Xingyi Yang and Xinchao Wang. Kolmogorov-arnold transformer. In *The Thirteenth International*
 746 *Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=BCeock53nt>.

749 Runpeng Yu, Weihao Yu, and Xinchao Wang. Kan or mlp: A fairer comparison. *arXiv preprint*
 750 *arXiv:2407.16674*, 2024.

751 Zhang and Zhang. Graphkan: Enhancing feature extraction with graph kolmogorov arnold networks.
 752 *arXiv preprint arXiv:2406.13597*, 2024.

754 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
 755 deep learning (still) requires rethinking generalization. *Communications of the ACM*, 64(3):107–
 115, 2021.

756 Xianyang Zhang and Huijuan Zhou. Generalization bounds and model complexity for kol-
 757 mogorov–arnold networks. In *The Thirteenth International Conference on Learning Representa-*
 758 *tions*, 2025. URL <https://openreview.net/forum?id=q5zMyAUhGx>.

759 Zhangchi Zhao, Jun Shu, Deyu Meng, and Zongben Xu. Improving memory efficiency for training
 760 KANs via meta learning. In *Forty-second International Conference on Machine Learning*, 2025.
 761 URL <https://openreview.net/forum?id=9biCmI3Mnd>.

762 Quan Zhou, Changhua Pei, Fei Sun, HanJing, Zhengwei Gao, Haiming Zhang, Gaogang Xie, Dan
 763 Pei, and Jianhui li. KAN-AD: Time series anomaly detection with kolmogorov–arnold net-
 764 works. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=LWQ4zu9SdQ>.

765

766 A TANGENT KERNELS

767

768 A.1 BACKGROUND ON TANGENT KERNELS

769

770 The tangent kernel is a key concept for analyzing the training dynamics of overparameterized net-
 771 works. Formally, for a model $f_{\theta}(\mathbf{x})$ with parameters θ , the tangent kernel is defined as

$$772 H_{ij} = \langle \nabla_{\theta} f_{\theta}(\mathbf{x}_i), \nabla_{\theta} f_{\theta}(\mathbf{x}_j) \rangle$$

773

774 where $\mathbf{x}_i, \mathbf{x}_j$ are data samples. Intuitively, H measures how similarly parameter updates induced by
 775 different data points affect the model output.

776 In the so-called *lazy training regime*, which arises when the network is sufficiently wide, the tangent
 777 kernel remains nearly constant throughout training. This stability means that the nonlinear training
 778 dynamics of the network can be closely approximated by a linear model whose evolution is governed
 779 by this fixed kernel. As a consequence, gradient descent on the network is equivalent to performing
 780 kernel regression with the tangent kernel (Jacot et al., 2018).

781 For standard neural networks, this leads to the well-known Neural Tangent Kernel (NTK). In our
 782 case, where we focus on two-layer Kolmogorov–Arnold Networks (KANs) with only the first-layer
 783 coefficients trained, the analogous object is the *KAN Tangent Kernel (KAN-TK)*. The KAN-TK cap-
 784 tures the interaction between input features and learnable basis-function coefficients. In the infinite-
 785 width limit ($m \rightarrow \infty$), we can derive a deterministic closed-form expression for KAN-TK when
 786 using RBF basis functions, which we employ throughout our experiments.

787 **Finite- and infinite-width kernels.** If we run an optimization algorithm, then the parameters θ
 788 evolve with time, making the tangent kernel time dependent. We denote the kernel at step t by

$$789 \mathbf{H}(t) = (H_{ij}(t))_{i,j=1}^n$$

790

791 which is computed from the gradients at that point in training. If the network is initialized randomly,
 792 then $\mathbf{H}(0)$ is itself a random matrix. Its expectation over random initialization defines the *infinite-*
 793 *width tangent kernel*, denoted by \mathbf{H}^{∞} .

794 **Networks Act Like Kernel Ridge Regression.** To see why wide neural networks effectively be-
 795 have like kernel methods, note that in the lazy training regime the features $\nabla_{\theta} f_{\theta}(\mathbf{x}_i)$ remain nearly
 796 constant during training. This means that the model output at time t can be approximated by a linear
 797 expansion around initialization:

$$801 f_{\theta(t)}(\mathbf{x}) \approx f_{\theta(0)}(\mathbf{x}) + \nabla_{\theta} f_{\theta(0)}(\mathbf{x})^T (\theta(t) - \theta(0)).$$

802

803 Since the gradient features are fixed, learning reduces to finding linear coefficients on this (very high-
 804 dimensional) feature map. By the representer theorem, this is equivalent to solving a kernel ridge
 805 regression problem with kernel matrix \mathbf{H} , where each entry H_{ij} measures the similarity between
 806 features induced by samples \mathbf{x}_i and \mathbf{x}_j .

807 In other words, training an infinitely wide neural network with gradient descent is mathematically
 808 the same as performing kernel regression with its tangent kernel. The nonlinearity of the original
 809 network is thus captured entirely through the structure of \mathbf{H}^{∞} , while the optimization itself is no
 810 more complicated than linear regression in feature space.

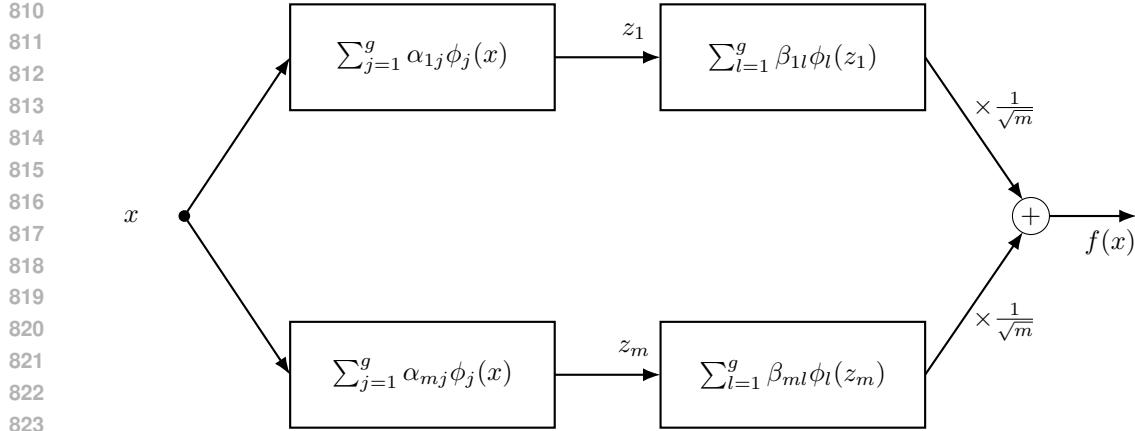


Figure 4: Two-Layer KAN With 1D Input

Connection to training dynamics. One of the main advantages of tangent kernels is that they allow us to describe the network’s dynamics explicitly. For example, under gradient flow optimization (Du et al., 2019), the output vector evolves according to

$$\frac{d\mathbf{u}(t)}{dt} = \mathbf{H}(t) (\mathbf{y} - \mathbf{u}(t)).$$

This shows that the convergence behavior of the network is governed entirely by the spectral properties of $\mathbf{H}(t)$ (or \mathbf{H}^∞ in the infinite-width case).

Thus, the tangent kernel viewpoint bridges the gap between the nonlinear training of KANs and a tractable kernel regression framework, offering both analytical insights and practical tools for understanding their optimization behavior.

A.2 PROOF OF PROPOSITION 3.1

Figure 4 illustrates the two-layer Kolmogorov–Arnold Network (KAN) in the special case of a one-dimensional input. This schematic clarifies the roles of the α_{ij} and β_{il} coefficients, the intermediate activations z_i , and the final scaled aggregation $\frac{1}{\sqrt{m}} \sum_i \sum_l \beta_{il} \phi_l(z_i)$ that produces the network output $f(x)$. The subsequent analysis in this appendix derives the infinite-width kernel \mathbf{H}^∞ associated with this architecture by decomposing it into the contributions from the β parameters (\mathbf{H}_1^∞) and the α parameters (\mathbf{H}_2^∞).

By definition, we have:

$$H_{qr}^\infty = \overbrace{\langle \frac{\partial f(x^q)}{\partial \beta}, \frac{\partial f(x^r)}{\partial \beta} \rangle}^{(H_1^\infty)_{qr}} + \overbrace{\langle \frac{\partial f(x^q)}{\partial \alpha}, \frac{\partial f(x^r)}{\partial \alpha} \rangle}^{(H_2^\infty)_{qr}} \quad (2)$$

First, we compute the \mathbf{H}_1^∞ term. From the definition of our network, we know that $\frac{\partial f(x)}{\partial \beta_{ij}} = \frac{1}{\sqrt{m}} \phi_j(z_i)$. From this, we can conclude:

$$\begin{aligned} (H_1^\infty)_{qr} &= \frac{1}{m} \sum_{i=1}^m \sum_{j=1}^g \phi_j(z_i^q) \phi_j(z_i^r) \\ &= \mathbb{E} \left[\sum_{j=1}^g \phi_j(z^q) \phi_j(z^r) \right] \end{aligned} \quad (3)$$

864 where the second line follows from the law of large numbers as $m \rightarrow \infty$. We can simplify this as:
 865

$$\begin{aligned}
 866 \quad (H_1^\infty)_{qr} &= \mathbb{E} \left[\sum_{j=1}^g \exp \left(-\frac{(z^q - \mu_j)^2 + (z^r - \mu_j)^2}{2\sigma^2} \right) \right] \\
 867 \\
 868 \quad &= \sum_{j=1}^g \mathbb{E} \left[\exp \left(-\frac{2\mu_j^2 + (z^q)^2 + (z^r)^2 - 2\mu_j(z^q + z^r)}{2\sigma^2} \right) \right] \\
 869 \\
 870 \quad &= \exp \left(-\frac{\mu_j^2}{\sigma^2} \right) \sum_{j=1}^g \mathbb{E} \left[\exp \left(-\frac{\overbrace{(z^q)^2 + (z^r)^2 - 2\mu_j(z^q + z^r)}^{S_j^{qr}}}{2\sigma^2} \right) \right] \tag{4}
 \end{aligned}$$

871
 872 Since $z^q = \sum_{l=1}^g \alpha_l \phi_l(x^q)$ and $\alpha \sim \mathcal{N}(0, \mathbf{I}_g)$, we can write $S_j^{qr} = \alpha^T \mathbf{A}^{qr} \alpha + \mu_j (\mathbf{b}^{qr})^T \alpha$ where
 873
 874 $A_{kl}^{qr} = \phi_l(x^q) \phi_k(x^r)$ and $b_l^{qr} = -2(\phi_l(x^q) + \phi_l(x^r))$ (5)
 875

876 Using the moment generating function for a quadratic form of Gaussian random variables
 877 (A.M. Mathai, 1992), we get:
 878

$$\mathbb{E} [\exp(tS_j^{qr})] = \frac{\exp\left(\frac{t^2 \mu_j^2}{2} (\mathbf{b}^{qr})^T (\mathbf{I} - 2t\mathbf{A}^{qr})^{-1} \mathbf{b}^{qr}\right)}{\sqrt{\det(\mathbf{I} - 2t\mathbf{A}^{qr})}} \tag{6}$$

879 Setting $t = -1/(2\sigma^2)$ gives:
 880

$$(H_1^\infty)_{qr} = \sum_{j=1}^g \frac{\exp\left(-\frac{\mu_j^2}{\sigma^2}\right)}{\sqrt{\det\left(\mathbf{I} + \frac{1}{\sigma^2} \mathbf{A}^{qr}\right)}} \exp\left(\frac{\mu_j^2}{8\sigma^4} (\mathbf{b}^{qr})^T (\mathbf{I} + \frac{1}{\sigma^2} \mathbf{A}^{qr})^{-1} \mathbf{b}^{qr}\right) \tag{7}$$

881 Next, we compute \mathbf{H}_2^∞ . The derivative with respect to α_{ij} is:
 882

$$\frac{\partial f(x)}{\partial \alpha_{ij}} = \frac{1}{\sqrt{m}} \sum_{l=1}^g \beta_{il} \phi'_l(z_i) \phi_j(x) \tag{8}$$

883 This leads to:
 884

$$\begin{aligned}
 885 \quad (H_2^\infty)_{qr} &= \mathbb{E} \left[\sum_{s,l,j=1}^g \beta_l \beta_s \phi'_l(z^q) \phi'_s(z^r) \phi_j(x^q) \phi_j(x^r) \right] \\
 886 \\
 887 \quad &= \sum_{j,l=1}^g \mathbb{E} [\phi'_l(z^q) \phi'_l(z^r) \phi_j(x^q) \phi_j(x^r)] \tag{9}
 \end{aligned}$$

888 where the second line follows because $\mathbb{E}[\beta_l \beta_s] = \delta_{ls}$. Since $\phi'_l(z) = -\frac{z - \mu_l}{\sigma^2} \phi_l(z)$, we have:
 889

$$(H_2^\infty)_{qr} = \sum_{j,l=1}^g \frac{\phi_j(x^q) \phi_j(x^r)}{\sigma^4} \mathbb{E} [(z^q - \mu_l)(z^r - \mu_l) \phi_l(z^q) \phi_l(z^r)] \tag{10}$$

890 The expectation term can be written as:
 891

$$\mathbb{E} \left[(z^q - \mu_l)(z^r - \mu_l) \exp \left(-\frac{(z^q - \mu_l)^2 + (z^r - \mu_l)^2}{2\sigma^2} \right) \right] \tag{11}$$

892 Let $Z_l^{qr}(t) = \mathbb{E}[\exp(tS_l^{qr})]$. We can relate the expectation to derivatives of $Z_l^{qr}(t)$ with respect to
 893 the components of \mathbf{b}^{qr} .
 894

$$\frac{\partial Z_l^{qr}(t)}{\partial b_s^{qr}} = t\mu_l \mathbb{E}[\alpha_s \exp(tS_l^{qr})] \tag{12}$$

$$\frac{\partial^2 Z_l^{qr}(t)}{\partial b_p^{qr} \partial b_s^{qr}} = (t\mu_l)^2 \mathbb{E}[\alpha_s \alpha_p \exp(tS_l^{qr})] \tag{13}$$

918 And we know that $(z^q - \mu_l)(z^r - \mu_l) = \sum_{s,p} \alpha_s \alpha_p \phi_s(x^q) \phi_p(x^r) + \mu_l^2 + \mu_l \sum_s b_s^{qr} \alpha_s$. Putting
 919 these pieces together, we can express the expectation in terms of $Z_l^{qr}(t)$ and its derivatives:
 920

$$\begin{aligned} 921 \mathbb{E}[(z^q - \mu_l)(z^r - \mu_l) \exp\{tS_l^{qr}\}] &= \sum_{s,p} \frac{\phi_s(x^q) \phi_p(x^r)}{(t\mu_l)^2} \frac{\partial^2 Z_l^{qr}(t)}{\partial b_p^{qr} \partial b_s^{qr}} \\ 922 &+ \mu_l^2 Z_l^{qr}(t) + \sum_s \frac{b_s^{qr}}{t} \frac{\partial Z_l^{qr}(t)}{\partial b_s^{qr}} \end{aligned} \quad (14)$$

923 By defining $\mathbf{G}^{qr} = (\mathbf{I} - 2t\mathbf{A}^{qr})^{-1}$ and $T_l^{qr} = \exp\left(\frac{t^2\mu_l^2}{2}(\mathbf{b}^{qr})^T(\mathbf{I} - 2t\mathbf{A}^{qr})^{-1}\mathbf{b}^{qr}\right)$, we can find
 924 closed forms for the derivatives of $Z_l^{qr}(t)$. Substituting these back gives the final expression for
 925 $(H_2^\infty)_{qr}$, which completes the proof. We have the following:
 926

$$\frac{\partial Z_l^{qr}(t)}{\partial b_s^{qr}} = \frac{t^2\mu_l^2((\mathbf{I} - 2t\mathbf{A}^{qr})^{-1}\mathbf{b}^{qr})_s}{\sqrt{\det(\mathbf{I} - 2t\mathbf{A}^{qr})}} T_l^{qr} \quad (15)$$

$$\begin{aligned} \frac{\partial^2 Z_l^{qr}(t)}{\partial b_p^{qr} \partial b_s^{qr}} &= \frac{t^2\mu_l^2((\mathbf{I} - 2t\mathbf{A}^{qr})^{-1})_{sp}}{\sqrt{\det(\mathbf{I} - 2t\mathbf{A}^{qr})}} T_l^{qr} \\ &+ \frac{t^4\mu_l^4((\mathbf{I} - 2t\mathbf{A}^{qr})^{-1}\mathbf{b}^{qr})_s((\mathbf{I} - 2t\mathbf{A}^{qr})^{-1}\mathbf{b}^{qr})_p}{\det(\mathbf{I} - 2t\mathbf{A}^{qr})} T_l^{qr} \end{aligned} \quad (16)$$

931 By defining:
 932

$$Y_{sl}^{qr} = \frac{1}{t} \frac{\partial Z_l^{qr}(t)}{\partial b_s^{qr}} = t\mu_l^2 \sqrt{\det(\mathbf{G}^{qr})} (\mathbf{G}^{qr} \mathbf{b}^{qr})_s T_l^{qr} \quad (17)$$

$$X_{psl}^{qr} = \frac{1}{t^2\mu_l^2} \frac{\partial^2 Z_l^{qr}(t)}{\partial b_p^{qr} \partial b_s^{qr}} = \sqrt{\det(\mathbf{G}^{qr})} (\mathbf{G}^{qr})_{sp} T_l^{qr} + t^2\mu_l^2 \det(\mathbf{G}^{qr}) (\mathbf{G}^{qr} \mathbf{b}^{qr})_s (\mathbf{G}^{qr} \mathbf{b}^{qr})_p T_l^{qr} \quad (18)$$

933 we can write:
 934

$$\mathbb{E}\{(z^q - \mu_l)(z^r - \mu_l) \exp\{tS_l^{qr}\}\} = \sum_{s,p} \phi_s(x^q) \phi_p(x^r) X_{psl}^{qr} + \mu_l^2 Z_l^{qr} + \sum_s b_s^{qr} Y_{sl}^{qr} \quad (19)$$

935 Substituting this back into the expression for $(H_2^\infty)_{qr}$ gives the final result:
 936

$$(H_2^\infty)_{qr} = \sum_{j,l=1}^g \frac{\phi_j(x^q) \phi_j(x^r) \exp\left(-\frac{\mu_l^2}{\sigma^2}\right)}{\sigma^4} \left\{ \sum_{s,p} \phi_s(x^q) \phi_p(x^r) X_{psl}^{qr} + \mu_l^2 Z_l^{qr} + \sum_s b_s^{qr} Y_{sl}^{qr} \right\} \quad (20)$$

937 \square
 938
 939

940 B PROOF OF THEOREM 4.2

941 We begin by recalling the two-layer Kolmogorov–Arnold Network (KAN) architecture analyzed in
 942 this appendix (see also Figure 1):
 943

$$\begin{cases} f(\mathbf{x}) = \frac{1}{\sqrt{m}} \sum_{p=1}^m \sum_{l=1}^g \beta_{pl} \phi_l(z_p), \\ z_p = \sum_{k=1}^d \sum_{j=1}^g \alpha_{pj} \phi_j(x_k). \end{cases} \quad (21)$$

944 This formulation makes explicit the dependence of the network output $f(\mathbf{x})$ on the coefficients α_{pj}
 945 and β_{pl} , which will be central in the stability analysis that follows.
 946

972 B.1 PROOF OF LEMMA 4.3 (COEFFICIENT STABILITY)
973974 By the induction hypothesis we have
975

976
$$\mathcal{L}(t) \leq \left(1 - \frac{\eta\lambda_0}{2}\right) \mathcal{L}(t-1).$$

977

978 Hence
979

980
$$\|\mathbf{u}(t) - \mathbf{y}\|_2^2 \leq \left(1 - \frac{\eta\lambda_0}{2}\right) \|\mathbf{u}(t-1) - \mathbf{y}\|_2^2,$$

981

982 which implies
983

984
$$\begin{aligned} \|\mathbf{u}(t) - \mathbf{y}\|_2 &\leq \sqrt{1 - \frac{\eta\lambda_0}{2}} \|\mathbf{u}(t-1) - \mathbf{y}\|_2 \\ 985 &\leq \left(1 - \frac{\eta\lambda_0}{4}\right) \|\mathbf{u}(t-1) - \mathbf{y}\|_2 \quad (\text{since } \sqrt{1-x} \leq 1 - \frac{x}{2} \text{ for } 0 \leq x \leq 1) \\ 986 &\leq \left(1 - \frac{\eta\lambda_0}{4}\right)^t \|\mathbf{u}(0) - \mathbf{y}\|_2. \end{aligned} \quad (22)$$

987

988 Now consider the gradient descent update for a single coefficient α_{ijk} :
989

990
$$\begin{aligned} \alpha_{ijk}(t) - \alpha_{ijk}(t-1) &= -\eta \frac{\partial \mathcal{L}(t-1)}{\partial \alpha_{ijk}} \\ 991 &= -\frac{\eta}{\sqrt{m}} \sum_{q=1}^n (u_q(t-1) - y_q) \frac{\partial}{\partial \alpha_{ijk}} \left(\sum_{p=1}^m \sum_{l=1}^g \beta_{pl} \phi_l(z_p^q) \right). \end{aligned} \quad (23)$$

992

993 Taking absolute values and using $|\phi_l'(\cdot)| \leq 1$ from the assumptions,
994

995
$$\begin{aligned} |\alpha_{ijk}(t) - \alpha_{ijk}(t-1)| &\leq \frac{\eta}{\sqrt{m}} \sum_{q,p,l} |\phi_l'(z_p^q)| \left| \frac{\partial z_p^q}{\partial \alpha_{ijk}} \right| |u_q(t-1) - y_q| \\ 1000 &\leq \frac{\eta}{\sqrt{m}} \sum_{q,p,l} |\phi_l'(z_p^q)| |\phi_j(x_k^q) \delta_{ip}| |u_q(t-1) - y_q| \\ 1001 &\leq \frac{\eta g}{\sqrt{m}} \sum_{q=1}^n |u_q(t-1) - y_q| \\ 1002 &\leq \frac{\eta g \sqrt{n}}{\sqrt{m}} \|\mathbf{u}(t-1) - \mathbf{y}\|_2, \end{aligned} \quad (24)$$

1003

1004 where in equation 24 we used $\delta_{ip} = \mathbb{I}\{i = p\}$, and in equation 25 the inequality $\|\mathbf{x}\|_1 \leq \sqrt{n} \|\mathbf{x}\|_2$
1005 for $\mathbf{x} \in \mathbb{R}^n$.
10061007 Summing these updates over $\tau = 0$ to $t-1$,
1008

1009
$$\begin{aligned} |\alpha_{ijk}(t) - \alpha_{ijk}(0)| &\leq \sum_{\tau=0}^{t-1} |\alpha_{ijk}(\tau+1) - \alpha_{ijk}(\tau)| \\ 1010 &\leq \eta g \sqrt{\frac{n}{m}} \sum_{\tau=0}^{t-1} \|\mathbf{u}(\tau) - \mathbf{y}\|_2 \\ 1011 &\leq \eta g \sqrt{\frac{n}{m}} \sum_{\tau=0}^{t-1} \left(1 - \frac{\eta\lambda_0}{4}\right)^\tau \|\mathbf{u}(0) - \mathbf{y}\|_2 \quad (\text{by equation 22}) \\ 1012 &= \eta g \sqrt{\frac{n}{m}} \|\mathbf{u}(0) - \mathbf{y}\|_2 \cdot \frac{1 - (1 - \frac{\eta\lambda_0}{4})^t}{1 - (1 - \frac{\eta\lambda_0}{4})} \\ 1013 &\leq \frac{4g\sqrt{n}}{\lambda_0\sqrt{m}} \|\mathbf{u}(0) - \mathbf{y}\|_2. \end{aligned} \quad (26)$$

1014

1026 Defining

$$1028 \quad R := \frac{4g\sqrt{n}}{\lambda_0\sqrt{m}} \|\mathbf{u}(0) - \mathbf{y}\|_2,$$

1029 we conclude that $|\alpha_{ijk}(t) - \alpha_{ijk}(0)| \leq R$ for all t , completing the proof. \square

1031 B.2 PROOF OF LEMMA 4.4 (KERNEL STABILITY OVER TIME)

1033 By definition, the (q, r) entry of the tangent kernel at time t is

$$1035 \quad H_{qr}(t) = \left\langle \frac{\partial u_q(t)}{\partial \alpha}, \frac{\partial u_r(t)}{\partial \alpha} \right\rangle. \quad (27)$$

1037 From Section B.1 we have already computed

$$1039 \quad \frac{\partial u_q(t)}{\partial \alpha_{ijk}} = \frac{1}{\sqrt{m}} \sum_{l=1}^g \beta_{il} \phi'_l(z_i^q(t)) \phi_j(x_k^q). \quad (28)$$

1042 Substituting equation 28 into equation 27 gives

$$1044 \quad H_{qr}(t) = \sum_{i=1}^m \sum_{j=1}^g \sum_{k=1}^d \frac{1}{m} \left(\sum_{l=1}^g \beta_{il} \phi'_l(z_i^q(t)) \phi_j(x_k^q) \right) \left(\sum_{s=1}^g \beta_{is} \phi'_s(z_i^r(t)) \phi_j(x_k^r) \right) \\ 1045 \\ 1046 \\ 1047 = \frac{1}{m} \sum_{i,j,k,l,s} \beta_{il} \beta_{is} \phi'_l(z_i^q(t)) \phi_j(x_k^q) \phi'_s(z_i^r(t)) \phi_j(x_k^r). \quad (29)$$

1049 Therefore,

$$1051 \quad |H_{qr}(t) - H_{qr}(0)| \leq \frac{1}{m} \sum_{i,j,k,l,s} |\phi_j(x_k^q) \phi_j(x_k^r)| |\phi'_l(z_i^q(t)) \phi'_s(z_i^r(t)) - \phi'_l(z_i^q(0)) \phi'_s(z_i^r(0))| \\ 1052 \\ 1053 \\ 1054 \\ 1055 \\ 1056 \\ 1057 \\ 1058 \leq \frac{1}{m} \sum_{i,j,k,l,s} |\phi'_l(z_i^q(t)) \phi'_s(z_i^r(t)) - \phi'_l(z_i^q(0)) \phi'_s(z_i^r(0))| \\ \leq \frac{1}{m} \sum_{i,j,k,l,s} (|\phi'_l(z_i^q(t)) - \phi'_l(z_i^q(0))| + |\phi'_s(z_i^r(t)) - \phi'_s(z_i^r(0))|), \quad (30)$$

1059 where we used $|\phi_j(\cdot)| \leq 1$ and $|\phi'_l(\cdot)| \leq 1$ and we now for $a, b, c, d \leq 1$ we have $|ab - cd| \leq 1060 |a - c| + |b - d|$.

1061 From the network definition equation 21,

$$1063 \quad |z_i^q(t) - z_i^q(0)| \leq \sum_{k=1}^d \sum_{j=1}^g |\phi_j(x_k^q)| |\alpha_{ijk}(t) - \alpha_{ijk}(0)| \leq gdR, \quad (31)$$

1066 where the last inequality follows from Lemma 4.3 and the bound $|\phi_j(x_k^q)| \leq 1$.

1068 By Assumptions, the second derivative of ϕ_l is bounded, hence

$$1069 \quad |\phi'_l(z_i^q(t)) - \phi'_l(z_i^q(0))| \leq |z_i^q(t) - z_i^q(0)| \leq gdR. \quad (32)$$

1071 Substituting equation 32 into equation 30, we obtain

$$1072 \quad |H_{qr}(t) - H_{qr}(0)| \leq \frac{1}{m} \sum_{i,j,k,l,s} 2gdR = 2d^2g^4R. \quad (33)$$

1075 Finally, taking matrix norms gives

$$1077 \quad \|\mathbf{H}(t) - \mathbf{H}(0)\|_2 \leq \|\mathbf{H}(t) - \mathbf{H}(0)\|_F \leq \sum_{q,r=1}^n |H_{qr}(t) - H_{qr}(0)| \leq 2n^2d^2g^4R. \quad (34)$$

1079 This completes the proof. \square

1080 B.3 PROOF OF LEMMA 4.5 (INITIAL KERNEL CONCENTRATION)
1081

1082 We begin by observing that

1083
$$1084 H_{qr}(0) = \frac{1}{m} \sum_{i,j,k,l,s} \beta_{il} \beta_{is} \phi'_l(z_i^q(0)) \phi_j(x_k^q) \phi'_s(z_i^r(0)) \phi_j(x_k^r). \quad (35)$$

1085

1086 Since the coefficients α_{ijk} are independent across different i , the expression above can be written as
1087 the average of m i.i.d. random variables

1088
$$1089 X_i^{qr} = \sum_{j,k,l,s} \beta_{il} \beta_{is} \phi'_l(z_i^q(0)) \phi_j(x_k^q) \phi'_s(z_i^r(0)) \phi_j(x_k^r). \quad (36)$$

1090

1091 By our assumptions, each variable is bounded in absolute value by

1092
$$|X_i^{qr}| \leq dg^3.$$

1093

1094 Applying Hoeffding's inequality, we obtain
1095

1096
$$\mathbb{P}[|H_{qr}(0) - H_{qr}^\infty| \geq \epsilon] \leq 2 \exp\left(-\frac{m\epsilon^2}{2d^2g^6}\right). \quad (37)$$

1097

1098 Taking a union bound over all n^2 entries of the kernel matrix, it follows that
1099

1100
$$\mathbb{P}[\forall q, r \in [n] : |H_{qr}(0) - H_{qr}^\infty| \leq \epsilon] \geq 1 - 2n^2 \exp\left(-\frac{m\epsilon^2}{2d^2g^6}\right). \quad (38)$$

1101

1102 Equivalently, setting

1103
$$\epsilon = \frac{dg^3}{\sqrt{m}} \sqrt{\log\left(\frac{2n^2}{\delta}\right)},$$

1104

1105 we obtain that with probability at least $1 - \delta$,

1106
$$\|\mathbf{H}(0) - \mathbf{H}^\infty\|_2^2 \leq \|\mathbf{H}(0) - \mathbf{H}^\infty\|_F^2 \leq \frac{d^2 g^6 n^2}{m} \log\left(\frac{2n^2}{\delta}\right), \quad (39)$$

1107

1108 which establishes Lemma 4.5. \square
11091112 B.4 PROOF OF THEOREM 4.2
11131114 **Step 1: Bounding the initial error.** We begin by establishing an upper bound on the initial error.
1115 By the triangle inequality,

1116
$$\|\mathbf{y} - \mathbf{u}(0)\|_2^2 \leq 2\|\mathbf{y}\|_2^2 + 2\|\mathbf{u}(0)\|_2^2. \quad (40)$$

1117

1118 From our assumptions, we have $\|\mathbf{y}\|_2^2 \leq n$. We now derive a bound for the second term.
11191120 **Step 2: Distribution of the initialization.** By the definition of z_p in equation 21, we know that
1121

1122
$$1123 z_p(0) \sim \mathcal{N}\left(0, \sigma^2 \sum_{j,k} \phi_j^2(x_k)\right).$$

1124

1125 Therefore,

1126
$$1127 \mathbb{E}|z_p(0)| = \sqrt{\frac{2}{\pi}} \sigma \sqrt{\sum_{j,k} \phi_j^2(x_k)} \lesssim \sigma \sqrt{gd}.$$

1128

1129 Using assumptions, we obtain

1130
$$1131 \mathbb{E}|u_q(0)| \leq \frac{1}{\sqrt{m}} \sum_{p,l} \mathbb{E}|\phi_l(z_p(0))|$$

1132
$$1133 \lesssim \sqrt{md} g^{3/2} \sigma.$$

1134 By Markov's inequality, with probability at least $1 - \delta$, we have
 1135

$$1136 \quad \|\mathbf{u}(0)\|_2 \leq \|\mathbf{u}(0)\|_1 \lesssim \frac{\sqrt{md}}{\delta} n g^{3/2} \sigma. \quad (41)$$

1138 Substituting equation 41 into equation 40, we obtain
 1139

$$1140 \quad \|\mathbf{y} - \mathbf{u}(0)\|_2^2 \lesssim n + \frac{md}{\delta^2} n^2 g^3 \sigma^2. \quad (42)$$

1142 **Step 3: Error recursion.** We now analyze the error at step $t + 1$. Expanding the loss, we have
 1143

$$1144 \quad \|\mathbf{y} - \mathbf{u}(t+1)\|_2^2 = \|\mathbf{y} - \mathbf{u}(t) - (\mathbf{u}(t+1) - \mathbf{u}(t))\|_2^2 \\ 1145 \quad = \|\mathbf{y} - \mathbf{u}(t)\|_2^2 - 2(\mathbf{y} - \mathbf{u}(t))^\top (\mathbf{u}(t+1) - \mathbf{u}(t)) + \|\mathbf{u}(t+1) - \mathbf{u}(t)\|_2^2. \quad (43)$$

1147 **Step 4: Defining the error term.** To control the update, define the error term
 1148

$$1149 \quad \epsilon_q(t) = u_q(t+1) - u_q(t) + \eta \sum_{r=1}^n H_{qr}(t)(u_r(t) - y_r). \quad (44)$$

1152 By expanding $H_{qr}(t)$, we obtain

$$1153 \quad \eta \sum_{r=1}^n H_{qr}(t)(u_r(t) - y_r) = \sum_{p,j,k,l,s,r} \frac{\eta}{m} (u_r(t) - y_r) \beta_{pl} \beta_{ps} \phi'_l(z_p^q(t)) \phi_j(x_k^q) \phi'_s(z_p^r(t)) \phi_j(x_k^r) \\ 1154 \quad = \frac{-1}{\sqrt{m}} \sum_{p,j,k,l} \beta_{pl} (\alpha_{p,j,k}(t+1) - \alpha_{p,j,k}(t)) \phi'_l(z_p^q(t)) \phi_j(x_k^q) \\ 1155 \quad = \frac{-1}{\sqrt{m}} \sum_{p,l} \beta_{pl} (z_p^q(t+1) - z_p^q(t)) \phi'_l(z_p^q(t)). \quad (45)$$

1161 Substituting equation 45 into equation 44, we find
 1162

$$1163 \quad \epsilon_q(t) = \frac{1}{\sqrt{m}} \sum_{p,l} \beta_{pl} [\phi_l(z_p^q(t+1)) - \phi_l(z_p^q(t)) - \phi'_l(z_p^q(t))(z_p^q(t+1) - z_p^q(t))].$$

1165 **Step 5: Bounding the Taylor remainder.** By Taylor's theorem and assumptions, we obtain
 1166

$$1167 \quad \phi_l(z_p^q(t+1)) - \phi_l(z_p^q(t)) - \phi'_l(z_p^q(t))(z_p^q(t+1) - z_p^q(t)) \leq \frac{1}{2} (z_p^q(t+1) - z_p^q(t))^2.$$

1169 Moreover, from equation 25, one can bound

$$1170 \quad |z_p^q(t+1) - z_p^q(t)| \leq \sum_{j,k} |\alpha_{pjk}(t+1) - \alpha_{pjk}(t)| |\phi_j(x_k^q)| \\ 1171 \quad \leq \frac{d\eta\sqrt{n}}{\sqrt{m}} g^2 \|\mathbf{u}(t) - \mathbf{y}\|_2. \quad (46)$$

1175 Combining these estimates gives
 1176

$$1177 \quad \|\mathbf{y} - \mathbf{u}(t+1)\|_2^2 = \|\mathbf{y} - \mathbf{u}(t)\|_2^2 - 2(\mathbf{y} - \mathbf{u}(t))^\top (-\eta \mathbf{H}(\mathbf{u}(t) - \mathbf{y}) + \epsilon(t)) + \|\mathbf{u}(t+1) - \mathbf{u}(t)\|_2^2 \\ 1178 \quad \leq (1 - 2\eta\lambda_{\min}(\mathbf{H}(t)) + 2\|\mathbf{y} - \mathbf{u}(t)\|_2 \|\epsilon(t)\|_2 + \eta^2 d^2 g^6 n^3) \|\mathbf{y} - \mathbf{u}(t)\|_2^2. \quad (47)$$

1180 **Step 6: Bounding the size of the update.** Using equation 46, we find
 1181

$$1182 \quad |u_q(t+1) - u_q(t)| \leq \frac{1}{\sqrt{m}} \sum_{p,l} |\phi_l(z_p^q(t+1)) - \phi_l(z_p^q(t))| \\ 1183 \quad \leq \frac{1}{\sqrt{m}} \sum_{p,l} |z_p^q(t+1) - z_p^q(t)| \\ 1184 \quad \leq \eta d g^3 \sqrt{n} \|\mathbf{u}(t) - \mathbf{y}\|_2 \quad (48)$$

1188 Thus,

1189
$$\|\mathbf{u}(t+1) - \mathbf{u}(t)\|_2 \leq \|\mathbf{u}(t+1) - \mathbf{u}(t)\|_1 \leq \eta d g^3 n^{3/2} \|\mathbf{u}(t) - \mathbf{y}\|_2$$
1190

1191 Substituting into equation 43, we obtain

1192
$$\begin{aligned} 1193 \|\mathbf{y} - \mathbf{u}(t+1)\|_2^2 &= \|\mathbf{y} - \mathbf{u}(t)\|_2^2 - 2(\mathbf{y} - \mathbf{u}(t))^T(-\eta \mathbf{H}(\mathbf{u}(t) - \mathbf{y}) + \boldsymbol{\epsilon}(t)) + \|\mathbf{u}(t+1) - \mathbf{u}(t)\|_2^2 \\ 1194 &\leq (1 - 2\eta \lambda_{\min}(\mathbf{H}(t)) + 2\|\mathbf{y} - \mathbf{u}(t)\|_2 \|\boldsymbol{\epsilon}(t)\|_2 + \eta^2 d^2 g^6 n^3) \|\mathbf{y} - \mathbf{u}(t)\|_2^2. \end{aligned} \quad (49)$$
1195

1196 **Step 7: Lower bounding the minimum eigenvalue.** We now lower bound $\lambda_{\min}(\mathbf{H}(t))$. By
1197 Weyl's perturbation inequality Bhatia (2013) and Lemma 4.5, if

1198
$$m = \mathcal{O}\left(\frac{d^2 g^6 n^2}{\lambda_0^2} \log\left(\frac{n}{\delta}\right)\right),$$
1199

1200 then $\|\mathbf{H}(0) - \mathbf{H}^\infty\|_2 \leq \lambda_0/4$, and hence $\lambda_{\min}(\mathbf{H}(0)) \geq \frac{3}{4}\lambda_0$. Furthermore, by Lemma 4.4, if
1201 $R = \mathcal{O}(\lambda_0/(n^2 d^2 g^4))$, then

1202
$$\|\mathbf{H}(0) - \mathbf{H}(t)\|_2 \leq \lambda_0/4.$$
1203

1204 Together these imply

1205
$$\lambda_{\min}(\mathbf{H}(t)) \geq \lambda_0/2.$$
1206

1207 **Step 8: Final convergence bound.** Substituting this into equation 49, and using the induction
1208 hypothesis $\|\mathbf{y} - \mathbf{u}(t)\|_2 \leq \|\mathbf{y} - \mathbf{u}(0)\|_2$, we obtain

1209
$$\begin{aligned} 1210 \|\mathbf{y} - \mathbf{u}(t+1)\|_2^2 &\leq \left(1 - \eta\lambda_0 + c_0 \|\mathbf{y} - \mathbf{u}(0)\|_2 \frac{n\eta^2 d^2 g^5}{\sqrt{m}} + \eta^2 d^2 g^6 n^3\right) \|\mathbf{y} - \mathbf{u}(t)\|_2^2 \\ 1211 &\leq \left(1 - \eta\lambda_0 + c_1 n\eta^2 d^2 g^5 \sqrt{\frac{n}{m} + \frac{d}{\delta^2} n^2 g^3 \sigma^2} + \eta^2 d^2 g^6 n^3\right) \|\mathbf{y} - \mathbf{u}(t)\|_2^2. \end{aligned} \quad (50)$$
1212

1213 Finally, suppose that $\sigma = \mathcal{O}(\delta/\sqrt{mng^3d})$ and $m = \mathcal{O}(n)$. If we choose the learning rate

1214
$$\eta \lesssim \frac{\lambda_0}{n^3 d^2 g^6},$$
1215

1216 then it follows that

1217
$$\|\mathbf{y} - \mathbf{u}(t+1)\|_2^2 \leq \left(1 - \frac{\eta\lambda_0}{2}\right) \|\mathbf{y} - \mathbf{u}(t)\|_2^2,$$
1218

1219 which establishes the desired linear convergence rate. \square 1220

C PROOF OF THEOREM 4.6

1221 We prove Theorem 4.6 by relying on the lemmas established in Appendix B. Starting from equa-
1222 tion 44 we have, for each coordinate,

1223
$$u_q(t+1) - u_q(t) = -\eta \sum_{r=1}^n H_{qr}(t)(u_r(t) - y_r) + \epsilon_q(t). \quad (51)$$
1224

1225 In vector form this yields

1226
$$\mathbf{u}(t+1) - \mathbf{u}(t) = -\eta \mathbf{H}(t)(\mathbf{u}(t) - \mathbf{y}) + \boldsymbol{\epsilon}(t), \quad (52)$$
1227

1228 where $\boldsymbol{\epsilon}(t) = [\epsilon_q(t)]_{q=1}^n$ is the coordinate-wise Taylor remainder.1229 Using Lemmas 4.5 and 4.4 we decompose $\mathbf{H}(t) = \mathbf{H}^\infty + (\mathbf{H}(t) - \mathbf{H}^\infty)$ and rewrite equation 52
1230 as

1231
$$\mathbf{u}(t+1) - \mathbf{u}(t) = -\eta \mathbf{H}^\infty(\mathbf{u}(t) - \mathbf{y}) - \eta(\mathbf{H}(t) - \mathbf{H}^\infty)(\mathbf{u}(t) - \mathbf{y}) + \boldsymbol{\epsilon}(t). \quad (53)$$
1232

1242 Define

1243
$$\chi(t) := -\eta(\mathbf{H}(t) - \mathbf{H}^\infty)(\mathbf{u}(t) - \mathbf{y}).$$

1244 By the triangle inequality and the lemmas controlling $\mathbf{H}(0) - \mathbf{H}^\infty$ and $\mathbf{H}(t) - \mathbf{H}(0)$ we obtain
1245 the high-probability bound

1246
$$\begin{aligned} 1247 \|\chi(t)\|_2 &\leq \eta\|\mathbf{H}^\infty - \mathbf{H}(t)\|_2\|\mathbf{u}(t) - \mathbf{y}\|_2 \\ 1248 &\leq \eta\left(\|\mathbf{H}^\infty - \mathbf{H}(0)\|_2 + \|\mathbf{H}(0) - \mathbf{H}(t)\|_2\right)\|\mathbf{u}(t) - \mathbf{y}\|_2 \\ 1249 &\leq 2n^2d^2g^4R\|\mathbf{u}(t) - \mathbf{y}\|_2, \end{aligned} \tag{54}$$

1250 where the last inequality uses the concrete bounds from Lemmas 4.5 and 4.4 (see main text for the
1251 precise dependence on m and R).
12521253 Set $\zeta(t) := \chi(t) + \epsilon(t)$. Then the one-step recursion becomes
1254

1255
$$\mathbf{u}(t+1) - \mathbf{y} = (\mathbf{I} - \eta\mathbf{H}^\infty)(\mathbf{u}(t) - \mathbf{y}) + \zeta(t). \tag{55}$$

1256 Unrolling this recursion for t steps gives
1257

1258
$$\begin{aligned} 1259 \mathbf{u}(t) - \mathbf{y} &= (\mathbf{I} - \eta\mathbf{H}^\infty)^t(\mathbf{u}(0) - \mathbf{y}) + \sum_{\tau=0}^{t-1}(\mathbf{I} - \eta\mathbf{H}^\infty)^\tau\zeta(t-1-\tau) \\ 1260 &= -(\mathbf{I} - \eta\mathbf{H}^\infty)^t\mathbf{y} + (\mathbf{I} - \eta\mathbf{H}^\infty)^t\mathbf{u}(0) + \sum_{\tau=0}^{t-1}(\mathbf{I} - \eta\mathbf{H}^\infty)^\tau\zeta(t-1-\tau). \end{aligned} \tag{56}$$

1261 The first term $-(\mathbf{I} - \eta\mathbf{H}^\infty)^t\mathbf{y}$ is the label-dependent main term in the theorem; we must show the
1262 remaining two terms are negligible.
12631264 **Bounding the initialization term.** From equation 41 we have (with high probability)

1265
$$\|(\mathbf{I} - \eta\mathbf{H}^\infty)^t\mathbf{u}(0)\|_2 \leq (1 - \eta\lambda_0)^t\|\mathbf{u}(0)\|_2 \lesssim (1 - \eta\lambda_0)^t\frac{\sqrt{md}}{\delta}ng^{3/2}\sigma. \tag{57}$$

1266 Thus for small initialization variance σ^2 the initialization term decays exponentially and is negligible.
12671268 **Bounding the accumulated error term.** Using equation 54 and the bound on $\epsilon(t)$ from Appendix B, we obtain for the accumulated error
1269

1270
$$\begin{aligned} 1271 \left\| \sum_{\tau=0}^{t-1}(\mathbf{I} - \eta\mathbf{H}^\infty)^\tau\zeta(t-1-\tau) \right\|_2 &\leq \sum_{\tau=0}^{t-1}\|(\mathbf{I} - \eta\mathbf{H}^\infty)^\tau\|_2\|\zeta(t-1-\tau)\|_2 \\ 1272 &\leq \sum_{\tau=0}^{t-1}(1 - \eta\lambda_0)^\tau Cn^2d^2g^4R\|\mathbf{u}(t) - \mathbf{y}\|_2 \\ 1273 &\lesssim n^2d^2g^4R\sum_{\tau=0}^{t-1}(1 - \eta\lambda_0)^\tau\|\mathbf{u}(0) - \mathbf{y}\|_2, \end{aligned} \tag{58}$$

1274 where C is an absolute constant absorbed into \lesssim and we used the induction bound $\|\mathbf{u}(t) - \mathbf{y}\|_2 \leq$
1275 $\|\mathbf{u}(0) - \mathbf{y}\|_2$ in the last line. Substituting the bound equation 42 for $\|\mathbf{u}(0) - \mathbf{y}\|_2$ yields
1276

1277
$$\begin{aligned} 1278 \left\| \sum_{\tau=0}^{t-1}(\mathbf{I} - \eta\mathbf{H}^\infty)^\tau\zeta(t-1-\tau) \right\|_2 &\lesssim n^2d^2g^4R\sqrt{n + \frac{md}{\delta^2}n^2g^3\sigma^2}\sum_{\tau=0}^{\infty}(1 - \eta\lambda_0)^\tau \\ 1279 &\lesssim \frac{n^2d^2g^4R}{\eta\lambda_0}\sqrt{n + \frac{md}{\delta^2}n^2g^3\sigma^2}. \end{aligned} \tag{59}$$

1280 **Parameter choices and conclusion.** If we choose the initialization variance and stability radius
1281 as
1282

1283
$$\sigma = \mathcal{O}\left(\frac{\delta}{m\sqrt{ng^3d}}\right), \quad R = \mathcal{O}\left(\frac{\eta\lambda_0}{n^{5/2}d^2g^4}\right),$$

1284 then both the initialization term equation 57 and the accumulated error above can be made arbitrarily
1285 small. Under these choices the dominant term in equation 56 is $-(\mathbf{I} - \eta\mathbf{H}^\infty)^t\mathbf{y}$, and the label-
1286 dependent bound of Theorem 4.6 follows. \square

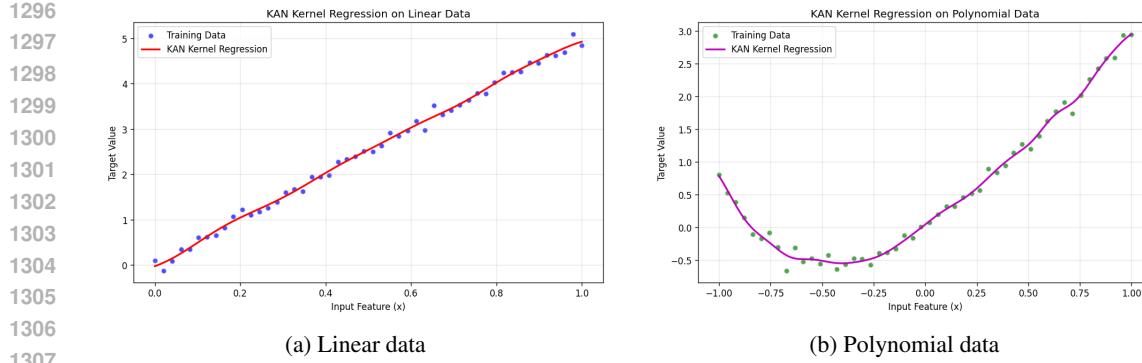


Figure 5: KAN-TK regression results on synthetic datasets. Figure (a) shows performance on linear data, while Figure (b) shows polynomial data.

D ADDITIONAL EXPERIMENTS

D.1 ADDITIONAL REGRESSION EXPERIMENTS WITH KAN-TK

As shown in Figure 5, kernel regression with our derived KAN-TK effectively fits both a simple linear function (Figure 5a) and a more complex polynomial function (Figure 5b). This demonstrates that the induced kernel captures the expressive function space of the underlying KAN. To avoid overfitting, we apply Kernel Ridge Regression with a regularization parameter of $\lambda = 0.1$.

Setup. For both experiments, we construct datasets of $n = 50$ samples with inputs drawn uniformly from the interval $[-1, 1]$. The linear dataset is generated from

$$y = 5x + \epsilon, \quad \epsilon \sim \mathcal{N}(0, 0.01),$$

while the polynomial dataset is generated from

$$y = 0.5x^4 - 8.6x^3 + 1.32x^2 + 2x + \epsilon, \quad \epsilon \sim \mathcal{N}(0, 0.01).$$

Results. Figure 5a shows that the KAN-TK regressor recovers the linear function almost perfectly despite the additive noise. Figure 5b further illustrates that the kernel can fit a substantially more complex nonlinear target function with high accuracy. These results highlight the flexibility of KAN-TK: even with a modest number of samples, it adapts effectively to functions of varying complexity while maintaining robustness through regularization.

D.2 EXAMINING RESULTS ON MORE COMPLEX DATASETS

In this section, we evaluate our convergence and distance-from-initialization results on two standard image classification benchmarks: MNIST LeCun et al. (1998) and CIFAR-10 Krizhevsky (2009).

Setup. For MNIST, we considered model widths $m \in \{32, 128, 512, 2048\}$, and for CIFAR-10 we used $m \in \{256, 512, 1024, 2048\}$. All experiments were run for 20 epochs using the cross-entropy loss.

Results. Figure 6 reports the training error and parameter deviation for MNIST, while Figure 7 provides the corresponding results for CIFAR-10. As shown in both cases, the empirical trends observed previously—namely, improved convergence and reduced movement from initialization at larger widths—persist even on these significantly more complex real-world datasets.

These results, utilizing the cross-entropy loss, also suggest a future direction: examining the behavior of network parameters under cross-entropy to show that they remain close to initialization, consistent with the observations made using the MSE loss in this paper.

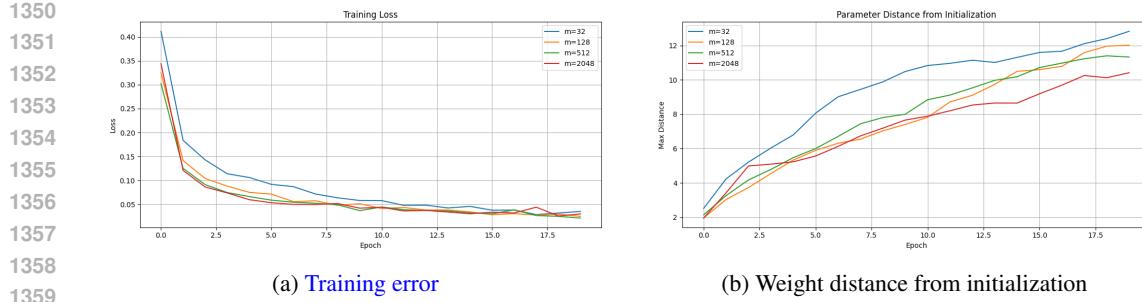


Figure 6: Convergence analysis on the MNIST dataset. (a) Training error and (b) ℓ_∞ distance of weights from initialization.

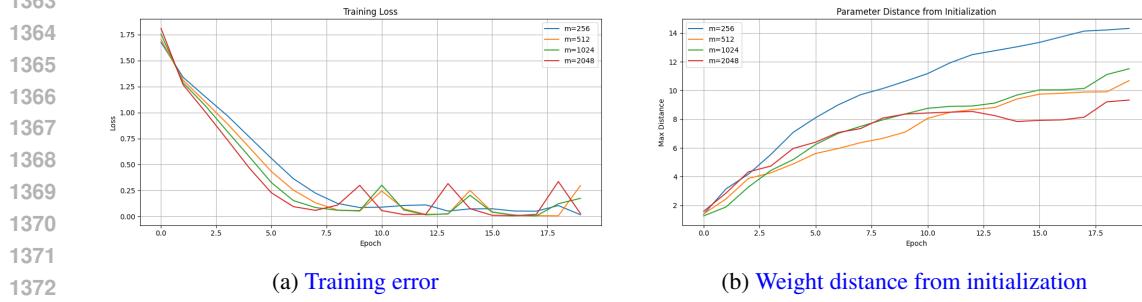


Figure 7: Convergence analysis on the CIFAR-10 dataset. (a) Training error and (b) ℓ_∞ distance of weights from initialization.

D.3 ADDITIONAL PROJECTIONS OF LABEL VECTORS

In Section 4.2, we analyzed how the structure of the label vector \mathbf{y} influences optimization by examining its projection onto the eigenspectrum of the KAN-TK. Here, we extend this analysis to several additional structured label functions to further illustrate the relationship between label–kernel alignment and convergence behavior.

Setup. We construct one-dimensional datasets with $n = 50$ samples drawn uniformly from $[-1, 1]$. We consider four structured label functions:

$$y = \exp(x), \quad y = \ln|x| + x^2 + 1, \quad y = x\left(1 - \frac{x}{3}\right)^{-1}, \quad y = \sin^{-1}(0.4 \sin(x)).$$

For each function, we compute the infinite-width KAN-TK, \mathbf{H}^∞ , and project the corresponding label vector onto its eigenbasis.

Results. Figure 8 shows the projection profiles across all four functions. In every case, the structured label vectors place a substantial portion of their energy on the leading eigenvectors of the kernel—those associated with the largest eigenvalues. Such concentration indicates strong alignment with the dominant kernel directions, which in turn predicts rapid convergence under gradient descent, consistent with our theoretical characterization in Theorem 4.6. By contrast, as shown in the random-label experiments in the main text, unstructured labels distribute their energy more uniformly across the spectrum, resulting in slower and more erratic convergence.

An additional observation is that highly nonlinear mappings (e.g., $y = \exp(x)$) yield especially concentrated projections on the top eigendirections. While this may seem counterintuitive, it reflects the fact that smooth monotonic functions align well with the principal components of many kernel operators. Nevertheless, as the underlying label function becomes more intricate or oscillatory, the energy distribution spreads deeper into the spectrum, indicating reduced alignment and correspondingly slower convergence.

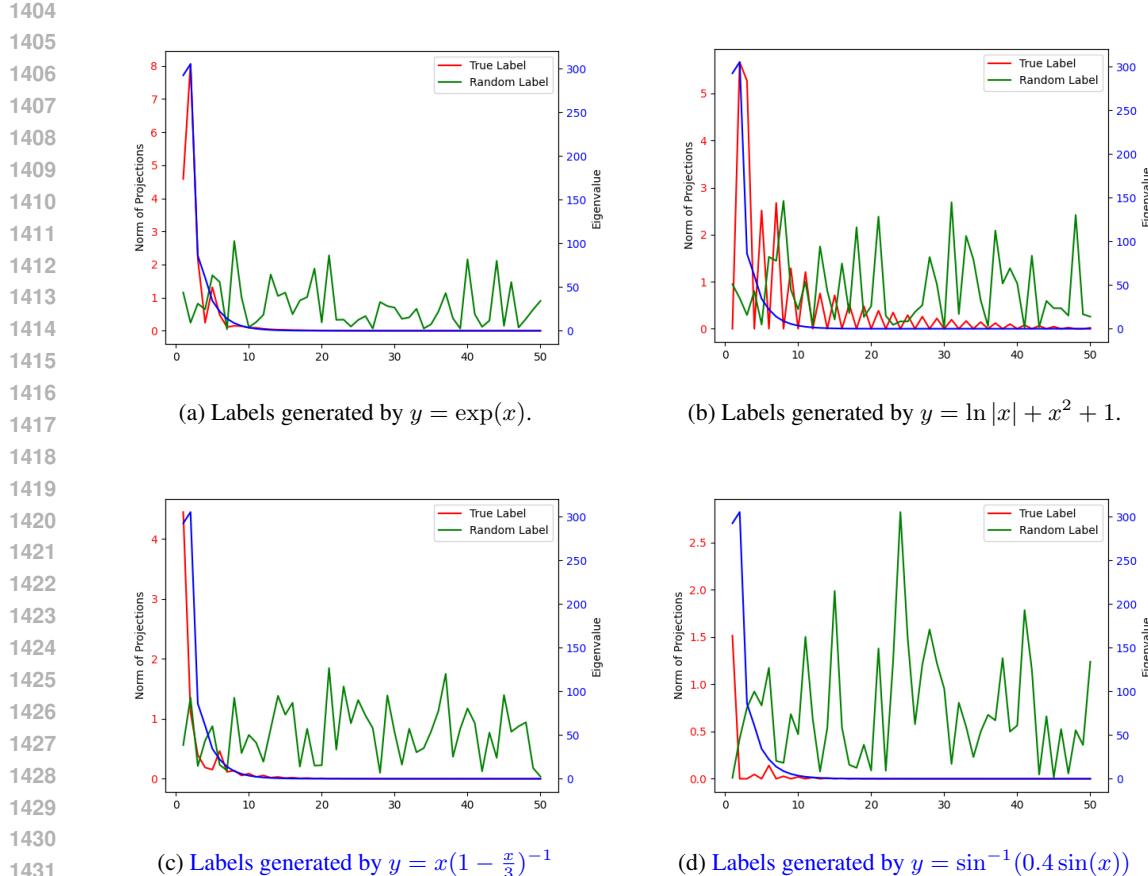


Figure 8: Projections of structured label vectors onto the eigenspectrum of the KAN-TK matrix. Each plot shows how the label signal distributes across kernel eigenvectors: concentration on top eigenvalues indicates more favorable alignment and thus faster convergence.

D.4 EXAMINING THE TIGHTNESS OF THE CONVERGENCE BOUND

To empirically assess the tightness of the linear convergence bound derived in Theorem 4.2, we compare the theoretical rate with the observed training loss. Recall that the theorem guarantees a per-iteration contraction of the loss by at least a factor of $(1 - \eta\lambda_0/2)$. We therefore plot this theoretical upper bound (red dashed line) together with the empirical training loss (blue solid line) on a logarithmic scale.

Setup. We use a two-layer Kolmogorov–Arnold Network with hidden layer width $m = 5000$. The training set consists of $n = 10$ samples $\{(x^q, y^q)\}_{q=1}^{10}$ where the inputs x^q are drawn uniformly from $[-1, 1]$, and the labels are generated according to

$$y = \exp(-x^2) + x^2.$$

Training is performed with full-batch gradient descent for 1000 epochs. Importantly, only the first-layer coefficients α_{ijk} are updated during training, while the second-layer coefficients β_{il} are kept fixed, in line with the setting analyzed in Theorem 4.2. We vary the learning rate $\eta \in \{0.001, 0.01, 0.1, 1\}$.

For visualization, we report

$$\log_{10}\left(\frac{\mathcal{L}(t)}{\mathcal{L}(0)}\right),$$

that is, the base-10 logarithm of the ratio of the loss at iteration t to the initial loss, and plot it against the theoretical bound $t \log_{10}(1 - \eta\lambda_0/2)$.

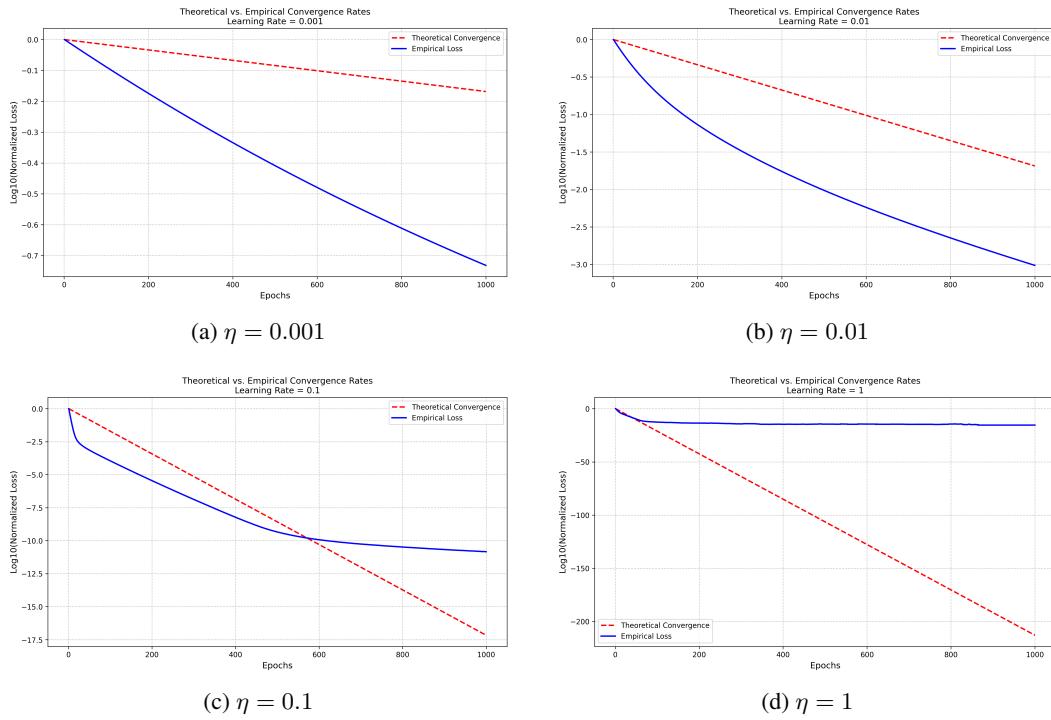


Figure 9: Comparison of the theoretical convergence bound (red dashed line) from Theorem 4.2 with the empirical training loss (blue solid line) for different learning rates.

Results. As shown in Figure 9, the empirical loss decreases consistently faster than the theoretical prediction, confirming that our analysis provides a valid upper bound. The discrepancy between the empirical and theoretical curves reflects the conservatism of the bound, which is derived under worst-case assumptions. For small learning rates ($\eta = 0.001$ and $\eta = 0.01$), the loss exhibits smooth, nearly linear decay. For $\eta = 0.1$, the initial convergence is significantly faster than predicted before flattening out. For $\eta = 1$, training becomes unstable and the loss fails to decrease, in accordance with the constraints on η imposed by the theory.

D.5 KAN vs. ReLU NETWORKS ACROSS DIFFERENT SAMPLE SIZES

We conducted an additional experiment to demonstrate that a one-hidden-layer KAN can outperform a one-hidden-layer ReLU network of the same width when the number of training samples is large.

Setup. We trained a standard neural network and a FastKAN model, each with a fixed hidden-layer width of $m = 1000$, using varying numbers of training samples $\{500, 750, 1000\}$. The experiment was performed on the synthetic dataset introduced in Section 5.1, with input dimension $d = 100$, and all models were trained for 1000 epochs.

Results. The results, shown in Figure 10, indicate that FastKAN exhibits substantially faster convergence compared to a ReLU network of the same width across all sample sizes.

E RATIONALE FOR FIRST-LAYER TRAINING

In this section, we explain why we focused on first-layer training for KANs. As demonstrated in Sections E.1 and E.2, training the first layer alone outperforms training only the second layer and achieves performance comparable to full-network training. This observation supports our assumption that training only the first layer is a reasonable and efficient approach.

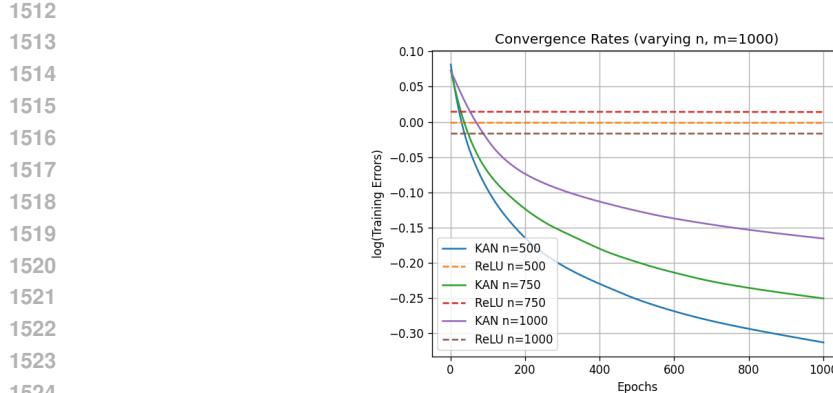


Figure 10: Convergence of FastKAN and a ReLU network with width $m = 1000$ across different sample sizes.

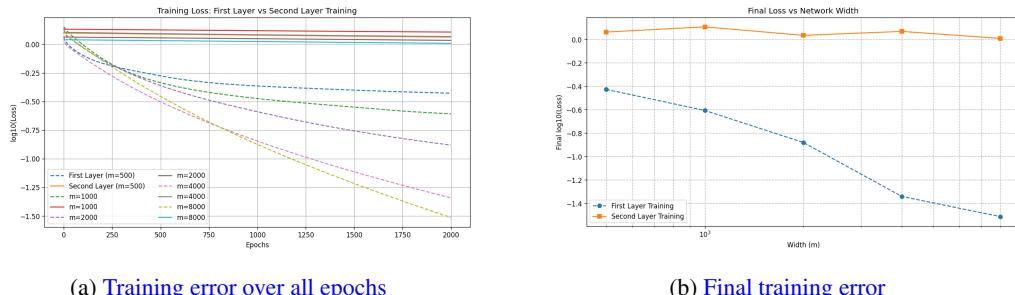


Figure 11: Comparison of first-layer and second-layer training: (a) training error over all epochs, and (b) final training error.

E.1 COMPARISON OF FIRST AND SECOND LAYER TRAINING

Here, we compare the effects of training only the first layer versus training only the second layer.

Setup. We follow the same experimental setup as in Section 5.1. The dataset consists of 100 samples drawn from a 100-dimensional unit sphere, with random labels assigned to the data points. We consider network widths $m \in \{500, 1000, 2000, 4000, 8000\}$ and train for 2000 epochs. In the first experiment, the second-layer coefficients are fixed while the first layer is trainable; in the second experiment, the first-layer coefficients are fixed while the second layer is trainable.

Results. As shown in Figure 11, training only the first layer yields significantly faster convergence than training only the second layer, supporting the decision to focus on first-layer training.

E.2 COMPARISON OF FIRST AND FULL LAYER TRAINING

Next, we compare training only the first layer to full-network training.

Setup. The experimental setup is the same as in Section 5.1, with 100 samples from a 100-dimensional unit sphere and network widths $m \in \{500, 1000, 2000, 4000, 8000\}$. Training is performed for 2000 epochs. In the first experiment, only the first-layer coefficients are trained, while in the second, both layers are trained.

Results. Figure 12 shows that first-layer training achieves performance comparable to full-layer training. Moreover, it is more parameter-efficient and converges faster.

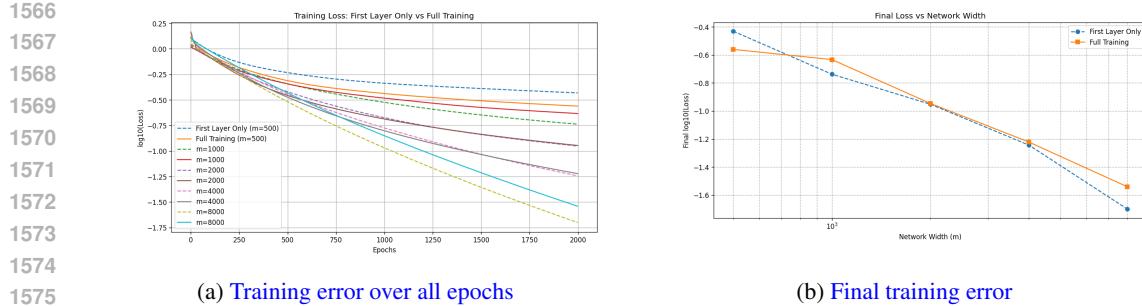


Figure 12: Comparison of first-layer and full-network training: (a) training error over all epochs, and (b) final training error.

F ROLE OF LLMs IN THIS WORK

We used large language models (LLMs), including OpenAI’s GPT and Google’s Gemini, to assist with writing tasks and commenting on code during the preparation of this manuscript. The models were employed strictly under the direct supervision of the authors. All technical content, experiments, results, and claims in this work are entirely the responsibility of the authors, and no output from the language models was used without thorough verification.