
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ON THE CONVERGENCE OF TWO-LAYER
KOLMOGOROV-ARNOLD NETWORKS WITH FIRST-
LAYER TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Kolmogorov-Arnold Networks (KANs) have emerged as a promising alterna-
tive to traditional neural networks, offering enhanced interpretability based on
the Kolmogorov-Arnold representation theorem. While their empirical success is
growing, a theoretical understanding of their training dynamics remains nascent.
This paper investigates the optimization of a two-layer KAN in the overparam-
eterized regime, focusing on a simplified yet insightful setting where only the
first-layer coefficients are trained via gradient descent.
Our main result establishes that, provided the network is sufficiently wide, this
training method is guaranteed to converge to a global minimum and achieve zero
training error. Furthermore, we derive a novel, fine-grained convergence rate
that explicitly connects the optimization speed to the structure of the data labels
through the eigenspectrum of the KAN Tangent Kernel (KAN-TK). Our analysis
reveals a key advantage of this architecture: guaranteed convergence is achieved
with a hidden layer width of m = O(n2), a significant polynomial improvement
over the m = O(n6) requirement for classic two-layer neural networks using
ReLU activation functions and analyzed within the same Tangent Kernel frame-
work.. We validate our theoretical findings with numerical experiments that cor-
roborate our predictions on convergence speed and the impact of label structure.

1 INTRODUCTION

Neural networks have become the cornerstone of modern machine learning. However, their complex
non-linear structure—formed by composing linear transformations with fixed nonlinearities such as
ReLU—often renders them black boxes. This opacity makes it difficult to interpret their decision-
making processes, posing a significant barrier in high-stakes domains where trust and transparency
are paramount. Kolmogorov–Arnold Networks (KANs) (Liu et al., 2025) offer a fundamentally dif-
ferent approach, with an architecture inspired by the Kolmogorov–Arnold representation theorem
(Kolmogorov, 1961; Braun & Griebel, 2009). This theorem establishes that any continuous multi-
variate function can be decomposed into a nested sum of univariate functions, which are far easier
to interpret.

Although the idea of building networks upon this theorem is not new, early attempts based directly on
its two-layer structure struggled due to the potentially non-smooth and complex nature of the inner
functions, making them difficult to learn in practice (Sprecher & Draghici, 2002; Köppen, 2002; Lin
& Unbehauen, 1993; Lai & Shen, 2021; Leni et al., 2013; Fakhoury et al., 2022). The key innovation
of modern KANs was to extend this shallow structure into a deep, multi-layer architecture, analogous
to MLPs. This design mitigates earlier learning difficulties and shifts the paradigm: whereas MLPs
place fixed nonlinearities at nodes, KANs place learnable univariate activation functions on the
edges. This architectural choice not only improves interpretability but also enhances parameter
efficiency. These learnable edge functions are typically parameterized as linear combinations of
basis functions, such as B-splines (de Boor, 2001; Schumaker, 2007). More recent approaches
have expanded this idea using alternative basis families, including Rational Polynomials (Aghaei,
2024b), Chebyshev Polynomials (SS et al., 2024), and Radial Basis Functions (RBFs) (Li, 2024). In
addition, recent works such as (Delis, 2024; Hu et al., 2025; Zhao et al., 2025; Bozorgasl & Chen,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2024; Seydi, 2024; Aghaei, 2025) have introduced new classes of basis functions, further broadening
the expressive power and adaptability of KANs.

The rapid emergence of KANs has led to exploration across diverse application domains. In com-
puter vision, KAN-based convolutional architectures have demonstrated superior performance com-
pared to traditional CNNs (Bodner et al., 2024; Drokin, 2024), and have been successfully integrated
into U-Net models for medical imaging (Li et al., 2025). For sequential data, Temporal KANs were
introduced in (Genet & Inzirillo, 2024), where KANs replace the standard neural components in
RNNs, yielding improved accuracy on complex time-series tasks (Han & Wu, 2024; Xu & Wang,
2024). KANs have also been applied in reinforcement learning, achieving higher accuracy and per-
formance with significantly fewer parameters (Guo & Liu, 2024; Kich & Ohya, 2024), as well as in
time-series analysis tasks (Huang et al., 2025; Zhou et al., 2025). Similar performance gains have
been reported in graph neural networks (Zhang & Zhang, 2024; Fang et al., 2025; GuoguoAi et al.,
2025). Beyond these, KANs have shown strong potential in scientific machine learning, particularly
for solving partial differential equations, where they outperform physics-informed neural networks
(PINNs) (Wang & Liu, 2024; Toscano & Karniadakis, 2024; Aghaei, 2024a). The architecture has
also been adapted for Transformers, showing promise for large language models (Yang & Wang,
2025). Furthermore, (Yu et al., 2024) demonstrated that KANs outperform MLPs on datasets con-
structed from symbolic formulas. Comprehensive surveys and further results are available in (Ji
et al., 2024; Rigas et al., 2024; Howard et al., 2024; Cheon, 2024; Qiu et al., 2024; Polar & Poluek-
tov, 2021; Lee et al., 2025).

Alongside these empirical successes, a growing body of theoretical work has begun to establish a
rigorous foundation for KANs. Several works have investigated the role of initialization, including
interpolation-based, random-based, and hybrid schemes designed to reduce the computational cost
of KAN initialization and ensure stable training across different basis functions (Rigas et al., 2025).
On the expressiveness side, (Wang et al., 2025) showed that KANs are at least as expressive as MLPs
and may exhibit reduced spectral bias. Generalization properties have also been studied (Zhang &
Zhou, 2025), and other works explore deep learning alternatives to the classical Kolmogorov–Arnold
representation theorem itself (Guilhoto & Perdikaris, 2025; Laczkovich, 2021).

On the optimization side, a wide range of algorithms have been proposed for training machine
learning models (Kingma & Ba, 2015; Carmon et al., 2018), with convergence guarantees typically
relying on smoothness, Lipschitzness, or convexity assumptions (Li & Orabona, 2019; Nesterov &
Polyak, 2006; Duchi et al., 2011; Reddi et al., 2019; Ji & Telgarsky, 2019). For MLPs, (Zhang et al.,
2021) observed that gradient descent (GD) and stochastic gradient descent (SGD) often reach nearly
global minima in practice, driving the mean squared error toward zero. However, understanding why
simple gradient-based methods succeed in optimizing highly non-convex models such as MLPs and
KANs remains a central challenge.

Substantial progress has been made in the overparameterized regime (Du et al., 2019; Jacot et al.,
2018; Arora et al., 2019; Chizat & Bach, 2018a; Soudry & Carmon, 2016; Soltanolkotabi, 2017;
Xie et al., 2017; Chizat & Bach, 2018b; Soltanolkotabi et al., 2018; Vaswani et al., 2019; Oymak
& Soltanolkotabi, 2020; Allen-Zhu et al., 2019; Polaczyk & Cyranka, 2023), where neural tangent
kernel (NTK)–type analyses yield convergence guarantees for sufficiently wide networks. More
recently, overparameterization requirements for two-layer networks have been sharpened: (Polaczyk
& Cyranka, 2023) derive improved width bounds that ensure global convergence of GD through a
refined analysis of the empirical Gram matrix. Extending this line of work to the KAN setting, (Gao
& Tan, 2025) prove that a two-layer KAN converges to a global minimum when all parameters are
jointly trained.

In this paper, we analyze the training dynamics of a two-layer KAN under a more constrained
setting: only the first-layer coefficients are trained, while the second-layer coefficients are fixed
after a random initialization. This setup, previously studied for standard neural networks (Du et al.,
2019; Arora et al., 2019), allows for a clearer analysis. Our contributions are as follows:

• We prove that for a two-layer KAN with only first-layer training, gradient descent con-
verges to a global minimum, driving the training error to zero, provided the hidden layer is
sufficiently wide.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We derive a novel, label-dependent bound on the convergence rate, showing that the speed
of convergence is determined by the projection of the label vector onto the eigenvectors of
the corresponding KAN Tangent Kernel (KAN-TK).

• We show that the required width of the hidden layer for guaranteed convergence in our
KAN setup is significantly smaller than that required for standard two-layer neural net-
works (Du et al., 2019), highlighting a key parameter-efficiency advantage.

• We provide empirical evidence that corroborates our theoretical findings, demonstrating
the faster convergence for wider networks and the impact of label structure.

2 PRELIMINARIES AND SETUP

2.1 KOLMOGOROV-ARNOLD NETWORKS (KANS)

A KAN’s architecture is inspired by the Kolmogorov-Arnold representation theorem, which states
that any continuous multivariate function f : [0, 1]d → R can be written as:

f(x) =

2d+1∑
q=1

Φq

(
d∑

p=1

ϕp,q(xp)

)
where Φq and ϕp,q are continuous univariate functions. While early attempts to build networks based
on this theorem struggled (Sprecher & Draghici, 2002; Köppen, 2002), the key innovation of modern
KANs was to extend the two-layer structure of the theorem into a deep network, analogous to MLPs
(Liu et al., 2025). In this architecture, learnable univariate functions, often parameterized as splines,
are placed on the edges of the computation graph, while nodes simply perform summation. This
is in stark contrast to MLPs, where linear transformations occur on the edges and fixed non-linear
activations are applied at the nodes.

The learnable edge functions are typically represented as a linear combination of basis functions,
ϕ(x) =

∑
i ciBi(x), where the coefficients ci are trainable parameters. A common choice for

the basis functions Bi(x) is B-splines, which are piecewise polynomials with favorable mathe-
matical properties such as local support and controllable smoothness, making them well-suited for
function approximation (Schoenberg & Whitney, 1953; de Boor, 2001; Schumaker, 2007). The
original KAN architecture, for instance, uses cubic B-splines by default (Liu et al., 2025). To im-
prove computational performance and explore different inductive biases, various alternatives have
been proposed, including Radial Basis Functions (RBFs) (Li, 2024), Reflectional Switch Activation
Functions (RSWAF) (Delis, 2024), Chebyshev Polynomials (SS et al., 2024), Rational Polynomials
(Aghaei, 2024b), and Fractional Jacobi basis functions (Aghaei, 2025).

2.2 THE TWO-LAYER KAN ARCHITECTURE

We focus on a two-layer KAN with a d-dimensional input x, a hidden layer of width m, and a scalar
output. The output f(x) is defined as:

f(x) =
1√
m

m∑
p=1

g∑
l=1

βplϕl(zp) where zp =

d∑
k=1

g∑
j=1

αpjkϕj(xk).

Here, {ϕj}gj=1 are a set of g basis functions (e.g., RBFs), αpjk are the learnable coefficients for the
first layer, and βpl are the coefficients for the second layer. The 1√

m
factor is a standard scaling term

used in overparameterization analysis (Jacot et al., 2018).

A schematic illustration of this two-layer KAN architecture is provided in Figure 1.

2.3 TRAINING DYNAMICS IN OVERPARAMETERIZED MODELS

Our analysis is situated in the overparameterized regime, where the number of model parameters far
exceeds the number of training data points. In this regime, neural networks trained with gradient

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

xk

∑g
j=1 α1jkϕj(xk)

∑g
j=1 αmjkϕj(xk)

z1

zm

+

+

∑g
l=1 β1lϕl(z1)

∑g
l=1 βmlϕl(zm)

+

× 1√
m

× 1√
m

f(x)

Figure 1: Two Layer KAN

descent often exhibit a phenomenon known as ”lazy training” (Chizat & Bach, 2018a), where the
network weights remain close to their initial values throughout training. This allows the network’s
output to be well-approximated by a first-order Taylor expansion around its initialization.

This linearization gives rise to the Neural Tangent Kernel (NTK) (Jacot et al., 2018), a deterministic
kernel that governs the training dynamics of the network. For a two-layer MLP, it has been shown
that if the network width is polynomially large in the number of data points n, gradient descent finds
a global minimum, and the training dynamics are equivalent to kernel regression with the NTK (Du
et al., 2019; Arora et al., 2019). Our work applies a similar analytical framework to the two-layer
KAN architecture.

2.4 TRAINING SETUP AND PROBLEM FORMULATION

We analyze the network under the following training protocol:

1. Initialization: The first-layer coefficients αpjk are initialized independently from a Gaus-
sian distribution N (0, σ2). The second-layer coefficients βpl are initialized independently
and uniformly from the set {−1,+1}.

2. Training: Only the first-layer coefficients α = {αpjk} are updated using full-batch gra-
dient descent. The second-layer coefficients β = {βpl} remain fixed throughout training
(See Appendix E for more information).

Given a dataset {(xi, yi)}ni=1, the goal is to minimize the mean squared error loss function:

L =
1

2
∥y − u∥22 =

1

2

n∑
i=1

(yi − f(xi))
2

where u is the vector of network outputs for all data points.

3 THE KAN TANGENT KERNEL

Our analysis relies on the concept of the KAN Tangent Kernel (KAN-TK), which characterizes the
training dynamics of our two-layer KAN in the infinite-width limit. For a general model fθ(x), the
tangent kernel is defined as Hij = ⟨∇θfθ(xi),∇θfθ(xj)⟩. In the lazy training regime, this kernel
remains nearly constant throughout training. Consequently, the complex, non-linear dynamics of the
network can be accurately described by the much simpler process of kernel regression with this fixed
kernel (Jacot et al., 2018). Additional explanations and details about tangent kernels are provided in
Appendix A.1.

For our specific two-layer KAN with a 1D input and RBF basis functions, we can derive a closed-
form expression for the KAN-TK in the infinite-width limit (m → ∞). Since we only train the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

first-layer coefficients α, the kernel is computed with respect to these parameters. In this section, we
assume the basis functions ϕj(x) are Radial Basis Functions (RBFs), defined as:

ϕj(x) = exp

(
− (x− µj)

2

2σ2

)
Proposition 3.1 (KAN Tangent Kernel with RBF basis). For a two-layer KAN with RBF basis
functions and fixed second-layer coefficients, the tangent kernel with respect to the first-layer weights
α in the infinite-width limit is given by H∞. The entry (H∞)qr (for 1 ≤ q, r ≤ n) is:

(H∞)qr =

g∑
j,l=1

ϕj(x
q)ϕj(x

r) exp
(
−µ2

l

σ2

)
σ4

{∑
s,p

ϕs(x
q)ϕp(x

r)Xqr
psl + µ2

lZ
qr
l +

∑
s

bqrs Y
qr
sl

}

where the auxiliary tensors are defined as follows:

Aqr
kl = ϕl(x

q)ϕk(x
q) + ϕl(x

r)ϕk(x
r)

bqrl = −2(ϕl(x
q) + ϕl(x

r))

Gqr = (I +
Aqr

σ2
)−1

T qr
l = exp

(
µ2
l

8σ4
(bqr)TGqrbqr

)
Zqr
l =

√
det (Gqr)T qr

l

Y qr
sl = − µ2

l

2σ2

√
det (Gqr)(Gqrbqr)sT

qr
l

Xqr
psl =

√
det (Gqr)(Gqr)spT

qr
l

+
µ2
l

4σ4
det(Gqr)(Gqrbqr)s(G

qrbqr)pT
qr
l

The derivation of this kernel is provided in Appendix A.2. The expression is highly complex and
computationally intensive, scaling polynomially with the number of samples n. This makes it im-
practical for direct use in large-scale applications but provides a powerful tool for our theoretical
analysis. Despite this complexity, we can use the kernel to perform regression and empirically ver-
ify its expressive power. Moreover, in our experiments we relied on this proposition specifically
because it provides access to the eigenvalues and eigenvectors of the KAN-TK, which are essential
for analyzing label alignment and convergence behavior.

4 THEORETICAL ANALYSIS

In this section, we present our main theoretical results. We first prove that gradient descent on our
two-layer KAN converges to a global minimum with zero training error. We then refine this result
by deriving a label-dependent convergence rate. Our analysis relies on a few standard assumptions.

Assumptions. We assume the following conditions hold:

1. Basis Functions: The basis functions ϕl are bounded, |ϕl(x)| ≤ 1, twice differentiable
with bounded first and second derivatives, |ϕ′l(x)|, |ϕ′′l (x)| ≤ 1, and satisfy ϕl(0) = 0.

2. Positive Definite Kernel: The infinite-width KAN Tangent Kernel H∞ is positive definite,
meaning its minimum eigenvalue λ0 is strictly positive (λ0 > 0).

3. Bounded Data: The training data labels are bounded, |yi| ≤ 1 for all i.

The assumption of a Positive Definite Kernel is standard in the analysis of overparameterized neural
networks (Du et al., 2019; Arora et al., 2019). In particular, (Gao & Tan, 2025) shows that this
assumption holds for KANs equipped with appropriate polynomial basis functions. Their Lemma 1
states:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Lemma 4.1 (Positive Definite Kernels). Assume that the basis functions are polynomials of degree
less than g and the transformation functions are hyperbolic tangent or sigmoid. Then λ0 > 0 holds
when all training samples are distinct. If no transformation is used, λ0 > 0 holds when the training
samples are linearly independent in the g̃-degree polynomial space:

{xi,1, x2i,1, . . . , x
g̃
i,1, . . . , xi,d, . . . , x

g̃
i,d}

n
i=1

where g̃ = (g − 1)2.

The transformation ψ (e.g., tanh or sigmoid) ensures the first-layer outputs lie within the domain of
the polynomial basis, so KAN variants using such nonlinearities satisfy the lemma when samples are
distinct. In the no-transformation case (ψ(z) = z), the lemma only requires linear independence in
the relevant polynomial space. Empirically, using FastKAN (Li, 2024), we observe strictly positive
minimum eigenvalues of the infinite-width KAN-TK across several input distributions (e.g., 3.29×
10−4 for linspace on [−1, 1]), supporting this assumption in practice.

4.1 GLOBAL CONVERGENCE

We first establish that under sufficient overparameterization, the training loss converges to zero.

Theorem 4.2 (Convergence to Global Minimum). Suppose the hidden layer width m is sufficiently
large and the initialization variance σ2 is sufficiently small, i.e.,

m ≳ max

(
d2g6n2

λ20
log
(n
δ

)
, n

)
, σ = O

(
δ√

mng3d

)
.

Then, with probability at least 1−O(δ) over the random initialization, the gradient descent updates
satisfy a linear convergence guarantee:

L(t+ 1) ≤
(
1− ηλ0

2

)
L(t),

where η = O
(

λ0

n3d2g6

)
is the learning rate and λ0 = λmin(H

∞) is the minimum eigenvalue of the
infinite-width kernel.

Proof Sketch. The proof of Theorem 4.2, detailed in Appendix B, proceeds by induction. The
core idea is to show that the network operates in the ”lazy training” regime where the tangent kernel
remains stable. We first expand the loss at step t+ 1:

∥y − u(t+ 1)∥22 = ∥y − u(t)∥22 − 2(y − u(t))T (u(t+ 1)− u(t)) + ∥u(t+ 1)− u(t)∥22
. The change in the output, u(t+1)−u(t), can be approximated by a first-order Taylor series, which
relates it to the tangent kernel at time t, H(t) Jacot et al. (2018). Using stability Lemmas below, 4.3,
4.4, and 4.5, we show that H(t) remains close to the deterministic, infinite-width kernel H∞. This
stability allows us to bound the terms in the expansion and demonstrate a consistent linear decrease
in the loss at each step.

Lemma 4.3 (Coefficient Stability). Under the assumptions of Theorem 4.2, the first-layer coeffi-
cients remain in a small neighborhood of their initialization values throughout training. That is,
|αijk(t)− αijk(0)| ≤ R, where R = O

(
g
√
n

λ0
√
m
∥u(0)− y∥2

)
.

Lemma 4.4 (Kernel Stability over Time). With high probability, the distance between the tangent
kernel at time t and at initialization is bounded: ∥H(t)−H(0)∥2 ≤ 2n2d2g4R.

Lemma 4.5 (Initial Kernel Concentration). With high probability, the distance between the initial

tangent kernel and the infinite-width kernel is bounded: ∥H(0)−H∞∥2 ≤ dg3n√
m

√
log
(
2n2

δ

)
.

4.2 LABEL-DEPENDENT CONVERGENCE RATE

Next, we refine the convergence rate to show its dependency on the structure of the data labels.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Theorem 4.6 (Label-Dependent Convergence Bound). Under the same conditions as Theorem 4.2,
let the eigendecomposition of the KAN-TK be H∞ =

∑n
i=1 λiviv

T
i . Then the error vector at time

t can be bounded as:

∥y − u(t)∥2 ≤

√√√√ n∑
i=1

(1− ηλi)2t(vT
i y)

2 ± ϵ

where ϵ is a small error term that vanishes as m→ ∞.

Proof Sketch. To prove Theorem 4.6, we start with the gradient descent update rule and show
that the change in the output can be approximated as u(t + 1) − u(t) ≈ −ηH∞(u(t) − y). This
allows us to express the error vector at step t + 1 as a recurrence relation: (u(t + 1) − y) ≈
(I − ηH∞)(u(t) − y). Unrolling this recurrence yields u(t) − y ≈ −(I − ηH∞)t(u(0) − y).
By assuming a small initialization variance σ2, the initial output ∥u(0)∥2 is negligible compared
to ∥y∥2. Taking the norm and applying the eigendecomposition of H∞ gives the desired label-
dependent bound. The full proof is deferred to Appendix C.
Remark 1 (Eigenstructure and Convergence Speed). Theorem 4.6 demonstrates that the compo-
nents of the error aligned with eigenvectors (vi) corresponding to large eigenvalues (λi) decay the
fastest. Consequently, if the label vector y has a strong projection onto these top eigenvectors (i.e.,
the labels have a structure that the kernel is well-suited to learn), the overall convergence will be
much faster than if the labels were random or aligned with eigenvectors of small eigenvalues.

5 EXPERIMENTS

We conduct a series of experiments using a two-layer KAN with RBF basis functions to validate
our theoretical claims. Our implementation is based on the FastKAN architecture (Li, 2024). In all
experiments, we train only the first-layer coefficients using full-batch gradient descent, keeping the
second-layer coefficients fixed after their random initialization. Additional experimental results are
provided in Appendix D.

5.1 CONVERGENCE RATE VS. NETWORK WIDTH

To validate Theorem 4.2 and the underlying “lazy training” phenomenon, we study how the hidden
layer width m influences convergence.

Setup. We generate a synthetic dataset with n = 100 samples in d = 100 dimensions, where
each feature is drawn from a standard normal distribution. Labels are drawn independently from
N (0, 1) to create a challenging learning task. We train KANs with varying hidden widths (m ∈
{500, 1000, 2000, 4000, 8000, 16000, 32000}) for 5000 epochs.

Results. Figure 2a reports the training error across epochs. As predicted by Theorem 4.2, larger
widths m yield faster convergence. Figure 2b shows the maximum distance of the weight coeffi-
cients from initialization, ∥α(t) − α(0)∥∞. As m increases, the weights travel shorter distances,
empirically confirming the “lazy training” assumption in Lemma 4.3.

5.2 IMPACT OF LABEL STRUCTURE ON CONVERGENCE

We now empirically evaluate Theorem 4.6, which predicts that the convergence rate of gradient
descent is determined by how the label vector y aligns with the eigenspectrum of the KAN-TK.

Setup for Figure 3a. We generate a one-dimensional dataset with n = 50 points sampled uni-
formly from [−1, 1]. After computing the infinite-width KAN-TK H∞, we project several label
configurations onto its eigenvectors. We compare structured labels of the form

y =
sin2(0.7x/2)

sin2(x/2)
, (1)

with random labels drawn independently from N (0, 1).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Training error (b) Weight distance from initialization

Figure 2: Convergence behavior across hidden widths m. (a) Training error decreases faster for
wider networks. (b) Wider networks exhibit smaller deviations from initialization, consistent with
the lazy training regime.

(a) Projection of labels onto the eigenspectrum. (b) Convergence by label structure.

Figure 3: Effect of label structure on convergence. (a) Structured labels align with top eigenvectors,
whereas random labels distribute across the spectrum. (b) Training converges fastest for structured
labels, slower for random labels, and slowest for anti-structured labels.

Setup for Figure 3b. We conduct a second experiment on a similar one-dimensional dataset with
n = 30 uniformly spaced points in [−1, 1]. We evaluate three label configurations:

1. Structured, given by Eq. equation 1;

2. Random, sampled i.i.d. from N (0, 1);

3. Anti-structured, defined as the eigenvector of H∞ associated with its smallest eigenvalue.

For all settings, we train a two-layer RBF-based KAN with hidden width m = 5000, updating only
the first-layer coefficients for 3000 epochs using full-batch gradient descent.

Results. Figure 3a illustrates the projections of the structured and random label vectors onto the
eigenbasis of H∞. The structured labels concentrate most of their energy on the top eigenvectors,
whereas random labels distribute their mass more uniformly across the spectrum. Figure 3b shows
the resulting optimization dynamics: networks trained on structured labels converge the fastest,
random labels converge at a moderate rate, and anti-structured labels converge the slowest. Together,
these observations provide strong empirical support for the label-dependent convergence behavior
predicted by Theorem 4.6.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Comparison of required hidden layer width and number of trainable parameters for global
convergence guarantees.

Network Type Hidden Layer Width (m) Trainable Parameters

Neural Network (Du et al., 2019) O
(

n6

λ40δ
3

)
O
(
n6d

λ40δ
3

)
KAN (Both Layers) (Gao & Tan, 2025) Õ

(
g9n3

λ40

)
Õ
(
g10n3d

λ40

)
KAN (First Layer Only) (Ours) O

(
d2g6n2

λ20

)
O
(
d3g7n2

λ20

)

6 COMPARISON AND DISCUSSION

We now compare the complexity of our proposed training scheme with two key benchmarks: (1)
standard two-layer neural networks (Du et al., 2019), and (2) two-layer KANs where both layers
are trained (Gao & Tan, 2025). This analysis highlights the trade-offs between parameter efficiency,
stability, and convergence speed.

6.1 PARAMETER AND WIDTH COMPARISON

Table 1 summarizes the asymptotic requirements on hidden layer width and the number of trainable
parameters needed to guarantee convergence to a global minimum.

Our method substantially reduces the required network width (m) compared to standard ReLU-
activated Neural Networks (NNs) while employing the same Tangent Kernel (TK) stability analysis
methodology used for examining neural networks in the overparameterized regime (Du et al., 2019).
Specifically, classical two-layer NNs (often using ReLU) require a width of m = O(n6) to guar-
antee convergence, whereas our first-layer-only Kolmogorov-Arnold Network (KAN) achieves this
guarantee with m = O(n2), highlighting a parameter-efficiency advantage. This enhanced effi-
ciency stems directly from the superior expressive power of the learnable basis functions (such as
polynomials) inherent in KAN architectures, which alleviate the need for extremely wide layers.

Compared to training both layers of a KAN, our method achieves improved stability with respect to
λ0. In particular, the dependence on the minimum eigenvalue of the tangent kernel, λ0, improves
from λ−4

0 to λ−2
0 . This weaker dependence is advantageous because λ0 can be very small in prac-

tice, and guarantees that are less sensitive to its value are therefore more robust. For instance, if
λ0 decreases by a factor of k, a neural network would require k4 times more width to maintain
convergence, whereas a KAN would require only k2 times more width. The trade-off is that our
bounds introduce a stronger dependence on the input dimension d and the number of basis functions
g. Nonetheless, since the dataset size n typically dominates in practical settings, we regard this as a
favorable trade-off between stability and parameter scaling.
Remark 2 (Why KANs Achieve Better Width Scaling than MLPs). KANs require onlyO(n2) width
for kernel concentration and convergence, whereas two-layer ReLU networks typically need O(n6).
The fundamental reason is the smooth and stable nature of KAN features during training. As empha-
sized in the original KAN paper, KANs replace neuron-level activations with learnable univariate
spline functions along edges. As a result, intermediate representations are compositions of smooth
one-dimensional functions rather than brittle, sign-dependent ReLU activations. This smoothness
ensures that the Neural Tangent Kernel (NTK) of a KAN depends only on bounded derivatives of
these splines and involves at most pairwise interactions between samples, yielding concentration
with width scaling that is only quadratic in the dataset size. In contrast, classical ReLU networks
must maintain stability of discrete activation patterns during training. NTK analyses (e.g., (Du
et al., 2019)) show that preventing activation-pattern flips requires controlling higher-order interac-
tions among samples, which amplifies into theO(n6) width requirement. Thus, the structural design
of KANs—learnable smooth functions on edges, aligned with the Kolmogorov–Arnold representa-
tion—eliminates the combinatorial instability inherent to ReLU networks and leads directly to the
improved O(n2) scaling.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 2: Comparison of required learning rates for guaranteed convergence.

Network Type Learning Rate (η)

Neural Network (Du et al., 2019) O
(
λ0
n2

)
KAN (Both Layers) (Gao & Tan, 2025) O

(
1

g

)
KAN (First Layer Only) (Ours) O

(
λ0

n3d2g6

)

Remark 3 (More Advanced Methods). A recent work, Polaczyk & Cyranka (2023), introduced a
novel approach for characterizing the hidden-layer width necessary to guarantee global conver-
gence of gradient descent in the overparameterized regime. By leveraging properties of random
initializations alongside nonlinear analysis techniques—specifically Clarke subdifferentials and Dif-
ferential Inclusion (DI) Cauchy problems—they established a tighter bound of O(n1.25) (Polaczyk
& Cyranka, 2023). Adopting these techniques for KANs presents a promising avenue for future re-
search to further tighten our theoretical bounds. However, to ensure a fair comparison in the present
work, we benchmark against (Du et al., 2019), as that study employs a proof methodology consistent
with our own.

6.2 CONVERGENCE RATE COMPARISON

While our approach is more parameter-efficient and stable, it requires a smaller learning rate, which
in turn leads to slower convergence. The key difference lies in the allowable step size η.

As shown in Table 2, our method requires a smaller step size than either of the benchmarks. Since
the linear convergence rate scales with ηλ0, this smaller η results in slower learning. This trade-off
is expected: by simplifying the optimization to only the first layer, we obtain stronger guarantees on
parameter efficiency and stability, at the expense of convergence speed.

7 CONCLUSION

This work provides a theoretical analysis of the optimization dynamics of two-layer Kolmogorov-
Arnold Networks in the overparameterized regime. By focusing on a simplified setting where only
the first layer is trained, we prove that gradient descent converges to a global minimum, achieving
zero training error. We also provide a fine-grained, label-dependent convergence rate that connects
the optimization speed to the intrinsic structure of the learning task. Our results demonstrate that
KANs are not only more interpretable but also significantly more parameter-efficient than classical
neural networks with ReLU activations, requiring a polynomially smaller hidden layer width (m =
O(n2) vs. m = O(n6)) to guarantee convergence.

Our analysis opens several promising avenues for future research. An immediate next step is to
extend this theoretical framework to deep KANs to understand the role of depth in the training dy-
namics and convergence rates. Another important direction is to analyze the behavior of KANs
under more practical, stochastic optimization algorithms like Adam. Furthermore, exploring alter-
native theoretical methodologies beyond the tangent kernel framework is crucial for deriving tighter
convergence bounds. We can also examine the interpretability of KANs specifically within the
overparameterized regime, connecting theoretical guarantees with explanatory power. Additional
research should focus on deriving closed-form expressions for the KAN Tangent Kernel for multi-
dimensional inputs and other basis functions, which would provide deeper insights into different
KAN architectures. Finally, we must also examine the impact of various initialization techniques on
the performance and theoretical guarantees of KANs in the overparameterized setting.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Aghaei. Kantrol: A physics-informed kolmogorov-arnold network framework for solving multi-
dimensional and fractional optimal control problems. arXiv preprint arXiv:2409.06649, 2024a.

Alireza Afzal Aghaei. rkan: Rational kolmogorov-arnold networks. arXiv preprint
arXiv:2406.14495, 2024b.

Alireza Afzal Aghaei. fkan: Fractional kolmogorov–arnold networks with trainable jacobi basis
functions. Neurocomputing, 623:129414, 2025.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242–252. PMLR, 2019.

Serge B. Provost A.M. Mathai. Quadratic forms in random variables: theory and applications.
1992.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In International
conference on machine learning, pp. 322–332. PMLR, 2019.

Rajendra Bhatia. Matrix analysis, volume 169. Springer Science & Business Media, 2013.

Alexander Dylan Bodner, Antonio Santiago Tepsich, Jack Natan Spolski, and Santiago Pourteau.
Convolutional kolmogorov-arnold networks. arXiv preprint arXiv:2406.13155, 2024.

Zavareh Bozorgasl and Hao Chen. Wav-kan: Wavelet kolmogorov-arnold networks, 2024. arXiv
preprint arXiv:2405.12832, 2024.

Jürgen Braun and Michael Griebel. On a constructive proof of kolmogorov’s superposition theorem.
Constructive approximation, 30:653–675, 2009.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods for nonconvex
optimization. SIAM Journal on Optimization, 28(2):1751–1772, 2018.

Minjong Cheon. Demonstrating the efficacy of kolmogorov-arnold networks in vision tasks. arXiv
preprint arXiv:2406.14916, 2024.

Lenaic Chizat and Francis Bach. A note on lazy training in supervised differentiable program-
ming.(2018). arXiv preprint arXiv:1812.07956, 2018a.

Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. Advances in neural information processing sys-
tems, 31, 2018b.

Carl de Boor. A Practical Guide to Splines, volume 27 of Applied Mathematical Sciences.
Springer-Verlag, New York, revised edition, 2001. ISBN 978-0-387-95366-3. doi: 10.1007/
978-1-4612-0093-0.

Athanasios Delis. Fasterkan. https://github.com/AthanasiosDelis/faster-kan/,
2024.

Ivan Drokin. Kolmogorov-arnold convolutions: Design principles and empirical studies. arXiv
preprint arXiv:2407.01092, 2024.

Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=S1eK3i09YQ.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Daniele Fakhoury, Emanuele Fakhoury, and Hendrik Speleers. Exsplinet: An interpretable and
expressive spline-based neural network. Neural Networks, 152:332–346, 2022.

11

https://github.com/AthanasiosDelis/faster-kan/
https://openreview.net/forum?id=S1eK3i09YQ

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Taoran Fang, Tianhong Gao, Chunping Wang, YihaoShang, Wei Chow, Lei CHEN, and Yang
Yang. KAA: Kolmogorov-arnold attention for enhancing attentive graph neural networks. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=atXCzVSXTJ.

Yihang Gao and Vincent YF Tan. On the convergence of (stochastic) gradient descent for
kolmogorov–arnold networks. IEEE Transactions on Information Theory, 2025.

Remi Genet and Hugo Inzirillo. Tkan: Temporal kolmogorov-arnold networks. arXiv preprint
arXiv:2405.07344, 2024.

Leonardo Ferreira Guilhoto and Paris Perdikaris. Deep learning alternatives of the kolmogorov
superposition theorem. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=SyVPiehSbg.

Li Guo, Li and Liu. Kan vs mlp for offline reinforcement learning. arXiv preprint arXiv:2409.09653,
2024.

GuoguoAi, Guansong Pang, Hezhe Qiao, YuanGao, and Hui Yan. Grokformer: Graph fourier
kolmogorov-arnold transformers. In Forty-second International Conference on Machine Learn-
ing, 2025. URL https://openreview.net/forum?id=wFBBh8bcoC.

Wu Zhang Han, Zhang and Wu. Are kan and kan-based models effective for time series forecasting?
arXiv preprint arXiv:2408.11306, 2024.

Amanda A Howard, Bruno Jacob, Sarah H Murphy, Alexander Heinlein, and Panos Stinis. Finite
basis kolmogorov-arnold networks: domain decomposition for data-driven and physics-informed
problems. arXiv preprint arXiv:2406.19662, 2024.

Lexiang Hu, Yisen Wang, and Zhouchen Lin. Incorporating arbitrary matrix group equivariance into
KANs. In Forty-second International Conference on Machine Learning, 2025. URL https:
//openreview.net/forum?id=YtQCoUtWQ9.

Songtao Huang, Zhen Zhao, Can Li, and LEI BAI. TimeKAN: KAN-based frequency decomposi-
tion learning architecture for long-term time series forecasting. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=wTLc79YNbh.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Tianrui Ji, Yuntian Hou, and Di Zhang. A comprehensive survey on kolmogorov arnold networks
(kan). arXiv preprint arXiv:2407.11075, 2024.

Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gradient descent to achieve arbi-
trarily small test error with shallow relu networks. arXiv preprint arXiv:1909.12292, 2019.

Steinmetz Grando Yorozu Kich, Bottega and Ohya. Kolmogorov-arnold network for online rein-
forcement learning. arXiv preprint arXiv:2408.04841, 2024.

Kingma and Ba. Adam: A method for stochastic optimization. In International conference for
Learning Representations, 2015.

Andrei Nikolaevich Kolmogorov. On the representation of continuous functions of several variables
by superpositions of continuous functions of a smaller number of variables. American Mathemat-
ical Society, 1961.

Mario Köppen. On the training of a kolmogorov network. In Artificial Neural Networks—ICANN
2002: International Conference Madrid, Spain, August 28–30, 2002 Proceedings 12, pp. 474–
479. Springer, 2002.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

12

https://openreview.net/forum?id=atXCzVSXTJ
https://openreview.net/forum?id=atXCzVSXTJ
https://openreview.net/forum?id=SyVPiehSbg
https://openreview.net/forum?id=wFBBh8bcoC
https://openreview.net/forum?id=YtQCoUtWQ9
https://openreview.net/forum?id=YtQCoUtWQ9
https://openreview.net/forum?id=wTLc79YNbh
https://openreview.net/forum?id=wTLc79YNbh

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Miklós Laczkovich. A superposition theorem of kolmogorov type for bounded continuous functions.
Journal of Approximation Theory, 269:105609, 2021.

Ming-Jun Lai and Zhaiming Shen. The kolmogorov superposition theorem can break the curse of di-
mensionality when approximating high dimensional functions. arXiv preprint arXiv:2112.09963,
2021.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Jin Lee, Ziming Liu, Xinling Yu, Yixuan Wang, Haewon Jeong, Murphy Yuezhen Niu, and Zheng
Zhang. Kano: Kolmogorov-arnold neural operator. arXiv preprint arXiv:2509.16825, 2025.

Pierre-Emmanuel Leni, Yohan D Fougerolle, and Frédéric Truchetet. The kolmogorov spline net-
work for image processing. In Image Processing: Concepts, Methodologies, Tools, and Applica-
tions, pp. 54–78. IGI Global, 2013.

Chenxin Li, Xinyu Liu, Wuyang Li, Cheng Wang, Hengyu Liu, Yifan Liu, Zhen Chen, and Yix-
uan Yuan. U-kan makes strong backbone for medical image segmentation and generation. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 4652–4660, 2025.

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adaptive
stepsizes. In The 22nd international conference on artificial intelligence and statistics, pp. 983–
992. PMLR, 2019.

Ziyao Li. Kolmogorov-arnold networks are radial basis function networks. 2024.

Ji-Nan Lin and Rolf Unbehauen. On the realization of a kolmogorov network. Neural Computation,
5(1):18–20, 1993.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacic,
Thomas Y. Hou, and Max Tegmark. KAN: Kolmogorov–arnold networks. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=Ozo7qJ5vZi.

Yurii Nesterov and Boris T Polyak. Cubic regularization of newton method and its global perfor-
mance. Mathematical programming, 108(1):177–205, 2006.

Samet Oymak and Mahdi Soltanolkotabi. Toward moderate overparameterization: Global con-
vergence guarantees for training shallow neural networks. IEEE Journal on Selected Areas in
Information Theory, 1(1):84–105, 2020.

Bartłomiej Polaczyk and Jacek Cyranka. Improved overparametrization bounds for global conver-
gence of SGD for shallow neural networks. Transactions on Machine Learning Research, 2023.
ISSN 2835-8856. URL https://openreview.net/forum?id=RjZq6W6FoE.

Andrew Polar and Michael Poluektov. A deep machine learning algorithm for construction of
the kolmogorov–arnold representation. Engineering Applications of Artificial Intelligence, 99:
104137, 2021.

Qi Qiu, Tao Zhu, Helin Gong, Liming Chen, and Huansheng Ning. Relu-kan: New kolmogorov-
arnold networks that only need matrix addition, dot multiplication, and relu. arXiv preprint
arXiv:2406.02075, 2024.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237, 2019.

Spyros Rigas, Michalis Papachristou, Theofilos Papadopoulos, Fotios Anagnostopoulos, and Geor-
gios Alexandridis. Adaptive training of grid-dependent physics-informed kolmogorov-arnold net-
works. IEEE Access, 2024.

Spyros Rigas, Dhruv Verma, Georgios Alexandridis, and Yixuan Wang. Initialization schemes for
kolmogorov-arnold networks: An empirical study. arXiv preprint arXiv:2509.03417, 2025.

13

https://openreview.net/forum?id=Ozo7qJ5vZi
https://openreview.net/forum?id=Ozo7qJ5vZi
https://openreview.net/forum?id=RjZq6W6FoE

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

I. J. Schoenberg and A. Whitney. On Pólya frequency functions. III: The positivity of
translation determinants with an application to the interpolation problem by spline curves.
Transactions of the American Mathematical Society, 74(2):246–259, 1953. doi: 10.1090/
S0002-9947-1953-0055379-9.

Larry L. Schumaker. Spline Functions: Basic Theory. Cambridge University Press, 3rd edition,
2007. ISBN 978-0-521-70512-7.

Seyd Teymoor Seydi. Exploring the potential of polynomial basis functions in kolmogorov-
arnold networks: A comparative study of different groups of polynomials. arXiv preprint
arXiv:2406.02583, 2024.

Mahdi Soltanolkotabi. Learning relus via gradient descent. Advances in neural information pro-
cessing systems, 30, 2017.

Mahdi Soltanolkotabi, Adel Javanmard, and Jason D Lee. Theoretical insights into the optimization
landscape of over-parameterized shallow neural networks. IEEE Transactions on Information
Theory, 65(2):742–769, 2018.

Daniel Soudry and Yair Carmon. No bad local minima: Data independent training error guarantees
for multilayer neural networks. arXiv preprint arXiv:1605.08361, 2016.

David A Sprecher and Sorin Draghici. Space-filling curves and kolmogorov superposition-based
neural networks. Neural Networks, 15(1):57–67, 2002.

Sidharth SS, Keerthana AR, Anas KP, et al. Chebyshev polynomial-based kolmogorov-arnold
networks: An efficient architecture for nonlinear function approximation. arXiv preprint
arXiv:2405.07200, 2024.

Maxey Cierpka Toscano, Kaufer and Em Karniadakis. Inferring turbulent velocity and temper-
ature fields and their statistics from lagrangian velocity measurements using physics-informed
kolmogorov-arnold networks. arXiv preprint arXiv:2407.15727, 2024.

Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of sgd for over-
parameterized models and an accelerated perceptron. In The 22nd international conference on
artificial intelligence and statistics, pp. 1195–1204. PMLR, 2019.

Bai Anitescu Eshaghi Zhuang Rabczuk Wang, Sun and Liu. Kolmogorov arnold informed neural
network: A physics-informed deep learning framework for solving pdes based on kolmogorov
arnold networks. arXiv preprint arXiv:2406.11045, 2024.

Yixuan Wang, Jonathan W. Siegel, Ziming Liu, and Thomas Y. Hou. On the expressiveness and
spectral bias of KANs. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=ydlDRUuGm9.

Bo Xie, Yingyu Liang, and Le Song. Diverse neural network learns true target functions. In Artificial
Intelligence and Statistics, pp. 1216–1224. PMLR, 2017.

Chen Xu and Wang. Kolmogorov-arnold networks for time series: Bridging predictive power and
interpretability. arXiv preprint arXiv:2406.02496, 2024.

Xingyi Yang and Xinchao Wang. Kolmogorov-arnold transformer. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=BCeock53nt.

Runpeng Yu, Weihao Yu, and Xinchao Wang. Kan or mlp: A fairer comparison. arXiv preprint
arXiv:2407.16674, 2024.

Zhang and Zhang. Graphkan: Enhancing feature extraction with graph kolmogorov arnold networks.
arXiv preprint arXiv:2406.13597, 2024.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

14

https://openreview.net/forum?id=ydlDRUuGm9
https://openreview.net/forum?id=BCeock53nt
https://openreview.net/forum?id=BCeock53nt

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Xianyang Zhang and Huijuan Zhou. Generalization bounds and model complexity for kol-
mogorov–arnold networks. In The Thirteenth International Conference on Learning Representa-
tions, 2025. URL https://openreview.net/forum?id=q5zMyAUhGx.

Zhangchi Zhao, Jun Shu, Deyu Meng, and Zongben Xu. Improving memory efficiency for training
KANs via meta learning. In Forty-second International Conference on Machine Learning, 2025.
URL https://openreview.net/forum?id=9biCmI3Mnd.

Quan Zhou, Changhua Pei, Fei Sun, HanJing, Zhengwei Gao, Haiming Zhang, Gaogang Xie, Dan
Pei, and Jianhui li. KAN-AD: Time series anomaly detection with kolmogorov–arnold net-
works. In Forty-second International Conference on Machine Learning, 2025. URL https:
//openreview.net/forum?id=LWQ4zu9SdQ.

A TANGENT KERNELS

A.1 BACKGROUND ON TANGENT KERNELS

The tangent kernel is a key concept for analyzing the training dynamics of overparameterized net-
works. Formally, for a model fθ(x) with parameters θ, the tangent kernel is defined as

Hij = ⟨∇θfθ(xi),∇θfθ(xj)⟩
where xi,xj are data samples. Intuitively, H measures how similarly parameter updates induced by
different data points affect the model output.

In the so-called lazy training regime, which arises when the network is sufficiently wide, the tangent
kernel remains nearly constant throughout training. This stability means that the nonlinear training
dynamics of the network can be closely approximated by a linear model whose evolution is governed
by this fixed kernel. As a consequence, gradient descent on the network is equivalent to performing
kernel regression with the tangent kernel (Jacot et al., 2018).

For standard neural networks, this leads to the well-known Neural Tangent Kernel (NTK). In our
case, where we focus on two-layer Kolmogorov–Arnold Networks (KANs) with only the first-layer
coefficients trained, the analogous object is the KAN Tangent Kernel (KAN-TK). The KAN-TK cap-
tures the interaction between input features and learnable basis-function coefficients. In the infinite-
width limit (m → ∞), we can derive a deterministic closed-form expression for KAN-TK when
using RBF basis functions, which we employ throughout our experiments.

Finite- and infinite-width kernels. If we run an optimization algorithm, then the parameters θ
evolve with time, making the tangent kernel time dependent. We denote the kernel at step t by

H(t) =
(
Hij(t)

)n
i,j=1

which is computed from the gradients at that point in training. If the network is initialized randomly,
then H(0) is itself a random matrix. Its expectation over random initialization defines the infinite-
width tangent kernel, denoted by H∞.

Networks Act Like Kernel Ridge Regression. To see why wide neural networks effectively be-
have like kernel methods, note that in the lazy training regime the features ∇θfθ(xi) remain nearly
constant during training. This means that the model output at time t can be approximated by a linear
expansion around initialization:

fθ(t)(x) ≈ fθ(0)(x) +∇θfθ(0)(x)
T
(
θ(t)− θ(0)

)
.

Since the gradient features are fixed, learning reduces to finding linear coefficients on this (very high-
dimensional) feature map. By the representer theorem, this is equivalent to solving a kernel ridge
regression problem with kernel matrix H , where each entry Hij measures the similarity between
features induced by samples xi and xj .

In other words, training an infinitely wide neural network with gradient descent is mathematically
the same as performing kernel regression with its tangent kernel. The nonlinearity of the original
network is thus captured entirely through the structure of H∞, while the optimization itself is no
more complicated than linear regression in feature space.

15

https://openreview.net/forum?id=q5zMyAUhGx
https://openreview.net/forum?id=9biCmI3Mnd
https://openreview.net/forum?id=LWQ4zu9SdQ
https://openreview.net/forum?id=LWQ4zu9SdQ

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

x

∑g
j=1 α1jϕj(x)

∑g
j=1 αmjϕj(x)

z1

zm

∑g
l=1 β1lϕl(z1)

∑g
l=1 βmlϕl(zm)

+

× 1√
m

× 1√
m

f(x)

Figure 4: Two-Layer KAN With 1D Input

Connection to training dynamics. One of the main advantages of tangent kernels is that they al-
low us to describe the network’s dynamics explicitly. For example, under gradient flow optimization
(Du et al., 2019), the output vector evolves according to

du(t)

dt
= H(t) (y − u(t)).

This shows that the convergence behavior of the network is governed entirely by the spectral prop-
erties of H(t) (or H∞ in the infinite-width case).

Thus, the tangent kernel viewpoint bridges the gap between the nonlinear training of KANs and
a tractable kernel regression framework, offering both analytical insights and practical tools for
understanding their optimization behavior.

A.2 PROOF OF PROPOSITION 3.1

Figure 4 illustrates the two-layer Kolmogorov–Arnold Network (KAN) in the special case of a one-
dimensional input. This schematic clarifies the roles of the αij and βil coefficients, the intermediate

activations zi, and the final scaled aggregation
1√
m

∑
i

∑
l βilϕl(zi) that produces the network out-

put f(x). The subsequent analysis in this appendix derives the infinite-width kernel H∞ associated
with this architecture by decomposing it into the contributions from the β parameters (H∞

1) and the
α parameters (H∞

2).

By definition, we have:

H∞
qr =

(H∞
1)qr︷ ︸︸ ︷

⟨∂f(x
q)

∂β
,
∂f(xr)

∂β
⟩+

(H∞
2)qr︷ ︸︸ ︷

⟨∂f(x
q)

∂α
,
∂f(xr)

∂α
⟩ (2)

First, we compute the H∞
1 term. From the definition of our network, we know that ∂f(x)

∂βij
=

1√
m
ϕj(zi). From this, we can conclude:

(H∞
1)qr =

1

m

m∑
i=1

g∑
j=1

ϕj(z
q
i)ϕj(z

r
i)

= E

 g∑
j=1

ϕj(z
q)ϕj(z

r)

 (3)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where the second line follows from the law of large numbers as m→ ∞. We can simplify this as:

(H∞
1)qr = E

 g∑
j=1

exp

(
− (zq − µj)

2 + (zr − µj)
2

2σ2

)
=

g∑
j=1

E

[
exp

(
−
2µ2

j + (zq)2 + (zr)2 − 2µj(z
q + zr)

2σ2

)]

= exp

(
−
µ2
j

σ2

)
g∑

j=1

E

exp
−

Sqr
j︷ ︸︸ ︷

(zq)2 + (zr)2 − 2µj(z
q + zr)

2σ2


 (4)

Since zq =
∑g

l=1 αlϕl(x
q) and α ∼ N (0, Ig), we can write Sqr

j = αTAqrα+ µj(b
qr)Tα where

Aqr
kl = ϕl(x

q)ϕk(x
q) + ϕl(x

r)ϕk(x
r) and bqrl = −2(ϕl(x

q) + ϕl(x
r)) (5)

Using the moment generating function for a quadratic form of Gaussian random variables
(A.M. Mathai, 1992), we get:

E
[
exp

(
tSqr

j

)]
=

exp
(

t2µ2
j

2 (bqr)T (I − 2tAqr)−1bqr
)

√
det (I − 2tAqr)

(6)

Setting t = −1/(2σ2) gives:

(H∞
1)qr =

g∑
j=1

exp

(
−
µ2
j

σ2

)
√
det

(
I +

1

σ2
Aqr

) exp

(
µ2
j

8σ4
(bqr)T (I +

1

σ2
Aqr)−1bqr

)
(7)

Next, we compute H∞
2 . The derivative with respect to αij is:

∂f(x)

∂αij
=

1√
m

g∑
l=1

βilϕ
′
l(zi)ϕj(x) (8)

This leads to:

(H∞
2)qr = E

 g∑
s,l,j=1

βlβsϕ
′
l(z

q)ϕ′s(z
r)ϕj(x

q)ϕj(x
r)


=

g∑
j,l=1

E [ϕ′l(z
q)ϕ′l(z

r)ϕj(x
q)ϕj(x

r)] (9)

where the second line follows because E[βlβs] = δls. Since ϕ′l(z) = − z−µl

σ2 ϕl(z), we have:

(H∞
2)qr =

g∑
j,l=1

ϕj(x
q)ϕj(x

r)

σ4
E [(zq − µl)(z

r − µl)ϕl(z
q)ϕl(z

r)] (10)

The expectation term can be written as:

E
[
(zq − µl)(z

r − µl) exp

(
− (zq − µl)

2 + (zr − µl)
2

2σ2

)]
(11)

Let Zqr
l (t) = E[exp(tSqr

l)]. We can relate the expectation to derivatives of Zqr
l (t) with respect to

the components of bqr.
∂Zqr

l (t)

∂bqrs
= tµlE[αs exp(tS

qr
l)] (12)

∂2Zqr
l (t)

∂bqrp ∂b
qr
s

= (tµl)
2E[αsαp exp(tS

qr
l)] (13)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

And we know that (zq − µl)(z
r − µl) =

∑
s,p αsαpϕs(x

q)ϕp(x
r) + µ2

l + µl

∑
s b

qr
s αs. Putting

these pieces together, we can express the expectation in terms of Zqr
l (t) and its derivatives:

E [(zq − µl)(z
r − µl) exp {tSqr

l }] =
∑
s,p

ϕs(x
q)ϕp(x

r)

(tµl)2
∂2Zqr

l (t)

∂bqrp ∂b
qr
s

+ µ2
lZ

qr
l (t) +

∑
s

bqrs
t

∂Zqr
l (t)

∂bqrs
(14)

By defining Gqr = (I − 2tAqr)−1 and T qr
l = exp

(
t2µ2

l

2 (bqr)T (I − 2tAqr)−1bqr
)

, we can find

closed forms for the derivatives of Zqr
l (t). Substituting these back gives the final expression for

(H∞
2)qr, which completes the proof. We have the following:

∂Zqr
l (t)

∂bqrs
=
t2µ2

l ((I − 2tAqr)−1bqr)s√
det (I − 2tAqr)

T qr
l (15)

∂2Zqr
l (t)

∂bqrp ∂b
qr
s

=
t2µ2

l ((I − 2tAqr)−1)sp√
det (I − 2tAqr)

T qr
l

+
t4µ4

l ((I − 2tAqr)−1bqr)s((I − 2tAqr)−1bqr)p
det (I − 2tAqr)

T qr
l (16)

By defining:

Y qr
sl =

1

t

∂Zqr
l (t)

∂bqrs
= tµ2

l

√
det (Gqr)(Gqrbqr)sT

qr
l (17)

Xqr
psl =

1

t2µ2
l

∂2Zqr
l (t)

∂bqrp ∂b
qr
s

=
√
det (Gqr)(Gqr)spT

qr
l + t2µ2

l det(G
qr)(Gqrbqr)s(G

qrbqr)pT
qr
l

(18)

we can write:

E {(zq − µl)(z
r − µl) exp {tSqr

l }} =
∑
s,p

ϕs(x
q)ϕp(x

r)Xqr
psl + µ2

lZ
qr
l +

∑
s

bqrs Y
qr
sl (19)

Substituting this back into the expression for (H∞
2)qr gives the final result:

(H∞
2)qr =

g∑
j,l=1

ϕj(x
q)ϕj(x

r) exp

(
−µ

2
l

σ2

)
σ4

{∑
s,p

ϕs(x
q)ϕp(x

r)Xqr
psl + µ2

lZ
qr
l +

∑
s

bqrs Y
qr
sl

}
(20)

B PROOF OF THEOREM 4.2

We begin by recalling the two-layer Kolmogorov–Arnold Network (KAN) architecture analyzed in
this appendix (see also Figure 1):

f(x) =
1√
m

∑m
p=1

∑g
l=1 βplϕl(zp),

zp =
∑d

k=1

∑g
j=1 αpjkϕj(xk).

(21)

This formulation makes explicit the dependence of the network output f(x) on the coefficients αpjk

and βpl, which will be central in the stability analysis that follows.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.1 PROOF OF LEMMA 4.3 (COEFFICIENT STABILITY)

By the induction hypothesis we have

L(t) ≤
(
1− ηλ0

2

)
L(t− 1).

Hence
∥u(t)− y∥22 ≤

(
1− ηλ0

2

)
∥u(t− 1)− y∥22,

which implies

∥u(t)− y∥2 ≤
√

1− ηλ0
2

∥u(t− 1)− y∥2

≤
(
1− ηλ0

4

)
∥u(t− 1)− y∥2 (since

√
1− x ≤ 1− x

2
for 0 ≤ x ≤ 1)

≤
(
1− ηλ0

4

)t
∥u(0)− y∥2. (22)

Now consider the gradient descent update for a single coefficient αijk:

αijk(t)− αijk(t− 1) = −η ∂L(t− 1)

∂αijk

= − η√
m

n∑
q=1

(uq(t− 1)− yq)
∂

∂αijk

(
m∑

p=1

g∑
l=1

βpl ϕl(z
q
p)

)
. (23)

Taking absolute values and using |ϕ′l(·)| ≤ 1 from the assumptions,

|αijk(t)− αijk(t− 1)| ≤ η√
m

∑
q,p,l

|ϕ′l(zqp)|
∣∣∣ ∂zqp
αijk

∣∣∣ |uq(t− 1)− yq|

≤ η√
m

∑
q,p,l

|ϕ′l(zqp)| |ϕj(x
q
k) δip| |uq(t− 1)− yq| (24)

≤ ηg√
m

n∑
q=1

|uq(t− 1)− yq|

≤ ηg
√
n√

m
∥u(t− 1)− y∥2, (25)

where in equation 24 we used δip = I{i = p}, and in equation 25 the inequality ∥x∥1 ≤
√
n ∥x∥2

for x ∈ Rn.

Summing these updates over τ = 0 to t− 1,

|αijk(t)− αijk(0)| ≤
t−1∑
τ=0

|αijk(τ + 1)− αijk(τ)|

≤ ηg

√
n

m

t−1∑
τ=0

∥u(τ)− y∥2

≤ ηg

√
n

m

t−1∑
τ=0

(
1− ηλ0

4

)τ
∥u(0)− y∥2 (by equation 22)

= ηg

√
n

m
∥u(0)− y∥2 ·

1− (1− ηλ0
4

)t

1− (1− ηλ0
4

)

≤ 4g
√
n

λ0
√
m

∥u(0)− y∥2. (26)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Defining

R :=
4g

√
n

λ0
√
m

∥u(0)− y∥2,

we conclude that |αijk(t)− αijk(0)| ≤ R for all t, completing the proof.

B.2 PROOF OF LEMMA 4.4 (KERNEL STABILITY OVER TIME)

By definition, the (q, r) entry of the tangent kernel at time t is

Hqr(t) =
〈∂uq(t)

∂α
,
∂ur(t)

∂α

〉
. (27)

From Section B.1 we have already computed

∂uq(t)

∂αijk
=

1√
m

g∑
l=1

βil ϕ
′
l(z

q
i (t))ϕj(x

q
k). (28)

Substituting equation 28 into equation 27 gives

Hqr(t) =

m∑
i=1

g∑
j=1

d∑
k=1

1

m

(
g∑

l=1

βil ϕ
′
l(z

q
i (t))ϕj(x

q
k)

)(
g∑

s=1

βis ϕ
′
s(z

r
i (t))ϕj(x

r
k)

)

=
1

m

∑
i,j,k,l,s

βil βis ϕ
′
l(z

q
i (t))ϕj(x

q
k)ϕ

′
s(z

r
i (t))ϕj(x

r
k). (29)

Therefore,

|Hqr(t)−Hqr(0)| ≤
1

m

∑
i,j,k,l,s

|ϕj(xqk)ϕj(x
r
k)|
∣∣ϕ′l(zqi (t))ϕ′s(zri (t))− ϕ′l(z

q
i (0))ϕ

′
s(z

r
i (0))

∣∣
≤ 1

m

∑
i,j,k,l,s

∣∣ϕ′l(zqi (t))ϕ′s(zri (t))− ϕ′l(z
q
i (0))ϕ

′
s(z

r
i (0))

∣∣
≤ 1

m

∑
i,j,k,l,s

(
|ϕ′l(z

q
i (t))− ϕ′l(z

q
i (0))|+ |ϕ′s(zri (t))− ϕ′s(z

r
i (0))|

)
, (30)

where we used |ϕj(·)| ≤ 1 and |ϕ′l(·)| ≤ 1 and we now for a, b, c, d ≤ 1 we have |ab − cd| ≤
|a− c|+ |b− d|.
From the network definition equation 21,

|zqi (t)− zqi (0)| ≤
d∑

k=1

g∑
j=1

|ϕj(xqk)| |αijk(t)− αijk(0)| ≤ gdR, (31)

where the last inequality follows from Lemma 4.3 and the bound |ϕj(xqk)| ≤ 1.

By Assumptions, the second derivative of ϕl is bounded, hence

|ϕ′l(z
q
i (t))− ϕ′l(z

q
i (0))| ≤ |zqi (t)− zqi (0)| ≤ gdR. (32)

Substituting equation 32 into equation 30, we obtain

|Hqr(t)−Hqr(0)| ≤
1

m

∑
i,j,k,l,s

2gdR = 2d2g4R. (33)

Finally, taking matrix norms gives

∥H(t)−H(0)∥2 ≤ ∥H(t)−H(0)∥F ≤
n∑

q,r=1

|Hqr(t)−Hqr(0)| ≤ 2n2d2g4R. (34)

This completes the proof.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B.3 PROOF OF LEMMA 4.5 (INITIAL KERNEL CONCENTRATION)

We begin by observing that

Hqr(0) =
1

m

∑
i,j,k,l,s

βilβisϕ
′
l(z

q
i (0))ϕj(x

q
k)ϕ

′
s(z

r
i (0))ϕj(x

r
k). (35)

Since the coefficients αijk are independent across different i, the expression above can be written as
the average of m i.i.d. random variables

Xqr
i =

∑
j,k,l,s

βilβisϕ
′
l(z

q
i (0))ϕj(x

q
k)ϕ

′
s(z

r
i (0))ϕj(x

r
k). (36)

By our assumptions, each variable is bounded in absolute value by

|Xqr
i | ≤ dg3.

Applying Hoeffding’s inequality, we obtain

P
[
|Hqr(0)−H∞

qr | ≥ ϵ
]
≤ 2 exp

(
− mϵ2

2d2g6

)
. (37)

Taking a union bound over all n2 entries of the kernel matrix, it follows that

P
[
∀q, r ∈ [n] : |Hqr(0)−H∞

qr | ≤ ϵ
]
≥ 1− 2n2 exp

(
− mϵ2

2d2g6

)
. (38)

Equivalently, setting

ϵ =
dg3√
m

√
log

(
2n2

δ

)
,

we obtain that with probability at least 1− δ,

∥H(0)−H∞∥22 ≤ ∥H(0)−H∞∥2F ≤ d2g6n2

m
log

(
2n2

δ

)
, (39)

which establishes Lemma 4.5.

B.4 PROOF OF THEOREM 4.2

Step 1: Bounding the initial error. We begin by establishing an upper bound on the initial error.
By the triangle inequality,

∥y − u(0)∥22 ≤ 2∥y∥22 + 2∥u(0)∥22. (40)

From our assumptions, we have ∥y∥22 ≤ n. We now derive a bound for the second term.

Step 2: Distribution of the initialization. By the definition of zp in equation 21, we know that

zp(0) ∼ N

0, σ2
∑
j,k

ϕ2j (xk)

 .

Therefore,

E|zp(0)| =
√

2

π
σ

√∑
j,k

ϕ2j (xk) ≲ σ
√
gd.

Using assumptions, we obtain

E|uq(0)| ≤
1√
m

∑
p,l

E|ϕl(zp(0))|

≲
√
mdg3/2σ.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

By Markov’s inequality, with probability at least 1− δ, we have

∥u(0)∥2 ≤ ∥u(0)∥1 ≲

√
md

δ
ng3/2σ. (41)

Substituting equation 41 into equation 40, we obtain

∥y − u(0)∥22 ≲ n+
md

δ2
n2g3σ2. (42)

Step 3: Error recursion. We now analyze the error at step t+ 1. Expanding the loss, we have

∥y − u(t+ 1)∥22 = ∥y − u(t)− (u(t+ 1)− u(t))∥22
= ∥y − u(t)∥22 − 2(y − u(t))⊤

(
u(t+ 1)− u(t)

)
+ ∥u(t+ 1)− u(t)∥22.

(43)

Step 4: Defining the error term. To control the update, define the error term

ϵq(t) = uq(t+ 1)− uq(t) + η

n∑
r=1

Hqr(t)
(
ur(t)− yr

)
. (44)

By expanding Hqr(t), we obtain

η

n∑
r=1

Hqr(t)(ur(t)− yr) =
∑

p,j,k,l,s,r

η

m
(ur(t)− yr)βplβpsϕ

′
l(z

q
p(t))ϕj(x

q
k)ϕ

′
s(z

r
p(t))ϕj(x

r
k)

=
−1√
m

∑
p,j,k,l

βpl(αp,j,k(t+ 1)− αp,j,k(t))ϕ
′
l(z

q
p(t))ϕj(x

q
k)

=
−1√
m

∑
p,l

βpl(z
q
p(t+ 1)− zqp(t))ϕ

′
l(z

q
p(t)). (45)

Substituting equation 45 into equation 44, we find

ϵq(t) =
1√
m

∑
p,l

βpl

[
ϕl(z

q
p(t+ 1))− ϕl(z

q
p(t))− ϕ′l(z

q
p(t))(z

q
p(t+ 1)− zqp(t))

]
.

Step 5: Bounding the Taylor remainder. By Taylor’s theorem and assumptions, we obtain

ϕl(z
q
p(t+ 1))− ϕl(z

q
p(t))− ϕ′l(z

q
p(t))(z

q
p(t+ 1)− zqp(t)) ≤

1

2

(
zqp(t+ 1)− zqp(t)

)2
.

Moreover, from equation 25, one can bound

|zqp(t+ 1)− zqp(t)| ≤
∑
j,k

|αpjk(t+ 1)− αpjk(t)||ϕj(xqk)|

≤ dη
√
n√

m
g2∥u(t)− y∥2. (46)

Combining these estimates gives

∥y − u(t+ 1)∥22 = ∥y − u(t)∥22 − 2(y − u(t))T (−ηH(u(t)− y) + ϵ(t)) + ∥u(t+ 1)− u(t)∥2
≤
(
1− 2ηλmin(H(t)) + 2∥y − u(t)∥2∥ϵ(t)∥2 + η2d2g6n3

)
∥y − u(t)∥22.

(47)

Step 6: Bounding the size of the update. Using equation 46, we find

|uq(t+ 1)− uq(t)| ≤
1√
m

∑
p,l

|ϕl(zqp(t+ 1))− ϕl(z
q
p(t))|

≤ 1√
m

∑
p,l

|zqp(t+ 1)− zqp(t)|

≤ ηdg3
√
n∥u(t)− y∥2 (48)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Thus,
∥u(t+ 1)− u(t)∥2 ≤ ∥u(t+ 1)− u(t)∥1 ≤ ηdg3n3/2∥u(t)− y∥2

Substituting into equation 43, we obtain

∥y − u(t+ 1)∥22 = ∥y − u(t)∥22 − 2(y − u(t))T (−ηH(u(t)− y) + ϵ(t)) + ∥u(t+ 1)− u(t)∥2
≤
(
1− 2ηλmin(H(t)) + 2∥y − u(t)∥2∥ϵ(t)∥2 + η2d2g6n3

)
∥y − u(t)∥22.

(49)

Step 7: Lower bounding the minimum eigenvalue. We now lower bound λmin(H(t)). By
Weyl’s perturbation inequality Bhatia (2013) and Lemma 4.5, if

m = O
(
d2g6n2

λ20
log
(n
δ

))
,

then ∥H(0) − H∞∥2 ≤ λ0/4, and hence λmin(H(0)) ≥ 3

4
λ0. Furthermore, by Lemma 4.4, if

R = O(λ0/(n
2d2g4)), then

∥H(0)−H(t)∥2 ≤ λ0/4.

Together these imply
λmin(H(t)) ≥ λ0/2.

Step 8: Final convergence bound. Substituting this into equation 49, and using the induction
hypothesis ∥y − u(t)∥2 ≤ ∥y − u(0)∥2, we obtain

∥y − u(t+ 1)∥22 ≤
(
1− ηλ0 + c0∥y − u(0)∥2

nη2d2g5√
m

+ η2d2g6n3
)
∥y − u(t)∥22

≤
(
1− ηλ0 + c1nη

2d2g5
√
n

m
+

d

δ2
n2g3σ2 + η2d2g6n3

)
∥y − u(t)∥22. (50)

Finally, suppose that σ = O
(
δ/
√
mng3d

)
and m = O(n). If we choose the learning rate

η ≲
λ0

n3d2g6
,

then it follows that
∥y − u(t+ 1)∥22 ≤

(
1− ηλ0

2

)
∥y − u(t)∥22,

which establishes the desired linear convergence rate.

C PROOF OF THEOREM 4.6

We prove Theorem 4.6 by relying on the lemmas established in Appendix B. Starting from equa-
tion 44 we have, for each coordinate,

uq(t+ 1)− uq(t) = −η
n∑

r=1

Hqr(t)
(
ur(t)− yr

)
+ ϵq(t). (51)

In vector form this yields

u(t+ 1)− u(t) = −ηH(t)
(
u(t)− y

)
+ ϵ(t), (52)

where ϵ(t) = [ϵq(t)]
n
q=1 is the coordinate-wise Taylor remainder.

Using Lemmas 4.5 and 4.4 we decompose H(t) = H∞ + (H(t)−H∞) and rewrite equation 52
as

u(t+ 1)− u(t) = −ηH∞(u(t)− y
)
− η
(
H(t)−H∞)(u(t)− y

)
+ ϵ(t). (53)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Define
χ(t) := −η

(
H(t)−H∞)(u(t)− y

)
.

By the triangle inequality and the lemmas controlling H(0) − H∞ and H(t) − H(0) we obtain
the high-probability bound

∥χ(t)∥2 ≤ η∥H∞ −H(t)∥2∥u(t)− y∥2

≤ η
(
∥H∞ −H(0)∥2 + ∥H(0)−H(t)∥2

)
∥u(t)− y∥2

≤ 2n2d2g4R ∥u(t)− y∥2, (54)
where the last inequality uses the concrete bounds from Lemmas 4.5 and 4.4 (see main text for the
precise dependence on m and R).

Set ζ(t) := χ(t) + ϵ(t). Then the one-step recursion becomes
u(t+ 1)− y = (I − ηH∞)

(
u(t)− y

)
+ ζ(t). (55)

Unrolling this recursion for t steps gives

u(t)− y = (I − ηH∞)t
(
u(0)− y

)
+

t−1∑
τ=0

(I − ηH∞)τζ(t− 1− τ)

= −(I − ηH∞)ty + (I − ηH∞)tu(0) +

t−1∑
τ=0

(I − ηH∞)τζ(t− 1− τ). (56)

The first term −(I − ηH∞)ty is the label-dependent main term in the theorem; we must show the
remaining two terms are negligible.

Bounding the initialization term. From equation 41 we have (with high probability)

∥(I − ηH∞)tu(0)∥2 ≤ (1− ηλ0)
t ∥u(0)∥2 ≲ (1− ηλ0)

t

√
md

δ
ng3/2σ. (57)

Thus for small initialization variance σ2 the initialization term decays exponentially and is negligi-
ble.

Bounding the accumulated error term. Using equation 54 and the bound on ϵ(t) from Ap-
pendix B, we obtain for the accumulated error∥∥∥ t−1∑

τ=0

(I − ηH∞)τζ(t− 1− τ)
∥∥∥
2
≤

t−1∑
τ=0

∥(I − ηH∞)τ∥2∥ζ(t− 1− τ)∥2

≤
t−1∑
τ=0

(1− ηλ0)
τ C n2d2g4R ∥u(t)− y∥2

≲ n2d2g4R

t−1∑
τ=0

(1− ηλ0)
τ ∥u(0)− y∥2, (58)

where C is an absolute constant absorbed into ≲ and we used the induction bound ∥u(t) − y∥2 ≤
∥u(0)− y∥2 in the last line. Substituting the bound equation 42 for ∥u(0)− y∥2 yields∥∥∥ t−1∑

τ=0

(I − ηH∞)τζ(t− 1− τ)
∥∥∥
2
≲ n2d2g4R

√
n+

md

δ2
n2g3σ2

∞∑
τ=0

(1− ηλ0)
τ

≲
n2d2g4R

ηλ0

√
n+

md

δ2
n2g3σ2 . (59)

Parameter choices and conclusion. If we choose the initialization variance and stability radius
as

σ = O

(
δ

m
√
ng3d

)
, R = O

(
ηλ0

n5/2d2g4

)
,

then both the initialization term equation 57 and the accumulated error above can be made arbitrarily
small. Under these choices the dominant term in equation 56 is −(I − ηH∞)ty, and the label-
dependent bound of Theorem 4.6 follows.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

(a) Linear data (b) Polynomial data

Figure 5: KAN-TK regression results on synthetic datasets. Figure (a) shows performance on linear
data, while Figure (b) shows polynomial data.

D ADDITIONAL EXPERIMENTS

D.1 ADDITIONAL REGRESSION EXPERIMENTS WITH KAN-TK

As shown in Figure 5, kernel regression with our derived KAN-TK effectively fits both a simple
linear function (Figure 5a) and a more complex polynomial function (Figure 5b). This demonstrates
that the induced kernel captures the expressive function space of the underlying KAN. To avoid
overfitting, we apply Kernel Ridge Regression with a regularization parameter of λ = 0.1.

Setup. For both experiments, we construct datasets of n = 50 samples with inputs drawn uni-
formly from the interval [−1, 1]. The linear dataset is generated from

y = 5x+ ϵ, ϵ ∼ N (0, 0.01),

while the polynomial dataset is generated from

y = 0.5x4 − 8.6x3 + 1.32x2 + 2x+ ϵ, ϵ ∼ N (0, 0.01).

Results. Figure 5a shows that the KAN-TK regressor recovers the linear function almost perfectly
despite the additive noise. Figure 5b further illustrates that the kernel can fit a substantially more
complex nonlinear target function with high accuracy. These results highlight the flexibility of KAN-
TK: even with a modest number of samples, it adapts effectively to functions of varying complexity
while maintaining robustness through regularization.

D.2 EXAMINING RESULTS ON MORE COMPLEX DATASETS

In this section, we evaluate our convergence and distance-from-initialization results on two standard
image classification benchmarks: MNIST LeCun et al. (1998) and CIFAR-10 Krizhevsky (2009).

Setup. For MNIST, we considered model widthsm ∈ {32, 128, 512, 2048}, and for CIFAR-10 we
used m ∈ {256, 512, 1024, 2048}. All experiments were run for 20 epochs using the cross-entropy
loss.

Results. Figure 6 reports the training error and parameter deviation for MNIST, while Figure 7
provides the corresponding results for CIFAR-10. As shown in both cases, the empirical trends
observed previously—namely, improved convergence and reduced movement from initialization at
larger widths—persist even on these significantly more complex real-world datasets.

These results, utilizing the cross-entropy loss, also suggest a future direction: examining the be-
havior of network parameters under cross-entropy to show that they remain close to initialization,
consistent with the observations made using the MSE loss in this paper.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

(a) Training error (b) Weight distance from initialization

Figure 6: Convergence analysis on the MNIST dataset. (a) Training error and (b) ℓ∞ distance of
weights from initialization.

(a) Training error (b) Weight distance from initialization

Figure 7: Convergence analysis on the CIFAR-10 dataset. (a) Training error and (b) ℓ∞ distance of
weights from initialization.

D.3 ADDITIONAL PROJECTIONS OF LABEL VECTORS

In Section 4.2, we analyzed how the structure of the label vector y influences optimization by exam-
ining its projection onto the eigenspectrum of the KAN-TK. Here, we extend this analysis to several
additional structured label functions to further illustrate the relationship between label–kernel align-
ment and convergence behavior.

Setup. We construct one-dimensional datasets with n = 50 samples drawn uniformly from
[−1, 1]. We consider four structured label functions:

y = exp(x), y = ln |x|+ x2 + 1, y = x
(
1− x

3

)−1
, y = sin−1

(
0.4 sin(x)

)
.

For each function, we compute the infinite-width KAN-TK, H∞, and project the corresponding
label vector onto its eigenbasis.

Results. Figure 8 shows the projection profiles across all four functions. In every case, the struc-
tured label vectors place a substantial portion of their energy on the leading eigenvectors of the
kernel—those associated with the largest eigenvalues. Such concentration indicates strong align-
ment with the dominant kernel directions, which in turn predicts rapid convergence under gradient
descent, consistent with our theoretical characterization in Theorem 4.6. By contrast, as shown
in the random-label experiments in the main text, unstructured labels distribute their energy more
uniformly across the spectrum, resulting in slower and more erratic convergence.

An additional observation is that highly nonlinear mappings (e.g., y = exp(x)) yield especially
concentrated projections on the top eigendirections. While this may seem counterintuitive, it re-
flects the fact that smooth monotonic functions align well with the principal components of many
kernel operators. Nevertheless, as the underlying label function becomes more intricate or oscil-
latory, the energy distribution spreads deeper into the spectrum, indicating reduced alignment and
correspondingly slower convergence.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

(a) Labels generated by y = exp(x). (b) Labels generated by y = ln |x|+ x2 + 1.

(c) Labels generated by y = x(1− x
3
)−1 (d) Labels generated by y = sin−1(0.4 sin(x))

Figure 8: Projections of structured label vectors onto the eigenspectrum of the KAN-TK matrix.
Each plot shows how the label signal distributes across kernel eigenvectors: concentration on top
eigenvalues indicates more favorable alignment and thus faster convergence.

D.4 EXAMINING THE TIGHTNESS OF THE CONVERGENCE BOUND

To empirically assess the tightness of the linear convergence bound derived in Theorem 4.2, we
compare the theoretical rate with the observed training loss. Recall that the theorem guarantees
a per-iteration contraction of the loss by at least a factor of (1 − ηλ0/2). We therefore plot this
theoretical upper bound (red dashed line) together with the empirical training loss (blue solid line)
on a logarithmic scale.

Setup. We use a two-layer Kolmogorov–Arnold Network with hidden layer widthm = 5000. The
training set consists of n = 10 samples {(xq, yq)}10q=1 where the inputs xq are drawn uniformly from
[−1, 1], and the labels are generated according to

y = exp(−x2) + x2.

Training is performed with full-batch gradient descent for 1000 epochs. Importantly, only the
first-layer coefficients αijk are updated during training, while the second-layer coefficients βil
are kept fixed, in line with the setting analyzed in Theorem 4.2. We vary the learning rate
η ∈ {0.001, 0.01, 0.1, 1}.

For visualization, we report

log10

(L(t)
L(0)

)
,

that is, the base-10 logarithm of the ratio of the loss at iteration t to the initial loss, and plot it against
the theoretical bound t log10

(
1− ηλ0/2

)
.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

(a) η = 0.001 (b) η = 0.01

(c) η = 0.1 (d) η = 1

Figure 9: Comparison of the theoretical convergence bound (red dashed line) from Theorem 4.2
with the empirical training loss (blue solid line) for different learning rates.

Results. As shown in Figure 9, the empirical loss decreases consistently faster than the theoretical
prediction, confirming that our analysis provides a valid upper bound. The discrepancy between
the empirical and theoretical curves reflects the conservatism of the bound, which is derived un-
der worst-case assumptions. For small learning rates (η = 0.001 and η = 0.01), the loss exhibits
smooth, nearly linear decay. For η = 0.1, the initial convergence is significantly faster than pre-
dicted before flattening out. For η = 1, training becomes unstable and the loss fails to decrease, in
accordance with the constraints on η imposed by the theory.

D.5 KAN VS. RELU NETWORKS ACROSS DIFFERENT SAMPLE SIZES

We conducted an additional experiment to demonstrate that a one-hidden-layer KAN can outperform
a one-hidden-layer ReLU network of the same width when the number of training samples is large.

Setup. We trained a standard neural network and a FastKAN model, each with a fixed hidden-layer
width of m = 1000, using varying numbers of training samples {500, 750, 1000}. The experiment
was performed on the synthetic dataset introduced in Section 5.1, with input dimension d = 100,
and all models were trained for 1000 epochs.

Results. The results, shown in Figure 10, indicate that FastKAN exhibits substantially faster con-
vergence compared to a ReLU network of the same width across all sample sizes.

E RATIONALE FOR FIRST-LAYER TRAINING

In this section, we explain why we focused on first-layer training for KANs. As demonstrated in
Sections E.1 and E.2, training the first layer alone outperforms training only the second layer and
achieves performance comparable to full-network training. This observation supports our assump-
tion that training only the first layer is a reasonable and efficient approach.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 10: Convergence of FastKAN and a ReLU network with width m = 1000 across different
sample sizes.

(a) Training error over all epochs (b) Final training error

Figure 11: Comparison of first-layer and second-layer training: (a) training error over all epochs,
and (b) final training error.

E.1 COMPARISON OF FIRST AND SECOND LAYER TRAINING

Here, we compare the effects of training only the first layer versus training only the second layer.

Setup. We follow the same experimental setup as in Section 5.1. The dataset consists of 100
samples drawn from a 100-dimensional unit sphere, with random labels assigned to the data points.
We consider network widths m ∈ {500, 1000, 2000, 4000, 8000} and train for 2000 epochs. In the
first experiment, the second-layer coefficients are fixed while the first layer is trainable; in the second
experiment, the first-layer coefficients are fixed while the second layer is trainable.

Results. As shown in Figure 11, training only the first layer yields significantly faster convergence
than training only the second layer, supporting the decision to focus on first-layer training.

E.2 COMPARISON OF FIRST AND FULL LAYER TRAINING

Next, we compare training only the first layer to full-network training.

Setup. The experimental setup is the same as in Section 5.1, with 100 samples from a 100-
dimensional unit sphere and network widths m ∈ {500, 1000, 2000, 4000, 8000}. Training is per-
formed for 2000 epochs. In the first experiment, only the first-layer coefficients are trained, while in
the second, both layers are trained.

Results. Figure 12 shows that first-layer training achieves performance comparable to full-layer
training. Moreover, it is more parameter-efficient and converges faster.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

(a) Training error over all epochs (b) Final training error

Figure 12: Comparison of first-layer and full-network training: (a) training error over all epochs,
and (b) final training error.

F ROLE OF LLMS IN THIS WORK

We used large language models (LLMs), including OpenAI’s GPT and Google’s Gemini, to assist
with writing tasks and commenting on code during the preparation of this manuscript. The models
were employed strictly under the direct supervision of the authors. All technical content, experi-
ments, results, and claims in this work are entirely the responsibility of the authors, and no output
from the language models was used without thorough verification.

30

	Introduction
	Preliminaries and Setup
	Kolmogorov-Arnold Networks (KANs)
	The Two-Layer KAN Architecture
	Training Dynamics in Overparameterized Models
	Training Setup and Problem Formulation

	The KAN Tangent Kernel
	Theoretical Analysis
	Global Convergence
	Label-Dependent Convergence Rate

	Experiments
	Convergence Rate vs. Network Width
	Impact of Label Structure on Convergence

	Comparison and Discussion
	Parameter and Width Comparison
	Convergence Rate Comparison

	Conclusion
	Tangent Kernels
	Background on Tangent Kernels
	Proof of Proposition 3.1

	Proof of Theorem 4.2
	Proof of Lemma 4.3 (Coefficient Stability)
	Proof of Lemma 4.4 (Kernel Stability over Time)
	Proof of Lemma 4.5 (Initial Kernel Concentration)
	Proof of Theorem 4.2

	Proof of Theorem 4.6
	Additional Experiments
	Additional Regression Experiments with KAN-TK
	Examining Results on More Complex Datasets
	Additional Projections of Label Vectors
	Examining the Tightness of the Convergence Bound
	KAN vs. ReLU Networks Across Different Sample Sizes

	Rationale for First-Layer Training
	Comparison of First and Second Layer Training
	Comparison of First and Full Layer Training

	Role of LLMs in This Work

