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Abstract
What happens when generative machine learning
models are pretrained on web-scale datasets con-
taining data generated by earlier models? Some
prior work warns of “model collapse” as the web
is overwhelmed by synthetic data; other work
suggests the problem can be contained by man-
aging how available data are used in pretrain-
ing. We report experiments on three ways of
using data (training-workflows), across three gen-
erative model task-settings (multivariate Gaus-
sian estimation, kernel density estimation, and
language-model fine-tuning) to further confirm
the possibility of containment: (a) we confirm
that the training-workflow of replacing all real
data by successive generations of purely synthetic
data suffers model collapse; (b) we consider the
training-workflow of accumulating synthetic data
alongside real data and training on all data com-
bined and confirm that, although the proportion
of real data eventually becomes zero, models re-
main stable and their test losses do not diverge
under this training-workflow; (c) we consider a
training-workflow where real and synthetic data
accumulate together but successive generations
of pretraining are constrained to use fixed-size
data subsets each generation. In this workflow,
we observe slow and gradual rather than explo-
sive degradation of test loss performance across
generations. Our insights are important when
forecasting whether future generative models will
collapse or thrive, and our results open avenues
for empirically and mathematically studying the
context-dependent value of synthetic data.
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1. Introduction
With each passing day, the internet contains more AI-
generated content (Altman, 2024). What impact will this
have on future deep generative models and their successors?
Previous work forewarned that sequences of models trained
exclusively on successive iterations of their own outputs
can exhibit model collapse: model performance degrades
with each iteration and later models become progressively
more unusable (Shumailov et al., 2023). Due to increasingly
heavy usage of LMs to produce written content for the inter-
net (Bommasani et al., 2022; Reuel et al., 2024; Perrault &
Clark, 2024; Kapoor et al., 2024), model collapse alarmists
believe current trends, if unmitigated, will irredeemably
pollute the pretraining data supply and degrade language
models across time.

However, the model collapse literature contains a variety
of methodologies, assumptions, and models. Research sup-
ports conflicting positions about such future scenarios (Taori
& Hashimoto, 2023; Hataya et al., 2023; Martı́nez et al.,
2023; Shumailov et al., 2023; Alemohammad et al., 2024;
Martı́nez et al., 2023; Bohacek & Farid, 2023; Guo et al.,
2024; Bertrand et al., 2024; Briesch et al., 2023; Gillman
et al., 2024; Wyllie et al., 2024; Dohmatob et al., 2024a;b;
Gerstgrasser et al., 2024; Seddik et al., 2024; Marchi et al.,
2024; Padmakumar & He, 2024; Chen et al., 2024; Fer-
bach et al., 2024a; Veprikov et al., 2024; Dey & Donoho,
2024). Concordance in the field is especially challenging
because “model collapse” has been defined in various ways
and studied under different assumptions concerning training-
workflows and task-settings. Shumailov et al. (2023) defined
model collapse as a “degenerative process affecting genera-
tions of learned generative models, in which the data they
generate end up polluting the training set of the next gener-
ation.” Dohmatob et al. (2024b) called model collapse the
worsening of scaling law curves when training on synthetic
as opposed to real data. In their theory sections, Shumailov
et al. (2024) and Gerstgrasser et al. (2024) defined model
collapse as divergent test loss after multiple iterations of
training in certain task settings. Due to space constraints,
we discuss Related Work more extensively in Appendix A.

In this paper, we take model collapse by its literal mean-
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ing: that model performance deteriorates to the level of
uselessness across iterations of an assumed data training-
workflow under an assumed generative model task-setting.
We bring new clarity to the discussion by studying how
three different data training-workflows shape trained model
performance over multiple generations. The first training-
workflow, initially studied by Shumailov et al. (2023), fully
replaces previous data at each iteration with newly gener-
ated synthetic data from the most recent generative model.
In particular, under the replace training-workflow, real data
are only used at the very first iteration. We conduct exper-
iments in three different generative model task-settings -
from basic multivariate Gaussian modeling (MGM) to ker-
nel density estimation (KDE) to supervised fine-tuning of
language models (SFT) – and observe that in each setting,
the replace training-workflow induces collapse. We also
consider the data training-workflow of accumulating all
prior data - both real and synthetic - and find that on all
three task-settings, collapse does not occur: the test loss on
real data stays bounded at reasonable levels. Additionally,
we introduce and study a more realistic “fixed compute”
training-workflow. In this training-workflow, all real and
synthetic data are retained, as in the accumulate setting.
However, a dataset is subsampled from the total available
pool of data to train the next model. While the pool of data
grows over time, the size of the subsampled training dataset
remains constant regardless of the model iteration. This
training-workflow reflects the reality that available compute
might not keep pace with the rate of synthetic data gen-
eration, forcing model providers to sample a fraction of
future web-scale data for training. This training-workflow
can be viewed as a middle ground between the assumed
fixed-sample size replace training-workflow and the increas-
ing sample-size accumulate training-workflow. We find
that test errors grow larger and more quickly than in the
accumulate scenario, but more slowly than they grow in the
replace scenario. These results are consistent across five
different generative model task-settings. Third, we investi-
gate whether the proportion or cardinality of initial real data
matters more for preventing model collapse and discover
a non-trivial interaction between real and synthetic data:
when real data are scarce, adding a small amount of syn-
thetic data can reduce test loss, whereas when real data are
ample, any synthetic data increases the test loss calculated
on real data.

To summarize our contributions:

1. We show that the hypotheses of Gerstgrasser et al.
(2024) are more universally applicable than originally
claimed: three generative model settings widely cited
as evidence for the dangers of collapse under a replace
training-workflow (Shumailov et al., 2024) fail to col-
lapse under the accumulate training-workflow.

2. We characterize test-loss behavior in a middle-ground
between the replace and accumulate workflows. This
middle ground reflects the impact of limited training-
compute in a data ecosystem that is being flooded with
synthetic data.

3. We illustrate that when real data are in limited sup-
ply, supplementing the training set by adding small
amounts of synthetic data can improve test loss. On
the other hand, when real data are abundant, supple-
mentation with synthetic data only increases test loss.

2. Testing Two Model Collapse Claims in
Three New Generative Modeling Settings

Gerstgrasser et al. (2024) recently made two claims:

1. Where model collapse has been documented, the col-
lapse can be attributed to the replace workflow, where
at each iteration, prior data (synthetic or real) are
deleted en masse.

2. In the accumulate workflow where synthetic data accu-
mulate alongside the original real data, model collapse
is avoided.

If correct, these two claims suggest that model collapse is
less likely to pose a significant threat to future deep genera-
tive models since accumulating data over time is a more real-
istic model of internet evolution. As a partner at Andreessen-
Horowitz elegantly explained, deleting data en masse is “not
what is happening on the internet. We won’t replace the
Mona Lisa or Lord of the Rings with AI-generated data, but
the classics will continue to be part of the training data set”
(Appenzeller, 2024). Despite such plausible heuristics, the
claims of Gerstgrasser et al. (2024) were not formally tested
in three generative modeling task-settings studied in influ-
ential recent work (Shumailov et al., 2024): (1) Multivariate
Gaussian Modeling (MGM); (2) Kernel Density Estimation
(KDE); and (3) Supervised Fine-tuning of Language Models
(SFT). In this section, we ask and answer: In these three new
generative modeling settings, do Gerstgrasser et al. (2024)
Claims 1 and 2 continue to hold? In all three settings, we
find that the answer is yes.

2.1. Model Collapse in Multivariate Gaussian Modeling

Following Shumailov et al. (2023); Alemohammad et al.
(2024); Bertrand et al. (2024), we study what happens when
one iteratively fits multivariate Gaussians and samples from
them. We begin with n real data drawn from a Gaussian
with mean µ(0) and covariance Σ(0): X(0)

1 , ..., X
(0)
n ∼i.i.d.

N (µ(0),Σ(0)). For model fitting, we compute the unbiased
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Figure 1. Model Collapse in Multivariate Gaussian Modeling. Top: Previous work (Shumailov et al., 2023; Alemohammad et al., 2024;
Bertrand et al., 2024) proved model collapse occurs under the replace training-workflow which iteratively fits means and covariances to
data, deletes earlier data, and replaces it with samples from a Gaussian with the fitted parameters (left). However, under the accumulate
workflow where one doesn’t delete data after each model-fitting iteration, model collapse does not occur (right). Note: We visualize the fit
Gaussians as zero-mean for easy comparison of the fit covariances across model-fitting iterations. Middle: If data are replaced, then the
fitted means drift away from the original data’s mean, but if data instead accumulate, then the fitted means stabilize. Bottom: If data
are replaced, then the fitted covariances collapse compared to the original data’s covariance, but if past data are not discarded, the fitted
covariances stabilize quickly and collapse is averted.

mean and covariance of the most recent data:

µ̂
(t+1)
Replace

def
=

1

n

n∑
j=1

X
(t)
j

Σ̂
(t+1)
Replace

def
=

1

n− 1

n∑
j=1

(X
(t)
j − µ̂

(t+1)
Replace)(X

(t)
j − µ̂

(t+1)
Replace)

T

For sampling, we draw n synthetic data using the fit pa-
rameters: X

(t)
1 , ..., X

(t)
n ∼i.i.d. N (µ̂

(t)
Replace, Σ̂

(t)
Replace).

Shumailov et al. (2024) proved that as t → ∞,

Σ̂
(t+1)
Replace

a.s.→ 0

E[W2
2(N (µ̂

(t+1)
Replace, Σ̂

(t+1)
Replace),N (µ(0),Σ(0)))] → ∞,

where W2 denotes the Wasserstein-2 distance. This result
simply states that the fit covariances will collapse to 0 and
that the Wasserstein-2 distance will diverge as this model-
data feedback loop unfolds. However, this result assumes
that all data are replaced with new synthetic data after
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Figure 2. Model Collapse in Kernel Density Estimation. Left: We consider 4 standard datasets from sklearn: Blobs, Circles, Moons
and Swiss Roll. Center: For all four datasets, deleting data en masse causes the negative log likelihoods (NLL) of held-out real data to
increase with each model-fitting iteration. Right: For all four datasets, the accumulate training-workflow avoids diverging test loss on real
data. Interestingly, for specific pairs of datasets and numbers of samples per iteration, training on real and accumulated synthetic data can
yield lower test-loss on held-out real data than would training on real data alone.

each model-fitting iteration, which is likely unrealistic as a
model of data evolution; as a rule we do not delete earlier
content from the internet, replacing it en masse with new
model-generated content after fitting each state-of-the-art
model. To study what happens if data instead accumulate
across model-fitting iterations, we fit to all previous real and
synthetic data, a mixture in which the fraction of real data
asymptotically approaches 0:

µ̂
(t+1)
Accumulate

def
=

1

n(t+ 1)

t∑
i=0

n∑
j=1

X
(i)
j

Σ̂
(t+1)
Accumulate

def
=

1

n(t+ 1)− 1

t∑
i=0

n∑
j=1

X̄
(i)
j (X̄

(i)
j )T ,

where X̄
(i)
j

def
= X

(i)
j − µ̂

(t+1)
Accumulate is shorthand for the cen-

tered datum. Data are then sampled using these fit Accu-
mulate parameters rather than the fit Replace parameters.

Empirically, we find that replacing all data with new syn-
thetic data after each model-fitting iteration causes model
collapse (Fig. 1 Left), whereas accumulating data across
model-fitting iterations prevents model collapse (Fig. 1
Right). More specifically, we find that if data are deleted,
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Figure 3. Model Collapse in Supervised Fine-tuning of Language Models. Fine-tuning Google’s Gemma2 models on Nvidia’s
HelpSteer 2 dataset demonstrates that model collapse occurs if previous data are replaced after each model-fitting iteration (left), whereas
model collapse is avoided if new synthetic data instead accumulate with previous real and synthetic data (right).

the squared error between the fit mean µ̂
(n)
Replace and the initial

mean µ(0) diverges (Fig. 1, Middle Left), and the fit covari-
ance Σ̂(n)

Replace relative to the initial covariance Σ(0) collapses
to 0 (Fig. 1, Bottom Left). In contrast, if data accumulate,
the squared error between the fit mean and the initial mean
plateaus quickly (Fig. 1, Middle Right), as does the fit co-
variance relative to the initial covariance (Fig. 1, Bottom
Right). For univariate Gaussians, we can mathematically
characterize the limit distribution:

Theorem 1. For notational efficiency, for a univariate Gaus-
sian, let µ̂(t) and σ̂(t) denote µ̂

(t)
Accumulate and Σ̂

(t)
Accumulate.

Then

E
[
σ2
t

] t→∞−−−→ σ2
0 ·
(
sin(π/

√
n)

π/
√
n

)
(1)

E[(µt − µ0)
2]

t→∞−−−→ σ2
0 ·
(
1− sin(π/

√
n)

π/
√
n

)
. (2)

See Appendix B for the proof. This reveals two key dif-
ferences when data accumulate: the covariance no longer
collapses, and the mean no longer diverges. This also im-
plies that the Wasserstein-2 distance no longer diverges.
Altogether, if data accumulate, model collapse is mitigated.

2.2. Model Collapse in Kernel Density Estimation

Shumailov et al. (2024) introduced a second generative
modeling task-setting: kernel density estimation (KDE). We
begin with n real data points drawn from an initial proba-
bility distribution p(0): X(0)

1 , ..., X
(0)
n ∼i.i.d. p

(0). We then
iteratively fit KDEs to the data and sample new synthetic
data from these KDEs. In the replace training-workflow,
we fit a KDE to n data from the most recently fit model,
whereas in the accumulate training-workflow, we fit a KDE
to data from all previous iterations, with the available dataset

growing linearly as n(t+ 1):

p̂
(t+1)
Replace(x)

def
=

1

nh

n∑
j=1

K
(x−X

(t)
j

h

)

p̂
(t+1)
Accumulate(x)

def
=

1

nh(t+ 1)

t∑
i=0

n∑
j=1

K
(x−X

(i)
j )

h

)
where K is the kernel function and h is its bandwidth param-
eter. We consider a standard Gaussian kernel. For sampling,
at each iteration, we draw n new synthetic data points from
the fitted KDEs. We evaluate the performance using the neg-
ative log-likelihood (NLL) on real held-out test data; lower
NLL indicates better performance. We use four standard
synthetic datasets from sklearn (Pedregosa et al., 2011):
blobs, circles, moons, and swiss roll.

Our results validate Claims 1 and 2 of Gerstgrasser et al.
(2024) in the KDE task-setting. (Fig. 2): replace causes
a rapid increase in NLL as iterations increase, indicating
that the KDEs are becoming increasingly poor at modeling
the real data distribution. In contrast, under accumulate,
the NLL of real test data remains relatively stable, demon-
strating that this training-workflow avoids model collapse.
Surprisingly, accumulating data can yield lower negative
log likelihoods on held-out test data that decrease with ad-
ditional model-fitting iterations. While synthetic data are
valuable elsewhere - e.g., Jain et al. (2024), Mobahi et al.
(2020) - their value here is intuitive: the synthetic data ”fills
in” the gaps between training data points and better approxi-
mate the distribution. For the simplest ‘out of the box’ KDE,
test losses may diverge (although very slowly) even under
accumulate; but, as explained in the Appendices, with suffi-
cient care in setting up the bandwidth selector of the KDE,
accumulate test losses will not diverge. By contrast, replace
test losses will diverge regardless of the bandwidth selector.
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Figure 4. Model Collapse Under a Fixed Compute Budget. We compare deleting data after each model-fitting iteration (replace) and
accumulating data after each iteration (accumulate) with a new fixed-compute data paradigm accumulate-subsample. In accumulate-
subsample, real and synthetic data accumulate but are then subsampled so that each model is trained on a constant number of data.
Accumulate-subsample’s test loss on real data deteriorates more quickly than accumulate’s loss but more slowly than replace’s loss, and
frequently converges, albeit to a higher plateau than accumulate. These results hold across five task-settings: multivariate Gaussian
modeling, language model instruction finetuning, kernel density estimation, linear regression and language model pretraining.
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2.3. Model Collapse in Supervised Fine-tuning of
Language Models

We now turn to the third setting for studying model col-
lapse introduced by Shumailov et al. (2024): supervised
fine-tuning of language models. Our chosen ‘real data’
is Nvidia’s HelpSteer2 (Wang et al., 2024) instruction-
following dataset; we will iteratively fine-tune a language
model before sampling new text data from it. We chose
Google’s Gemma2 models (Team et al., 2024); they are rela-
tively high performing and relatively small. For replace, we
fine-tune the t-th language model only on data generated by
the (t− 1) language model; for accumulate, we instead fine-
tune the t-th model on the initial real data plus all synthetic
data sampled from models 1, . . . , t− 1. Thus, the amount
of data for replace is constant ∼ 12.5K, whereas the amount
of data for accumulate grows linearly ∼ 12.5K · t. We again
find that deleting data after each iteration leads to collapse
whereas accumulating data avoids collapse (Fig. 3).

3. Collapse Under a Fixed Compute Budget?
Thus far, we have focused on two training-workflows: re-
place and accumulate. As discussed in Sec. 2, replace is
unrealistic as a model of internet evolution: we cannot delete
and regenerate the internet after pretraining each successive
model. Accumulate might also be unrealistic because accu-
mulate trains each successor model on ever-expanding data
and increasing compute. For the sake of predicting likely
outcomes for future generative models, we ask and answer:
Does model collapse occur when data accumulate, while
each model training uses a fixed compute budget?

We call this training-workflow accumulate-subsample since
data accumulate but at each model-fitting iteration are sub-
sampled to a fixed dataset size. We study the same three gen-
erative modeling task-settings as above, plus two new task-
settings from other prior work (Mobahi et al., 2020; Dohma-
tob et al., 2024a; Gerstgrasser et al., 2024): linear regres-
sion and pretraining language models on a GPT3.5/GPT4-
generated dataset of kindergarten-level text (Eldan & Li,
2023).

Across all five generative models, accumulate-subsample’s
test loss on real data lies between the test losses of Re-
place and Accumulate (Fig. 4). Specifically, accumulate-
subsample exhibits higher test loss than accumulate but
lower test loss than replace, showing that the fixed compute
budget imposes some performance penalty. In a qualitative
difference, test losses on real data typically plateau for both
accumulate-subsample and accumulate, while test losses
for replace typically diverge in an apparently unbounded
manner. Thus, modifying accumulate to the more compute-
realistic workflow accumulate-subsample, the threat of
model collapse is still avoided.

4. Cardinality of Real Data vs Proportion of
Real Data in Mitigating Model Collapse

We conclude by turning to a key open question: Which
matters more for avoiding model collapse: the cardinality
of real data or the proportion of real data? Relatedly, how
does the value of synthetic data for reducing test loss on
real data depend on the amount of real data?

These questions are highly pertinent to researchers sampling
from web-scale data in order to pretrain or finetune language
models. To explore these questions, we fine-tune Google’s
Gemma 2 2B model using the HelpSteer2 dataset. We
generate 100k completions from the fine-tuned model and
filter out those exceeding 512 tokens, leaving 55,000 usable
samples. We then construct datasets with varying mixes of
real and synthetic data and fine-tune Gemma 2B on each.
The final test loss for each configuration is recorded (Fig. 5).

This experiment provides several insights. First, both the
number and proportion of real data have an impact on the
test loss following SFT. To assess this, we first transformed
the number of real datapoints n as 1

n1/2 , in keeping with
intuitions from classical statistics on how the log likelihood
scales with the number of data points. Then, based on
observation of the data, we computed

log

(
real data

real data + synthetic data

)
to best capture the relationship between the fraction of real
data and the log likelihood. We measured R2 values of
0.59 for the transformed number of real data and 0.34 for
the proportion of real data. We next computed F -statistics
for the one-term versus two-term models involving each of
these covariates, which gave us p-values of 6.9 × 10−25

and 4.6× 10−25, respectively. These statistics suggest that
both the proportion and the cardinality of real data have a
statistically significant effect on the test loss, and explain a
sizable fraction of the variance in the test loss.

Second, we find a difference in the effect of synthetic data
on test loss comparing high- versus low- real-data regimes.
In our experiments, when the number of real data is 1024 or
lower, we find that there is a small but non-zero amount of
synthetic data that improves the test loss when it is included.
This optimal number of synthetic datapoints appears to be
near 1024. This suggests that practitioners fine-tuning with
insufficient amounts of real data should consider supple-
menting with synthetic data to improve model quality. On
the other hand, when real data are plentiful (more than 1024
datapoints), we find that more synthetic data almost always
degrades final model quality when the number of real data
is held constant. When there are more than 1024 real data-
points, datasets containing only real data prove to be more
valuable than datasets that contain ten times more real data
mixed with synthetic data.
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Figure 5. The Value of Synthetic Data in Supervised Fine-tuning of Language Models. Fine-tuning Google’s Gemma 2 2B on
Nvidia’s HelpSteer 2 dataset on different combinations of real and synthetic data. We observe that when the number of real data is small,
supplementing with synthetic data can improve test loss. With sufficient real data, adding synthetic data degrades performance.

These results raise interesting questions about the role of
synthetic data in SFT that merit exploration. We can some-
times achieve better results by removing all synthetic data
from the training set than by doubling the amount of real
data. When constructing datasets subject to cost constraints,
these results suggest that removing synthetic or low-quality
data can sometimes bring more value than collecting greater
volumes of high-quality data. These experimental results
bear comparison with prior theoretical work of Dohmatob
et al. (2024b), cf. Corollary 3.3 et seq.

5. Discussion
We studied the risks of model collapse and identified two
pathways to containment. We demonstrated in three new
generative modeling settings that accumulating data over
time avoids model collapse, whereas replacing data over
time induces model collapse. In five generative modeling
settings, we demonstrated that using a modified accumulate
workflow - where each model trains on a fixed-size sample
drawn from all available real and synthetic data - model
performance deteriorates, but still tends to plateau. The con-
sistency of results across model types and datasets suggests
that this distinction is a general phenomenon, and is not
specific to any particular model, dataset, or learning algo-
rithm. Lastly, we explored the value of synthetic data for
reducing the test loss on real data and found two different
regimes: when real data are plentiful, adding synthetic data
can be harmful, but when real data are scarce, there exists

an optimal amount of synthetic data that should be added.

To us, the most realistic viewpoint on internet evolution
assumes synthetic data accumulating from a host of models
alongside continuing influx of real-world data. Combining
it with our experimental and analytical work, model col-
lapse seems unlikely. Our experiments take a pessimistic
viewpoint, in the sense that our experiments pay no attention
to the quality of data, whereas in practice, engineers heavily
filter data based on various indicators of data quality, e.g.,
(Brown et al., 2020; Lee et al., 2023; Wettig et al., 2024;
Penedo et al., 2024; Li et al., 2024b; Sachdeva et al., 2024);
for a recent review, see Albalak et al. (2024).

A promising future direction might combine synthetic data
generation with filtering techniques to enable performant
and efficient pretraining at scale. As we saw in kernel den-
sity estimation (Fig. 2) and in language model pretraining
on TinyStories (Fig. 4), training on real and synthetic data
accumulated over several iterations can yield lower loss on
real test data than training on real data alone. Identifying un-
der what conditions synthetic data can lower test loss during
pretraining would be invaluable to industry practitioners.

Our results in Section 4 suggest that removing low-quality
synthetic data from model training sets can improve test
loss more than gathering additional high-quality data. De-
veloping efficient identification and removal techniques for
detrimental data could streamline the model fine-tuning pro-
cess and produce better alignment.
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systematically analyzing different data evolution paradigms,
our findings provide actionable insights into mitigating the
risks associated with training generative models on recur-
sively generated data.

The societal implications of our work are substantial. If
left unaddressed, model collapse could lead to the degra-
dation of AI-generated content, reducing the reliability of
machine learning models deployed across industries, includ-
ing healthcare, finance, and education. Our results highlight
that while synthetic data can be beneficial under controlled
accumulation, indiscriminate use may lead to severe model
degradation. This has ethical ramifications for AI deploy-
ment, as biased or deteriorating models could reinforce
misinformation, amplify biases, or reduce transparency in
decision-making systems.

Additionally, our study underscores the importance of re-
sponsible data curation and compute-aware training strate-
gies. As AI systems become increasingly self-referential,
policymakers and practitioners must develop strategies
to balance synthetic and real data, ensuring sustainable
model performance. Our work informs these discussions by
demonstrating that synthetic data, if managed appropriately,
can enhance rather than harm AI models.

While our findings primarily contribute to advancing ma-
chine learning theory, we encourage continued research into
the ethical governance of AI-generated datasets, particularly
as reliance on synthetic data expands. Future work should
explore mechanisms for filtering low-quality synthetic data
and designing robust training paradigms to prevent long-
term degradation of AI capabilities.
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A. Related Work
The limitations of using AI-generated images to train other image models have been well-documented since 2022 (Hataya
et al., 2023). Shumailov et al. (2023) most prominently sounded the alarm about synthetic data for training language models
by showing that a model trained repeatedly on its own outputs exhibits severely denigrated quality. Shumailov’s theory and
empirical work were quickly extended to many new settings (Alemohammad et al., 2024; Bertrand et al., 2024; Dohmatob
et al., 2024b;a; Marchi et al., 2024).

Within the model collapse literature, a variety of data dynamics have been studied, which vary in how “real” data are
discarded or retained, how “synthetic” data are generated, and how each is (or is not) incorporated into future training sets
(Martı́nez et al., 2023; Mobahi et al., 2020; Dohmatob et al., 2024a). A common feature of many of these is that at least
some real data are discarded, often because total dataset size is kept constant across model-fitting iterations. However,
(Gerstgrasser et al., 2024) note that this may not represent real-world dynamics, and that model collapse is avoided when
data accumulate. What is not clear, however, is whether this claim holds universally, including in the specific settings studied
in other prior work. We help close this gap by extending Gerstgrasser’s empirical and theoretical analyses to several of these
settings.

Where model collapse can be seen as studying a worst-case scenario, it has also been observed that some kinds of synthetic
data have a positive effect. (Dohmatob et al., 2024b) and (Jain et al., 2024) find that certain amounts of synthetic data can
improve model performance, and (Ferbach et al., 2024b) suggest that with curation, self-consuming loops can improve
alignment with human preferences. A growing literature on how to filter and harness synthetic data has achieved impressive
results on a variety of benchmarks (Zelikman et al., 2024; Li et al., 2024a; Yang et al., 2024), raising interesting questions
about the limits of when unfiltered synthetic data can help. In this vein, we answer a question posed by (Gerstgrasser et al.,
2024): does the proportion or the raw amount of real data in a mixed training set have a greater impact on test loss? In the
process, we find that proportionally small amounts of synthetic data can improve test loss when real data is scarce.

13



Collapse or Thrive? Perils and Promises of Synthetic Data in a Self-Generating World

B. Iterative Gaussian Model Fitting: Mathematical Results and Proofs
B.1. Setup

Lemma 2. Using the notation of Theorem 1, we can express µt =
∑t

r=1 σr−1
zr
r + µ0.

Proof. Note that Xi,t = µt−1 + σt−1zi,t, where zi,t ∼ N (0, 1). Therefore,

µt =
1

nt

t∑
r=1

n∑
i=1

Xi,r

=
t− 1

t
µt−1 +

µt−1

t
+ σt−1

zt
t

= µt−1 + σt−1
zt
t
.

Therefore, µt =
∑t

r=1 σr−1 · zr
r + µ0.

Lemma 3. Under the setup described in Theorem 1, E[σ
2
t

σ2
0
] =

∏t
k=1

(
1− 1

nk2

) t→∞−−−→ sin(π/
√
n)

π/
√
n

.

Proof. Using the recursive expression for µt in Lemma 2, we can rewrite

σ2
t =

1

nt

t∑
r=1

n∑
i=1

(Xi,r − µt)
2

=
1

nt

t∑
r=1

n∑
i=1

(
Xi,r −Xr +Xr − µt

)2
=

1

nt

t∑
r=1

(
n∑

i=1

(
Xi,r −Xr

)2
+ n(Xr − µt)

2

)

=
1

t

t∑
r=1

(
σ2
r−1S

2
r + (µr−1 + σr−1zr − µt)

2
)
.

In the last line, we define S2
r =

∑n
i=1(zi,r − zr)

2. The term

(µr−1 + σr−1zr − µt)
2 =

(
σr−1zr −

t∑
k=r

σk−1 ·
zk
k

)2

,

so

σ2
t =

1

t

t∑
r=1

σ2
r−1S

2
r +

(
σr−1zr −

t∑
k=r

σk−1
zk
k

)2


⇒ tσ2
t =

t∑
r=1

σ2
r−1S

2
r +

(
σr−1zr

(
1− 1

r

)
−

t∑
k=r+1

σk−1
zk
k

)2
 .

We now compute the conditional expectations of the terms in this sum. Where Fi denotes the ith filtration,

E[σ2
r−1S

2
r |Ft−1] =

{
σ2
r−1S

2
r r < t

σ2
t−1 ·

(
n−1
n

)
r = t.
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For r = t, we find that

E

(σr−1zr ·
(
1− 1

r

)
−

t∑
k=r+1

σk−1 ·
zk
k

)2

|Ft−1

 = σ2
t−1

(
1− 1

t

)
· 1
n
.

On the other hand, when r < t,

E

(σr−1zr ·
(
1− 1

r

)
−

t−1∑
k=r+1

σk−1 ·
zk
k

− σt−1 ·
zt
t

)2

|Ft−1


= σ2

t−1 ·
1

t2
· 1
n
+

(
σr−1zr ·

(
1− 1

r

)
−

t−1∑
k=r+1

σk−1 ·
zk
k

)2

.

Therefore,

E[tσ2
t |Ft−1] = (t− 1)σ2

t−1 + σ2
t−1 ·

(
1− 1

n

)
+ σ2

t−1 ·
(
t− 1

t

)
·
(
1

n

)
+ σ2

t−1 ·
(
1− 1

t

)2

·
(
1

n

)
= σ2

t−1

(
t− 1 + 1− 1

n
+

1

tn
− 1

t2n
+

1

n
− 2

tn
+

1

t2n

)
= σ2

t−1

(
t− 1

tn

)
.

It follows that

E[σ2
t |Ft−1] = σ2

t−1

(
1− 1

t2n

)
< σ2

t−1

for all t. Thus, {σ2
t }t is a supermartingale, and

σ2
t

a.s.−−→ σ2
∞

because σ2
t is bounded below by 0. Therefore, we still have convergence. Next, letting mt = E[σ2

t ], we have

mt = mt−1

(
1− 1

t2n

)
= · · · = σ2

0

t∏
k=1

(
1− 1

k2n

)
,

so

E[σ2
t ] = σ2

0

∞∏
k=1

(
1− 1

k2n

)
. (3)

By a theorem of Euler, this is equal to

σ2
0

sin(π/
√
n)

π/
√
n

. (4)

Observe that by performing a variable replacement and using L’Hospital’s rule, it is clear that limn→∞ E[σ2
t ] = σ2

0 .

Finally, we are able to compute E[(µt − µ0)
2].

Corollary 4. The expected error in the mean

E[(µt − µ0)
2] = σ2

0

(
1−

t∏
k=1

(
1− 1

k2n

))
. (5)
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Proof. Using the recursion from Lemma 2 and the expression for the variance in Lemma 3, we can rewrite

E[(µt − µ0)
2] =

t∑
k=1

E[σ2
k−1]

nk2

= σ2
0

t∑
k=1

1

k2n

k−1∏
ℓ=1

(
1− 1

ℓ2n

)

= σ2
0

t∑
k=1

(
k−1∏
ℓ=1

(
(1− 1

ℓ2n

)
−

k∏
ℓ=1

(
1− 1

ℓ2n

))

= σ2
0

(
1−

t∏
k=1

(
1− 1

k2n

))
.

Therefore,

lim
t→∞

E[(µt − µ0)
2] = σ2

0

(
1− sin(π/

√
n)

π/
√
n

)
.

C. Iterative KDE Fitting: Mathematical Results and Proofs
In this section, we prove that the NLL diverges when iteratively fitting KDE’s regardless of whether one accumulates or
replaces data from previous iterations.

Theorem 5. In the replace setting described in Section 2.2, as long as one holds the bandwidth constant, the NLL
asymptotically diverges.

Proof. Define f0 as the density function for the data distribution from which the original data x1, ..., xn are sampled. Define
Kh to be the Gaussian kernel function with fixed bandwidth h. One can rewrite the fitted distribution at iteration t as

Dt = Kh ∗Dt−1

where ∗ denotes the standard convolution of densities.

By a simple recursion, it is clear that Dt = K∗t ∗D0. When two Gaussian kernels with bandwidths a and b are convolved,
a basic calculation shows that the resulting effective bandwidth is

√
a2 + b2. Consequently, by an inductive argument, the

effective bandwidth of K∗t is h
√
t. Therefore,

lim
t→∞

K∗t ∗D0 = lim
t→∞

Kh
√
t ∗D0 = 0

because as the bandwidth goes to ∞, the likelihood of any point goes to 0. Hence, regardless of the choice of test data, the
negative log likelihood diverges to −∞.

The same conclusion holds when one accumulates rather than subsampling data:

Theorem 6. For any non-trivial kernel (i.e. a kernel whose Fourier transform is not 1), 2.2, the NLL diverges.

Proof. We adopt the same notation as in Theorem 5, except this time K denotes a general kernel K that doesn’t necessarily
need to be Gaussian. In this instance, it is more convenient to work in frequency space, where convolution in probability
space corresponds to multiplication.

Define φ0 as the Fourier transform (FT) of f0, also called the characteristic function. Let κ denote the FT of K. Then

φt = κ · φt−1
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where · denotes standard complex multiplication. Define δt = ϕt

ϕ0
so that φt = δt · φ0. Define dt = φt/φ0, and let

at =
1
t

∑t
i=0 di. Using this notation,

dt = κ · at−1 (6)
at = ((t− 1)at−1 + dt) /t. (7)

We see that at = Lt,K(at−1) is an affine map with slope ((t− 1) + κ)/t and intercept 0. Suppose that the characteristic
function of the density converges to φ∞. Then the map at has a fixed point. As long as κ ̸= 1, this fixed point must satisfy
the equation

φ = ((t− 1) + κ)φ

⇒ 0 = ((t− 1) + κ)/g − 1)φ

⇒ 0 = (−1 + κ)φ ⇒ φ = 0.

Note that if φ∞ = 0, its inverse FT is a function that has 0 probability density everywhere in probability space. Equivalently,
the variance of ft diverges to ∞.

Although the NLL eventually diverges in the accumulate case, it is clear from the expression for at that this divergence
occurs very slowly.

For a Gaussian kernel, both the replace and accumulate case offer an interesting shared insight. Throughout the iterative
fitting process, regardless of whether we accumulate or replace, the bandwidth monotonically grows. Therefore, when one
starts this process with a very small bandwidth smaller than the optimal bandwidth for the density being fit, one could
initially observe a decrease in the negative log likelihood as the bandwidth approaches its optimum.

Finally, model collapse, while inevitable with a fixed bandwidth, can be avoided in all cases by shrinking the bandwidth at a
sufficiently fast rate. Since practitioners typically optimize their bandwidth according to the amount of the data that they
have, the bandwidth should have the form c(tn)1/5 where c is a constant. In this setting, model collapse is avoided entirely.

Theorem 7. Under the accumulate training workflow consider density estimation as in Section 2.2 with a Gaussian kernel.
Let the bandwidth at the tth model-fitting iteration be c · (tn)−1/5 for a constant c. Then the asymptotic variance of the
limiting KDE is finite.

Proof. Let Kc(tn)−1/5 denote the kernel at the tth model-fitting iteration. Let f0 denote the original distribution, and define
ft to be the distribution of the KDE at the tth iteration.

We can write

ft =
1

t

t∑
i=1

fi−1 ∗Kc(in)−1/5

=

(
1− 1

t

)
·
(

1

t− 1

t−1∑
i=1

fi−1 ∗Kc(in)−1/5

)
+

1

t
ft−1 ∗Kc(tn)−1/5

=

(
1− 1

t

)
ft−1 +

1

t
ft−1 ∗Kc(tn)−1/5

=

((
1− 1

t

)
K0 +

1

t
Kc(tn)−1/5

)

where K0 is the identity kernel, or equivalently the Gaussian kernel with 0 bandwidth.

Therefore, we find that

ft = f0 ∗⃝∗ t
i=1

((
1− 1

i

)
K0 +

1

i
Kc(in)−1/5

)
.
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Define Wi to be a random variable that is Kc(in)−1/5 with probability 1
i and K0 with probability 1− 1

i . We can rewrite Xt,
a random variable drawn at the tth fitting iteration as

Xt = X0 +

t∑
i=1

Wi.

All of X0,W1, ...,Wt are independent. The variance is given by

Var(Xt) = Var(X0) +

t∑
i=1

Var(Wi)

= Var(X0) +

t∑
i=1

1

i
× c

(in)2/5

= Var(X0) +
c

n2/5

t∑
i=1

1

i7/5
.

As t → ∞,

Var(Xt) → Var(X0) +
c

n2/5

∞∑
i=1

1

i4
< ∞.

Therefore, when the kernel size is appropriately adjusted, the variance of the KDE under accumulate converges.
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D. Experimental Results: Sweep Configurations
D.1. Model Collapse in Multivariate Gaussian Modeling

To study model collapse in multivariate Gaussian modeling, we ran the following YAML sweep:

program : s r c / f i t g a u s s i a n s / f i t g a u s s i a n s . py
p r o j e c t : r e r e v i s i t i n g −model − c o l l a p s e − f i t − g a u s s i a n s
method : g r i d
p a r a m e t e r s :

d a t a d i m :
v a l u e s : [ 1 , 3 , 10 , 31 , 100 ]

n u m s a m p l e s p e r i t e r a t i o n :
v a l u e s : [ 1 0 , 32 , 100 , 316 , 1000]

n u m i t e r a t i o n s :
v a l u e s : [ 100 ]

seed :
v a l u e s : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 ,
15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 ,
30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 ,
45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 ,
60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 ,
75 , 76 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 86 , 87 , 88 , 89 ,
90 , 91 , 92 , 93 , 94 , 95 , 96 , 97 , 98 , 99 ]

s e t t i n g :
v a l u e s : [

” Accumulate ” ,
” Accumulate −Subsample ” ,
” Rep lace ” ,

]
s i g m a s q u a r e d :

v a l u e s : [
1 . 0 ,

]

Seeds were swept from 0 to 99, inclusive.

D.2. Model Collapse in Kernel Density Estimation

To study model collapse in kernel density estimation, we ran the following YAML sweep:

program : s r c / f i t k d e s / f i t k d e s . py
p r o j e c t : r e r e v i s i t i n g −model − c o l l a p s e − f i t − kdes
method : g r i d
p a r a m e t e r s :

d a t a c o n f i g :
p a r a m e t e r s :

d a t a s e t n a m e :
v a l u e s : [ ” b l o b s ” ]

d a t a s e t k w a r g s :
p a r a m e t e r s :

n f e a t u r e s :
v a l u e s : [ 2 ]

k e r n e l :
v a l u e s : [ ” g a u s s i a n ” ]

k e r n e l b a n d w i d t h :
v a l u e s : [ 0 . 1 , 0 . 5 , 1 . 0 ]

n u m s a m p l e s p e r i t e r a t i o n :
v a l u e s : [ 1 0 , 32 , 100 , 316 , 1000]

n u m i t e r a t i o n s :
v a l u e s : [ 100 ]
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s eed :
v a l u e s : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 ,
15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 ,
30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 ,
45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 ,
60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 ,
75 , 76 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 86 , 87 , 88 , 89 ,
90 , 91 , 92 , 93 , 94 , 95 , 96 , 97 , 98 , 99 ]

s e t t i n g :
v a l u e s : [

” Accumulate ” ,
” Accumulate −Subsample ” ,
” Rep lace ” ,

]

program : s r c / f i t k d e s / f i t k d e s . py
p r o j e c t : r e r e v i s i t i n g −model − c o l l a p s e − f i t − kdes
method : g r i d
p a r a m e t e r s :

d a t a c o n f i g :
p a r a m e t e r s :

d a t a s e t n a m e :
v a l u e s : [ ” c i r c l e s ” ]

d a t a s e t k w a r g s :
p a r a m e t e r s :

n o i s e :
v a l u e s : [ 0 . 0 5 ]

k e r n e l :
v a l u e s : [ ” g a u s s i a n ” ]

k e r n e l b a n d w i d t h :
v a l u e s : [ 0 . 1 , 0 . 5 , 1 . 0 ]

n u m s a m p l e s p e r i t e r a t i o n :
v a l u e s : [ 1 0 , 32 , 100 , 316 , 1000]

n u m i t e r a t i o n s :
v a l u e s : [ 100 ]

seed :
v a l u e s : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 ,
15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 ,
30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 ,
45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 ,
60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 ,
75 , 76 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 86 , 87 , 88 , 89 ,
90 , 91 , 92 , 93 , 94 , 95 , 96 , 97 , 98 , 99 ]

s e t t i n g :
v a l u e s : [

” Accumulate ” ,
” Accumulate −Subsample ” ,
” Rep lace ” ,

]

program : s r c / f i t k d e s / f i t k d e s . py
p r o j e c t : r e r e v i s i t i n g −model − c o l l a p s e − f i t − kdes
method : g r i d
p a r a m e t e r s :
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d a t a c o n f i g :
p a r a m e t e r s :

d a t a s e t n a m e :
v a l u e s : [ ” moons ” ]

d a t a s e t k w a r g s :
p a r a m e t e r s :

n o i s e :
v a l u e s : [ 0 . 0 5 ]

k e r n e l :
v a l u e s : [ ” g a u s s i a n ” ]

k e r n e l b a n d w i d t h :
v a l u e s : [ 0 . 1 , 0 . 5 , 1 . 0 ]

n u m s a m p l e s p e r i t e r a t i o n :
v a l u e s : [ 1 0 , 32 , 100 , 316 , 1000]

n u m i t e r a t i o n s :
v a l u e s : [ 100 ]

seed :
v a l u e s : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 ,
15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 ,
30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 ,
45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 ,
60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 ,
75 , 76 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 86 , 87 , 88 , 89 ,
90 , 91 , 92 , 93 , 94 , 95 , 96 , 97 , 98 , 99 ]

s e t t i n g :
v a l u e s : [

” Accumulate ” ,
” Accumulate −Subsample ” ,
” Rep lace ” ,

]

program : s r c / f i t k d e s / f i t k d e s . py
p r o j e c t : r e r e v i s i t i n g −model − c o l l a p s e − f i t − kdes
method : g r i d
p a r a m e t e r s :

d a t a c o n f i g :
p a r a m e t e r s :

d a t a s e t n a m e :
v a l u e s : [ ” s w i s s r o l l ” ]

d a t a s e t k w a r g s :
p a r a m e t e r s :

n o i s e :
v a l u e s : [ 0 . 0 5 ]

k e r n e l :
v a l u e s : [ ” g a u s s i a n ” ]

k e r n e l b a n d w i d t h :
v a l u e s : [ 0 . 1 , 0 . 5 , 1 . 0 ]

n u m s a m p l e s p e r i t e r a t i o n :
v a l u e s : [ 1 0 , 32 , 100 , 316 , 1000]

n u m i t e r a t i o n s :
v a l u e s : [ 100 ]

seed :
v a l u e s : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 ,
15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 ,
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30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 ,
45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 ,
60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 ,
75 , 76 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 86 , 87 , 88 , 89 ,
90 , 91 , 92 , 93 , 94 , 95 , 96 , 97 , 98 , 99 ]

s e t t i n g :
v a l u e s : [

” Accumulate ” ,
” Accumulate −Subsample ” ,
” Rep lace ” ,

]

Seeds were swept from 0 to 99, inclusive.

D.3. Model Collapse in Linear Regression

To study model collapse in linear regression, we ran the following YAML sweep:

program : s r c / f i t l i n e a r r e g r e s s i o n s / f i t l i n e a r r e g r e s s i o n s . py
p r o j e c t : r e r e v i s i t i n g −model − c o l l a p s e − f i t − l i n − r e g r
method : g r i d
p a r a m e t e r s :

d a t a d i m :
v a l u e s : [ 100 , 10 , 31 , 3 , 1 ]

n u m s a m p l e s p e r i t e r a t i o n :
v a l u e s : [ 1 0 , 32 , 100 , 316 , 1000]

n u m i t e r a t i o n s :
v a l u e s : [ 100 ]

seed :
v a l u e s : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 ,
15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 ,
30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 ,
45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 ,
60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 ,
75 , 76 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 86 , 87 , 88 , 89 ,
90 , 91 , 92 , 93 , 94 , 95 , 96 , 97 , 98 , 99 ]

s e t t i n g :
v a l u e s : [

” Accumulate ” ,
” Accumulate −Subsample ” ,
” Rep lace ” ,

]
s i g m a s q u a r e d :

v a l u e s : [
0 . 1 , 1 . 0 , 1 0 .

]

Seeds were swept from 0 to 99, inclusive. Note: We ran this sweep as 9 separate sweeps; to understand why, see this GitHub
issue.

22

https://github.com/wandb/wandb/issues/8549
https://github.com/wandb/wandb/issues/8549


Collapse or Thrive? Perils and Promises of Synthetic Data in a Self-Generating World

E. Additional Experimental Results for Model Collapse Hyperparameters
Due to space limitations in the main text, we can oftentimes only present a subset of runs corresponding to a subset of
hyperparameters. We present additional figures with a wide range of hyperparameters here for completeness.

E.1. Additional Results for Model Collapse in Linear Regression
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Figure 6. Linear Regression for Data Dimension d = 1 and variance σ2 = 0.10.
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Figure 7. Linear Regression for Data Dimension d = 1 and variance σ2 = 1.00.
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Figure 8. Linear Regression for Data Dimension d = 1 and variance σ2 = 10.0.
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Figure 9. Linear Regression for Data Dimension d = 3 and variance σ2 = 0.10.
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Figure 10. Linear Regression for Data Dimension d = 3 and variance σ2 = 1.00.
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Figure 11. Linear Regression for Data Dimension d = 3 and variance σ2 = 10.0.
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Figure 12. Linear Regression for Data Dimension d = 10 and variance σ2 = 0.10.
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Figure 13. Linear Regression for Data Dimension d = 10 and variance σ2 = 1.00.
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Figure 14. Linear Regression for Data Dimension d = 10 and variance σ2 = 10.0.
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Figure 15. Linear Regression for Data Dimension d = 32 and variance σ2 = 0.10.
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Figure 16. Linear Regression for Data Dimension d = 32 and variance σ2 = 1.00.
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Figure 17. Linear Regression for Data Dimension d = 32 and variance σ2 = 10.0.
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Figure 18. Linear Regression for Data Dimension d = 100 and variance σ2 = 0.10.
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Figure 19. Linear Regression for Data Dimension d = 100 and variance σ2 = 1.00.
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Figure 20. Linear Regression for Data Dimension d = 100 and variance σ2 = 10.0.
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