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ABSTRACT

High dynamic range (HDR) video can be reconstructed from low dynamic range
(LDR) sequences with alternating exposures. However, most existing methods
overlook the degradations (e.g., noise and blur) in LDR frames, focusing only
on the brightness and position differences between them. To address this gap,
we propose DeAltHDR, a novel framework for high-quality HDR video recon-
struction from degraded sequences. Our framework addresses two key challenges.
First, noisy and blurry contents complicate inter-frame alignment. To tackle this,
we propose a flow-guided masked attention that leverages optical flow for a dy-
namic sparse cross-attention computation, achieving superior performance while
maintaining efficiency. Notably, its controllable attention ratio allows for adap-
tive inference costs. Second, the lack of real-world paired data hinders practical
deployment. We overcome this with a two-stage training paradigm: the model is
first pre-trained on our newly introduced synthetic paired dataset and subsequently
fine-tuned on unlabeled real-world videos via a proposed self-supervised method.
Experiments show our method outperforms state-of-the-art ones. The datasets and
code will be publicly available.

1 INTRODUCTION

High dynamic range (HDR) imaging (Fairchild, 2007; Grosch et al., 2006; Yan et al., 2019),
renowned for its ability to preserve details across an extensive luminance range (from deep shadows
to bright highlights) offers a more immersive and realistic visual experience. This has catalyzed
substantial demand for HDR content across diverse domains, including film production and mobile
photography. While specialized hardware (Tocci et al., 2011; Kronander et al., 2013; Choi et al.,
2017; Nayar & Mitsunaga, 2000) can capture multiple exposures simultaneously to generate HDR
assets, these systems are often hindered by high costs and limited portability. Consequently, com-
putational methods that reconstruct HDR content from asynchronous multi-exposure low dynamic
range (LDR) sequences have emerged as a more practical and cost-effective alternative. A promi-
nent task is HDR video reconstruction (Kang et al., 2003; Kalantari et al., 2013; Chen et al., 2021)
from LDR frames captured with alternating short and long exposures.

However, a critical limitation of most existing HDR video reconstruction methods (Chen et al., 2021;
Chung & Cho, 2023b; Cui et al., 2024) is their underlying assumption of noise-free and blur-free in-
put frames. Consequently, their designs focus primarily on compensating for inter-frame brightness
variations and spatial misalignment to mitigate ghosting artifacts, while overlooking crucial degra-
dations. This idealized assumption rarely holds true in practice. The alternating exposure strategy
can inherently introduces artifacts: short-exposure frames are often corrupted by significant noise,
particularly in low-light conditions, while long-exposure frames are susceptible to motion blur from
camera shake or object movement. This discrepancy between assumption and reality severely hin-
ders the applicability of existing methods in real-world scenarios.

Although a recent work, BracketIRE (Zhang et al., 2025), does consider such degradations, it was
specifically engineered for HDR image reconstruction. As a result, it yields suboptimal performance
when directly applied to videos. In this work, we propose a novel framework to reconstruct high-
quality HDR videos from degraded alternating exposure frames, named DeAltHDR. The framework
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addresses two key challenges. Firstly, inter-frame alignment is a critical but non-trivial issue due to
complex object motions and occlusions. Moreover, the noise and blur degradations further increase
the difficulty of alignment. In this case, the commonly used optical flow (Xu et al., 2024; Cui et al.,
2024; Kong et al., 2024) and deformable convolution (Chan et al., 2022) alignment exhibit limited
performance. Attention-based manners (Chung & Cho, 2023a; Tel et al., 2023a) can be effective,
but their high computational complexity and large time demands present a substantial burden. To
address these issues, we propose a novel Flow-Guided Masked Attention (FGMA) alignment mecha-
nism, which integrates optical flow and attention manners flexibly and elegantly. Specifically, it first
calculates a binary mask to identify ‘unreliable’ regions where the flow-based alignment is likely
to be inaccurate. Subsequently, a cross-attention operation is applied only within these masked re-
gions, while the rest rely on the efficient flow-based warping. This sparse and targeted application
of attention achieves a superior balance between performance and computational cost. Crucially, the
attention ratio can be dynamically adjustable during inference, enabling the model’s computational
footprint to be tailored to diverse computational budgets, as shown in Fig. 1.

Figure 1: Comparison with HDR-
Flow (Xu et al., 2024), which is a rep-
resentative state-of-the-art method that
balances performance and efficiency.
Our DeAltHDR outperforms it while
the inference cost can be adjusted.

Secondly, the scarcity of paired real-world training data
presents a critical bottleneck for practical deployment.
Models trained solely on synthetic data inevitably suffer
from significant performance degradation when applied
to real-world scenarios. To bridge this gap, we adopt
the two-stage training paradigm from BracketIRE (Zhang
et al., 2025): pre-training the model on synthetic paired
data, followed by self-supervised fine-tuning on unla-
beled real-world data. To facilitate this strategy, we pro-
pose two new datasets. For the pre-training stage, we
construct a synthetic dataset by applying noise and mo-
tion blur to high-quality 4K HDR videos captured with
a DJI Pocket 3. For the fine-tuning stage, we collect al-
ternating exposure sequences with real degradations us-
ing an iPhone 16 ProMax. Nevertheless, we observe that
directly applying the self-supervised fine-tuning method
from BracketIRE (originally designed for HDR image
reconstruction) is insufficient for the videos. It strug-
gles to adapt to the diverse types and magnitudes of mo-
tion present in HDR video, yielding only marginal per-
formance gains. We therefore propose a novel motion-
enhanced self-supervised adaptation method, specifically engineered to handle complex temporal
dynamics. Comprehensive experiments on both our synthetic and real-world datasets validate that
our proposed method significantly outperforms existing state-of-the-art ones. Our contributions can
be briefly summarized as follows:

• We take the noise and blur degradations in alternating exposure frames into account,
proposing a novel framework to reconstruct high-quality HDR videos from them.

• We propose a flow-guided masked attention for efficient inter-frame alignment, where the
attention ratio can be dynamically adjustable for adaptive inference cost.

• We introduce a motion-enhanced self-supervised fine-tuning approach to improve the re-
construction effect on real-world videos.

• We construct synthetic and real-world datasets with rich scenes. Experiments on them show
our method outperforms the state-of-the-art ones.

2 RELATED WORK

2.1 HDR IMAGE RECONSTRUCTION

HDR image reconstruction aims to render one HDR image from multiple LDR images with different
exposures. Optical flow methods (Yue et al., 2023; Zimmer et al., 2011) and patch-based methods
(Hu et al., 2013; Sen et al., 2012) are proposed methods for aligning LDR images. However, they
fail to reconstruct ghost-free HDR images with motions. With the help of deep learning, more and
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more methods (Wu et al., 2018; Liu et al., 2023; Yan et al., 2019; Zhang et al.) are brought up for
HDR image reconstruction. AHDRNet (Yan et al., 2019) uses spatial attention to guide the HDR
image reconstruction to avoid the artifacts generated by optical-flow estimation error. SCTNet (Tel
et al., 2023a) proposes a network with spatial and channel attentions, which are aimed to deal with
the intra-image correlation for dynamic motion and the inter-image intertwining for semantic con-
sistency across frames, respectively. SAFNet (Kong et al., 2024) focuses the model on finding
valuable regions while estimating their easily detectable and meaningful motion for efficiency. It
also devised a new window partition cropping method for training to facilitate learning on samples
with large motion. Although these methods can achieve good results on HDR image reconstruction
with clean LDR images, they overlook degradations in LDR images, which are common in real-
world scenarios. BracketIRE (Zhang et al., 2025) takes noise and blur into account and reconstructs
HDR images from degraded LDR images.

2.2 HDR VIDEO RECONSTRUCTION

HDR videos can be photographed by specialized hardware, including scan-line or pixel expo-
sure (Choi et al., 2017; Nayar & Mitsunaga, 2000), beam splitter (Tocci et al., 2011; Kronander
et al., 2013; McGuire et al., 2007), modulo or gradient camera (Zhao et al., 2015; Tumblin et al.,
2005). However, these systems are often hindered by high costs and limited portability. Therefore,
computational methods that reconstruct HDR content from asynchronous multiexposure LDR se-
quences have emerged as a more practical and cost-effective alternative. Kalantari et al. (Kalantari
et al., 2013) utilizes optical flow and patch-based optimization algorithm to synthesize missing ex-
posures for each frame. Chen et al. (Chen et al., 2021) introduces a coarse-to-fine deep learning
framework for HDR video reconstruction consisting of coarse alignment by optical flow and more
sophisticated alignment by deformable convolution. LAN-HDR (Chung & Cho, 2023a) proposes
a luminance-based alignment network consisting of an alignment module and a hallucination mod-
ule. Instead of optical flow, it utilizes sparse attention to align frames by evaluating luminance and
color information. NECHDR (Cui et al., 2024) proposes a framework for HDR video reconstruction
by reconstructing the LDR frames of absent exposures from interpolating neighbor LDR frames in
the time dimension. HDRFlow (Xu et al., 2024) proposes an efficient flow estimator for real-time
HDR video reconstruction with an HDR domain alignment loss for accurate alignment in saturated
and dark regions. However, they mostly overlook noise and blur degradations, while images are
susceptible to these degradations in real-world scenarios.

3 METHODOLOGY

3.1 PROBLEM DEFINITION AND FORMULATION

In the HDR video reconstruction task, the input LDR video generally consists of LDR frames
{Lt}Nt=1 captured under different exposures ∆et. We aim to reconstruct a high-quality video, con-
sisting of HDR frames {Ht}Nt=1. Following previous works (Xu et al., 2024; Shu et al., 2024), we
configure the input frame sequence to the network with a three-stop exposure difference. Specifi-
cally, in this paper we introduce our algorithm for handling videos captured with alternating expo-
sures and the exposure is {EV-2,EV+1,EV-2,...}. Let {L1,L3, ...,L2m−1} be short-exposure frames
and {L2,L4, ...,L2m} be long-exposure frames, where m ∈ {1, 2, ..., N/2} and N is an even num-
ber.

Then, we follow previous methods focusing on multi-exposure HDR reconstruction, we normalize
input luminance to ensure consistency. Firstly, we apply a simple inverse gamma correction to lin-
earize the input RGB images to {Lt}Nt=1. Then we normalize all long-exposure frames {L̂2i}N/2

i=1

to {L̂2i}N/2
i=1

∆e2i/∆e2i−1
. Therefore, we adjust the brightness of all long exposures to match the short expo-

sures, while the short exposures require no adjustment. We define the sequence formed by these
new linear frames as {L̂′

t}Nt=1. The input of the network is the concatenation of {L̂′
t}Nt=1 and its

gamma-transformed images,i.e.,

{Lc
t}Nt=1 = {L̂′

t, (L̂
′
t)

γ}Nt=1, (1)
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Figure 2: Overview of our framework. Figure (a) illustrates the processing of the t-th frame in
our DeAltHDR, where DeAltHDR uses the other 2 neighboring frames for assistance. Taking the
alignment from t−1-th frame to t-th frame as an example, figure (b) shows how Flow-Guided Mask
Attention Alignment (FGMA) works.

where γ represents the gamma correction parameter and is generally set to 1/2.2. Finally, we feed
these concatenated images into model B with parameters ΘB, i.e.,

{Ĥt}
N

t=1 = B({Lc
t}Nt=1; ΘB), (2)

where {Ĥt}
N

t=1 is the generated video sequences. The key to HDR video reconstruction lies in
constructing model B and optimizing its parameters ΘB.

3.2 OVERVIEW OF NETWORK DESIGN

Our proposed DeAltHDR framework is based on a multi-scale encoder-decoder architecture, as
shown in Fig. 2(a). We build it upon Turtle (Ghasemabadi et al., 2024), and replace its alignment
module in the decoder block with our proposed flow-guided masked attention alignment module
while keeping its frame history router as the fusion block. Moreover, we deploy two encoders with
identical architecture for short-exposure and long-exposure frames, respectively. This will be helpful
for feature extraction in a specific exposure domain.

Given an LDR frame Lc
t , it first will be fed to its corresponding encoder to extract multi-scale fea-

tures {Fi
t}i=1,2,3, where i indicates the scale of the encoder. In the i-th scale decoder, our proposed

flow-guided masked attention alignment module takes the feature from the neighboring frame as
well as the feature of the current frame as input. For the t-th frame, let us denote its current feature
and the feature of the neighboring frame as Fin

t and Fi
t−1, respectively. Our module takes Fin

t and
Fi

t−1 as input to calculate the aligned neighboring features Fout
t−1→t, i.e.,

Fout
t−1→t = FGMA(Fin

t ,Fi
t−1). (3)

When implemented, we utilize the FGMA module to calculate and concatenate aligned features of 4
neighboring frames to assist in the reconstruction of the current frame’s HDR information. Finally,
in the fusion router block, a dynamic routing mechanism adaptively weights and combines motion-
compensated neighboring features according to their relevance for current frame restoration.

3.3 FLOW-GUIDED MASKED ATTENTION ALIGNMENT

Inter-frame alignment plays a crucial role in video restoration. To achieve this goal, previous align-
ment approaches mainly fall into two categories: optical flow-based methods and attention-based
implicit alignment techniques. However, when dealing with LDR frames with noise and blur degra-
dations, optical flow and deformable convolution alignment exhibit limited performance. Attention-
based methods can achieve better quality, but with significantly higher computational costs. We
also note that MIA-VSR (Zhou et al., 2024) proposes a sparse attention in video super-resolution
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based on a mask calculated from the difference between adjacent frames. However, for HDR video
reconstruction, this is less suitable due to the significant difference in exposure and degradation be-
tween neighboring LDR frames. In addition, the computational cost of these methods is fixed and
cannot be adaptively adjusted to varying computational budgets. In this paper, we propose a novel
Flow-Guided Masked Attention (FGMA) alignment mechanism to address the above issues.

Below, we present details of how we generate the aligned neighboring features by taking the align-
ment from t − 1-th frame to t-th frame as an example. As shown in Fig. 2(b), firstly, we adopt
SpyNet, a pretrained light-weight optical flow network, to calculate the bidirectional flow Ot−1→t

and Ot→t−1. Secondly, We use the forward-backward consistency check to detect ‘unreliable’ re-
gions where the flow-based alignment is likely to be inaccurate, denoted as mask Mt−1→t. Specif-
ically, we first warp Lt to Lt−1 and obtain Lt→t−1, and then warp Lt→t−1 back to Lt and obtain
Lt→t−1→t, i.e.,

Lt→t−1 = Warp (Lt,Ot−1→t) ,

Lt→t−1→t = Warp (Lt→t−1,Ot→t−1) .
(4)

The absolute value between Lt and Lt→t−1→t can quantify the inconsistency in bidirectional flow
warping and serves as a direct measure of occlusion regions, i.e.,

Dt−1→t = |Lt→t−1→t(i, j)− Lt|, (5)

where Dt−1→t denotes the absolute value. Then, we introduce sensitivity factor s to compute the
occlusion mask, i.e.,

Mt−1→t (i, j)=

{
1 if s ·Dt−1→t (i, j) /255 > 0.5,

0 otherwise.
(6)

With this mask obtained, we can identify the occluded regions where optical flow estimation may
be unreliable. For these regions, we suggest employing attention mechanisms for alignment refine-
ment. Therefore, we compute the query vector with this mask, and keys as well as values from the
neighboring frame features, i.e.,

Qt−1→t = Projq(F
in
t ⊙Mt−1→t),

Kt−1→t = Projk(F
i
t−1),

Vt−1→t = Projv(F
i
t−1),

(7)

where Projq , Projk, and Projv represent the point-wise convolution used for linear projections.
Finally, the occlusion regions refined by attention are concatenated with the warped feature map
Fflow

t−1→t and the occlusion mask M, as the output of our FGMA module. i.e.,

Fatt
t−1→t = Softmax

(
Qt−1→tK

T
t−1→t√

d

)
Vt−1→t,

Fflow
t−1→t = Warp

(
Fi

t−1,Ot→t−1

)
,

Fout
t−1→t = Concat

(
Fflow

t−1→t,M,Fatt
t−1→t

)
.

(8)

To support dynamic adjustments in testing computational costs, we implemented three alignment
branches during training: pure optical flow, pure attention, and our FGMA method. The percentage
of non-zeros in the FGMA mask is dynamically controlled by the parameter s in Eq. (6), enabling
a continuous shift from optical flow to attention dominance. Therefore, we set four key boundaries:
s = 0 (optical flow only), s = 15 (balancing flow and attention), s = 100 (attention-dominated), and
s = ∞ (attention-only) along with other 12 sample points: six uniformly sampled from s ∈ (0, 1]
and six uniformly sampled from s ∈ (1, 100). In this way, our experimental results form a charac-
teristic performance curve as shown in Fig. 1. For DeAltHDR, the lower left point represents testing
only with the optical flow branch, yielding suboptimal performance but at the lowest computational
cost. The upper right point represents evaluation with the attention-only branch, which achieves the
highest PSNR but at maximal computational complexity. The intermediate points along the curve
represent evaluations using our FGMA branch with dynamically adjusted masks, and each point
employs a different adjusted mask.
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3.4 SELF-SUPERVISED ADAPTATION METHOD

It is still challenging to simulate realistic video sequences in alternating exposure patterns
with real-world degradations such as different noise variations and motion blur. The in-
evitable domain gap between synthetic datasets and real-world LDR sequences limits the gen-
eralization capability of models trained only with synthetic data. As a result, they often
produce artifacts during HDR video reconstruction. BracketIRE (Zhang et al., 2025) sug-
gests a self-supervised fine-tuning method for real-world unlabeled HDR image reconstruc-
tion. However, it performs unsatisfactorily when applied to video sequences with diverse
motion. To this end, we propose to extend this by a motion-enhanced sampling strategy.

Algorithm 1 Self-Supervised Adaptation Loss

Require: 5 neighboring framesW ← {Lc
i}

t+2
i=t−2

EMA parameters: β = 1.0, a = 0.999
Tone-mapping function T (·) defined as:
T (Ht) =

log(1+µHt)
log(1+µ) , where µ = 5000

Ensure: Self-supervised adaptation loss Ltotal

1: {Frame selection rules}
2: GA ← {Lc

t}t=t±2k, k ∈ {1, 2, 3}
3: GB ← {Lc

t}t=t±(2k−1), k ∈ {1, 2, 3}
4: {Processing inputs}
5: Ĥt ← B(W; ΘB)
6: {Dynamic subset construction}
7: Lc

A ← RandomSelectOne(GA)
8: Lc

B ← RandomSelectOne(GB)
9: S ← {Lc

t ,L
c
A,L

c
B}

10: {Loss computation}
11: H̃t ← B(S; ΘB)

12: Ltime ← ∥T (H̃t)− T (sg(Ĥt))∥1 {Temporal loss}
13: Θema

Bk
← aΘema

Bk−1
+ (1− a)ΘBk

14: Ĥema
t ← B(W; Θema

B )

15: Lema ← ∥T (H̃t)− T (sg(Ĥema
t ))∥1 {EMA loss}

16: Ltotal ← Ltime + βLema {Total loss}
17: return Ltotal

Specifically, the input of the model
is a sequence of 5 consecutive
frames {Lc

i}
t+2
i=t−2 where Lc

t is the
current frame. The output of these
5 frames is Ĥt. Then, we cre-
ate a 3-frame subset for super-
vision by: (1) always including
the current frame Lt as the target,
(2) randomly selecting one long-
exposure neighboring frame and
(3) randomly selecting one short-
exposure neighboring frame. The
output of these 3 frames is de-
noted as H̃t. Generally, Ĥt per-
forms better than H̃t. There-
fore, although no ground-truth is
provided, Ĥt can be seen as the
pseudo-target of H̃t. This random
sampling strategy introduces inter-
frame motion diversity, improving
temporal consistency across re-
constructed frames. Moreover, we
follow BracketIRE to use an ex-
ponential moving average (EMA)
regulation loss, which can stabi-
lize the training process. The de-
tailed loss is summarized in Algo-
rithm 1.

4 DATASETS

4.1 SYNTHETIC DATASET

To synthesize more realistic LDR alter-exposure video sequences, we need to minimize the gap
between synthetic and real frames. Firstly, we capture high-quality HDR 4K/60fps video with a DJI
Pocket 3 gimbal camera, ensuring frame-by-frame clarity during high-motion scenarios by its 3-axis
mechanical stabilization system. Furthermore, its 1-inch large sensor significantly enhances low-
light performance, and can capture richer details. Next, we follow the idea from (Nah et al., 2019)
to perform frame interpolation. We adopt RIFE (Huang et al., 2022), a pre-trained video frame
interpolation model, to increase the frame rate by 16 times and get the HDR sequence {Ht}Tt=1
Finally, we introduce our degradation method to simulate alter-exposure sequences. Step 1: the
input sequence is divided into non-overlapping 64-frame chunks. Step 2: in each group, the first
frame is used to simulate the short-exposure frame, while the rest 63 frames are added to simulate
the long-exposure frame. Step 3: the HDR images are then converted to LDR by value-clipping and
10-bit linear quantization. Step 4: we add the heteroscedastic Gaussian noise (Brooks et al., 2019;
Wang et al., 2020; Hasinoff et al., 2010) to the raw version of the sequence, which is generated using
UPI (Brooks et al., 2019), and adjust the brightness to comply with the exposure values defined in
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Table 1: Quantitative comparison with state-of-the-art HDR restoration methods on both synthetic
and real-world datasets. The best results are bolded, and the second-best results are underlined.

Methods Synthetic Real-World
PSNR↑ SSIM↑ LPIPS↓ HDR-VDP-2↑ CLIPIQA↑ MANIQA↑

HDR Image

AHDRNet (CVPR 19) 31.57 0.9588 0.226 68.24 0.2032 0.2098
SCTNet (ICCV 23) 31.95 0.9618 0.205 73.34 0.2320 0.2492
SAFNet (ECCV 24) 32.02 0.9619 0.202 72.96 0.2423 0.2502
BracketIRE (ICLR 25) 32.17 0.9623 0.200 75.32 0.2584 0.2692

HDR Video

Chen et al. (ICCV 21) 31.98 0.9612 0.208 75.67 0.2356 0.2472
LAN-HDR (ICCV 23) 32.04 0.9614 0.211 76.02 0.2546 0.2634
NECHDR (ACM MM 24) 32.16 0.9619 0.205 75.42 0.2578 0.2706
HDRFlow (CVPR 24) 32.26 0.9629 0.196 76.56 0.2601 0.2694

DeAltHDR w/o Adaptation (s = 15) 32.55 0.9644 0.192 77.02 0.2621 0.2734
w/ Adaptation - - - - 0.2679 0.2774

methodology. The noise variance depends on the intensity of the pixels, with parameters estimated
from captured real-world images. In total, we collected 200 scenes (100 daytime scenes / 100
nighttime scenes), including 4000 data pairs (200 data pairs in each scene). 176 scenes (88 daytime
scenes / 88 nighttime scenes) are used for training, while the remaining 24 scenes (12 daytime
scenes / 12 nighttime scenes) are used for testing. More details of our synthetic dataset is written in
Appendix A.

4.2 REAL-WORLD DATASET

To construct a realistic HDR video dataset with real noise and motion blur, we used an iPhone
16 Pro Max with the ProShot App. This App is configured to capture alternating-exposure pairs
(EV-2 and EV+1) in both RAW (DNG) and RGB format, with a fixed ISO. It’s worth noticing that
we shake the iPhone a little on purpose to preserve natural motion blur. Moreover, global motion
(only the camera is moving), local motion (only the foreground is moving) and full motion (both the
camera and foreground are moving) scenes are collected in both daytime and nighttime. Finally, we
collected 100 alter-exposed video sequences, each of them contains 100 frames. 80 scenes are used
for training, and the remaining 20 scenes are used for testing. More details of comparison with other
datasets is written in Appendix B.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Network Details Following the settings of Turtle (Ghasemabadi et al., 2024), we adopt a 5-frame
input structure with specialized dual-encoder processing. We employ ℓ1 loss and VGG perceptual
loss to optimize the network, which can be defined as,

L1 = ∥T (Ĥt)− T (Hgt
t )∥1,

Lvgg =
∑
i

∥ϕi(T (Ĥt))− ϕi(T (Hgt
t ))∥1, (9)

where Ĥt is the t-th frame and Hgt
t is the t-th ground truth frame. ϕi(·) denotes the feature extractor

from the i-th layer of VGG16 network. Specifically, the total loss can be defined as,

Ltotal = L1 + λvggLvgg. (10)

Implementation details To enable evaluation with dynamically adjustable computational costs, we
implement a hybrid alignment strategy. Specifically, 30% of the training batches utilize optical
flow-based alignment, while another 30% employ implicit attention mechanisms. The remaining
40% of batches use our proposed Flow-Guided Mask Attention Alignment, where the mask size
is randomly determined by adjusting the threshold parameter s in Eq. 6. We implemented our
network in PyTorch (Paszke et al., 2019) and conducted experiments on a single NVIDIA RTX
A6000 (48GB) GPU. The batch size is set to 8 and the input patch size is set to 192 × 192. We

7
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Figure 3: Comparisons on synthetic dataset. Figure 4: Comparisons on real-world dataset.

Table 2: Temporal consistency evaluation on the synthetic dataset.

Method PSNR↑ TWE↓ TLP↓ TOF↓
HDRFlow 32.26 2.84 2.8756 4.0238
NECHDR 32.16 2.91 3.0486 4.3642
DeAltHDR 32.55 2.68 2.7142 3.2117

Table 3: Comparison of computational costs.

Methods FLOPs (G) Time (ms)

AHDRNet (CVPR 19) 146 140
SCTNet (ICCV 23) 338 356
SAFNet (ECCV 24) 268 290
BracketIRE (ICLR 25) 382 387

Chen et al. (ICCV 21) 282 302
LAN-HDR (ICCV 23) 332 325
NECHDR (ACM MM 24) 296 320
HDRFlow (CVPR 24) 116 128

DeAltHDR (s = 15) 128 152

Table 4: Effect of alignment methods.

Alignment Methods PSNR↑ FLOPs
(G)

Time
(ms)

Flow-Guided Defor. Conv. 32.42 102 112
Guided Defor. Attention 32.46 202 244
Patch Alignment 32.41 178 198

DeAltHDR (s = 0) 32.42 84 94
DeAltHDR (s = 0.71) 32.49 115 134
DeAltHDR (s = 15) 32.55 128 152
DeAltHDR (s = 100) 32.63 159 198
DeAltHDR (s = ∞) 32.65 169 224

adopt AdamW optimizer (Loshchilov & Hutter, 2017) with β1 = 0.9 and β2 = 0.999. The models
are trained for 250 epochs on the synthetic dataset and 20 epochs on the real-world dataset, with an
initial learning rate of 4e−4 and 1e−6, respectively. We use the cosine annealing strategy (Loshchilov
& Hutter, 2016) to decrease the learning rates to 1e−7. λvgg is 0.5.

5.2 EVALUATIONS AND COMPARISON CONFIGURATIONS

Evaluation Configurations For the synthetic dataset, we adopt PSNR, SSIM (Wang et al., 2004),
LPIPS (Zhang et al., 2018) and HDR-VDP-2 (Mantiuk et al., 2011) as evaluation metrics. The
PSNR, SSIM and LPIPS are computed in the µ-law tonemapped domain. For the real-world ones,
we use no-reference metrics CLIPIQA (Wang et al., 2023) and MANIQA (Yang et al., 2022) as
evaluation metrics in the absence of ground-truth HDR images. Moreover, we conducted additional
experiments to evaluate temporal consistency with three widely-used metrics in video processing:
tOF (Chu et al., 2020), which measures the pixel-wise difference in motion es- timated from se-
quences; tLP (Chu et al., 2020), which assesses perceptual changes over time using deep feature
maps; and Temporal Warping Error(TWE), which quantifies frame-to-frame consistency following
motion compensation.

Comparison Configurations We compare our method with state-of-the-art approaches, including
HDR image restoration methods (i.e. AHDRNet (Yan et al., 2019), SCTNet (Tel et al., 2023b),
SAFNet (Kong et al., 2024), and BracketIRE (Zhang et al., 2025)) and HDR video restoration meth-
ods (i.e. Chen et al. (Chen et al., 2021), LAN-HDR (Chung & Cho, 2023a), NECHDR (Cui et al.,
2024), and HDRFlow (Xu et al., 2024)). For evaluation on synthetic images, we use our synthetic
dataset to train all these methods. For evaluation on real-world images, we use the original pre-
trained models released by these methods. while our models are further adapted to real-world data
by the proposed self-supervised adaptation method. Furthermore, we also conduct experiments on
other datasets in Appendix H.
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Table 5: Effect of self-supervised adaptation
methods.

Self-Supervised
Methods CLIPIQA↑ MANIQA↑

w/o Adaptation 0.2621 0.2734
TMRNet 0.2648 0.2732

Ours 0.2679 0.2774
Figure 5: Effect of adaptation methods.

5.3 EXPERIMENT RESULTS

Results on Synthetic Dataset As shown in Table 1, the middle four columns report full-reference
evaluation results on the synthetic dataset, including PSNR, SSIM, LPIPS, and HDR-VDP-2. Our
method outperform all competing HDR image and video reconstruction methods across these met-
rics. These improvements validate the effectiveness of our flow-guided masked attention alignment
strategy. As visualized in Fig. 3, our methods restore more structure and reduce artifacts more
effectively than previous approaches. Moreover, as shown in Table 2, our DeAltHDR achieves out-
performs both NECHDR (Cui et al., 2024) and HDRFlow (Xu et al., 2024) across all three metrics.
Which means that our DeAltHDR not only performs well on single images, but also has better
temporal consistency and the generated videos are much smoother and have less flickering.

Results on Real-World Dataset The last two columns of Table 1 present no-reference evaluation
results on real-world data, using CLIP-IQA and MANIQA. Even trained solely on synthetic data (i.e.
w/o Adaptation), DeAltHDR outperforms existing methods when directly evaluated on real-world
datasets. This demonstrates the strong generalization ability of our model design. Furthermore, by
applying our proposed self-supervised adaptation strategy (i.e. w/ Adaptation), DeAltHDR achieves
further improvements. As shown in Fig. 4, models trained on synthetic datasets tend to produce
visible artifacts when applied to real-world data. By introducing our self-supervised adaptation
method, these artifacts are effectively reduced, leading to enhanced visual quality in real-world
scenarios. More results can be found in and Appendix H.

Computational Efficiency As shown in Table 3, DeAltHDR achieves the lowest FLOPs among all
methods and has a comparable inference time to HDRFlow, current the fastest baseline. Compared
to other state-of-the-art methods, it is significantly more efficient in both computational cost and
runtime. In summary, our method not only achieves better reconstruction performance but also
maintains high efficiency. More details can be found in Appendix F.

5.4 ABLATION STUDY

Effect of Flow-Guided Masked Attention Alignment To validate the effectiveness of our proposed
Flow-Guided Masked Attention (FGMA), we replace the alignment module in DeAltHDR with sev-
eral existing alternatives. Specifically, we adopt guided deformable attention from RVRT (Liang
et al., 2022), patch alignment from PSRT-Recurrent (Shi et al., 2022) and flow-guided deformable
convolution from BasicVSR++ (Chan et al., 2022). As shown in Table 4, FGMA equipped
DeAltHDR not only achieves a higher PSNR but also significantly reduces computational cost,
demonstrating the effectiveness of FGMA in balancing reconstruction quality and efficiency.

Effect of Self-Supervised Adaptation To evaluate the effectiveness of our self-supervised adapta-
tion strategy, we replace the fine-tuning scheme in DeAltHDR with that of TMRNet (Zhang et al.,
2025). TMRNet also adopts a multi-frame self-supervised loss, but its training frames are limited
to a strict subset of the input sequence. As a result, it limits performance in video HDR reconstruc-
tion, where large motion ranges are common. Instead, we propose to extend the frame sampling
range from t − 2 to t + 2 (5 frames) to t − 6 to t + 6 (13 frames) to capture larger motion ranges.
To maintain the dynamic range of sparse frames, we randomly sample one short-exposure and one
long-exposure frame from this extended range. As shown in Table 5, our self-supervised adaptation
method achieves better performance in both CLIP-IQA and MANIQA compared to TMRNet and
the baseline (i.e. w/o Adaptation). As shown in Fig. 5, our method enables to reconstruct more
accurate HDR videos with finer detail preservation and fewer artifacts.
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6 CONCLUSION

In this paper, we propose DeAltHDR, a robust framework for high-quality HDR video reconstruction
from degraded alternating-exposure sequences. Our approach introduces three key innovations: (1)
a Flow-Guided Masked Attention(FGMA) mechanism that dynamically combines optical flow and
sparse attention for efficient alignment under noise and blur, (2) a motion-enhanced self-supervised
adaptation method for effective real-world fine-tuning, and (3) comprehensive synthetic and real-
world datasets that capture authentic noise and motion blur characteristics. Extensive experiments
demonstrate that DeAltHDR outperforms state-of-the-art methods in both synthetic and real-world
datasets due to our FGMA module and self-supervised method. To the best of our knowledge,
DeAltHDR are the first frameworks that address noise, blur, and motion challenges in alternating-
exposure HDR video reconstruction.
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APPENDIX

The content of the appendix involves:

– Details of our synthetic dataset in Appendix A.

– Comparison with other datasets in Appendix B.

– Details of our encoder and decoder blocks in Appendix C.

– Effect of dual-encoder processing in Appendix D.

– Discussion on the model’s capability for denoising and deblurring Appendix E.

– Comparison of Computational Costs in Appendix F

– Effect of Self-supervised Adaptation in Appendix G.

– More Visual Reults in Appendix H.

A DETAILS OF SYNTHETIC DATASET

Fig. A provides the overview of our synthetic data generation pipeline. The original HDR videos in
our synthetic dataset were captured with the DJI Pocket 3. First, we used the UPI method (Brooks
et al., 2019) to convert these RGB videos to RAW space to add noise and convert them back to RGB
space. Unlike the default parameters in UPI, our method employs the real camera parameters from
the DJI Pocket 3 for both the RGB-to-RAW and RAW-to-RGB conversions. Second, we employ
RIFE (Huang et al., 2022) for frame interpolation. We confirm that RIFE is agnostic to dynamic-
range encoding of the input data and can be employed for HDR video interpolation. First, RIFE are
fed HDR frames that are normalized float tensors in the [0, 1] range. Since RIFE operates internally
on floating-point data, this linear scaling preserves high dynamic range information and relative lu-
minance without the quantization issue. Second, the core objective of RIFE is motion estimation
and occlusion-aware blending at intermediate-time (t = 0.5). Motion estimation is fundamentally
geometric and largely invariant to monotonic intensity transformations (linear scaling, γ-correction
or µ-law). Therefore, scaling HDR data to [0, 1] ensures numerical stability without distorting the
underlying motion field. Unlike classical brightness-constancy methods that rely on rigid photomet-
ric model, RIFE learns flow and fusion weights end-to-end in a normalized feature space. In this
way, RIFE is agnostic to dynamic-range encoding of the input data. Visual results can be refereed to
Figure K. While it preserves the data distribution as confirmed by visual inspection, the synthesized
motion blur still diverges from real-world blur due to its inherent limitations. To address this gap,
we propose a self-supervised real-world adaptation approach in this work. Given recent advances
in interpolation models for large motions (Jain et al., 2024) and complex textures (Zhong et al.,
2024), we believe this limitation will be progressively mitigated with the ongoing evolution of the
technology.

The noise in RAW images primarily consists of two components: shot noise and read noise (Brooks
et al., 2019). The shot noise follows a Poisson distribution with its mean corresponding to the actual
light intensity in photoelectrons, while the read noise can be modeled as a zero-mean Gaussian
random variable with constant variance. These noise sources can be jointly approximated as a
heteroscedastic Gaussian random variable N, which can be defined as:

N ∼ N (0, λread + λshotX), (A)

where X represents the clean signal intensity, and the parameters λread and λshot are determined by
the sensor’s analog and digital gain settings.

To ensure realistic noise synthesis, we calibrate our model using the noise characteristics of the
iPhone 16 Pro Max camera sensor, extracting λshot and λread from the raw image metadata. The
ISO of the reference image is set to 100 during the daytime and 1600 at night. For these images, we
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Figure A: Overview of our synthetic data generation pipeline. We utilize HDR video to synthesize
multi-exposure images {Lt}Nt=1. Qt marks the initial frame, and M specifies the frame numbers
used to synthesize long-exposure frames. The short-exposure ground truth is its corresponding HDR
frame. The long-exposure ground truth is the middle frame used to simulate this frame sequence.

measured λday
shot ≈ 3.23× 10−4, λnight

shot ≈ 4.52× 10−3 and λday
read ≈ 2.67× 10−6, λnight

read ≈ 4.04×
10−5. To generate noise with different intensity levels, we sample these parameters uniformly across
the ISO range 50-400 at daytime and 800-3200 at nighttime, leading to the following distributions:

log(λday
shot) ∼ U(log(0.00014), log(0.00066)),

log(λnight
shot ) ∼ U(log(0.0021), log(0.0086)),

log(λday
read | log(λ

day
shot)) ∼

N (1.428 log(λday
shot) + 1.215, 0.282),

log(λnight
read | log(λ

night
shot )) ∼

N (1.692 log(λnight
shot ) + 0.418, 0.252),

(B)

U(a, b) denotes the uniform distribution over interval [a, b].

Table A: Comparative analysis of key characteristics in HDR video datasets. NLE and CPBD evalu-
ate the challenging artifacts (noise and blur) in the input LDR sequences, whereas DR, SI, and stdL
describe the richness and quality of the HDR ground truth.

Datasets Noise Blur NLE↓ CPBD↑ DR↑ SI↑ stdL↑
Cinematic Video ✓ ✗ 18.4 0.65 2.46 9.02 11.26
DeepHDRVideo ✗ ✗ 6.6 0.79 2.54 8.93 11.35

Real-HDRV ✓ ✗ 13.5 0.40 2.73 9.16 12.13
Our Synthetic Dataset ✓ ✓ 28.5 0.28 2.80 9.13 12.42

Our Real-World Dataset ✓ ✓ 24.6 0.32 - - -

B COMPARISON WITH OTHER DATASETS

In this section, we present a comparative analysis between our dataset and existing datasets. Cur-
rently, DeepHDRVideo (Chen et al., 2021) and Cinematic Video (Froehlich et al., 2014) are two of
the most widely adopted datasets for HDR reconstruction of single images and videos. Recently,
(Shu et al., 2024) presented a new large-scale real-world dataset named Real-HDRV, which contains
various scenes and diverse motion patterns. The following comparisons will focus on these three
key datasets.

Primarily, our work explicitly accounts for both noise and blur artifacts introduced during real-world
capture processes. Notably, the DeepHDRVideo dataset only accounts for luminance variations be-
tween long- and short-exposure frames, while failing to incorporate realistic noise and blur degra-
dations. The Cinematic Video dataset is synthesized through HDR movie video simulation. The
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Table B: Scene-wise dynamic-range statistics.

Scene Type Scenes Avg DR Min (cd/m2) Max (cd/m2)

Daytime Indoor 16 2.46 0.08 3.2× 102

Daytime Outdoor 34 2.82 0.15 6.0× 103

Nighttime Indoor 14 2.32 0.02 8.0× 101

Nighttime Outdoor 36 3.24 5× 10−3 1.2× 103

Overall 100 2.71 5× 10−3 6.0× 103

source HDR videos used for simulation inherently contain motion blur. Both the synthesized long-
and short-exposure frames simply inherit this blur, without considering the difference in motion
blur between long and short exposures. In real-world scenes, short-exposure images should have
less blur than long exposure images. The recently proposed Real-HDRV dataset still mainly con-
siders luminance variations, exhibiting less noise and blur. Our synthetic dataset utilizes 4K/60fps
HDR videos captured exclusively with DJI Pocket 3, ensuring per-frame sharpness while simulating
realistic overexposure and motion blur effects through multi-frame superposition, and each frame
has its corresponding ground truth (GT) image. For real-world data acquisition, we employed an
iPhone 16 Pro Max with ProShot’s bracketing mode while disabling all noise reduction modules to
preserve authentic sensor noise characteristics. At the same time, the camera shake and object mo-
tion enable the generation of physically accurate motion blur in long-exposure frames. Therefore,
our dataset is more comprehensive and physically accurate than existing alternatives by combining
real-world noise and motion blur.

Table A presents the quantitative statistical results for each dataset. NLE (Liu et al., 2012) mea-
sures the intensity of image noise, where a smaller value indicates less noise and vice versa.
CPBD (Narvekar & Karam, 2011) measures the degree of motion blur in images, where a smaller
value indicates more blur and vice versa. In particular, we evaluate NLE only on the short-exposure
images, while CPBD only on the long-exposure images. DR (Hu et al., 2022) is calculated as the
log10 differences between the highest 2% luminance and the lowest 2% luminance. SI (Spatial In-
formation) is defined in BT (2020), and stdL (standard deviation of Luminance) is defined in (Guo
et al., 2023). As is shown in Table A, our dataset exhibits significant levels of noise and motion
blur in LDR inputs. Moreover, the inclusion of SI, DR, and stdL metrics provides comprehen-
sive characterization of spatial complexity, luminance range diversity, and contrast richness in HDR
ground turth images. Furthermore, we provide comprehensive dataset statistics and visualizations
in Table B, and more visualization results can be referred to Figure F and Figure G.

C DETAILS OF OUR ENCODER AND DECODER BLOCK

Our network adopts a U-net architecture with skip connections, featuring three-level encoder and de-
coder blocks. The first two levels of the encoder use identical block designs, differing only in depth
and feature resolution. Each level consists of multiple ReducedAttn blocks with standard feedfor-
ward networks (FFW). The ReducedAttn module replaces conventional attention mechanisms with
a more efficient design: it first expands channels using 1 × 1 convolutions, then applies depthwise
3 × 3 convolutions for spatial mixing, followed by another 1 × 1 convolution to project features
back. The FFW component uses two 1× 1 convolutions with a GELU activation in between to mix
channel information. The level 3 of the encoder differs from the first two levels, featuring a deeper
architecture with 6 blocks. While levels 1-2 used ReducedAttn, level 3 employs standard Channel
Attention blocks in all layers, enabling global feature interactions. The FFW networks also upgrade
to Gated FFW type, which introduces a gating mechanism through parallel depthwise convolutions
and element-wise multiplication before feature projection.

The middle block begins with the Fusion module, which applies channel-wise cross-attention lay-
ers that maintain temporal coherence by caching and retrieving features from neighboring frames
through efficient key-value buffers, creating a stable foundation for motion-aware processing. All
decoder levels share the same fundamental block structure. In our network, we use the FGMA align-
ment method to align neighboring features, followed by the Fusion module which is the same in the
middle block. The detailed architecture is shown in Fig. B.
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Figure B: Details of our network architecture. (a) denotes the block used in the first and second
levels of the encoder. (b) shows the block used in the third level of the encoder. (c) denotes the
middle block. (d) denotes the decoder block used in all three levels. (e) shows the FFW block. (f)
shows the ReducedAttn block. (g) shows the GFFW block. Specifically, the number of blocks in
each level is 2, 4, 6, while the number of middle blocks is set to 8.

Table C: Ablation study on encoder parameter sharing strategies. ”✓” indicates parameters are
independent between long and short exposures, while ”✗” indicates shared parameters. Best results
are in bold.

Level 1 Level 2 Level 3 PSNR↑ SSIM↑ LPIPS↓ HDR-VDP-2↑
✓ ✓ ✓ 32.55 0.9644 0.192 77.02
✗ ✓ ✓ 32.40 0.9623 0.195 76.52
✗ ✗ ✓ 32.18 0.9598 0.204 75.56
✗ ✗ ✗ 31.96 0.9587 0.211 74.78

D EFFECT OF DUAL-ENCODER PROCESSING

In this section, we discuss the role of the dual-encoder design. We conducted an ablation study with
four different training configurations: 1) sharing encoder parameters across all three levels of the
U-net, 2) sharing no parameters across levels, 3) sharing parameters only at level 1, and 4) sharing
parameters at levels 1 and 2 but not at level 3.

As shown in Table C, the best performance is achieved when no parameters are shared across the
three levels. This result can be attributed to the inherent characteristics of the input data: short-
exposure frames exhibit higher noise levels, while long-exposure frames suffer from more severe
motion blur. Therefore, using shared parameters for the encoders, which process these fundamen-
tally different inputs, is suboptimal. Therefore, non-shared encoders are more effective, as they
specialize in extracting features from their respective inputs with distinct artifacts.

E DISCUSSION ON THE MODEL’S CAPABILITY FOR DENOISING AND
DEBLURRING

In this section, we provide a detailed analysis of our model’s capability for denoising and deblurring.

Which Component Handles Noise and Blur? The model inherently handles noise and blur by
leveraging complementary information from multiple input frames. Moreover, we conducted a com-
prehensive component-wise ablation study to investigate which component contributes the most. As
shown in Table D , dual encoders contribute the most by extracting feature from inputs with different
degradations.

Why Model Handles Blur Without Explicit Deblurring Design Our model successfully handles
motion blur through two synergistic, implicit mechanisms that arise from its core design for video
HDR.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table D: Component-wise effect on degradation handling. Short-exposure metrics highlight noise
suppression (PSNR/NLE↓), while long-exposure metrics focus on blur fidelity (PSNR/CPBD↑).

Variant Short Exposure (noise) Long Exposure (blur)
PSNR↑ NLE↓ PSNR↑ CPBD↑

DeAltHDR (s=15) 32.65 2.92 32.45 0.75
w/o Dual Encoders 32.04 7.27 31.88 0.51
Flow-only alignment (s=0) 32.48 4.05 32.36 0.64
Attention-only alignment (s=∞) 32.74 2.23 32.56 0.79
w/o VGG perceptual loss 32.46 4.11 32.38 0.60

Table E: Short-exposure evaluation results.

Methods Synthetic (Short) Real-World (Short)
PSNR↑ SSIM↑ LPIPS↓ HDR-VDP-2↑ CLIPIQA↑ MANIQA↑

HDR Image

AHDRNet (CVPR 19) 31.68 0.9595 0.2247 68.51 0.2055 0.2117
SCTNet (ICCV 23) 32.08 0.9624 0.2039 73.58 0.2341 0.2509
SAFNet (ECCV 24) 32.11 0.9624 0.2010 73.19 0.2445 0.2518
BracketIRE (ICLR 25) 32.29 0.9629 0.1988 75.60 0.2604 0.2710

HDR Video

Chen et al. (ICCV 21) 32.08 0.9618 0.2069 75.93 0.2378 0.2489
LAN-HDR (ICCV 23) 32.15 0.9619 0.2098 76.26 0.2569 0.2653
NECHDR (ACM MM 24) 32.25 0.9625 0.2040 75.65 0.2599 0.2724
HDRFlow (CVPR 24) 32.34 0.9634 0.1951 76.78 0.2621 0.2711

DeAltHDR w/o Adaptation (s=15) 32.65 0.9650 0.1911 77.29 0.2643 0.2752
w/ Adaptation – – – – 0.2700 0.2791

First, the fundamental mechanism is deblurring via multi-frame fusion. In alternating exposure
sequences, blur is non-uniform: a blurred region in a long-exposure frame often corresponds to a
sharp region in a complementary short-exposure frame. Our model leverages frame alignment and
fusion to effectively remove blur by aggregating sharp information from across the sequence.

Second, the dual-encoder architecture provides exposure-specific feature extraction. The short-
exposure encoder learns to extract sharp features while suppressing noise, whereas the long-
exposure encoder learns to preserve semantic structure and global context despite blur. This ar-
chitecture allows the model to leverage the distinct strengths of different exposure types.

Our method demonstrates significantly stronger generalization than traditional, explicitly trained
deblurring models. The key distinction lies in its learning objective: instead of learning the blur
kernel distribution, our model learns to identify and fuse complementary information across frames.
The primary failure mode occurs when all input frames lack sharp reference, which is a quite rare
scenario in alternating exposure video.

Why Does Adaptation Improve Sharpness? We attribute the sharpness gains to the mitigation of
the domain gap between synthetic and real-world blur by our self-supervised adaptation. Specifi-
cally, synthetic blur is generated deterministically using linear motion kernels, whereas real-world
blur arises from a complex, stochastic interplay of factors like camera shake, object motion, and
rolling shutter. Consequently, models trained exclusively on synthetic data are biased and limited to
recognizing and recovering simulated blur patterns. Our self-supervised adaptation addresses this
gap by minimizing the inconsistency between two reconstructions with differing temporal support:
an information-rich, sharper estimate from 5 frames (Ĥt) and an information-poor, blurrier one from
3 frames (Ĥt). During adaptation, the model is trained to align the 3-frame reconstruction with the
quality of the 5-frame version, thereby learning to recover sharper details from more degraded in-
puts. Furthermore, we employ motion-augmented sampling (using frames at t± 6) to prevent over-
fitting to synthetic motion patterns. This enhances the model’s ability to handle real-world video
with a diverse and realistic range of motion blur.

Why attention-based methods can restore blur While optical-flow-based methods can align blurry
frames, their performance is limited under severe or complex motion blur because they rely more
on local information to estimate dense motion fields. Consequently, they are accurate for smooth
motions but are prone to failures when confronted with significant blur and occlusions. In contrast,
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Table F: Long-exposure evaluation results.

Methods Synthetic (Long) Real-World (Long)
PSNR↑ SSIM↑ LPIPS↓ HDR-VDP-2↑ CLIPIQA↑ MANIQA↑

HDR Image

AHDRNet (CVPR 19) 31.46 0.9581 0.2273 67.97 0.2009 0.2079
SCTNet (ICCV 23) 31.82 0.9612 0.2061 73.10 0.2299 0.2475
SAFNet (ECCV 24) 31.93 0.9614 0.2030 72.73 0.2401 0.2486
BracketIRE (ICLR 25) 32.05 0.9617 0.2012 75.04 0.2564 0.2674

HDR Video

Chen et al. (ICCV 21) 31.88 0.9606 0.2091 75.41 0.2334 0.2455
LAN-HDR (ICCV 23) 31.93 0.9609 0.2122 75.78 0.2523 0.2615
NECHDR (ACM MM 24) 32.07 0.9613 0.2060 75.19 0.2557 0.2688
HDRFlow (CVPR 24) 32.18 0.9624 0.1969 76.34 0.2581 0.2677

DeAltHDR w/o Adaptation (s=15) 32.45 0.9638 0.1929 76.75 0.2599 0.2716
w/ Adaptation – – – – 0.2658 0.2757

Table G: Runtime comparison to address the reviewer’s flow-vs-attention concern. Besides the de-
fault model, we develop a compact DeAltHDR-S variant whose inference time is lower than HDR-
Flow while maintaining quantitative results.

Method PSNR↑ SSIM↑ LPIPS↓ HDR-VDP-2↑ FLOPs (G) Time (ms)

HDRFlow 32.26 0.9629 0.196 76.56 116 128
DeAltHDR (Default) 32.55 0.9644 0.192 77.02 128 152
DeAltHDR-S (compact) 32.42 0.9638 0.194 76.70 102 116

attention-based methods can more fully leverage global information, which allows them to handle
blur and low-texture regions more robustly. Consequently, attention mechanisms consistently out-
perform optical flow in challenging, high-motion scenarios. Therefore, attention-based approaches
outperform optical flow in challenging, high-motion scenarios.

Finally, as shown in table E and Table F, our method outperforms the other ones no matter the
reference frame is short-exposure or long-exposure.

F COMPARISON OF COMPUTATIONAL COSTS

In this section, we provide a detailed analysis of the curve presented in Fig. 1. As shown in Ta-
ble J, when our method relies solely on optical flow (i.e., s = 0), it achieves higher PSNR values
while maintaining lower FLOPs and inference time compared to HDRFlow. As the proportion of
attention mechanisms increases during training, both FLOPs and inference time dynamically rise,
eventually reaching the configuration where alignment is handled entirely by attention. Compared
to other lightweight networks like HDRFlow, our approach maintains relatively high performance
while demonstrating superior computational efficiency.

Moreover, we provide a detailed analysis on the relationship between attention ratio and FLOPs.
The relationship between the attention ratio and computational cost (FLOPs) is directly proportional.
The total FLOPs cost is a weighted sum of the costs of two operations: efficient flow-based warping
and powerful but expensive attention. Mathematically, it can be derived as: FLOPs = N × [(1 −
Rattn)Cflow + RattnCattn], where: N represents for the pixel number, Rattn is the attention ratio
and Cflow and Cattn are the fixed costs of flow and attention per pixel, with Cattn >> Cflow.
As the equation shows, when the attention ratio Rattn increases, the overall computational cost
monotonically increases, establishing a direct proportional relationship. Each point on the curve
in Figure 1 corresponds to a different Rattn (controlled by our sensitivity parameter s), and the
progression from left to right demonstrates this predictable increase in FLOPs.

Furthermore, we conduct an experiment with a compact model configuration (s=15) which deliv-
ers lower inference latency compared to HDRFlow. As shown in Table G, our compact model still
archives better results than HDRFlow, but with fewer FLOPs and shorter inference time. Moreover,
we provide more detailed results in Table H. The results shows that attention computation consti-
tutes the primary bottleneck, accounting for 38.2% of the total processing time. The dual-encoder
architecture also introduces notable overhead, contributing 27.6% to the runtime compared to a
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Table H: Runtime and FLOP breakdown of DeAltHDR (256×256 patch on RTX A6000).

Component Time (ms) Percentage FLOPs (G)

Input Processing 8 5.3% 2.1
Dual Encoders 42 27.6% 38.4

Short-exp encoder 21 13.8% 19.2
Long-exp encoder 21 13.8% 19.2

FGMA Alignment 58 38.2% 52.8
Flow estimation (SpyNet) 18 11.8% 8.4
Mask computation 4 2.6% 2.2
Attention (47% pixels) 36 23.7% 42.2

Frame History Router 28 18.4% 24.5
Decoder 12 7.9% 9.8
Output Processing 4 2.6% 0.4

Total 152 100% 128

Table I: Quantitative comparison of different HDR methods on DeepHDRVideo Chen et al. (2021)
Dataset, Real-HDRV Shu et al. (2024) Dataset and Cinematic Video Froehlich et al. (2014) Dataset.

Dataset Methods PSNR↑ SSIM↑ LPIPS↓ HDR-VDP-2↑

DeepHDRVideo

Chen et al. 42.48 0.9620 0.184 74.80
LAN-HDR 41.59 0.9472 0.181 71.34
NECHDR 43.44 0.9558 0.176 79.20
HDRFlow 43.25 0.9520 0.174 77.29

DeAltHDR 43.78 0.9572 0.172 79.32

Real-HDRV

Chen et al. 36.50 0.9262 0.192 67.56
LAN-HDR 38.27 0.9334 0.184 69.24
NECHDR 39.23 0.9428 0.180 72.50
HDRFlow 38.98 0.9434 0.179 72.32

DeAltHDR 40.04 0.9489 0.175 73.14

Cinematic Video

Chen et al. 35.65 0.8949 0.172 72.09
LAN-HDR 38.22 0.9100 0.162 69.15
NECHDR 40.59 0.9241 0.155 73.31
HDRFlow 39.20 0.9154 0.158 71.05

DeAltHDR 40.75 0.9245 0.152 74.22

single-encoder setup. In comparison, flow estimation is relatively efficient, consuming only 11.8%
of the computational budget.

G EFFECT OF SELF-SUPERVISED ADAPTATION

In this section, we provide more quantitative comparisons in Tab. K. It can be seen that the proposed
adaptation method can bring both CLIPIQA (Wang et al., 2023) and MANIQA (Yang et al., 2022)
improvements. Furthermore, only deploying Lema could prevent parameter updates, while omit-
ting it causes self-supervised training to collapse. This occurs because processing all input frames
currently operates without any architectural constraints. Moreover, we evaluate different weighting
factors λtime of Ltime and conduct experiments with different λtime. From Tab. K, we can see that
when λtime is set to 1, the metrics are higher than the other settings. Furthermore, Fig. H shows the
visual comparison of adaptation methods. It can be seen our method achieves more realistic result
than BracketIRE.
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Table J: Performance comparison between DeAltHDR configurations and HDRFlow.

Method s PSNR↑ SSIM↑ LPIPS↓ FLOPs (G) Time (ms)

HDRFlow - 32.26 0.9629 0.196 116 128

DeAltHDR

0 32.42 0.9629 0.201 98 94
0.14 32.43 0.9630 0.201 101 100
0.29 32.46 0.9633 0.198 104 108
0.43 32.48 0.9635 0.196 107 119
0.57 32.49 0.9637 0.196 111 128
0.71 32.49 0.9640 0.196 115 134
0.86 32.52 0.9640 0.194 119 138

1 32.53 0.9642 0.192 123 149
15 32.55 0.9644 0.192 128 152
30 32.57 0.9647 0.190 132 162
43 32.59 0.9649 0.188 137 165
57 32.60 0.9651 0.188 142 172
71 32.60 0.9653 0.185 147 186
85 32.62 0.9657 0.184 152 190

100 32.63 0.9658 0.182 159 198
∞ 32.65 0.9660 0.180 168 224

Figure C: Visual comparison on DeepHDRVideo dataset.

H MORE VISUAL RESULTS

We also test our model on DeepHDRVideo dataset (Chen et al., 2021), Cinematic Video dataset
(Froehlich et al., 2014) and Real-HDRV dataset (Shu et al., 2024). Tab. I shows the quantitative
results on these datasets. It’s shown that our method achieves better results than previous HDR
video reconstruction methods. Moreover, Fig. C, Fig. D and Fig. E show qualitative results on these
datasets. It can be seen that our results have more details and less artifacts. Furthermore, we provide
more visual comparisons on both our synthetic dataset and our real-world dataset. Fig. I and Fig.
J show the qualitative results. It can be seen that our results have less artifacts and more details.
Moreover, we conduct cross-validation across clean datasets as shown in Table L. Diagonal entries
(training set = test set) are the best results and are highlighted in blue; results from our dataset row
are second-best and shown in red.
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Figure D: Visual comparison on Real-HDRV dataset.

Figure E: Visual comparison on Cinematic Video dataset.

Figure F: Full image results on our synthetic dataset. Our results preserve both the bright areas in
short-exposure images and the dark areas in long-exposure images.

Table L: Cross-validation across clean datasets. Diagonal entries (training set = test set) are the best
results and are highlighted in blue; results from our dataset row are second-best and shown in red.

Training Set Metric DeepHDR Video Real-HDRV Cinematic Video
NECHDR HDRFlow DeAltHDR NECHDR HDRFlow DeAltHDR NECHDR HDRFlow DeAltHDR

DeepHDR Video PSNR 43.44 43.25 43.78 37.65 37.40 38.10 38.20 37.85 38.60
SSIM 0.9558 0.9520 0.9572 0.9152 0.9178 0.9284 0.9106 0.9034 0.9216

Real-HDRV PSNR 38.05 37.80 38.50 39.23 38.98 40.04 37.50 37.10 37.95
SSIM 0.9184 0.9210 0.9321 0.9428 0.9434 0.9489 0.9066 0.9092 0.9257

Cinematic Video PSNR 38.40 37.05 38.70 37.85 37.10 38.05 40.59 40.40 40.75
SSIM 0.8971 0.8890 0.9097 0.9042 0.8872 0.9082 0.9241 0.9154 0.9245

Our Dataset PSNR 42.64 42.32 42.78 37.82 38.42 38.79 39.98 39.80 40.11
SSIM 0.9532 0.9472 0.9502 0.9048 0.9087 0.9122 0.9373 0.9333 0.9377
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Figure G: Per-scene histograms on our dataset.

Table K: Effect of loss terms for self-supervised
real-image adaptation. ’–’ denotes DeAltHDR
trained on synthetic pairs. ’NaN’ implies the
training collapse.

Lema Ltime CLIPIQA↑/MANIQA↑
– – 0.2610 / 0.2716
✓ ✗ 0.2610 / 0.2716
✗ ✓ NaN / NaN
✓ λself = 0.5 0.2542 / 0.2760
✓ λself = 1 0.2679 / 0.2774
✓ λself = 2 0.2578 / 0.2598
✓ λself = 4 0.2270 / 0.2391 Figure H: Visual comparison of adaptation

methods.
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Figure I: Visual comparison on our synthetic dataset.
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Figure J: Visual Comparison on our real-world dataset.

Figure K: Interpolation results on our HDR GT videos.
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