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Abstract

Offline Reinforcement Learning (Offline RL)
is widely used for optimizing task-oriented di-
alogue policies by training on pre-collected
dialogues, which boosts efficiency, especially
when data is limited. However, traditional of-
fline RL methods struggle with accurately mea-
suring experience priority, leading to the loss of
valuable data and susceptibility to noisy sam-
ples. To this end, this paper proposes the Ad-
justable Mirror Loss (AMLoss) method, which
redefines experience priority by quantifying the
real-time incremental contribution of each expe-
rience to policy improvement. Specifically, the
contribution is computed as the loss difference
between the Main and Delayed Q-networks,
with a larger difference indicating a more signif-
icant learning contribution and, consequently,
a higher sampling priority. By emphasizing ex-
periences that offer greater learning gains and
deprioritizing those less effective or affected
by noise, AMLoss helps retain critical data.
Moreover, a Sum Tree structure is introduced
for efficient hierarchical storage and weighted
sampling of priorities. Experimental results
confirm that AMLoss effectively prioritizes im-
portant experiences while filtering out noisy
ones, leading to optimal performance across
various tasks.

1 Introduction

Task-Oriented Dialogue systems (TODs) are de-
signed to accomplish specific tasks, such as book-
ing flights (Algherairy and Ahmed, 2025; Xu et al.,
2024; Wang et al., 2023). The core of TODs lies
in the design of the Dialogue Policy (DP), which
directly influences interaction quality and task com-
pletion. Recently, Large Language Models (LLMs)
have shown strong performance in open-domain di-
alogue systems, but they struggle with TODs due to
challenges in modeling long-term decision-making
(Gao et al., 2024). However, due to data limitations,
collecting large amounts of task-oriented dialogue

Figure 1: The issue of forgetting and noisy experiences

data to fine-tune LLMs is impractical (Chang et al.,
2024).

In contrast, Offline Reinforcement Learning (Of-
fline RL) excels at sequential decision-making
tasks, leveraging historical interaction data to re-
duce reliance on real-time user feedback and im-
prove efficiency, thus becoming a widely used
method for DP optimization. (Franceschelli and
Musolesi, 2024; Kamuni et al., 2024).

Nevertheless, Offline RL-based DPs face signifi-
cant challenges of experience priority distortion,
resulting in inefficient sampling, particularly in
scenarios with insufficient or low-quality samples.
This issue primarily arises from two types of expe-
rience (Hu et al., 2021; Zhang and Sutton, 2017): 1)
Forgetting Experiences: As shown by example (a)
in Figure 1, these experiences appear so outdated
that they are often mistakenly deemed unhelpful
for DP optimization, resulting in them receiving an
extremely low priority (one star). However, such
priority allocations overlook the "experience rich-
ness" inherent in older experiences, which plays a
crucial role in the long-term interactions of DP, ul-
timately leading to suboptimal policy improvement
outcomes (Morad et al., 2023; Wang and Ross,
2019). 2) Noisy Experiences: As shown by exam-
ple (b) in Figure 1, these experiences are affected
by low-quality interactions and errors in upstream
modules, which cause them to contain noise. These
noises act like a raincoat to obscure the true state of
the experience, causing alternative priority assign-



ment methods to mistakenly deem it significant and
assign a two-star priority, thereby wasting training
resources and compromising the policy updates (Li
et al., 2023). Despite extensive efforts to develop
mitigation strategies such as experience prioritiza-
tion weighting (Yu et al., 2024; Vezhnevets et al.,
2017; Gu et al., 2017), noise filtering (Yu et al.,
2024; Vezhnevets et al., 2017; Gu et al., 2017), and
memory enhancement (Lu et al., 2023; Yang et al.,
2022; Buzzega et al., 2020), these methods are lim-
ited to addressing either the issue of forgetting or
noise individually, and none effectively tackle both
simultaneously.

To this end, this paper proposes the Adjustable
Mirror Loss (AMLoss) method for accurately mea-
suring experience priority to mitigate the impact
of noisy and forgetting experiences. Specifically,
AMLoss redefines experience priority based on the
loss difference between the Main Q-network and
the Delayed Q-network. For forgetting experiences,
AMloss identifies instances where the Delayed Q-
network loss is smaller than the Main Q-network
loss. This suggests that their past contributions are
greater than their current ones, indicating a richness
in experience that significantly benefits DP train-
ing. Consequently, AMloss assigns higher priority
to these experiences, ensuring they are revisited
to restore critical memory and prevent long-term
performance degradation. For noisy experiences,
AMloss identifies instances where both the Delayed
and Main Q-network losses are high, indicating low
learning gains over a period. Consequently, AM-
loss assigns lower priority to these experiences. To
enhance the efficiency of weighted sampling based
on experience priority, a Sum Tree hierarchical stor-
age structure is introduced. In addition, AMLoss
is a model-agnostic method compatible with typi-
cal Offline RL approaches that utilize experience
replay and target network mechanisms.

Extensive experiments on multiple datasets vali-
date the effectiveness of AMLoss in DP optimiza-
tion. Furthermore, visualizations of experience
priority provide additional insights into how AM-
Loss manages forgetting and noisy experiences. In
summary, our contributions are as follows:

1) We introduce AMLoss to mitigate forgetting
and noise in experience replay by dynamically ad-
justing priorities based on the real-time incremental
contribution.

2) We propose a reliable prioritization method
that assigns experience priority based on the loss
difference between the Main and Delayed Q-

networks.
3) We demonstrate the effectiveness and robust-

ness of our approach on four datasets with different
noise levels and achieve outstanding performance
in human evaluation experiments.

2 Related Work

This paper focuses on enhancing experience re-
play mechanisms in offline RL to address chal-
lenges associated with forgetting and noisy experi-
ences. The foundational method in experience re-
play, Deep Q-Networks (DQN) (Mnih et al., 2015),
stores agent-environment interactions as tuples in a
fixed-capacity buffer and randomly samples small
batches during training. However, it treats all ex-
periences equally, failing to prioritize important
ones. Advancements in experience replay can be
categorized into three categories. i) Experience Pri-
ority Weighting (Mei et al., 2023; Oh et al., 2022;
Lahire et al., 2022; Horgan et al., 2018): These
approaches prioritize experiences based on rele-
vance, often using metrics like Temporal Differ-
ence (TD) errors. A notable example is Prioritized
Experience Replay (PER) (Schaul et al., 2016),
which employs non-uniform sampling to empha-
size important experiences. However, PER faces
challenges such as gradient estimation bias and de-
layed priority updates for infrequent experiences,
exacerbating the issue of forgetting. ii) Noise De-
tection and Filtering (Yu et al., 2024; Vezhnevets
et al., 2017; Gu et al., 2017): These approaches
aim to improve the quality of replayed data by
identifying and removing noisy experiences. For
instance, Zhang and Sutton (2017) introduced a
technique to filter noisy experiences, enhancing
learning. Despite their benefits, such approaches
may inadvertently discard important experiences in
dynamic environments and require careful tuning to
avoid overfitting to noise. iii) Memory Augmenta-
tion and Multi-Network Strategies (Lu et al., 2023;
Yang et al., 2022; Buzzega et al., 2020): These
approaches utilize auxiliary networks to store and
manage historical experiences, ensuring that im-
portant experiences are retained while less relevant
ones are down-weighted. A prominent work is
Topological Experience Replay (TER) (Hong et al.,
2022), which organizes experiences as a graph and
updates it using reverse value backup with Breadth-
First Search (BFS). While TER organizes experi-
ence replay, it incurs high computational costs and
may be unstable with noisy or rapidly changing



Figure 2: Description of the AMLoss method modules.

policies.
In summary, despite recent advances, no existing

method fully addresses the priority distortion issues
stemming from forgetting and noisy experiences.
In contrast, our AMLoss improves experience re-
play by dynamically adjusting priorities based on
the loss difference between the Main and Delayed
Q-networks. This mechanism mitigates the impact
of delayed priority updates—thereby reducing ex-
perience forgetting—and enhances sensitivity to
noisy samples. Moreover, it is compatible with ex-
isting PER parameter designs, easy to implement,
and adds minimal computational overhead, result-
ing in superior robustness against forgetting and
noisy experiences.

3 Priority Experience Replay Based on
Adjustable Mirror Loss (AMLoss)

As shown in Figure 2, the AMLoss method consists
of three modules: 1) Interaction module, which fa-
cilitates the interaction between the DQN agent
and the environment. 2) Experience replay module,
which stores and samples the experience generated
from the interaction. 3) Priority calculation mod-
ule, which evaluates experience priorities based
on AMLoss and samples them according to their
priority using the Sum Tree structure, which facil-
itates efficient hierarchical storage and weighted
sampling. It enables optimized experience replay
and priority adjustment. By prioritizing learning
experiences that contribute more to improvement,
AMLoss mitigates the effects of experience forget-
ting and reduces the impact of noisy experiences.

3.1 Part 1 : Interaction Module
The interaction module generates experience data
through the interaction between the RL agent1 and
the environment. The DQN agent contains two
neural networks. The Main Q-network estimates
the Q-values for each action, while the Delayed Q-
network computes the target Q-values to stabilize
learning. The DQN agent selects the action at with
the highest Q-value using the ϵ-greedy strategy and
receives feedback from the environment, including
the current reward rt and the next state st+1.

The parameters of the Main Q-network θ are up-
dated through training, while the parameters of the
Delayed Q-network θ̂ are synchronized gradually
using a soft update mechanism:

θ̂ ← τ · θ + (1− τ ) · θ̂ (1)

where τ ∈ (0,1] is the soft update coefficient.
The agent computes the loss Lalg

θ on the Main
Q-network and Lalg

θ̂
on the Delayed Q-network,

which will be used for the subsequent calculation
of AMLoss and priority adjustment (Eq. 3).

3.2 Part 2 : Experience Replay Module
The experience replay module is responsible for
storing and sampling the experience data gener-
ated by the interaction module based on the AM-
Loss priority calculated from the third module.
Each interaction generates an experience tuple
⟨st,at, rt, st+1⟩, which is stored in the experience

1Since DQN is a commonly used baseline for task-oriented
dialogue policy, we use DQN for method description and
validation in this paper.



pool and assigned an initial priority Pinit. During
the training phase, the experience pool is sampled
based on AMLoss priority, and a batch of expe-
rience (with batch size b) is selected for training.
For the sampled experience, a hierarchical storage
structure (Sum Tree) is used to manage the priori-
ties, enabling priority-based weighted sampling (Li
et al., 2022; Emmons et al., 2020).

3.3 Part 3 : Priority Calculation Module
The priority calculation module is the core of this
method. It focuses on optimizing the experience re-
play process by combining the Sum Tree structure
and the AMLoss priority update method.

The Sum Tree is a binary tree data structure
specifically designed to store and manage experi-
ence priorities. Its characteristic is that each node
stores the sum of its children’s priorities, which
allows weighted sampling and priority updates to
be performed in O(log n) time complexity:

• Leaf nodes: store the priority value pi of each
experience.

• Intermediate nodes: store the sum of the pri-
orities of all their child nodes.

• Root node: stores the sum of all leaf node
priorities, representing the total priority of the
entire experience pool

∑n
i=1 pi.

With this structure, a weighted sampling mech-
anism can efficiently sample experience from the
experience pool. The specific operation is as fol-
lows: A random value u is generated within the
range [0,

∑n
i=1 pi]. Starting from the root node,

we recursively compare u with the priority values
of the left and right child nodes, and eventually
locate the corresponding leaf node (i.e., the cor-
responding experience tuple). It ensures that the
probability P (i) of sampling an experience with
higher priority is proportional to its priority pi, i.e.,

P (i) =
pi∑n
j=1 pj

(2)

To dynamically adjust the priority of experience,
we calculate the AMLoss priority of each experi-
ence in the priority calculation module. The pro-
cess consists of the following steps:

1) AMLoss Calculation: AMLoss is the core
metric for measuring the priority of experience. It
is defined by the difference in losses between the
Main Q-network and the Delayed Q-network, and
can be computed as:

AMLossi = Lalg
θ (i)−Lalg

θ̂
(i) (3)

Where: Lalg
θ (i) and Lalg

θ̂
(i) are the network

loss values for the experience i in the Main Q-
network and the Delayed Q-network, respectively.
AMLoss measures the learnability of the experi-
ence by calculating the loss difference between
the Main and Delayed Q-networks for a given ex-
perience sample, providing a reliable metric for
prioritizing experience selection.2

2) Priority Update: Based on the value of AM-
Loss, we update the experience priority using a
mapping function fmap. The mapping function
can be nonlinear (e.g., exponential or smooth func-
tion), and the specific form is as follows:

pi = fmap(AMLossi) + ϵ (4)

Where fmap maps AMLoss to positive values to
ensure the priority remains positive. For example,
fmap = max(0,AMLossi). ϵ is a small posi-
tive value (such as 10−6), which ensures that all
experiences have a non-zero sampling probability,
preventing sampling dead zones (Lee et al., 2019).

The updated priorities are stored in the leaf nodes
of the Sum Tree and recursively update the priority
sums of the intermediate nodes and root node to
maintain the consistency of the entire structure.

3.4 Implementation
The general process of the AMLoss-based DP
method is as follows: The experience replay pool
and the Delayed Q-network are initialized. During
interaction with the environment, the current state
is observed, an action is selected and executed, and
the reward and next state are recorded, along with
the transition {st,at, rt, st+1} stored in the replay
pool with an initial priority. In each iteration, a
small batch of experiences is sampled and AMLoss
is calculated by its loss in the Main and the Delayed
Q-network, and experience priorities are adjusted.
Finally, the Delayed Q-network is updated accord-
ing to the Offline RL algorithm. For more details
about the algorithm, please refer to the Appendix
A.1.

4 Experiment

In this section, we assess the effectiveness of AM-
Loss on four commonly used, publicly available

2It is worth noting that the priority calculation in PER
differs from our AMLoss. PER calculates priority based on
the TD error, defined as pi = |δi| + ϵ, where δi is the TD
error and ϵ is a small constant added to prevent zero priority.
In contrast, our method adopts a different approach.



TOD datasets: movie-ticket booking, restaurant
reservation, taxi booking, and MultiWOZ 2.1. The
objectives of this experiment are:3

I) Assess the effectiveness of AMLoss com-
pared to baseline methods: Examine the advan-
tages of AMLoss in handling small amounts of
noisy experiences and compare its performance
with related baseline methods.

II) Examine the performance of AMLoss in
addressing the issue of noisy experiences: In-
vestigate how AMLoss effectively handles strong
noise interference in the data and demonstrate its
stability in noisy environments by visualizing the
trend of experience priorities.

III) Investigate AMLoss’s ability to address
the issue of forgetting experiences: Evaluate how
AMLoss retains important experience during long-
term training and prevents forgetting, showcasing
its advantages by visualizing the trend of experi-
ence priorities.

IV) Evaluate AMLoss through human assess-
ment: Analyze the performance of AMLoss in
real-world dialogue scenarios through human eval-
uation of TODs’ outputs.

4.1 Baselines
We compare the AMLoss method with several base-
lines: Deep Q-network (DQN) with Random Ex-
perience Replay (RER) (Mnih et al., 2015), which
randomly samples state-transition tuples from the
replay buffer without prioritization. Prioritized Ex-
perience Replay (PER) (Schaul et al., 2016), which
prioritizes experiences based on high TD errors to
enhance learning efficiency. Topology Experience
Replay (TER) (Hong et al., 2022), which organizes
the agent’s experiences into a graph, where each
edge tracks dependencies between states and value
backups are performed via breadth-first search
from terminal states.

4.2 Experimental Settings
4.2.1 Datasets
This study uses four datasets, including both
single-domain and multi-domain datasets, that are
widely used in TODs research: MultiWOZ 2.1
(Budzianowski et al., 2018) and Microsoft Dia-
logue Challenge (1-3) (Li et al., 2018). The do-
main and feature information of different datasets
are shown in Table 1. For more information about
the datasets, please refer to the Appendix A.2.

3We will release the code on GitHub after the anonymity
period.

Dataset Domain Scale

MultiWOZ 2.1

Attraction
Hospital
Police
Hotel
Restaurant
Taxi
Train

Dialogue scale: 8,438
Dialogue rounds: 115,424
Average number of conversation rounds: 13.68
Number of slots: 25

Microsoft Dialogue Challenge 1 Movie Dialogue scale: 2890; Intention: 11; Slot: 29
Microsoft Dialogue Challenge 2 Restaurant Dialogue scale: 4103; Intention: 11; Slot: 30
Microsoft Dialogue Challenge 3 Taxi Dialogue scale: 3094; Intention: 11; Slot: 29

Table 1: Dataset statistics for various dialogue tasks.

4.2.2 Implementation Details
The probability of sampling data points is related to
the priority through Eq. 4, ensuring that the priority
remains non-negative. Since the Q-value method
uses Mean Squared Error (MSE) loss, the prior-
ity is inherently non-negative (Mnih et al., 2015).
In contrast, AMLoss computes the difference in
MSE loss, which does not guarantee the same prop-
erty. When the delayed network is updated along
with the main network, this value can become zero.
However, after a single update, it quickly becomes
non-zero. Therefore, we need to create a mapping
function fmap for the AMLoss error that is mono-
tonically increasing and non-negative for all values.

In practice, we found that clipping negative val-
ues to zero and adding a small value to ensure that
the samples have a minimum probability works ef-
fectively, defined as max(0,AMLoss) + ϵ, where
ϵ is a small positive constant, ensuring that all sam-
ples have a non-zero priority.

4.3 Main Result
As shown in Figure 3, the results demonstrate that
under the 10% noise condition, AMLoss signifi-
cantly outperforms the fundamental methods (RER,
PER, TER) across four datasets, achieving higher
success rates and faster convergence. In particular,
on the Movie and Restaurant datasets, AMLoss
shows clear advantages, reaching higher success
rates earlier and maintaining stability in the later
stages. In the Taxi and MultiWoz 2.1 datasets,
although the complexity of the task and noise im-
pact cause all methods to exhibit lower success
rates with greater fluctuations, AMLoss still shows
stronger noise resilience in the later stages and
eventually outperforms the other methods. Over-
all, the AMLoss method significantly improves the
robustness and success rate of TODs under low
noise conditions, especially demonstrating excel-
lent noise resilience in more complex tasks.

4Through statistical analysis, we observed that noise in
real-world applications typically ranges from 8% to 12%. To



(a) Movie (b) Restaurant

(c) Taxi (d) MultiWoz 2.1

Figure 3: Performance comparison of different methods
for TODs across four datasets in a normal environment
(10% noise).4The subfigures show the average dialogue
success rate over epochs, with shaded areas representing
the error bounds. The MultiWOZ results are based on
the average of five experiments, while the others are
based on the average of ten experiments.

4.4 Validation of noisy experience
4.4.1 Verification of Experimental Results
In this experiment, to verify the effectiveness of
the AMLoss method in identifying and avoiding
noisy experiences, we simulated different levels
of noisy data by adding slot noise and observed
the performance changes of AMLoss and baseline
methods as the probability of noisy experiences
increased.

As shown in Figures 4 and 5, AMLoss outper-
forms all other methods in all scenarios, demon-
strating higher success rates and better stability,
especially in noisy environments. It highlights its
ability to identify and avoid noisy experiences ef-
fectively. Although PER performs better than RER,
its performance still lags behind AMLoss, espe-
cially in noisy conditions. The increased probabil-
ity of noisy experiences in such environments leads
PER to repeatedly prioritize this experience, which
is confusing training. In contrast, AMLoss ad-
justs the priority of noisy experience by comparing
losses between the Main and Delayed Q-networks,
ensuring that its priority decreases as training pro-
gresses, avoiding confusion. For TER, using hash
tables to construct the graph optimization experi-
ence replay process is better than RER to a certain
extent. Still, its performance will be limited when

simulate this, we set the noise level at 10% in our experiments
(He and McAuley, 2016). This models common errors in
dialogue systems without compromising performance. The
10% noise setting allows us to evaluate baseline methods’
effectiveness in noisy environments and provides a controlled
framework for assessing their robustness and reliability.

the task state and action space increase sharply and
are disturbed by noisy experiences (Zhao et al.,
2020).

4.4.2 Visual Analysis of noisy experience
Noisy experience refers to certain sample data that
contain intrinsic uncertainty or randomness, which
causes the priority calculation of this experience
to deviate from its actual learning value. In such
cases, the traditional PER method, which relies
solely on TD errors to calculate priorities, is easily
affected by noise, leading to an overestimation of
the priority of experience.

(a) Movie (b) Restaurant

(c) Taxi (d) MultiWoz 2.1

Figure 6: Sample Priority Curve Based on PER and
AMLoss Methods. This figure compares the changes in
sample priority based on the PER and AMLoss methods
across four datasets, highlighting AMLoss’s effective-
ness in handling noisy experience.

To analyze the effectiveness of the AMLoss
method in handling noisy experiences, we dynami-
cally track the changes in experience priority over
time. In the experiment, we select data samples
containing noise and record their priority distri-
butions at different training stages (e.g., different
epochs). By comparing with the PER method, we
observe whether AMLoss can more effectively sup-
press noise interference, resulting in more stable ex-
perience priorities closer to the true learning value.

As shown in Figure 6, when an experience con-
tains noise, the AMLoss method effectively reduces
the priority of noisy experiences. As training pro-
gresses, the priority of individual experiences under
AMLoss gradually decreases, reflecting its ability
to eliminate noisy experiences. In contrast, under
the PER method, the priority of noisy experiences
remains high and is difficult to remove even in the
later stages of training. It causes the model to con-
tinually rely on high-noise experiences, which is
detrimental to the learning process. It indicates that



(a) Movie (b) Restaurant (c) Taxi (d) MultiWoz 2.1

Figure 4: Performance comparison of different methods for TODs across four datasets in a noise-enhanced
environment (15% noise).

(a) Movie (b) Restaurant (c) Taxi (d) MultiWoz 2.1

Figure 5: Performance comparison of different methods for TODs across four datasets in a noise-enhanced
environment (20% noise).

AMLoss demonstrates a clear advantage in han-
dling noisy experiences, significantly improving
the efficiency of experience replay.

4.5 Validation of Forgetting Experience

4.5.1 Verification of Experimental Results

In this experiment, we constructed a noise-free
environment to evaluate the performance of the
AMLoss method, aiming to verify that even when
noise is eliminated, AMLoss can still perform ex-
cellently, particularly in more complex tasks with
larger state spaces in TODs.

As illustrated in Figure 7, even after eliminat-
ing the impact of noisy experiences, the AMLoss
method still exhibits strong performance, especially
notable improvements in the complex TAXI do-
main and the MultiWOZ 2.1 multi-domain task.
This is because, in RL, the model tends to forget
earlier experiences as training progresses, resulting
in the loss of important reference information for
decision-making. In complex tasks, where state
and action spaces are vast, it becomes increasingly
challenging for the model to retain crucial experi-
ence. Without a mechanism to preserve key expe-
rience, the model’s learning process is susceptible
to "forgetting," which hampers decision-making
accuracy.

AMLoss method addresses this issue by reusing
forgetting experiences, thus mitigating the detri-
mental effects of forgetting during training.

(a) Movie (b) Restaurant

(c) Taxi (d) MultiWoz 2.1

Figure 7: Performance comparison of different methods
for TODs across four datasets in a noise-free environ-
ment.

4.5.2 Visual Analysis of Forgetting Experience
Forgetting experience refers to the loss of valu-
able early experiences during long-term training,
particularly in large-scale and complex task scenar-
ios, where continuous updates to model parameters
lead to the gradual forgetting of certain experience
(Lahire et al., 2022; van Hasselt et al., 2016; Schaul
et al., 2016). As a result, its priority continues to
decrease, and useful experiences may fail to be re-
visited. This issue is especially prominent in the
PER method, where the mechanism does not ef-
fectively balance the importance of long-term and
short-term learning, causing early experiences to
be forgotten by the model.

To demonstrate the effectiveness of the AMLoss
in reusing forgetting experiences, we plan to: 1)



Normalize and store the priority of experience in
both PER and AMLoss. 2) Use the priority to
classify experience as either forgetting or reused,
where a priority below A indicates the release of
an experience, and a priority above B indicates its
reuse.

The relationship between priority and sampling
probability is shown in Eq. 4, which means that a
lower priority corresponds to a smaller sampling
probability. We set (A, B) = (0.2, 0.5) as the prior-
ity threshold for forgetting and reusing experience.
The figure shows that the priority of PER drops
below the threshold (A = 0.2) at t1, indicating that
some low-priority experience is gradually forgot-
ten. In contrast, the priority of AMLoss rises and
exceeds the threshold (B = 0.5) at t2. AMLoss
efficiently uses experience replay by reusing for-
getting experiences and dynamically adjusting key
experiences, thereby improving learning efficiency
and model convergence performance.

(a) Movie (b) Restaurant

(c) Taxi (d) MultiWoz 2.1

Figure 8: Sample Priority Curve Based on PER and
AMLoss Methods. Compared with Figure 6, a priority
boundary for determining forgetting and learning is in-
troduced to describe the process of reusing forgetting
experience in the AMLoss method.

4.6 Human Evaluation
In this experiment, we conducted a human evalua-
tion to assess the quality of the model output. Hu-
man evaluation is essential to measure the perfor-
mance of the model in terms of accuracy, fluency,
etc., because automatic evaluation metrics may not
fully capture these characteristics (Braggaar et al.,
2023). The evaluation criteria include fluency, i.e.,
the naturalness of the output text, and consistency,
i.e., the logical consistency of the output. A total
of 20 participants were included, including experts
in the field and ordinary users. The expert group
members had certain task background knowledge,

while the ordinary users represented a wider user
group. During the evaluation process, each partic-
ipant talked to the trained model and scored each
model according to the above criteria. Accuracy
was scored as 1, and no accuracy was scored as
0. Fluency was scored from 1 to 5, from low to
high. As shown in Table 2, the results are con-
sistent with the simulated experiments, where our
AMLoss achieved the best performance.

Model Domain Accuracy Fluency

RER
Movie 70% 3.2

Restaurant 65% 2.55
Taxi 80% 3.1

PER
Movie 65% 2.8

Restaurant 75% 2.65
Taxi 50% 1.95

TER
Movie 70% 2.75

Restaurant 75% 3.3
Taxi 65% 2.85

AMLoss
Movie 85% 3.8

Restaurant 80% 3.5
Taxi 90% 3.35

Table 2: Human evaluation of different models. For
additional human evaluation results under noisy condi-
tions, please refer to the Appendix A.3.

5 Conclusion

This paper proposes a novel Adjustable Mirror Loss
(AMLoss) method to address the priority distor-
tion problem caused by forgetting and noisy expe-
riences in Offline RL-based dialogue policies. By
comparing the loss differences between the Main
Q-network and the Delayed Q-network, AMLoss
evaluates the incremental contribution of experi-
ences to dialogue policy improvement, optimizing
priority calculation and mitigating distortion. Us-
ing the Delayed Q-network to represent experience
retention, AMLoss avoids simple loss-based sam-
pling, as higher losses may arise from noisy experi-
ences while still revisiting valuable experiences to
address forgetting. We validate this method on four
TOD datasets with varying noise levels and analyze
its effectiveness in handling forgetting and noisy
experiences. It is noted that AMLoss is compatible
with PER, making its implementation straightfor-
ward—experience priority is assessed by calculat-
ing the Delayed Q-network loss based on Lalg and
θ̂. Thus, our AMLoss method aligns with PER and
can be applied to classical Offline RL to improve
performance further.



Limitations

Even though AMLoss shows strong effectiveness in
advancing prioritized experience replay, our work
has some limitations. AMLoss, due to its design
for priority calculation, is primarily focused on
optimizing experience replay in Offline RL. In of-
fline learning, historical experiences are the sole
source of learning, and optimizing the priority of
these experiences is crucial for improving learning
efficiency and stability. However, in Online RL,
real-time interactions and dynamic updates to the
experience pool limit the applicability of AMLoss.
As a result, AMLoss is best suited for Online RL
and may not be ideal for scenarios involving Online
RL.
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A Appendix

A.1 Algorithm of AMLoss

Algorithm 1:
Computing AMLoss for Prioritization
Require:
• Off-policy RL algorithm A with loss function Lalg

• Main Q-network parameters θ

• Delayed Q-network parameters θ̂

• Experience replay pool B

• Initial priority Pinit

• AMLoss Normalization Function fmap

• Epsilon priority ϵ

• Dialogue training timesteps T

• Iteration steps per training timesteps Titer

• Sampling batch size b

1: Initialize Experience replay pool B as empty;

2: Initialize Delayed Q-network θ̂ = θ;
3: for t = 1 to T do

a. Interact with environment:;

• Observe state st from the environment;

• Compute action at from the agent;

• Execute action at, observe reward rt, and next
state st+1;

• Store transition ⟨st,at, rt, st+1⟩ in B with
priority Pinit;
b. for each Iteration step from 1 to Titer do

• Sample minibatch of size b from B;

• Compute loss Lalg
θ and update θ;

• Compute Lalg
θ̂

and calculate AMLoss;

• Update minibatch priorities:
fmap(AMLoss) + ϵ;

4: Update Delayed Q-network following RL
algorithm A;

A.2 Datasets of TODs
MultiWOZ 2.1 is a large-scale, multi-domain TOD
dataset that includes dialogues from multiple do-
mains such as restaurant booking, hotel booking,
taxi booking, and tourist attraction recommenda-
tions. The dataset provides detailed user intent, slot
annotations, and dialogue context, making it suit-
able for evaluating core tasks such as dialogue man-
agement, intent recognition, and slot filling. The
scale and complexity of MultiWOZ 2.1 make it an

ideal choice for testing cross-domain generaliza-
tion ability. The Microsoft Dialogue Challenge fo-
cuses on daily conversations and customer support,
offering diverse dialogue scenarios across three
domains: movie-ticket booking, restaurant book-
ing, and taxi booking, making it suitable for multi-
task learning and sentiment analysis research. By
training with these datasets, this study can validate
the effectiveness of the proposed AMLoss method
in multi-domain, multi-task environments, partic-
ularly in handling noisy experiences, forgetting
experiences, and human evaluation performance.

A.3 Human Evaluation for Models

Model Domain Accuracy Fluency

RER+10%Noise
Movie 60% 2.6

Restaurant 65% 2.05
Taxi 60% 2.1

RER+15%Noise
Movie 65% 2.15

Restaurant 65% 2.45
Taxi 55% 2

RER+20%Noise
Movie 75% 2.4

Restaurant 55% 2.45
Taxi 65% 2

PER+10%Noise
Movie 55% 1.15

Restaurant 70% 1.25
Taxi 60% 1.9

PER+15%Noise
Movie 70% 3

Restaurant 75% 2.65
Taxi 80% 2.85

PER+20%Noise
Movie 70% 3.15

Restaurant 65% 2.8
Taxi 70% 3

TER+10%Noise
Movie 60% 2.25

Restaurant 55% 1.75
Taxi 65% 2.05

TER+15%Noise
Movie 50% 1.95

Restaurant 60% 2.5
Taxi 55% 2.25

TER+20%Noise
Movie 45% 2.2

Restaurant 50% 2.55
Taxi 35% 1.4

AMLoss+10%Noise
Movie 75% 3.65

Restaurant 85% 3.05
Taxi 70% 3.5

AMLoss+15%Noise
Movie 80% 3.7

Restaurant 85% 4.15
Taxi 70% 3

AMLoss+20%Noise
Movie 75% 3.1

Restaurant 65% 2.85
Taxi 75% 3.5

Table 3: Human evaluation results of the models under
different noisy conditions.
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