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Abstract

It has been recently shown that, when an Hopfield Network stores examples
generated as superposition of random features, new attractors appear in the model
corresponding to such features. In this work we expand that result to superpositions
of a finite number of features and we show numerically that the network remains
capable of learning the features. Furthermore, we reveal that the network also
develops attractors corresponding to previously unseen examples generated with
the same set of features. We support this result with a simple signal-to-noise
argument and we conjecture a phase diagram.

1 Introduction

The Hopfield Model (HM) [1] is a paradigmatic model of associative memory with relevance in
physics, biology, and computer science. Starting from corrupted signals, stored binary memories are
retrieved as fixed points of a dynamical system which is also an energy minimization process.

Recently, generalizations of the HM have gained attention thanks to the addition of several desirable
properties that nonetheless preserve the energy minimization and the associative mapping paradigms.
In particular, Modern Hopfield Networks overcome the linear (in the system size) capacity limit of
the HM and are able to store a polynomial [2, 3, 4] or even exponential [5, 6, 7] number of memories.
Continuous variables and differentiable update rules allow to plug in trainable components in machine
learning applications [6, 8]. A Lagrangian formalism can be used to describe a large family of such
models [9], also accommodating popular deep learning components such as the attention mechanism
[10] and layer normalization [11].
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In connection with recent advances in theoretical machine learning [12, 13, 14], it is shown in Ref.
[15] that even the standard HM, which has no trainable parameters, when given memories generated
by a latent manifold, ξν = σ(Fcν), is able to "learn" essential features of the data generating
process: when provided with enough samples, the (unobserved) columns of F become attractors of
the dynamics.

In this work, we further characterize the Random Feature Hopfield Model (RFHM) of Ref. [15]. In
particular, we show that the model is also able to "generalize", that is to store unobserved samples
of the data manifold. Spurious minima, normally detrimental for the HM, become beneficial in this
context.

2 Model description

Hopfield Model. Given N binary neurons si = ±1, and P binary memories {ξν}Pν=1 that we want
to store, the HM defines the sequential update rule

s
(t+1)
i = sign

 N∑
j ̸=i

Jijs
(t)
j

 , Jij =
1

N

P∑
ν=1

ξνiξνj . (1)

It can be shown [1] that as long as the memories are few (at most O(N)) and far apart enough, they
approximately correspond to fixed points of the dynamics and can be retrieved from a perturbed
configuration. The model admits an energy function H(s) = − 1

2

∑
i ̸=j Jijsisj . Using statistical

physics techniques [16, 17], it has been shown that the model is able to store up to P ≈ 0.138N
memories for large N .

Random Feature Hopfield Model. The RFHM [15] considers a data structure given by a random
projection of a D-dimensional latent space [18, 13, 14, 19]:

ξν = sign (Fcν) . (2)

The matrix F ∈ {−1,+1}N×D has i.i.d. uniform components. We call features its columns fk. The
latents vectors cν ∈ RD are called coefficients instead. We take each cν to have exactly L non-zero
entries, in random locations and uniformly sampled in ±1. We will discuss two cases: the sparse
case, L = O(1) as D → ∞, and the fully dense case, L = D. In the dense case Ref. [15] shows that
when a large number of examples is given to the RFHM, beyond its storage capacity, it enters a phase
where features instead become attractors. The model enters the learning phase if α = P/N is larger
than a critical value that depends on αD = D/N . We refer to this as the learning transition.

Generalization in the RFHM. Given that the examples are correlated, it is useful to call train
example, ξtrain, any of the P examples that are used in the Hebb rule defining the couplings matrix J
in (1). We also call test example, ξtest, any linear combination (followed by the sign activation) of
the features that is not used in J . We can now say that an HM generalizes if test examples are fixed
points of the update rule (1). In the same spirit of the learning phase in [15], we study if the network
enters a generalization phase in some region of α, αD and L space.

3 Numerical results

Methods. The numerical results of this work are all measures of magnetizations, obtained in the
following way. First, we initialize the model to the configuration s(0) whose stability we want
to check (we consider s(0) = ξtrain, s(0) = ξtest, and s(0) = f , with f any of the columns of
F ). Then, we run the update rule (1) until we reach a fixed point s̃. Finally, we compute the
magnetization as the normalized scalar product between the fixed point and the initial condition:
mtrain = 1

N

∑N
i=1 s̃iξ

train
i , mtest = 1

N

∑N
i=1 s̃iξ

test
i , and µ = 1

N

∑N
i=1 s̃ifi respectively. If, for

given α and αD, we find that the magnetization is close to 1, we say that there is a fixed point of
eq. (1) that corresponds to ξtrain, ξtest or f respectively.
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Figure 1: Train and test examples become
fixed points after the features have been
learned. Magnetization as a function of α, for
fixed αD. The blue line is the magnetization
µ of hidden features, which grows to 1 if α is
high enough (learning phase). The orange line is
the magnetization mtrain of the train examples,
which is mtrain ≃ 1 for low α and drops when α
increases, as expected from an associative mem-
ory (storage phase). Surprisingly, mtrain grows
to 1 again for high values of α. Near this tran-
sition, also test examples have mtest = 1, as
shown by the red line (generalization phase).
N = 32000; averages of 40 samples.
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Figure 2: Conjectured phase diagram. Com-
parison between the phase diagram of a standard
HM from [16] (top, temperature T vs α) and the
phase diagram of the dense RFHM (bottom, α
vs αD). Top panel: the blue line is the retrieval
line, below which the examples can be stored
and retrieved. The (red, violet and brown lines
are the retrieval lines of mixtures, respectively of
3, 5 and 7 examples. Bottom panel: the blue line
is the learning transition from [15], above which
the features can be stored and retrieved. The (red,
violet and brown dotted lines are the conjectured
retrieval lines of mixtures, respectively of 3, 5
and 7 features.

Learning phase. The first result that we present is that the model shows a learning transition even
when it is trained with a sparse combination of features (see Fig. 1, blue line), extending the result of
[15]. Surprisingly, it appears that the position of the learning transition depends weakly (if at all) on
the number L of features per example (see Fig. 3a).

Generalization phase. Surprisingly, after the features have been learned, the model enters a phase
in which the train examples are stable again (see Fig. 1, orange line). We note that it is physically
implausible that a phase disappears for low α and reappears when α is large. To understand what
is happening, we check the magnetization of test examples: we find that they become fixed points
together with the train examples. We call this the generalization phase, as it resembles the behavior of
inference models that perform well on previously unseen examples. The fact that both train and test
examples are fixed points for high α, while only train examples are fixed points for low α, indicates
that the model should be using different mechanisms to achieve these results.

Denser combinations In Fig. 3a we show learning (dashed lines) and generalization transitions
(solid lines) for different values of L and αD. We see that increasing either L or αD has the effect
of moving the generalization transition to higher values of α. Surprisingly, instead, we see that the
learning transition depends weakly (if at all) on L. Additionally, in Fig. 3b we study the maximum
number of features Dgen compatible with a generalization transition. We see that is Dgen = O(N) in
the sparse case L = O(1) and Dgen = O(

√
N) in the dense case L = D. This scaling is compatible

with what we find with a signal-to-noise analysis discussed in section 4.

4 Discussion

Conjectures on the phase diagram We propose the hypothesis that the mechanism that the network
uses to recognise previously unseen examples is by "spurious" mixtures of features, in the same
sense in which the classic Hopfield Network develops mixtures of train examples for low α [16]. Let
us consider a RFHM when α → ∞. In this regime, it was shown in [15] that the RFHM becomes
equivalent to a classic model with the features in place of the examples. Therefore we can expect
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Figure 3: Combinations of more features require more train examples. a) Feature magnetization
µ (dashed) and test examples magnetization mtest (solid) as a function of α for different αD

(subplots). Different colors represent increasing features per example L. Dashed vertical lines are the
analytical predictions from [15] in the dense case L = D. (N = 32000; averages of 40 samples.)
b) Scaling with N of the maximum number of features Dgen for which we observe a generalization
transition. Specifically, we plot the maximum D(N) at which 10 samples have mtest > 0.9, and we
average over 4 to 10 groups of 10 samples, depending on N .

a transition at αD ≃ 0.03 where mixtures of L = 3 features become fixed points. Mixtures with
increasing values of L are expected to become stable at lower values of α, as discussed in [16]. We
conjecture that each of these transitions is the starting point of the generalization lines in the plane
αD vs α (see Fig. 2): we expect these lines to follow the shape of the learning transition, namely
that when α is finite, the generalization transition moves towards lower values of αD. This would be
consistent with the result that combinations with larger L require more examples, and also with the
fact that combinations with L = D are stable only when αD = 0, which was already noted in [16].

Signal-to-noise analysis We provide an intuitive signal-to-noise argument to support the phase
diagram shown in Fig. 3 and the conjecture we discussed above. For simplicity we ignore non-
linearities. Let’s define a mixture of features as χνi =

∑
k′′ cνk′′fk′′i, where at this level the

coefficients can be either dense or sparse. We can see that the local field on a mixture can be written
as a signal term, proportional to the mixture itself, plus a "crosstalk" term that includes the noise
coming from the other features:

N∑
j=1

Jijχνj =
∑
k′′

cνk′′

 1

N

∑
j

∑
µ

(
1√
L

∑
k

cµkfki

)(
1√
L

∑
k′

cµk′fk′i

)
fk′′j

 (3)

=
P

D

[
χνi +O

(√
LD

N

)
+O

(√
L3

DP

)
+O

(√
L3

NP

)]
(4)

Now we can see that, if L = O(1), the second and third noise terms go to zero when N,D → ∞;
then, to keep the first noise term finite, we must set D = O(N). This means that the retrieval of
(sparse) mixtures happens at α > 0. On the contrary, it is impossible to retrieve (dense) mixtures at
finite α when L = D = O(N), since the signal would be overwhelmed by noise. It becomes possible
instead when L = D = O(N1/2), meaning α = 0: in this regime, the first noise term is finite again
(as well as the second and third ones). This scaling is confirmed by numerical results (see Fig. 3b).

5 Conclusions and perspectives

We showed that the learning phase studied in [15] still exists when the superposition of features is
sparse. We also showed that the model produces attractors in correspondence of examples that were
not used in the hebbian rule. We conjecture that this surprising behaviour is intimately related to the
presence of mixtures of memories in Hopfield Networks.
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The ability of a Hopfield Network to store linear combinations of examples has been known since
[16, 17], but it gains a new framework in the light of [15]: if the features hidden in the examples
become attractors, the network can combine them to produce new attractors that will recognize all
the possible examples generated with the same features.

Note that one downside of the learning phase described in [15] is that, while the model is able to
retrieve features if initialized close enough to one of them, there is no known way to find features
if no information is known, as the model converges to a spurious state if initialized at random. The
generalization phase seems to circumvent this problem: the model seems to mix the correct features
without any prior information about them.

This work showed only a scheme of generalization that might be relevant for more complicated
models, but before approaching more realistic situations we think that an analytical prediction of the
conjectured phase diagram should be possible. Another important step will be to test this scheme on
real datasets (drastic modifications to the Hebb rule are probably needed in this case).
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A Signal-to-noise analysis

A.1 Retrieval of a feature with L = O(D) coefficients

In the fully dense case we study the signal-to-noise ratio of a single feature retrieval, being the local
field

hki =
∑
j

Jijfkj

=
1

N

∑
j

∑
µ

ξµiξµjfkj

=
1

ND

∑
k′′

∑
k′

fk′i

[∑
µ

cµk′cµk′′

]∑
j

fk′′jfkj


=

1

D

∑
k′′

∑
k′

fk′i

(
Pδk′k′′ + (1− δk′k′′)O(P 1/2)

)(
δk′′k + (1− δk′′k)O(N−1/2)

)
(5)

which is separated into the true signal (contributing to the retrieval) for the diagonal term, while the
rest is noise. By making the orders of different contributions explicit, we have

hki =
P

D

[
fki +O

(√
D

N

)
+O

(√
D

P

)
+O

(√
D

N

√
D

P

)]
(6)

where we collected the order of the signal. This is compatible with the learning phase described
in [15] for finite values of α = P

N and αD = D
N : in fact, taking D = O(N) and P = O(N) makes

all the noise terms finite in the limit N → ∞. Fixing the scaling of the lower order noises also
guarantees that the higher orders one are fine in the termodynamic limit.
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A.2 Retrieval of a feature with L = O(1) coefficients

For the sparse case instead,

hk′′i =

N∑
j=1

Jijfk′′j

=
1

N

∑
j

∑
µ

(
1√
L

∑
k

cµkfki

)(
1√
L

∑
k′

cµk′fk′i

)
fk′′j

=
1

L

∑
kk′

(
δkk′P

L

D
+ (1− δkk′)O

(√
P
) L2

D2

)(
δk′k′′ + (1− δk′k′′)O

(
1√
N

))
fki.

(7)

where now the patterns in N -dimension are properly scaled with
√
L. Solving for the four cases and

by rescaling with the signal (feature) order we have

hk′′i =
P

D

[
fk′′i +O

(√
D

N

)
+

L

D
O

(√
D

P

)
+

L

D
O

(√
D2

PN

)]
(8)

which provides a consistent insight that the learning transition also exists in the sparse case at finite α
and that, as long as L = O(1) and P,D,N ≫ 1 the transition seems to weakly depend on L (look
consistently at Fig. 3a), since the noise terms depending on L can be ignored.

A.3 Retrieval of a mixture of features with L = O(1) coefficients

For the sake of clarity, we report the steps for eq. (3) in the main text. Being the mixture of features
defined as χνi =

∑
k′′ cνk′′fk′′i, we have

hνi =

N∑
j=1

Jijχµj

=
∑
k′′

cµk′′

N∑
j=1

Jijfk′′i

=
∑
k′′

cµk′′

 1

N

∑
j

∑
µ

(
1√
L

∑
k

cµkfki

)(
1√
L

∑
k′

cµk′fk′i

)
fk′′j


=
∑
k′′

cµk′′
P

D

[
fk′′i +O

(√
D

N

)
+

L

D
O

(√
D

P

)
+

L

D
O

(√
D2

PN

)]

=
P

D

[∑
k′′

cµk′′fk′′i +O

(√
LD

N

)
+O

(√
L3

DP

)
+O

(√
L3

NP

)]
.

(9)
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