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Abstract. In Graph Convolutional Neural Networks, the capability of
learning the representation of graph nodes comes at hand when deal-
ing with one of the many graph analysis tasks, namely the prediction of
node properties. Furthermore, node-level representations can be aggre-
gated to obtain a single graph-level representation and predictor. Such
aggregator functions are essential to retain the most information about
graph topology. This work explores an alternative route for the defini-
tion of the aggregation function compared to existing approaches. We
propose a graph aggregator that exploits Generative Topographic Map-
ping (GTM) to transform a set of node-level representations into a sin-
gle graph-level one. The integration of GTM in a GCNN pipeline allows
to estimate node representation probability densities and project them
in a low-dimensional space, while retaining the information about their
mutual similarity. A novel dedicated training procedure is specifically
designed to learn from these reduced representations instead of the com-
plete initial data. Experimental results on several graph classification
benchmark datasets show that this approach achieves competitive pre-
dictive performances with respect to the commonly adopted aggregation
architectures present in the literature, while retaining a well-grounded
theoretical framework.

Keywords: Graph Neural Network, Generative Topographic Mapping,
Node Aggregation

1 Introduction

Graphs are an effective tool for the representation of entities and relations thereof
for data coming from many application domains (e.g., chemistry, bioinformatics,
social sciences). Deep learning has shown astounding results on tasks for non-
structured data, such as image classification, so it is not surprising that many
deep learning models for graphs have been developed in recent years. Actually,
the first definition of neural networks for graphs has been proposed several years
ago [24], while more recently Micheli [16] proposed a model exploiting an idea
that has been re-branded later as graph convolution. In a nutshell, a graph con-
volution layer receives in input a representation for each node in a graph and,
similarly to convolutions defined for regular topologies (e.g., images) it computes
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a new representation for each node that also considers its local neighborhood,
i.e., the neighboring nodes. Following this idea, several different definitions of
graph convolution have been proposed in the literature [12]. The core property
of graph convolutions is that isomorphic graphs (i.e., graphs that represent the
same relationship among nodes) should produce the same node representations.
To date, there are no polynomial-time algorithms to decide if two graphs are
isomorphic. Thus, this property has to be verified by design.

In the setting where the graph representation is exploited to represent sam-
ples (abstracted as nodes) that are not i.i.d., i.e. that are in relation one with
each other (abstracted as edges), graph convolution is a powerful tool to gener-
ate node representations and node-level predictions. However, in the alternative,
but not less common, setting in which each training example is represented as a
distinct graph and the prediction has to be performed at the graph level (e.g.,
predicting properties of chemical compounds, each one represented as a different
graph), another non-trivial representation issue arises: it is necessary to define an
aggregation operator associating a single representation for the whole graph. The
definition of the aggregation function is not trivial for three main reasons: first,
it has to map a variable number of node representations into a single (preferably
fixed-size) graph-level one; second, it should be independent from the node or-
dering, that is it should be a graph invariant (isomorphic graphs should produce
the same representation), and third, we would like the representations of similar
graphs (e.g. a graph G(1) that is a subgraph of another graph G(2)) to be similar.

The simplest approach, that is commonly adopted in literature, is to con-
sider commutative global aggregation functions such as the element-wise sum,
mean, or maximum. However, it has been shown [17] in that using such simple
aggregations inevitably results in a loss of information, possibly impacting the
predictive performance of the Graph Neural Network (GNN) architecture. More
complex, non-linear aggregations have thus been proposed in literature [31].

Another approach consists in treating the node representations as elements
belonging to an unordered set [25] and to produce an order-invariant repre-
sentation from them. In this setting, Deep Sets [30] is a general framework to
define a universal approximator of functions over sets, that has been adopted
as graph aggregation [17]. It has been proved that, under some hypothesis, any
function f(X) over a set X = {x1, . . . , xM}, xm ∈ X can be decomposed as
f(X) = ρ

(∑
x∈X ϕ(x)

)
for suitable transformations ρ(·) and ϕ(·). Implementing

these functions as neural networks and learning them via backpropagation is a
viable approach, but may lead to overfitting.

The SOM-based aggregator [21] implements the ϕ(·) function of Deep Sets
exploiting a self-organizing map (SOM) [13] to map the node representations in
the space defined by the activations of the SOM neurons. The resulting represen-
tation embeds the information about the similarity between the various inputs.
In fact, similar input structures will be mapped in similar output representations
(i.e. node embeddings). The SOM is then followed by a Graph Convolution layer
to partially incorporate the task supervision in the ϕ(·) function.
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SOMs, however, suffer from some relevant drawbacks, such as the lack of an
associated cost function and thus of a general proof of convergence. Because of
that, it is also difficult to control the outcome of the learning process, which
is driven by many heuristics requiring a careful setting of the hyperparameters,
such as the shape of the function governing the width of the neighborhood used
during training.

In this paper, we address these issues by developing an alternative aggre-
gation function ϕ(·) that is based on a principled probabilistic model, namely
the Generative Topographic Mapping (GTM) [1]. Specifically, by adopting this
approach, we are able to have better control of the hyperparameters defining the
projection of the node representations on the 2-dimensional GTM probabilistic
latent space. This should make more effective the training procedure, leading
to better identification of the node representations manifold, and consequently
to more expressive graph-level hidden representations. In fact, contrarily to the
SOM where only one winning neuron gets activated for the whole map for each
input node (yielding to a global smoothing), the GTM grid of normal distri-
butions enables for a coarser transformation that preserves local structures of
the representation. These transformed representations are then exploited with
a dedicated training procedure, on which various pooling techniques can be ap-
plied [14]. An additional feature of the proposed aggregation function is the
amenability to directly inspect the internal representations of the model that are
used to produce the output: the GTM latent space is organized in a 2-dimensional
grid that can be easily plotted and whose corresponding values have a precise
probabilistic meaning. Moreover, the internal representations are directly used
by the model to produce the output and are obtained a posteriori by any dimen-
sionality reduction method that inevitably produces artifacts. This constitutes
an interesting base on which to develop GNN models that are interpretable by
design. We experimentally evaluate the GTM-based aggregation on five graph
classification tasks comparing it with other well-established aggregation func-
tions in the literature. Moreover, we show examples of plots of the GTM-based
internal representations in a multi-class graph classification task.

2 Notation

Throughout this work, we use italic letters to refer to variables, bold lowercase to
refer to vectors, bold uppercase letters to refer to matrices, and uppercase letters
to refer to sets or tuples. LetG = (V,E,X) be a graph, where V = {v0, . . . , vn−1}
denotes the set of n nodes (or vertices), E ⊆ V ×V denotes the set of edges, and
X ∈ Rn×s encodes the node attributes, namely its ith row represents the features
of node vi. The set of nodes linked to node vi, also known as neighborhood, is
denoted as N (vi).



4 P. Frazzetto et al.

3 Background

Broadly speaking, developing a GNN for graphs classification requires to imple-
ment three functions: a operator on graph-structured data, an aggregator and
a readout function. The graph operator exploits the graph topology and signal
G = (V,E,X) to create the nodes representations hv. Then, since graphs do not
usually have all the same size, an aggregation procedure is needed to gather all
the node representations hv and obtain a fixed-size graph-level one—hG. Even-
tually, a readout function translates hG into the output label o, whose error with
reference to its true value can be estimated through any loss function. The afore-
mentioned functions are parameterized by a set of learnable parameters Θ that
can be optimized, for instance, by minimizing the loss function via backpropa-
gation [9]. In the scope of this work, we can formally illustrate a general GNN
by means of the following equations. First, d stacked layers perform a non-linear
transformation of node representations, considering the local graph topology:

h(i)
v = f

(
graph operator

(
h(i−1)
v ,

{
h(i−1)
u | u ∈ N (v)

}))
1 ≤ i ≤ d,

where f(·) is an element-wise non-linear activation function, graph operator(·, ·)
is a operator on graphs, h

(i)
v is the representation of node v at the ith layer and

h
(0)
v = xv is the input signal for node v. Stacking these operator layers allows

for increasing the discriminatory power of the network since the representation
of a node v is influenced by all the nodes up to distance d from v. Then, the ag-
gregator that takes as input all the node representations can be written down as

hG = aggr
(
{h(i)

v ∀ v ∈ V, 1 ≤ i ≤ d}
)
. The aggr(·) further applies a non-linear

function to h
(i)
v that aggregates all the node representations. Finally, another

function reads out the graph representation and then an output layer is applied
to obtain the output, e.g. class probabilities for a c-class classification problem
can be obtained by o = LogSoftMax

(
hS

)
, where hS = readout(hG).

3.1 Generative Topographic Mapping

The GTM algorithm [1] is a form of non-linear latent variable model which is
based on a constrained mixture of Gaussians, whose parameters can be optimized
using the EM (expectation-maximization) procedure [6]. Let us now provide a
brief description of the GTM: given a dataset X of N data points xi ∈ RD, the
goal of a latent variable model is to find a representation for the distribution p(x)
of data in a D-dimensional space with respect to latent variables u embedded
in a L-dimensional latent space, where L ≪ D. A schematic illustration of a
GTM’s workings is provided in Fig 1, whereas for more detailed information we
refer the reader to Appendix A.1 and the original papers [1, 2].

4 GTM-based Aggregation Function

The Generative Topographic Mapping can be employed to effectively transform
data from a high-dimensional space into a low-dimensional latent space while
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Fig. 1. The GTM first considers a distribution of superposition of delta functions
centered at K nodes of a regular array (top left). Each node ui is projected into
the data space, where it becomes the center of a Gaussian distribution. Then, these
projections are fitted to the data manifold X (top right) and thanks to Bayes’ Theorem,
the posterior distribution in the latent space are retrieved (bottom).

L ⌧ D. A schematic illustration of a GTM’s workings is provided in Fig 1.
The GTM is built by first introducing a regular grid of K nodes ui in the
latent space, labelled by the index i = 1, 2, . . . , K, and a set of M fixed non-
linear radial basis functions (RBF) �(u) = {�j(u)}, with j = 1, 2, . . . , M . Using
the RBFs (the combination of RBFs is a good function universal approximator
[21]), it is possibile to define a generalized linear regression model from the
latent space to the data space, so that each point u in latent space is mapped to
a corresponding point y in the D-dimensional data space y(u,W) = W�(u),
where W is a D⇥M matrix of learnable weight parameters. In this fashion, each
node ui is projected to a D-dimensional reference vector mi = W�(u), and if
we set a prior distribution on the latent space nodes p(u) this mapping will also
induce a corresponding distribution in the data space p(y|W) confined in a L-
dimensional manifold. Since in reality the dataset X will only approximately lay
on a lower-dimensional manifold, it is appropriate to include a noise model for
the x vectors. Therefore, we assume that x, for a given u and W, is distributed
as a radially-symmetric Gaussian centred on y(u,W) and having variance ��1:

p(x|u,W,�) =

✓
�

2⇡

◆D/2

exp

⇢
� �

2
ky(u,W) � xk2

�
. (2)
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Fig. 1. The GTM first considers a distribution of superposition of delta functions
centered at K nodes of a regular array (left). Each node ui is projected into the data
space, where it becomes the center of a Gaussian distribution. Then, these projections
are fitted to the data manifold X (center), and thanks to Bayes’ Theorem, the posterior
distribution in the latent space is retrieved (right).

retaining the intrinsic properties of the dataset probability distribution p(x).
Additionally, the fact that GTM preserves the topological ordering guarantees
that similar node representations are mapped into similar distributions in the
lower-dimensional space. This method of feature extraction can be integrated
into a GCNN pipeline since the GTM can be well exerted as unsupervised
dimensionality reduction of the graph’s node representations hv before being
aggregated. In this section, we describe an implementation of a GTM-based ag-
gregation function for a GCNN, or briefly GTM-GCNN. Firstly we will focus
on its architecture and components, then we will describe the dedicated training
procedure to learn from labeled data.

4.1 Architecture

The proposed architecture of the GTM-GNN is made of three main components:
a Graph Convolutional part, the GTM-based aggregator, and a Readout module
for the final graph classification task, loosely based on the work of [21]. Let us
now illustrate in detail each component of the model. A graphical rendering of
the architecture is reported in Appendix A.2.

First of all, an amount d of stacked graphs convolutional layers learn stable
node representations from the input dataset X . For this implementation we
opted for GraphConv [5], due to its wide adoption and convincing performances,
and we choose the LeakyReLU as activation function σ. All the d convolutional
layers are followed by a batch normalization layer. Thus this step can be formally
written as

hGC(i)
v = σ

(
GraphConv

(
hGC(i−1)
v ,

{
hGC(i−1)
u | u ∈ N (v)

}))
, (1)

for 1 < i ≤ d, while the first layer directly acts on the input data. We refer to
the learnable parameters of this initial Graph Convolutional part as θGC .

The enriched node embeddings h
GC(i)
v for each layer are the one-to-one in-

put of d independent GTMs, that constitute the aggregator module. This en-
ables all the layer-wise information for different receptive fields to be propa-
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gated through the network. Recall that the representations h
GC(i)
v are vectors

in a high-dimensional space, whose size is governed by the number of neurons of
each GraphConv layer. Additionally, to improve numerical stability, these rep-
resentations are further bounded in [−1, 1] by applying the hyperbolic tangent

function, i.e. ĥ
GC(i)
v = tanh(h

GC(i)
v ). The GTM parameters θGTM = {Wi, βi}

are optimized via the EM algorithm and, once convergence has been reached, the

GTMs are exploited to project the input vectors ĥ
GC(i)
v into the L-dimensional

latent lattice, returning the posterior distribution ∀v ∈ VG (see Eq. 7):

hGTM(i)
v = GTM i

(
ĥGC(i)
v

)
= p(u|ĥGC(i)

v ,Wi, βi). (2)

The components of h
GTM(i)
v are then further normalized to reduce the variability

of node representations in the same graph, i.e., ĥ
GTM(i)
v = h

GTM(i)
v /ξ

GTM(i)
v ,

where ξ
GTM(i)
v is the maximum value among the components of h

GTM(i)
v . In

the third module, called Readout and defined by the parameters θReadout, each

ĥ
GTM(i)
v is fed through another GraphConv layer (so that the graph topology is

brought back). Then, these transformed representations are aggregated by taking
the concatenation of their average, sum, and component-wise maximum (this
idea was introduced by the [29]). At the end, all d feature maps are concatenated
to obtain one single graph-level representation hG ready for the output layer
and the supervised learning task, achieved by means of a MLP with LogSoftmax
output function.

h
(i)
readout = σ

(
GraphConv

(
ĥGTM(i)
v ,

{
ĥGTM(i)
u | u ∈ N (v)

}))
,

h′(i)
readout = aggr

({
h
(i)
readout | v ∈ VG

})
=

=
[
avgv∈VG

(
h
(i)
readout

)
, sumv∈VG

(
h
(i)
readout

)
,maxv∈VG

(
h
(i)
readout

)]
, (3)

hG =
[
avg(X), sum(X),max(X),h′(1)

readout, . . . ,h
′(d)
readout

]
,

oreadout = LogSoftMax(MLP (hG)).

4.2 Training Procedure

To conciliate the unsupervised framework of the GTMs with the supervised task
of graph classification, the training of the GTM-based GNN takes four steps
that are carried out one after the other, optimizing in each turn different sets of
learnable parameters.

The first training step consists in optimizing the parameters θGC by adding
an ad-hoc readout layer, which we indicate as pre-training readout, to perform
supervised learning with standard backpropagation. In other words, this allows
training of this part of the model separately from the rest of the network. This
pre-training readout layer further aggregates the node representations by taking



GTM-GCNN 7

the concatenation of their average, sum, and component-wise maximum (as in
Eq. (3)). Then, it stacks these vectors for all the d layers and applies a linear
transformation and the log softmax activation function in the end. In this way,

the pre-training block learns stable node representations h
GC(i)
v for each Graph-

Conv layer that are later fed to the GTM module. The pre-training readout
layer is discarded and thus will not make part of the final model.

Next, the parameters θGTM of the GTMs are initialized using the first two
principal components of the node representations PCA, and later optimized via
the EM algorithm. Then, the parameters θReadout are optimized via backpropa-
gation with reference to the negative log-likelihood loss on oreadout for the c-class
graph classification. To get this output, we already mentioned that hG passes
over an MLP and consequently the LogSoftMax function is applied. Notice that
so far each training phase has been carried out independently for each module
and it is necessary to train them in this specific order, hence hampering the
capability of the GTM-GNN to learn end-to-end.

Finally, the last training step consists of a fine-tuning phase. The purpose of
this step is to tune the model parameters θGC and θReadout while maintaining
the θGTM fixed. Additional cycles of adaptation could take place by retraining
the GTMs while fixing the rest of the network and so on, however, we did not
investigate further this scenario. The pseudo-code that summarizes the training
procedure is reported in Algorithm 1 in Appendix A.3.

5 Experimental Results

In this section we present our model setup, then we report and discuss the
results obtained by the GNN that exploits the proposed GTM-based aggregation.
An overview of the adopted datasets and baseline models is reported in the
Appendix A.4 and A.5.

5.1 Setup and Hyperparameters

As already mentioned, the GTM-GNN is made of three main parts, i.e the pre-
training section, the GTM-based aggregator, and the Readout module. For what
concerns the first pre-training module, we set at d = 3 the number of hidden
layers and select GraphConv as convolutional operator. In relation to the relative
size of these layers, we opted for a “funnel” architecture [18] in the sense that the
GraphConv layers have an increasing number of neurons, namely hGC(1) ∈ Rl,
hGC(2) ∈ R2l and hGC(3) ∈ R3l, where the size l is an hyperparameter. This
architecture has been proved to improve performances and therefore it is adopted
in the GTM-GCNN. Both the pre-training and the Readout module are trained
via backpropagation using the AdamW optimizer [15].

The goal of this work is to evaluate the benefit of using the GTM-based
aggregation, therefore we focused our attention on the behavior of the GTM
parameters. For all GTMs, we set the latent variable dimension to L = 2, so
that the K latent variables ui lay in a bi-dimensional plane. Both their amount
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in the width and the height dimensions of the regular grid are hyperparameters
(in this way K = height ×width), and the grid itself is build accordingly within
a bounded [−1, 1] × [−1, 1] plane when the GTMs are initialized. Other two
relevant hyperparameters concern the Radial Basis Functions ϕ(u), namely their
amount M and variance σ. The former is used to form a M ×M regular grid of
RBF center points, that is overlayed to the latent variables grid in the [−1, 1]

2

plane. On the other hand, the variance σ can be tested for any value or can
be computed as the average minimum distance among the aforementioned RBF
centers. Finally, as soon as the latent nodes grid and RBF function are set,
the matrix Φij = ϕj(ui) is computed and we pad a bias column of 1 to it.
Notice that this step is done only once at initialization. The parameters W and
β can be either initially set at random from the standard normal distribution
N (µ = 0, σ = 1), or as explained beforehand they are computed as to mimic
the PCA applied to the whole training set. To do this, before the first epoch
of the EM algorithm, the whole dataset is loaded into memory and the PCA
is performed. We avoided the random initialization since it can be numerically
unstable and it takes longer for convergence. This step is also needed to determine
the right size of the responsibility matrix Rin that is updated from the first epoch
with the incremental learning. The last hyperparameter is the regularization
constant λ, which can take any fixed value or be equal to β−1.

After the EM optimization, the posterior distribution of the input data is

estimated with Eq. (7) and its output is scaled by its maximum value ξ
GTM(i)
v

before being fed to the next GraphConv layer, so that the values are bounded in
[0, 1], restricting the learning of their relative scale on the lattice grid rather than
absolute magnitude (being unnormalized probabilities). Eventually, the Readout
module concatenates the three GraphConv outputs of the same fixed size l and
supplies them to a MLP, whose depth q is also a hyperparameter.

5.2 Model Selection

To select the best hyperparameter combination we run 10-fold cross-validation
for each dataset. Due to the long time requirements of performing an extensive
grid search, we decided to limit the number of values taken into account for
each hyperparameter and we performed a random search over the grid of their
combination. Table 3 in Appendix A.6 gives an overview of the arbitrarily chosen
values of the GTM hyperparameters grid. Each one of the four training phases
runs for 500 epochs and moreover, to reduce overfitting on the training set, we
adopted a validation-based early stopping regularization that chooses the epoch
of the best performing model on the validation set, stopping the training if
after 25 epochs no better result is achieved. For what concerns the GTMs, we
take the validation losses, i.e. the complete-data log-likelihood, to monitor the
convergence and early stopping.
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Dataset PTC NCI1 PROTEINS D&D ENZYMES

PSCN [19] 60.00±4.82 76.34±1.68 75.00±2.51 76.27±2.64 -
FGCNN [17] 58.82±1.80 81.50±0.39 74.57±0.80 77.47±0.86 -
DGCNN [17] 57.14±2.19 72.97±0.87 73.96±0.41 78.09±0.72 -
DGCNN [8] - 76.4±1.7 72.9±3.5 76.6±4.3 38.9±5.7
GIN [8] - 80.0±1.4 73.3±4.0 75.3±2.9 59.6±4.5
DIFFPOOL [8] - 76.9±1.9 73.7±3.5 75.0±3.5 59.5±5.6
GraphSAGE [8] - 76.0±1.8 73.0±4.5 72.9±2.0 58.2±6.0
DGCNN-DeepSets [17] 58.16±1.05 74.19±0.59 75.11±0.28 77.86±0.27 -
SOM-GCNN [21] 62.24±1.7 83.30±0.45 75.22±0.61 78.10±0.60 50.01±2.92

GTM-GCNN 62.49±9.60 82.48±1.33 72.88±4.82 78.27±3.63 59.03±5.92

GTM-GCNN
Hyperparameters

(15× 20)
q = 1

λ = 0.01
l = 30

(15× 20)
q = 5
λ = 0.1
l = 50

(11× 16)
q = 1

λ = 0.01
l = 20

(12× 17)
q = 3
λ = 0.1
l = 50

(15× 20)
q = 3
λ = 0.1
l = 50

Table 1. Accuracies of GTM-GCNN and state-of-the-art models on the five used
datasets. Values for the selected latent variable grid size, depth of the readout MLP q,
regularization parameter λ and amount of hidden neurons l are reported.

5.3 Discussion

In Table 1, we report the results achieved by the GNNs when the comparison
among them is fair, i.e the same validation strategy and the common settings
for the input datasets are employed. The issue of experimental reproducibility
and replicability in the field of GNN is crucial and therefore we hold as baseline
only the fair results that are reported in the literature [8]. The results reported
in Table 1 were obtained by performing 5 runs of 10-fold cross-validation. The
results reported in [27, 4, 28] are not considered in our comparison since the
model selection strategy is different from the one we adopted and this makes the
results not comparable.

The results reported in Table 1 show that the GTM-GCNN achieved highly
competitive performance in all considered datasets. In particular, on PTC and
D&D the proposed method outperforms state-of-the-art results, while in NCI1,
PROTEINS, and ENZYMES the accuracy results are higher than the one achieved
by most of the models considered in the comparison. On NCI1 the GTM-GCNN
shows the second-best performance, and only the SOM-GCNN outperforms our
proposed model. While on PROTEINS, the accuracy reached by the GTM-
GCNN is lower than the ones obtained by many of the other considered models.
The hyperparameter values selected in this case are very different than in the
ones selected on the other datasets. Indeed, the selected model is the simpler
considered in our experimental assessment (l = 20, q = 1). Specifically, 20 is the
smallest value for l that we considered during the validation process. It is likely
that by using smaller values for l the GTM-GCNN could reach better perfor-
mances and avoid overfitting. Additionally, this dataset has an higher average
degree (3.73, see Table 2) compared with NCI1 (2.16) and PTC (2.06); we argue
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that, compared with the other two datasets that have graphs sizes of the same
magnitude, it could be more difficult to grasp the local features that differenti-
ate between the two classes. Overall, the GTM-CGNN exhibits higher accuracy
variances due to varying performances on each CV split. We also argue that,
being a probabilistic model, randomness plays a major role in the GTM com-
ponent. Nevertheless, we recall that this probabilistic framework is theoretically
well-founded and more research can be done to exploit its characteristics (see
the next section).

The similarity between GTM-GCNN and SOM-GCNNmakes the comparison
between these two models very interesting in evaluating the impact of the pro-
posed GTM-based graph aggregator. From this perspective, it is worth noticing
that the drop of accuracy on NCI1 and PROTEINS is limited, while in EN-
ZYMES the difference between SOM-GCNN and GTM-GCNN models is con-
siderable. Indeed, GTM-GCNN improves the SOM-GCNN performance by al-
most 9 percentage points. In order to investigate the reason for this performance
improvement, in Figure 2, we plot the heatmaps that represent the lattice rep-
resentations of the SOM and GTM on ENZYMES datasets. The heatmaps were
computed following the same procedure proposed in [21]. For the SOM heatmaps
we selected the same best parameters reported in the original paper [21]. Each
heatmap shows the average value of each neuron in the lattice (either SOM or
GTM), computed over the set of graphs belonging to the same class. Thus, each
heatmap represents, for each class, the average level of utilization of the different
parts of the lattice, this means that parts that are used by a single class represent
discriminative areas for that class. The comparison shows that the GTM tends
to create a more distributed pattern of specific areas—the node representations
of the graphs benefit from the greater expressiveness and local discriminative
power of the GTM in comparison with the SOM. Moreover, the local differences
among representations of nodes belonging to different classes are more noticeable
considering the ones obtained using the GTM (see for instance the dissimilarity
between Label 2 and 3 w.r.t the SOM). The better representations obtained
by the GTM are also due to less sensibility of the GTM to the values of the
hyperparameters, in comparison with SOM. Indeed, as reported in Table 1, the
selected latent space dimensions are similar regardless of the complexity of the
considered dataset/task. These interesting features, related to the probabilistic
definition of the GTMs, help also in having an effective training phase.

6 Conclusions and Future Works

In this paper, we addressed the problem of defining a more effective node aggre-
gation function for Graph Neural Networks. Specifically, inspired by the work
proposed in [21], where the authors introduced a SOM-based graph aggregator,
we developed a novel node aggregation function based on a principled proba-
bilistic model, i.e. Generative Topographic Mapping [1], that owns several nice
advantages over SOM: i) training optimizes a well-defined cost function; ii) a
smaller hyperparameter space to explore for model selection; iii) experimentally
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Fig. 2. Heatmaps of first-level SOM (top row) and GTM (bottom row) projected repre-
sentations for the multi-class dataset ENZYMES. Heatmaps at higher levels are similar.
Each heatmap is obtained by averaging the contribution of several graphs belonging
to the corresponding class.

showed to return richer dimensionality reduction mappings, thus increasing the
expressiveness of the node aggregation function that can be obtained in prac-
tice. In addition to the above advantages, the proposed approach opens the
door to more interpretable GNNs since the internal 2-dimensional representa-
tions used to generate the output can be directly visualized for inspection in 2-D
heatmaps. This comes without compromising the performance of the model, as
clearly shown by the reported state-of-the-art empirical results on five graph-level
classification tasks by a GNN exploiting the GTM-based aggregation function.

Interestingly, the GTM-based aggregation operator shows a significant im-
provement in performance on multi-class problems, in comparison to the closest
competitor, the SOM-GCNN.

In the future, we plan to develop an end-to-end supervised training algorithm
to simplify and speed up the training of the model. Moreover, we will study how
to further exploit the probabilistic representation computed by the GTM, with
the aim to improve the interpretability of the model, and we plan to test its
performances on other multi-class datasets present in the literature.
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A Appendix

A.1 The Generative Topographic Mapping

The GTM is built by first introducing a regular grid of K nodes ui in the
latent space, labelled by the index i = 1, 2, . . . ,K, and a set of M fixed non-
linear radial basis functions (RBF) ϕ(u) = {ϕj(u)}, with j = 1, 2, . . . ,M . Using
the RBFs (the combination of RBFs is a good universal function approximator
[20]), it is possibile to define a generalized linear regression model from the latent
space to the data space, such that each point u in latent space is mapped to a
corresponding point y in the D-dimensional data space

y(u,W) = Wϕ(u), (4)

where W is a D × M matrix of learnable weight parameters. In this fashion,
each node ui is projected to a D-dimensional reference vector

mi = Wϕ(u), (5)

and if we set a prior distribution on the latent space nodes p(u) this mapping will
also induce a corresponding distribution in the data space p(y|W) confined in a
L-dimensional manifold. Since in reality the dataset X will only approximately
lay on a lower-dimensional manifold, it is appropriate to include a noise model for
the x vectors. Therefore, we assume that x, for a given u and W, is distributed
as a radially-symmetric Gaussian centred on y(u,W) and having variance β−1:

p(x|u,W, β) =

(
β

2π

)D/2

exp

{
− β

2
∥y(u,W)− x∥2

}
.

By marginalizing over p(u)

p(x|W, β) =

∫
p(x|u,W, β)p(u)du. (6)

and by choosing the prior distribution p(u) to be a superposition of delta func-
tions located at the K nodes of the regular grid in latent space, (which is equiv-
alent to say that the prior probabilities of each of the components is assumed
to be constant and equal to 1/K), the distribution in the data space can be
expressed as

p(x|W, β) =
1

K

K∑

i=1

p(x|ui,W, β).

The posterior probabilities of the latent variables (or responsibilities Ri) given
an input x can be computed by applying Bayes’ theorem:

Ri(x;W, β) = p(ui|x,W, β) =
exp

{
−β

2 ∥mi − x∥2
}

∑K
j=1 exp

{
−β

2 ∥mj − x∥2
} , (7)
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and the final response as R(x;W, β) =
∑

i p(ui|x,W, β).
Since the GTM represents a parametric probability density model, it can be

fitted to the dataset X by computing the optimal parameters W and β−1 via
likelihood maximization. The log likelihood function is given by

L(W, β) =

N∑

n=1

ln(p(xn|W, β)) =

N∑

n=1

ln

{
1

K

K∑

i=1

p(xn|ui,W, β)

}
,

to which a regularization term can be added to reduce overfitting and improve
convergence, e.g. by choosing a Gaussian prior over the weights governed by a
hyperparameter λ ∈ R

p(W|λ) =
(

λ

2π

)MD/2

exp



−λ

2

M∑

j=1

D∑

d=1

w2
jd



.

The maximization of the resulting loss function can be carried out by standard
optimization techniques, but since we are dealing with a latent variable model
a viable approach is to employ the well-established Expectation-Maximization
algorithm [6]. Significant performance improvements in training can be achieved
by updating the parameters incrementally using data in smaller batches [2],
which is particularly suited for deep learning applications, and thus adopted in
this paper.

Notice that for the particular noise model given by Eq. 6, the distribution
p(x|W, β) indeed corresponds to a constrained Gaussian mixture model since the
centres of the Gaussians, i.e. y(ui,W), cannot move independently but instead
are adjusted indirectly through changes to the weight matrix W. Besides, the
projected points mi will necessarily have a topographic ordering in the sense
that any two points uA and uB which are close in the latent space are mapped
to points mA and mB which are also close in the data space.
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A.2 GTM-GNN Architecture Scheme

Fig. 3. Graphical representation of the GTM-based GNN architecture. On the left
side, the input graph goes first ot the Graph Convolutional module, that is trained
independently on the Pre-training Readout layer. Then its representations are used to
train the GTMs (bottom right) and their projection are learned by a Readout module.
Finally, all the parameters but the GTMs’ are adjusted in a fine-tuning step.
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A.3 Training Procedure Pseudo-code

Algorithm 1 GTM-based GNN Training Procedure

Input: Graphs Dataset X with associated labels y
1: θGC ,opre ← Pretraining(X , y) ▷ Pre-training of GraphConv Module

2: ∀ stacked layer i : hGC(i) ← f
(
GraphConv

(
h
GC(i−1)
v

))
▷ Get stable

representations from pre-training module

3: θGTM(i) ← GTM training
(
tanh

(
hGC(i)

))
▷ Expectation Maximization

4: hGTM(i) ← GTM
(
tanh

(
hGC(i)

)
,θGTM

)
▷ Projected representations

5: ∀v : ĥ
GTM(i)
v ← h

GTM(i)
v

ξ
GTM(i)
v

, where ξ
GTM(i)
v is the maximum of h

GTM(i)
v components

6: ∀i : h(i)
readout ← f

(
GraphConv

(
ĥ
GTM(i)
v

))
▷ Readout Module

7: ∀i : h′(i)
readout ← aggr

({
h
(i)
readout | v ∈ VG

})
▷ Aggregation

8: hG ←
[
avg(X), sum(X),max(X),h′(1)

readout, . . . ,h
′(d)
readout

]
▷ Concatenation

9: oreadout ← f (MLP(hG))
10: θreadout ← LogSoftMax (X , y;oreadout) ▷ Readout training
11: θGC ,θreadout ← FineTuning

(
X , y;θGC ,θreadout

)
▷ Fine-Tuning training

Output: GTM-based GNN
(
θGC ,θGTM ,θreadout

)

A.4 Datasets

We empirically validated the proposed GTM-GNN on five widely adopted datasets
of graph classification: PTC [11], NCI1 [26], PROTEINS, [3], D&D [7] and EN-
ZYMES [3]. All these datasets are modeling chemical/bioinformatics problems.
PTC and NCI1 contains molecular graphs that represent chemical compounds.
Each node is labeled with an atom type, and the edges represent bonds between
them. The task in PTC consists in the prediction of the carcinogenicity of the
compounds for male rats. In NCI1 the graphs represent anti-cancer screens for
cell lung cancer. PROTEINS, D&D and ENZYMES, contain graphs that rep-
resent proteins. Each node corresponds to an amino acid and an edge connects
two of them if they are less then 6Å (Angstrom) apart. In particular ENZYMES,
differently than the other considered datasets (that model binary classification
problems) allows testing the model on multi-class classification over 6 classes.
Relevant statistics about the datasets are reported in Table 2.

A.5 GNN Models employed as baselines

We compare the GTM-GCNN with several GNN architectures which achieved
state-of-the-art results on the used datasets. In the following, we describe the
models considered for the experimental comparison. The first model that we
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Dataset #Graphs #Node #Edge Avg #Nodes/Graph Avg.#Edges/Graph Avg. Degree

PTC 344 4915 10108 14.29 14.69 2.06
NCI1 4110 122747 265506 29.87 32.30 2.16

PROTEINS 1113 43471 162088 39.06 72.82 3.73
D&D 1178 334925 1686092 284.32 715.66 5.03

ENZYMES 600 19580 74564 32.63 124.27 3.81

Table 2. Datasets statistics.

consider in our experimental comparison is the PSCN proposed by Niepert et al.
[19]. PSCN follows a straightforward approach to define convolutions on graphs,
that is conceptually closer to convolutions defined over images. First, it selects
a fixed number of vertices from each graph, exploiting a canonical ordering on
graph vertices. Then, for each vertex, it defines a fixed-size neighborhood (of
vertices possibly at distance greater than one), exploiting the same ordering.
This approach requires to compute a canonical ordering over the vertices of
each input graph, that is a problem as complex as the graph isomorphism (no
polynomial-time algorithm is known).
GraphSage [10] does modify the standard definition of graph convolution em-
powering the aggregation over the neighborhoods by using sum, mean or max-
pooling operators, and then performs a linear projection in order to update
the node representations. in addition to that, it exploits a particular neighbors
sampling scheme.
The convolution proposed in [10] has been extended by GIN [27], which intro-
duces a more expressive aggregation function on multi-sets with the aim to over-
take the limitation introduced by GraphSAGE using sum, mean or max-pooling
operators.
DGCNN [31] extends the GCN proposed by Kipf et al. [12] introducing a slightly
different propagation scheme for vertices’ representations based on random-walks
on the graph, and exploiting SortPooling as aggregation function. An extension
of this model that exploits the DeepSet (DGCNN-DeepSet) was proposed by
Tran et al. in 2019 [17].
The Funnel GCNN (FGCNN) model [18] does rely on the similarity of the
adopted graph convolutional operator to the way the features of the Weisfeiler-
Lehman (WL) Subtree Kernel [23] are computed. Based on this observation,
a novel WL-based loss term for the output of each convolutional layer is in-
troduced to guide the network to reconstruct the corresponding explicit WL
features. FGCNN also adopts a number of filters at each convolutional layer
determined by a measure of the WL-kernel complexity.
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A.6 Hyperparameters and Configuration

Hyperparameter List of values

Latent variables grid (10× 15), (11× 16), (13× 18), (15× 20), (20× 25)
Amount of RBF M 8, 12, 18
Variance of RBF σ s, 2s, 1
GTM Regularization λ 10, 1, 0, 0.1, 0.01, β−1

MLP depth q 1, 3, 5
Hidden neurons l 20, 30, 50

Table 3. Hyperparameter grid for the random search cross validations. Recall that s
is the average spacing among RBF centers, e.g. σ = 0.167 for the (15× 10) grid.

The GTM-based GNN has been implemented with Python 3.8.8 and PyTorch
1.8.1 [22], an open source and multi-purpose machine learning framework. We
adopted 2 types of machines, respectively equipped with: 2 x Intel(R) Xeon(R)
CPU E5-2630L v3, 192GB of RAM, a Nvidia Tesla V100 and 2 x Intel(R)
Xeon(R) CPU E5-2650 v3, 160 GB of RAM, Nvidia T4.


