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ABSTRACT

There have been many recent advances in LLM for zero-shot tasks. While these
models have shown great promise, pre-tokenization process methods for numbers
are mostly empirical and lack experimental justification. In this paper, we an-
alyze the tokenization methods of numbers through time series forecasting. We
conducted experiments to evaluate the impact of different factors on Byte-Pair En-
coding (BPE) tokenizers and proposed a novel pre-tokenization algorithm that is
justified to maintain the balance between details and memory cost. Our analysis
highlights the importance of a systematic understanding of the pre-tokenization
process and provides a baseline for further exploration.1

1 INTRODUCTION & BACKGROUND

Large Language Models (LLMs) have proven their generalization capabilities across diverse tasks,
demonstrating exceptional performance in zero-shot settings (Touvron et al., 2023a;b; Brown et al.,
2020; Workshop et al., 2022). With extensive training and learning from human feedback, these
models have learned to process and generate language with unprecedented accuracy even beyond
English (Ouyang et al., 2022; Du et al., 2022; Zeng et al., 2022). The success of LLM has inspired
exploration of their potential in adjacent areas, such as time series analysis. Remarkably, these
models continue to excel in zero-shot tasks when processing tokenized input (Gruver et al., 2023),
highlighting their remarkable flexibility and adaptability.

While directly feeding LLM with the text form of numbers has been shown to be effective (Gruver
et al., 2023), existing research largely conducts the pre-tokenization process on an empirical basis.
To the best of our knowledge, systematical pre-tokenization approach

By revisiting the pre-tokenization process of textual sequences, we propose several pre-tokenization
strategies for numbers. For both open and closed LLMs, the current state-of-the-art (SOTA) models
are based on the Byte-Pair Encoding (BPE) tokenization algorithm (Sennrich et al., 2015).

2 METHODOLOGY & EXPERIMENTS

In this section, we propose process of pre-tokenization and validate with experiments as in Figure 1.
We hire the Informer dataset (Zhou et al., 2021), which is a collection of 6 time series forecasting
datasets.

2.1 OBSERVATIONS

Rounding: The Precision and Redundency Trade-off. In NLP tasks, preserving more tokens
enables LLMs to access more context, but overly detailed context also raised the Out-Of-Vocabulary
issue (Sennrich et al., 2015). A double-precision FP64 floating-point number occupies 64 bits (8

∗Corresponding author.
1Implementation of our method can be found at: github.com/itdevwu/Pre-Tokenization-of-Numbers
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LLM

BPE Tokenizer* Token Limit

···,716.42,···,130.2242673,···,128.35,···
𝑥max 𝑥min

Normalization

··· 0.60112761,···,0.00318715,···0.19870117,···

ℎ(𝑥t) + 𝛱

Precision of
Linear Metrics

=

Least Useful Digit

Rounding Scaling

··· 0.601127,···,0.003187,···0.198701,···
··· 6.01127,···,0.03187,···1.9871,···
··· 60.1127,···,0.3187,···19.871,···
··· 601.127,···,3.187,···198.71,···
··· 6011.27,···,31.87,···1987.1,···
··· 60112.7,···,318.7,···19871.,···
··· 601127.,···,3187.,···198710.,···

×10

‘3’   ‘1’   ‘8’   ‘.’   ‘7’

123 456   789   345   679

Figure 1: Algorithm flow. Normalization: Scale the entire sequence to a similar range; Rounding:
rounding off some bits without affecting precision; Scaling: Scaling the sequence to make it the
shortest possible textual form. Some LLMs tokenize digits separately (Touvron et al., 2023a;b)

Bytes), yet with modified BPE tokenizer from models like LLaMA (Touvron et al., 2023a;b) or
ChatGLM (Du et al., 2022; Zeng et al., 2022), FP64 is represented as a maximum 18-token sequence
and stored as a [1 × 18] tensor, costing 18 × wbit bits, where wbits denotes bit width (usually 16
bits, could be 8 bits or 4 bits after quantization). Longer textual representations leads to more
memory consumption and shorter context window, and trimming trailing digits appropriately during
pre-processing can save memory and denoise the series

Normalization & Scaling: Controllable Model Performance Defeating Repeat. Normalization
scales the series into a range, which standardized the input for LLM. While normalization is com-
monly used to ensure consistency and comparability, another key usage of normalization in LLM
zero-shot subject is, to ensure the un-tuned LLM behave as expected. Scaling is a counter-intuitive
that prevents repeat, which undermine zero-shot numerical ability of LLM. We discovered that keep-
ing the input sequence in a generally large and diverse range can reduce repeat. This is possibly
because of larger value range increase appearance of a larger group of token. As Figure 2 has
illustrated, scaling series into a larger range improves zero-shot performance LLM.

2.2 OUR PROPOSAL

Inspired by the above observations, we propose a pre-tokenization algorithm described in Figure
1 that reduces overall token length while maintaining required precision. Let Π as the preci-
sion required for linear metrics as mean absolute error (MAE). Our approach starts by normaliz-
ing the series XT = {x1, x2, · · · , xt, · · ·xT } using min-max normalization into the range [0, 1].
Next, we identify the smallest number xmin ∈ XT . Denote the highest non-zero digit of x as
h(x) = ⌈(− lg x)⌉, and then calculate h(xmin) + Π as the lowest useful digit for xmin, as digits
below this threshold are smaller than 1

10Π . As long as this precision ensures that xmin satisfies the
precision requirement, the entire sequence will not lose precision due to rounding. After rounding,
we multiply each element of XT by 10 repeatedly until all numbers are integers. Throughout this
process, we record the smallest token length for the entire XT which saves the most memory.

The maximum number of digits for a double-precision floating-point number is 18, which leads
to an upper bound on the time complexity of the scaling stage of O(18T ). Since both the input
normalization and finding xmin have a time complexity of Θ(T ), the upper bound of our proposed
algorithm should be O(20T ), resulting in a linear time complexity of Θ(T ). We tested our method,
and it performed similarly while reducing token lengths.

3 CONCLUSION

In this paper, we reviewed factors affecting performance of zero-shot numerical tasks with LLM.
By summarizing observations, we proposed a linear algorithm that saves memory without losing
precision. We hope that to invoke more research that unleash potential of LLM in its era.

URM STATEMENT
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Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, et al. Bloom:
A 176b-parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100,
2022.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414, 2022.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

3



Published as a Tiny Paper at ICLR 2024

A APPENDIX

A.1 EXPERIMENT RESULTS

For the pre-training model, we chose the smaller LLaMA2-7B, as our aim was to investigate suit-
able ways of pre-tokenization, rather than to specifically improve the performance of time series
forecasting.

Our experiments were completed using a Nvidia GeForce RTX 3090 24 GB with CUDA 12.1. Due
to the large consumption of computational resources by the large language model, we quantized
the model with GPTQ (Frantar et al., 2022). Since this experiment does not involve comparison of
models, quantization should not affect the conclusions of the experiment.

We conducted experiments on the following dataset. The table shows the performance of our method
and other different pre-tokenization methods on different data. Due to the high computational cost
of large language models, we sampled the following experiments on all datasets and ensured that
every sequence in each dataset was in the sample.

When pre-processing the dataset, we normalized all the data by deflating the data within the interval
of [0, 1] in order to compare the effect of different deflations on the results.

Figure 2: Experiemnts. The left part shows that despite additional rounding applied, our method has
similar performance to empirical ones. The right part shows that our method costs less memory.

Scaling Range
Datasets [0, 10] [0, 100] [50, 100] [90, 100] [0, 1000] Ours

exchange rate 0.343 0.349 0.319 0.374 0.305 0.365
traffic 0.223 0.200 0.245 0.282 0.233 0.313

electricity 0.266 0.302 0.321 0.379 0.307 0.285
ETTh1 0.332 0.392 0.352 0.386 0.328 0.346
ETTh2 0.351 0.332 0.345 0.346 0.329 0.359
ETTm1 0.325 0.347 0.332 0.427 0.324 0.324
ETTm2 0.282 0.288 0.302 0.310 0.300 0.339
illness 0.325 0.273 0.372 0.373 0.334 0.306

weather 0.269 0.326 0.341 0.325 0.260 0.311

Table 1: Experiments Result. Result are aggregated by geographic mean due to the series has been
normalized prior to forecasting.
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