
Learning Stochastic Rainbow Networks

Vivian White
Department of Computer Science
Western Washington University

Bellingham, WA, USA

Muawiz Chaudhary
Department of Computer Science

Mila, Concordia University
Montréal, QC, Canada

Guy Wolf
Department of Mathematics and Statistics

Mila, Université de Montréal
Montréal, QC, Canada

Guillaume Lajoie
Department of Mathematics and Statistics

Mila, Université de Montréal
Montréal, QC, Canada

Kameron Decker Harris
Department of Computer Science
Western Washington University

Bellingham, WA, USA
kameron.harris@wwu.edu

Abstract

Random feature models are a popular approach for studying network learning that
can capture important behaviors while remaining simpler than traditional training.
Guth et al. [2024] introduced “rainbow” networks which model the distribution of
trained weights as correlated random features conditioned on previous layer activity.
Sampling new weights from distributions fit to learned networks led to similar
performance in entirely untrained networks, and the observed weight covariance
were found to be low rank. This provided evidence that random feature models
could be extended to some networks away from initialization. However, White
et al. [2024] failed to replicate their results in the deeper ResNet18 architecture.
Here we ask whether the rainbow formulation can succeed in deeper networks by
directly training a stochastic ensemble of random features, which we call stochastic
rainbow networks. At every gradient descent iteration, new weights are sampled for
all intermediate layers and features aligned layer-wise. We find: (1) this approach
scales to deeper models, which outperform shallow networks at large widths; (2)
ensembling multiple samples from the stochastic model is better than retraining
the classifier head; and (3) low-rank parameterization of the learnable weight
covariances can approach the accuracy of full-rank networks. This offers more
evidence for rainbow and other structured random feature networks as reduced
models of deep learning.

1 Introduction

Random feature networks (RFNs) are a mathematically tractable method of understanding learning
mechanisms in “black box” neural networks. They comprise hidden layers with fixed random weights
and a trainable readout for classification or regression. In wide regimes, these networks approximate
functions in a reproducing kernel Hilbert space [Neal, 1996, Williams, 1997]. While this is a drastic
simplification over traditional end-to-end training by backpropagation [Lee et al., 2020], RFNs
capture important behaviors. These include double descent [Belkin et al., 2019], benign overfitting

Workshop on Scientific Methods for Understanding Deep Learning, NeurIPS 2024.



[Zhang et al., 2021], architectural implicit bias [Xiao, 2021], and “lazy” learning [Chizat et al., 2018,
Jacot et al., 2018].

Structured random feature (SRF) networks are RFNs with nontrivial weight covariance that capture
some structure of traditionally trained networks. Gaussian SRFs can achieve better accuracy and learn
from fewer examples than RFNs with unstructured covariances [Pandey et al., 2022]. A rainbow
network [Guth et al., 2024] is a multi-layer SRF with different structured—colored covariance—
random features across layers. Importantly, the features of a given layer are aligned under different
draws of the random weights by solving an orthogonal Procrustes problem. Rainbow networks
were used to model the joint probability distribution of trained neural network weights, and drawing
new random weights could successfully approximate the performance of trained 7-layer networks
with fixed wavelet filters without additional training. White et al. [2024] introduced learnable SRF
networks which allowed the weight covariance itself to be learned. These learnable networks achieve
close to the accuracy of traditionally trained deep models with many times fewer parameters using
principled factorization of the covariance. However, sampling new weights and aligning as in [Guth
et al., 2024] led to a drastic decrease in performance in deep architectures. These results cast doubt
on whether or not the rainbow model is a good model for deep learning.

To further test deep rainbow networks, we propose a method of training where new weights are
sampled at every gradient descent iteration. Information only propagates through a single layer of
reference and sample networks before the two representations are aligned. By training wide rainbow
networks in the stochastic ensemble, we approach the performance of traditional deep networks in
image classification tasks (ResNets on CIFAR-10 are shown in the main text; Appendix B contains
additional architectures and datasets). These networks are enhanced by ensembling and perform well
with low-rank covariances. Our work redeems the rainbow model and highlights the usefulness of
structured random feature networks as reduced, tractable models for neural network learning.

2 Methods

We investigate a training procedure (outlined in Fig. 1A) where the weights change at every gradient
descent iteration. Intermediate layer activations are aligned to the corresponding layer of a reference
network [Guth et al., 2024]. We use the SRF networks introduced in White et al. [2024]. The final
linear readout layer is a standard, single-pathway linear layer. At each intermediate layer there are
two pathways: a reference and sampled pathway. Each computes a convolution with filter weights
Wref ,Wsamp, where Wref = GrefC

1/2 and Wsamp = GsampC
1/2. Matrix Gref has i.i.d. Gaussian

entries ∼ N (0, 1) and is kept fixed during training, Gsamp is drawn from the same distribution
at each minibatch, and C1/2 is a square root of a positive semi-definite covariance matrix. We
parameterize C factorized into a spatial part Cspace and channel part Cchannel. Each factor’s square
root is represented by an upper-triangular matrix R with non-negative diagonal so that C = RTR.

Layer activations Zref = ReLU(Wref ∗ X), Zsamp = ReLU(Wsamp ∗ X) are computed for
a minibatch of input X . From these, we compute an alignment matrix A = UV T , where
SVD(ZT

sampZref) = USV T is the singular decomposition of the channel-wise cross-covariance
between sample and reference networks. This aligns Zsamp to Zref , defining the input to the next
layer as Z ′ = ZsampA. Information propagates primarily through the sampled pathway; the ref-
erence pathway’s only influence is via the alignment. Traditional ResNet layers are defined as
Conv-BatchNorm-ReLU [He et al., 2015]; we use BatchNorm-Conv-ReLU before alignment.

After re-sampling the changing pathway, the network may be adapted to the data. When un-adapted,
we immediately evaluate the network on the test set without retraining the final linear layer or
BatchNorms. Adaptation refers to a secondary training phase, after weights are resampled and
aligned, where BatchNorm layers modify their statistics and we tune the final classifier layer [Vianna
et al., 2024]. The alignment matrix is computed by averaging the feature cross-covariances across
the entire training set; a single SVD is performed on this matrix, and this alignment is used for all
batches at test time (“trainset” alignment). We use trainset alignment on all unadapted and adapted
samples and when we ensemble multiple unadapted samples of the stochastic network. In Appendix
B.1, we explore another type of alignment where the alignment matrix is calculated per batch on
the test set and an SVD is performed for each minibatch as during training (“minibatch” alignment).
Additional network training details are in Appendix A.1.

2



A B

Figure 1: (A) Stochastic rainbow network layer block. Input propagates through the sampled pathway
which is aligned to the activations of the reference pathway. These sampled and reference blocks
correspond to BatchNorm-Conv-ReLU blocks in ResNet architectures. (B) Performance of rainbow
networks over widths compared to traditional ResNet18 (Baseline - Trad) and SRF (Baseline - SRF)
networks, averaged over five seeds. Ensembled rainbow samples are within 2% of SRF accuracy
at the highest width. Adapting the BatchNorm statistics and classifier heads has little to no impact,
while ensembling multiple network samples offers large performance gains.

3 Results

Fig. 1B shows the performance of a traditional ResNet18 contrasted with an SRF and our stochastic
rainbow model with un-adapted, adapted, and ensembled networks. Our un-adapted samples averaged
over 5 seeds reach 88.6% accuracy at the largest width (scale 22 or 2048 features in the widest layer).
Fig. 4 in Appendix B.2 shows that our training procedure can successfully outperform the shallower
7-layer scattering networks used in Guth et al. [2024], Andreux et al. [2020]. Adapting the BatchNorm
statistics and classifier of a sampled model, as in Guth et al. [2024], does not have a noticeable impact
with our trainset method of alignment compared to unadapted samples.

We consider generating ensembles of network output by resampling the changing pathways while
the reference pathways stay fixed (Fig. 1A) without any adaptation of the classifier or BatchNorm
layers. Ensembles of 5 samples significantly increased performance at all widths and outperform
adaptation. Ensembled width-4 networks achieve 90.97% accuracy, a difference of just 1.73% from
the SRF network at the same batch size and optimization parameters.

Overall, our results show that ensembling multiple draws of the sampled network pathway is a reliable
way to boost stochastic rainbow network performance.

In Fig. 2A, we visualize the eigenvalue spectra of the channel covariances Cchannel in our stochastic
rainbow networks across all layers. The channel covariance is generally much higher-dimensional
than the spatial covariance since ResNet uses small filters. We do not show the spectra of the first
layer nor skip-connection layers. Generally, the eigenvalues decay quickly with a slower decay in
deeper layers. All layers in the stochastic networks are effectively low-rank. Comparing with Fig. 5 in
Guth et al. [2024], for scattering and ResNet models trained on ImageNet, shows that our stochastic
rainbow model captures the behavior of traditional models trained on similar tasks.

Motivated by findings of effective low-rank structure, we directly trained low-rank stochastic rainbow
models. Fig. 2B shows the results of sweeping the maximum rank compared with SRF networks at
widths 1, 2, and 4. At higher widths, rainbow network performance is closer to the SRFs at all ranks.
Across ranks and widths, ensembling consistently outperforms adaptation. The low-rank stochastic
curves flatten out with higher ranks, indicating that strong compression of the parameters can be
achieved with marginal loss of accuracy. Appendix A.2 shows that these low-rank formulations also
find success in Wide ResNet and ResNeXt SRF architectures.

3



A BB

Figure 2: (A) Spectra of stochastic rainbow network channel covariance matrices across layers.
The eigenvalues decay rapidly in the early layers and more slowly in the later layers. All layers
are effectively low-rank. (B) Low-rank stochastic networks compared to low-rank ResNet18 SRF
networks with relative widths 1, 2, and 4. At higher widths, the stochastic networks are closer to the
SRF performance. Ensembling 5 network samples (dashed lines) consistently outperforms adapting
the BatchNorm and linear classifier head for 5 epochs (dotted lines). Results are averaged over 3
seeds.

Some additional results follow in Appendix B. We break down the difference in adapting BatchNorm
or linear readout separately for both single-shot or ensembled networks. Aligning across the training
set does marginally better than aligning per minibatch on ResNets, and adapting the BatchNorms has
slight gains over tuning the linear layer. We give direct comparison with the Guth et al. [2024] results,
show results for varying depth up to 50 layers, explore additional datasets (CIFAR-100, SVHN,
MNIST, KMNIST, FMNIST) and architectures (MLP, sigmoid nonlinearities), and visualize some of
the learned spatial covariances. We also tested the SiLU [Hendrycks and Gimpel, 2023] and Mish
[Misra, 2020] nonlinearities in the ResNet, finding similar results as ReLU (not shown).

4 Discussion

We successfully build deep stochastic rainbow networks, random networks with structure that
capture much of the performance of traditional deep networks. Our training procedure scales the
rainbow formulation to networks which outperform the shallow rainbow networks in Guth et al.
[2024]. We explore the effects of adapting the BatchNorm layers and classifier heads of rainbow
sampled networks versus ensembling multiple stochastic network samples. Adaptation provides little
difference compared to un-adapted samples, but the ensemble method that we introduce reliably
increases performance. Finally, we find that using low-rank covariances in these networks allows
for major savings in learned parameter counts at little cost to accuracy. Our results hold over depth,
datasets, non-linearities, and architectures.

The key differences between our model and the original rainbow work are: (1) we train the network
end-to-end with changing weights, and (2) information only propagates through one layer before
sample and reference paths are aligned (Fig. 1A). Guth et al. [2024] took traditional networks and fit
their weights as samples from an SRF. Their only gradient-based training was an adaptation phase
on the classifier layer, and they align two entirely different networks where information propagates
through all upstream layers before that layer is aligned. White et al. [2024] showed that activation
alignment began to break down approximately 7 layers into the network. We believe our method
succeeds in deeper networks because it only has to compensate for one layer’s misalignment at a
time. This change is important, yet it seems that our model remains theoretically close to the rainbow
model: alignment only depends on previous layer activations, and entirely new network samples
maintain their accuracy without adaptation.

Some limitations to our work include our focus on small-scale image classification and a limited
set of architectures; replacing the fully-connected blocks of transformers with stochastic rainbow

4



layers is an intriguing possibility. We would like to understand better how the channel covariances
compare across reference pathway draws; rainbow theory assumes that there is an “eigennetwork”
that all samples can be aligned to for a given architecture and task. The ensemble results have
connections to Bayesian neural networks and could induce robustness. Some of our deepest and
widest networks show reduced performance which may be due to overfitting, suggesting we should
explore regularization of the covariance or alignment. It would be interesting to study loss basins from
the rainbow lens in light of work by Ainsworth et al. [2023]. In future work, we plan to investigate
these issues.

Many in the community believe that random networks are important for understanding deep learning,
and we study a general and flexible family of random networks. Our results indicate that the rainbow
model remains a viable model for deep learning. By decoupling the randomness of features from
their structure, it offers an avenue for deciphering the role that randomness (initialization, SGD, etc.)
plays and how it interacts with the features that are learned. Structured random feature networks
shed light on biological neural principles where evolution may encode random circuit statistics that
are then leveraged by plastic readouts [Litwin-Kumar et al., 2017, Harris, 2019, Xie et al., 2022].
The principles underlying biological and artificial networks are shared, and our work makes progress
towards more fundamental understanding of distributed processing and learning.

Acknowledgments and Disclosure of Funding

We are grateful to Florentin Guth for discussions and sharing of numerical results from the rainbow
paper. Thank you to Olexa Bilaniuk for discussions and support with the Mila cluster. Thank you to
Oliver Richardson and the anonymous reviewers for their helpful comments on the initial submission
which have improved the manuscript.

V.W. was the lead on the low-rank experiments, tested alignment and adaptation variations, ran
network depth experiments, and drafted the majority of the paper. M.C. conceived and initially
implemented this formulation of the stochastic rainbow layer, led its implementation including the
variants of alignment and adaptation, validated results on additional datasets, non-linearties, and
architectures, investigated the impact of increasing number of samples in the rainbow ensemble,
drafted the covariance results, and edited the paper. V.W. and M.C. collaboratively discussed and
worked on experiment design and methodology and analyzed results. G.W., G.L., and K.D.H. helped
conceptualize the project, provided mentorship and resources, and edited the paper.

V.W. was supported by a fellowship from the International Network for Bio-Inspired Computing
(NSF AccelNet award 2019976) and travel grants from the WWU CS department, WWU Graduate
School, and ASWWU Student Enhancement Fund.

References
Florentin Guth, Brice Ménard, Gaspar Rochette, and Stéphane Mallat. A rainbow in deep network

black boxes. Journal of Machine Learning Research, 25:1–59, 2024.

Vivian White, Muawiz Sajjad Chaudhary, Guy Wolf, Guillaume Lajoie, and Kameron Decker
Harris. Learning and aligning structured random feature networks. In ICLR 2024 Workshop on
Representational Alignment, 2024. URL https://openreview.net/forum?id=vWhUQXQoFF.

Radford M. Neal. Bayesian Learning for Neural Networks. Lecture Notes in Statistics. Springer
New York, New York, NY, 1996. ISBN 978-0-387-94724-2 978-1-4612-0745-0. doi: 10.1007/
978-1-4612-0745-0. URL http://link.springer.com/10.1007/978-1-4612-0745-0.
ISSN: 0930-0325.

Christopher K. I. Williams. Computing with Infinite Networks. In M. C. Mozer,
M. I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Sys-
tems 9, pages 295–301. MIT Press, 1997. URL http://papers.nips.cc/paper/
1197-computing-with-infinite-networks.pdf.

Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman No-
vak, and Jascha Sohl-Dickstein. Finite Versus Infinite Neural Networks: an Empirical Study.

5

https://openreview.net/forum?id=vWhUQXQoFF
http://link.springer.com/10.1007/978-1-4612-0745-0
http://papers.nips.cc/paper/1197-computing-with-infinite-networks.pdf
http://papers.nips.cc/paper/1197-computing-with-infinite-networks.pdf


In Advances in Neural Information Processing Systems, volume 33, pages 15156–15172. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
ad086f59924fffe0773f8d0ca22ea712-Abstract.html.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning
practice and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences,
116(32):15849–15854, August 2019. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1903070116.
URL https://www.pnas.org/content/116/32/15849.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):
107–115, March 2021. ISSN 0001-0782, 1557-7317. doi: 10.1145/3446776. URL https:
//dl.acm.org/doi/10.1145/3446776.

Lechao Xiao. Eigenspace Restructuring: a Principle of Space and Frequency in Neural Networks,
December 2021. URL http://arxiv.org/abs/2112.05611. arXiv:2112.05611 [cs, stat].

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On Lazy Training in Differentiable Programming.
arXiv:1812.07956 [cs, math], December 2018. URL http://arxiv.org/abs/1812.07956.
arXiv: 1812.07956.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural Tangent Kernel: Convergence and
Generalization in Neural Networks. In Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018. URL https://papers.nips.cc/paper/2018/
hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html.

Biraj Pandey, Marius Pachitariu, Bingni W. Brunton, and Kameron Decker Harris. Structured random
receptive fields enable informative sensory encodings. PLOS Computational Biology, 18(10), 10
2022. doi: 10.1371/journal.pcbi.1010484. URL https://doi.org/10.1371/journal.pcbi.
1010484.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Pedro Vianna, Muawiz Chaudhary, Paria Mehrbod, An Tang, Guy Cloutier, Guy Wolf, Michael
Eickenberg, and Eugene Belilovsky. Channel-selective normalization for label-shift robust test-time
adaptation, 2024. URL https://arxiv.org/abs/2402.04958.

Mathieu Andreux, Tomas Angles, Georgios Exarchakis, Roberto Leonarduzzi, Gaspar Rochette,
Louis Thiry, John Zarka, Stephane Mallat, Joakim Anden, Eugene Belilovsky, Joan Bruna, Vincent
Lostanlen, Muawiz Chaudhary, Matthew J. Hirn, Edouard Oyallon, Sixin Zhang, Carmine Cella,
and Michael Eickenberg. Kymatio: Scattering transforms in python. Journal of Machine Learning
Research, 21(60):1–6, 2020. URL http://jmlr.org/papers/v21/19-047.html.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023. URL https://arxiv.
org/abs/1606.08415.

Diganta Misra. Mish: A self regularized non-monotonic activation function, 2020. URL https:
//arxiv.org/abs/1908.08681.

Samuel K. Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries, 2023. URL https://arxiv.org/abs/2209.04836.

Ashok Litwin-Kumar, Kameron Decker Harris, Richard Axel, Haim Sompolinsky, and L. F. Abbott.
Optimal Degrees of Synaptic Connectivity. Neuron, 93(5):1153–1164.e7, March 2017. ISSN 0896-
6273. doi: 10.1016/j.neuron.2017.01.030. URL http://www.sciencedirect.com/science/
article/pii/S0896627317300545.

Kameron Decker Harris. Additive function approximation in the brain. NeurIPS, Real Neurons
Hidden Units workshop, arXiv:1909.02603, 2019.

Marjorie Xie, Samuel Muscinelli, Kameron Decker Harris, and Ashok Litwin-Kumar. Task-dependent
optimal representations for cerebellar learning. bioRxiv, 2022.08.15.504040, August 2022. doi: 10.
1101/2022.08.15.504040. URL http://biorxiv.org/lookup/doi/10.1101/2022.08.15.
504040.

6

https://proceedings.neurips.cc/paper/2020/hash/ad086f59924fffe0773f8d0ca22ea712-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ad086f59924fffe0773f8d0ca22ea712-Abstract.html
https://www.pnas.org/content/116/32/15849
https://dl.acm.org/doi/10.1145/3446776
https://dl.acm.org/doi/10.1145/3446776
http://arxiv.org/abs/2112.05611
http://arxiv.org/abs/1812.07956
https://papers.nips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://papers.nips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://doi.org/10.1371/journal.pcbi.1010484
https://doi.org/10.1371/journal.pcbi.1010484
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2402.04958
http://jmlr.org/papers/v21/19-047.html
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1908.08681
https://arxiv.org/abs/1908.08681
https://arxiv.org/abs/2209.04836
http://www.sciencedirect.com/science/article/pii/S0896627317300545
http://www.sciencedirect.com/science/article/pii/S0896627317300545
http://biorxiv.org/lookup/doi/10.1101/2022.08.15.504040
http://biorxiv.org/lookup/doi/10.1101/2022.08.15.504040


Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Z. Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. CoRR, abs/1912.01703, 2019. URL http://arxiv.org/abs/1912.01703.

Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. CoRR, abs/1611.05431, 2016. URL http://arxiv.
org/abs/1611.05431.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR, abs/1605.07146, 2016.
URL http://arxiv.org/abs/1605.07146.

Tien Ho-Phuoc. Cifar10 to compare visual recognition performance between deep neural networks
and humans. arXiv preprint arXiv:1811.07270, 2018.

7

http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1611.05431
http://arxiv.org/abs/1611.05431
http://arxiv.org/abs/1605.07146


Supplemental Material

A Additional Methods

A.1 Training Details

All models used in the main text are ResNet18 (width 1 corresponding to 512 features) trained for
200 epochs on the CIFAR-10 dataset with a batch size of 1024. We use the SGD optimizer, a learning
rate of 0.1, and cosine annealing learning rate scheduler. Our alignment block is implemented as a
Pytorch module [Paszke et al., 2019] which uses a regularized SVD for numerical stability of the
gradients. Our code is at https://github.com/glomerulus-lab/fact-conv.

A.2 Low-Rank Covariance Parameterization

In learnable SRF networks [White et al., 2024], the weights at layer l in a network are GlRl, where
Gl is a fixed i.i.d. Gaussian matrix and Rl = R1 ⊗ R2 is an upper triangular matrix factored as
the product of the channel covariance R1 and the spatial covariance R2. In these factored layers,
the upper-triangular R1 and R2 matrices are the Cholesky square root of the covariance and the
only learnable weight parameters. To ensure positive semi-definiteness, we apply the absolute value
function1 to the diagonals of R1 and R2, which are initialized as the identity matrix.

We learn a rank-r covariance by only learning the first r rows of R1 or R2. Since channel covariances
are higher-dimensional than spatial covariances [White et al., 2024, Guth et al., 2024], we keep
the spatial covariances full while learning low-rank channel covariances. Visualizing the full-rank
channel covariances (not shown) indicates strong learned diagonals, so we experiment with learning
low-ranks plus the full main diagonal. All low-rank results in the main body of the paper refer to
low-rank plus the full main diagonal.

We apply our learnable low-rank covariances to stochastic rainbow networks as well as traditionally-
trained 18-layer ResNet [He et al., 2015], ResNeXt [Xie et al., 2016], and Wide ResNet [Zagoruyko
and Komodakis, 2016] SRF (non-rainbow) architectures. We train these models with maximum
channel ranks ranging from r = 1 to full rank in powers of two on the CIFAR-10 dataset. These
low-rank SRF models have a similar training set-up to the models used in the main text, but use a
batch size of 128 instead of 1024.

Fig. 3A shows low-rank ResNet18 SRF models compared to low-rank-plus-full-main-diagonal
ResNet18 SRFs. Learning the full main diagonal with low-rank models improves performance while
keeping the number of learned parameters relatively low. Fig. 3B shows low-rank SRF performance
across different architectures. At half their maximum rank, all SRF models are within three percent
accuracy of their traditional counterparts while reducing the number of learnable parameters. Low-
rank models can achieve decent accuracy with significant parameter compression across many vision
architectures. We can use low-rank SRFs to reduce the number of learnable parameters needed for
human-level accuracy ≈ 94% [Ho-Phuoc, 2018].

B Supplementary Experiments

B.1 Training versus Minibatch Alignment and Adaptation

We test different forms of alignment: “trainset”, where we align to the average of the feature cross-
covariances across the training set, or “minibatch”, where we align the features per each minibatch,
on un-adapted and adapted rainbow samples. Table 1 shows results on single network samples and
Table 2 ensembles results over 5 un-adapted and adapted samples (not 10 as in the main text), where
we align multiple sampled pathways to a single reference. Generally, trainset alignment slightly
outperforms minibatch accuracy, and tuning the BatchNorms has more of an impact than the linear
layer in the ensembled networks.

1We find the use of absolute value on the diagonal elements of the upper-triangular matrices improves
performance compared to the exponential function used in White et al. [2024]

8

https://github.com/glomerulus-lab/fact-conv


A B

Figure 3: (A) Performance of Low-Rank (LR) and Low-Rank plus the full main diagonal (LR +
Diag) ResNet18 SRF models at scaled widths 1, 2, and 4 relative to baseline. All low-rank-plus-diag
models achieve higher accuracies than low-ranks at little cost to the numbers of learned parameters.
(B) Performance of low-rank SRF ResNet18, Wide ResNet, and ResNeXt models compared to
traditionally trained models. All factored SRF models come close to the traditional models at full
rank, and further parameter reductions only smoothly decrease the error.

Table 1: Alignment adaptation for single network samples

Width 1 Width 2 Width 4

Adaptation and alignment modes Train Test Train Test Train Test

Un-Adapted Minibatch 75.02 73.51 84.17 79.85 93.20 87.84
Un-Adapted Trainset 77.41 76.94 85.35 82.66 94.21 88.10
Adapted Minibatch (BN) 77.46 76.97 85.23 81.72 93.84 88.53
Adapted Minibatch (LL) 77.56 76.79 85.16 81.76 93.99 88.23
Adapted Minibatch (BN+LL) 77.71 76.78 85.42 81.64 93.94 88.71
Adapted Trainset (BN) 77.38 76.90 85.46 82.62 94.10 88.40
Adapted Trainset (LL) 77.60 77.05 85.11 82.32 94.04 88.32
Adapted Trainset (BN + LL) 77.54 77.27 85.10 82.80 93.93 88.68

Table 2: Alignment adaptation for ensembled networks

Width 1 Width 2 Width 4

Adaptation and alignment modes Train Test Train Test Train Test

Un-Adapted Minibatch 80.53 79.96 89.12 84.31 93.04 90.98
Un-Adapted Trainset 80.15 80.08 88.30 85.59 91.64 90.75
Adapted Minibatch (BN) 80.93 80.23 89.30 83.89 93.06 91.16
Adapted Minibatch (LL) 79.58 79.05 88.66 83.65 92.78 90.76
Adapted Minibatch (BN+LL) 80.98 79.68 89.24 84.24 93.02 90.89
Adapted Trainset (BN) 80.92 80.06 88.95 85.94 92.07 90.71
Adapted Trainset (LL) 79.88 79.14 88.64 85.34 91.79 90.52
Adapted Trainset (BN + LL) 82.80 79.93 89.06 85.78 92.08 91.05

B.2 Comparison with Guth et al. [2024]

Fig. 4 compares our unadapted and ensembled stochastic rainbow networks to the unadapted and
adapted scattering rainbow networks from Guth et al. [2024] (results were provided in personal
communication). At the largest width scale, our unadapted stochastic rainbow networks outperform
unadapted scattering rainbow networks and match the adapted ones, and our ensembled networks
outperform adapted networks.

9



A B

Figure 4: (A) We compare the 7-layer scattering rainbow network results from Guth et al. [2024]
to our ResNet18 stochastic rainbow networks. At the largest width, our methods outperform the
scattering models. (B) We implement stochastic rainbow networks using 9-, 18-, 34-, and 50-layer
ResNet architectures with width scaling factors of 1, 2, and 4 and plot accuracy versus depth. All
models are trained with a batchsize of 1024 except the width 4 adapted and ensembled ResNet50
samples, which use a batchsize of 512. Results are averaged over 5 seeds. Rainbow network
performance improves with depth and width except in the ResNet50 case. The deepest and widest
networks, rainbow and baseline models, may be overfitting.

B.3 ResNet depth experiments

To support our claim that the stochastic rainbow method succeeds in deep models, we trained
ResNet9, ResNet18, ResNet34, and ResNet50 rainbow models [He et al., 2015]. Fig. 4 displays
adapted, ensembled, and SRF baselines for each of the ResNet depths at widths 1, 2, and 4. We see
an increase in rainbow network performance with depth until depth 50. Width 4 ensembled results
decrease in accuracy after depth 18. We believe that these decreases are due to overfitting.

B.4 ResNet SVHN and CIFAR-100 Experiments

To demonstrate that our results are not specific to CIFAR-10, we applied our stochastic methodology
to SVHN and CIFAR-100. Evaluation results are averaged across 5 different random seeds for the
initialization and minibatch draws.

SVHN results appear in Fig. 5A as accuracy versus width for baseline and stochastic rainbow
models. This is qualitatively similar to Fig. 1B, although the difference between trainset adapted and
ensembled models is less than for CIFAR-10. We found that we were able to match the performance
of the SRF baseline with our rainbow ensemble at the widest width.

On CIFAR-100, shown in Fig. 5B, the differences between the traditional and SRF baselines are
much larger, having a 10% difference at the smaller widths. The rainbow approximation tends to get
better over width, but the ensemble retains a more significant gap from SRF baseline than with other
datasets.

B.5 Ensemble Size

We investigate the impact of ensemble size on model performance. Results are shown averaged across
5 different seeds in Fig. 6A (CIFAR-10) and Fig. 6B (CIFAR-100). In both cases, the performance
increases rapidly for the smallest size ensembles and plateaus around 10 samples.

B.6 Spatial Covariances

In Fig. 7 we visualize the spatial covariances across layers of traditional convolutional, SRF, and
stochastic rainbow networks at a width 4. Each row shows a specific layer’s covariance matrix across

10



A B

Figure 5: (A) Performance of rainbow networks over widths compared to traditional ResNet18
(Baseline - Trad) and SRF (Baseline - SRF) networks on SVHN, averaged over five seeds. Ensembled
rainbow samples match performance of SRF baseline at highest width. (B) Performance of rainbow
networks over widths compared to traditional ResNet18 (Baseline - Trad) and SRF (Baseline - SRF)
networks on CIFAR-100, averaged over five seeds.

A B

Figure 6: (A) Increasing number of samples increases ensemble performance for CIFAR-10.
One of the seeds in the width 2 ensemble had outlying low performance (7% less than others)
leading to increased variance. (B) For CIFAR100, increasing number of samples increases ensemble
performance.

5 seeds. In all cases, covariance are similar across seeds, but the rainbow networks show the least
obviously similar structure.

B.7 Multilayer Perceptron Architectures

To show that our results are not specific to the previous architectures and nonlinearities, we im-
plemented a multilayer perceptron (MLP), i.e. a fully-connected network, with ReLU or sigmoid
nonlinearities. These MLP networks were tested on the MNIST, Fashion-MNIST, and KMNIST
datasets. The architecture of the MLP includes 3 hidden stochastic rainbow layers (BatchNorm-
linear-nonlinearity) then a standard linear readout. Width 1 corresponds to 512 units in the hidden
layers, and we varied this by powers of 2. The network is trained for 100 epochs using cross-entropy
loss, batch size 1000, and the ADAM optimizer with default settings. We include results for both
minibatch and trainset alignment. All data are averaged across 5 random seeds, and ensembles
include 5 samples.

11



Figure 7: Spatial covariances across 5 seeds of stochastic rainbow (left), SRF (middle), and traditional
(right) ResNet18 networks. SRF and Conv networks share more spatial covariance similarities across
seeds than rainbow networks.

The results are shown in Fig. 8A-E. The ensemble uses trainset alignment for each sample in the
ensemble. In most cases, there is an optimal width for stochastic network performance. Unlike
with ResNet models, minibatch alignment—where the matrix is calculated per-batch—sometimes
outperforms trainset alignment and ensembling. At the largest widths, there is evidence of overfitting
seen with the decrease in test set accuracy. Usually this overfitting is more pronounced in the
stochastic rainbow methods than in the traditional or SRF models.

12



B

D

F

A

C

E

Figure 8: Performance of stochastic rainbow MLP network compared to traditional and SRF
baselines. (A) ReLU nonlinearity on MNIST. (B) Sigmoid nonlinearity on MNIST. (C) ReLU
nonlinearity on FMNIST. (D) Sigmoid nonlinearity on FMNIST. (E) ReLU nonlinearity on KMNIST.
(F) Sigmoid nonlinearity on KMNIST.

13


	Introduction
	Methods
	Results
	Discussion
	Additional Methods
	Training Details
	Low-Rank Covariance Parameterization

	Supplementary Experiments
	Training versus Minibatch Alignment and Adaptation
	Comparison with guth2023rainbow
	ResNet depth experiments
	ResNet SVHN and CIFAR-100 Experiments
	Ensemble Size
	Spatial Covariances
	Multilayer Perceptron Architectures


