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Abstract

Knowledge Tracing (KT) is a critical task in on-
line learning for modeling student knowledge
over time. Despite the success of deep learning-
based KT models, which rely on sequences
of numbers as data, most existing approaches
fail to leverage the rich semantic information
in the text of questions and concepts. This
paper proposes Language model-based Knowl-
edge Tracing (LKT), a novel framework that
integrates pre-trained language models (PLMs)
with KT methods. By leveraging the power of
language models to capture semantic represen-
tations, LKT effectively incorporates textual
information and significantly outperforms pre-
vious KT models on large benchmark datasets.
Moreover, we demonstrate that LKT can effec-
tively address the cold-start problem in KT by
leveraging the semantic knowledge captured
by PLMs. Interpretability of LKT is enhanced
compared to traditional KT models due to its
use of text-rich data. We conducted the local
interpretable model-agnostic explanation tech-
nique and analysis of attention scores to inter-
pret the model performance further. Our work
highlights the potential of integrating PLMs
with KT and paves the way for future research
in KT domain.

1 Introduction

The COVID-19 pandemic has accelerated the adop-
tion of online learning, leading to a significant in-
crease in the number of students participating in
digital education platforms (Dhawan, 2020; Leo
et al., 2021). As online learning continues to ex-
pand, the importance of practical tools for assess-
ing and supporting student learning has become
increasingly evident (Gikandi et al., 2011; Ayu,
2020).

One of the critical components of many online
learning platforms is using questions for the forma-
tive assessment of student’s knowledge and to en-
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Figure 1: Comparison of LKT and DKT on XES3G5M-
T dataset. LKT, using RoBERTa with text data, out-
performs DKT in both cold start and final AUC perfor-
mance by leveraging rich text-based semantic informa-
tion, unlike DKT’s numerical sequences. The x-axis
shows the proportion of the dataset used for cold start,
and the y-axis represents AUC performance.

hance learning outcomes (Ogange et al., 2018). By
utilizing data from these assessments, Knowledge
Tracing (KT) models can predict students’ knowl-
edge states regarding specific Knowledge Concepts
(KCs) and individual question items (Corbett and
Anderson, 1994). With many students engaging in
online learning, improving the performance of KT
models can benefit millions of learners worldwide
(Shen et al., 2024; Abdelrahman et al., 2023; Song
et al., 2022).

Starting with Bayesian Knowledge Tracing
(BKT) (Corbett and Anderson, 1994), the KT do-
main has evolved to incorporate deep learning tech-
niques, such as Deep Knowledge Tracing (DKT)
(Piech et al., 2015). However, the development of
deep learning-based KT models has not kept pace
with the rapid advancements in other domains, such
as Natural Language Processing (NLP) and Com-
puter Vision (CV).

Several limitations hinder the progress of cur-
rent KT models. First, most KT models rely on
sequences of numerical representations for KCs
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Figure 2: The comparison between DKT (Left) and LKT (Right). LKT uses encoder-based pre-trained LMs (Lg,,..),

while DKT models are trained from scratch ( fy

init

). Data formats differ: DKT uses sequences of numbers (KCs,

questions, responses), whereas LKT uses text. The Botfom shows interaction data from one student. In LKT,
interactions are enclosed by [C'LS] and [EFOS] tokens, separating KCs and questions. Correctness is indicated
by [CORRECT], INCORRECT), and [M ASK] tokens. LKT models predict correctness at the [M ASK]
position, with 15% of [CORRECT] or [NCORRECT] replaced by [M AS K], inspired by BERT (Devlin et al.,

2018).

and questions, failing to utilize the rich semantic
information contained in the text (Liu et al., 2019a;
Su et al., 2018). Although a few KT models (Su
et al., 2018; Liu et al., 2019a; Jung et al., 2023)
have attempted to incorporate text, they primarily
use it as an auxiliary means to enhance the model
while still relying on numerical sequences as the
primary source of model training. This approach is
not instinctive, as natural language primarily con-
veys knowledge (Khurana et al., 2023; Lee et al.,
2022b; Liu et al., 2019a).

Second, many KT models need help leveraging
pre-trained models because they are often tailored
to online learning platforms, making it difficult
to adapt quickly to other domains, leading to the
cold start problem (Zhao et al., 2020). In contrast,
Pre-trained Language Models (PLMs) are more ver-
satile and can be applied to various text-based tasks
across different domains, as the text itself serves as
a medium for transferring knowledge (Devlin et al.,
2018).

Third, the interpretability of KT models is lim-
ited by their reliance on numerical sequences,
which lack semantic meaning, unlike NLP mod-
els that utilize human-readable text and apply Ex-
plainable AI (XAI) techniques (Ribeiro et al., 2016;
Lundberg and Lee, 2017).

Finally, the current state of KT research is far

from the mainstream deep learning community,
leading to a lack of interest from researchers work-
ing on state-of-the-art deep learning techniques
(Shen et al., 2024; Abdelrahman et al., 2023). This
is evident when comparing the citation scores of
DKT (Piech et al., 2015) and other research ar-
eas. This disconnection can slow down progress in
the KT research area, potentially impacting human
learning and future generations significantly.

To address these limitations, we propose a novel
Language model-based Knowledge Tracing (LKT)
framework, which integrates encoder-based PLMs
with KT methods. By leveraging the power of
PLMs, such as BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019b), LKT effectively in-
corporates semantic information from the text of
questions and concepts, resulting in significant im-
provements in KT performance. Our work aims
to bridge the gap between KT research and state-
of-the-art deep learning techniques, creating new
possibilities for advancing the field of KT and ul-
timately benefiting learners worldwide. The main
contributions of our work are as follows:

* We propose a novel LKT framework that inte-
grates PLMs with KT tasks, enabling accurate
predictions of student performance on new
questions and concepts even with limited data



by leveraging rich semantic information.

* The LKT framework provides insights into
which parts of knowledge concepts and ques-
tions affect student performance for learning
scientists and educational researchers.

2 Literature Review

2.1 Knowledge Tracing

KT is a critical component of Intelligent Tutoring
Systems (ITS) that monitors and predicts the de-
velopment of students’ knowledge over time by
examining their interactions with instructional con-
tent, particularly their responses to questions (Piech
et al., 2015; Abdelrahman et al., 2023). From a
machine learning perspective, KT is often viewed
as a sequence prediction task aimed at estimating
the probability that a student correctly answers an
upcoming question based on their previous interac-
tions (Abdelrahman et al., 2023; Lee et al., 2022a).

Deep learning has significantly advanced KT re-
search, with various approaches categorized into
six key domains: sequence modeling, memory-
augmented models, attentive models, graph-based
models, text-aware models, and Forgetting (Ab-
delrahman et al., 2023; Piech et al., 2015; Zhang
et al., 2017; Pandey and Karypis, 2019; Ghosh
et al., 2020; Nakagawa et al., 2019; Su et al., 2018;
Liu et al., 2019a, 2021).

These advancements in KT are essential for tai-
loring instructional materials to meet individual
students’ needs and implementing targeted strate-
gies to enhance learning outcomes (Zhang et al.,
2017; Abdelrahman et al., 2023; Ghosh et al., 2020;
Lee et al., 2022b).

2.2 Limitations of Previous Knowledge
Tracing Research

Despite their limitations, KT models have been
updated and are showing promising performance
(Shen et al., 2024). Most KT models represent
students’ interactions with a sequence of numbers,
including KC IDs, question IDs. and student re-
sponses. However, they often neglect other valu-
able features like textual content, images, and ac-
tivity logs within the interaction data. (Su et al.,
2018; Liu et al., 2019a). This suggests that with
further development, KT models could overcome
these limitations and offer even more robust perfor-
mance.

First, KT models struggle to understand the se-
mantic meaning of KCs and questions. Most KT

models are mainly trained in KC IDs and question
IDs, which consist of number of sequence, they
only learn the patterns of students’ interaction se-
quences without understanding what these KCs and
questions mean (Su et al., 2018; Liu et al., 2019a).
Meanwhile, human teachers can understand the se-
mantic meaning of KCs and questions by reading
the text (Abdelrahman et al., 2023). Therefore, KT
models are trained using an unnatural approach to
solve the task.

Second, the cold start problem is a latent issue
in KT models (Zhao et al., 2020; Das et al., 2021).
KT models use KC and question IDs to train for the
target I'TS or online learning platform in its present
state. If the target ITS or platform adds a new
KC or question, the KT models must be retrained
from scratch because there are no links between
old and new IDs. Moreover, if the target ITS or
platform is new, KT models must also be retrained
from scratch. A few research studies have tried to
explore the self-supervised learning method using
pre-training and fine-tuning (Liu et al., 2021; Su
et al., 2018; Liu et al., 2019a; Wang et al., 2024),
but these approaches use only pre-train embeddings
and those features are supportive. Therefore, it is
necessary to employ models that are pre-trained on
main data in an unsupervised manner, similar to
the approaches used in the NLP and CV domains.

Third, the interpretability of KT models is lim-
ited due to their reliance on numerical sequences
that need more semantic meaning. Unlike NLP
models that utilize human-readable text and apply
Explainable AI (XAI) techniques (Ribeiro et al.,
2016; Lundberg and Lee, 2017), KT models strug-
gle to provide clear explanations for their predic-
tions (Li et al., 2024). This lack of interpretability
hinders the adoption of KT models in real-world
educational settings, as educators and stakehold-
ers require a deep understanding of the factors in-
fluencing student performance to make informed
decisions and interventions.

3 Method
3.1 Problem Definition

Each student’s learning progress is documented in
the DKT setting through a sequence of question-
response pairs over time. For student 7 at time step
t, the record includes the question they answered,
their topic, and whether their answer was correct
or incorrect. This is denoted as a tuple (¢!, ct, rt),

where ¢! € N is the question index, ¢! € N is



the topic index, and r! € 0,1 represents the re-
sponse, with 1 indicating a correct answer. Hence,
arecord like (¢!, ¢!, 1) indicates that the student 4
correctly answered the question ¢! on the topic ¢!
at time .

Meanwhile, the LKT setting is different. To
transform the numerical IDs ¢! and ¢! into textual
features, one can employ techniques like embed-
ding or lookup tables where each ID is mapped to
a specific textual description or feature vector. For
example, ¢ could correspond to the actual text of
the question, and ¢! could correspond to a descrip-
tion of the topic.

3.2 Language Model based-Knowledge
Tracing

Masked Language Models (MLMs), such as BERT,
employ a special token [M AS K|, which the model
must predict during the pre-training stage to learn
the meaning of the language surrounding the
[M ASK] token. In sequence classification tasks,
MLMs typically use the special token [C'LS] to
capture the meaning of the entire sequence, which
starts with [C'L S| and ends with [EOS]. The MLM
is only required to predict the label using the repre-
sentation of the [C'LS| token. MLMs are also used
in token classification tasks, where the model pre-
dicts the label for each text token. This approach
is commonly used in Named Entity Recognition
(NER) tasks.

However, each student has a sequence of inter-
actions with associated labels in KT. Therefore,
the LKT task is a blend of sequence classifica-
tion and token classification. Formally, for a stu-
dent ¢, the interaction sequence is represented as
x; = ([CLS],c},q},1},. .., zT: q?v 1T7 [EOS])
where cﬁ, qf, and r§ are the text representations
of the KC, question, and response, respectively, at
time ¢ for the student <.

Each student’s sequence consists of a combina-
tion of KC text c;, question text q;, and student
answers r;. The entire text is concatenated into
a single line. After each KC text c¢; and ques-
tion text q;, if the student answers r; correctly,
the r; is special token [CORRECT]; otherwise,
the r; is [INCORRECT)|. However, 15% of the
[CORRECT] or INCORRECT) tokens are re-
placed with [M ASK] tokens, inspired by BERT
(Devlin et al., 2018).

Encoder-based PLMs are fine-tuned on the for-
matted dataset to create the LKT model. Specif-
ically, the PLMs are trained to predict the proba-

bility of the [M AS K] token, which ranges from 0
to 1. The PLMs Ly, takes x; as input and gen-
erates logits for each token, and the logits of the
[M AS K] token at position m is extracted as:

H; = Ly, (xi) ey

h!" = H;[m] )

)

Finally, the probability of correctness at the
[M ASK] position is predicted using a sigmoid
o function:

gi" = o(hy") 3)

After fine-tuning, the LKT model can predict
the probability of correctness at the [M ASK| po-
sition. This simple yet effective approach outper-
forms previous KT methods. The model is trained
using a binary cross-entropy loss between the pre-
dicted probability ;" and the actual correctness
y™ € {0,1}, where N is the total number of stu-
dents:

N
1 m AN
= NZ 7 og () +(1—yi™) log(1—gi™)]

“)

Figure 2 is comparison of DKT (Left) and LKT

framework (Right). Note that DKTs have many
variants, the figure is simplified for clarity

4 Experimental Results

4.1 Experiment Setup

4.1.1 Models

In this study, we employed two distinct types
of models: LKT and DKT. The LKT models
comprise bidirectional PLMs. We selected well-
known PLMs from Hugging Face Transform-
ers (Wolf et al., 2020), including BERT (De-
vlin et al., 2018), ALBERT (Lan et al., 2019),
DistilBERT (Sanh et al., 2019), RoBERTa (Liu
et al.,, 2019b), ELECTRA-discriminator (Clark
et al., 2020), ERNIE-2.0-en (Sun et al., 2020) and
DeBERTa-v3 (He et al., 2021). For the experi-
ments, we used the base size model of each LM
(Table 1)

For the DKT models, we selected DKT (Piech
et al., 2015), DKVMN (Zhang et al., 2017), GKT
(Nakagawa et al., 2019), SAKT (Pandey and
Karypis, 2019) and AKT (Ghosh et al., 2020).
These models were chosen based on the criteria



Type Models DBE-KT22 XES3G5M-T
AUC ACC AUC ACC

LKT BERT 0.7452+0.0058  0.7769+0.0100  0.8458+0.0011  0.8390+0.0015
LKT ALBERT 0.6911+£0.0076  0.7617+0.0062  0.8252+0.0302  0.8318+0.0130
LKT DistilBERT 0.7593+0.0028  0.7836+0.0032  0.8440+0.0026  0.8364+0.0056
LKT RoBERTa 0.7643+0.0099  0.7673+0.0056  0.8508+0.0021  0.8420+0.0017
LKT ELECTRA 0.7250+0.0374  0.7751+0.0158  0.8468+0.0036  0.8419+0.0018
LKT ERNIE-2.0 0.7633+0.0084  0.7635+0.0051  0.8480+0.0036  0.8407+0.0015
LKT DeBERTa-v3 0.7415+0.0438 0.7781+0.0096  0.8513+0.0032  0.8421+0.0010
DKT DKT 0.7819+0.0040  0.7902+0.0070  0.7852+0.0006  0.8173+0.0002
DKT DKVMN 0.7831+0.0049  0.7926+0.0063  0.7792+0.0004  0.8155+0.0001
DKT SAKT 0.7782+0.0034  0.7903+0.0060  0.7693+0.0008  0.8124+0.0002
DKT GKT (PAM) 0.7307£0.0469  0.7283%0.0466  0.7727+0.0006  0.8135+0.0004
DKT AKT 0.7984+0.0037  0.7953+0.0073  0.8207+0.0008  0.8273+0.0007

Table 1: Performance of LKTs and DKTs. The performance metrics are AUC and ACC. The models are trained on
200 epochs and ten early stop settings. The performance of DKT in XES3G5M-T referenced (Liu et al., 2024). In a
big dataset (XES3G5M-T), LKTs have higher performance than DKTs, both AUC and ACC. The DeBERTa-V3
shows the best performance. However, in the small dataset (DBE-KT22), DKTs are better than LKTs.

that the KT models use question IDs, knowledge
concept IDs, and student responses as their primary
features.

4.1.2 Datasets

The DBE-KT22 (Abdelrahman et al., 2022) and
XES3G5M (Liu et al., 2024) datasets contribute
significant textual features regarding questions and
KCs within the field of KT (DBE-KT-22). The
DBE-KT22 (Abdelrahman et al., 2022) dataset in-
cludes exercise information from undergraduate
students participating in a Relational Databases
course at the Australian National University from
2018 to 2021, gathered via the CodeBench plat-
form. This dataset is notable for its wide-ranging
content, featuring contributions from students of
various fields of study.

On the other hand, the XES3G5M dataset (Liu
et al., 2024), created by the TAL Education Group,
covers the academic performance of third-grade stu-
dents in mathematics, recording over 5 million in-
teractions (XES3G5M). This dataset offers insights
from the activities of more than 18,000 students
answering around 8,000 math questions, where
the original textual data is in Chinese. Given the
predominance of English in the training of most
PLMs, the entire textual content of XES3G5M was
translated into English using GPT-4-turbo (Achiam
et al., 2023), resulting in the XES3G5M-T.

Utilizing the BERT-base tokenizer, the DBE-
KT22 dataset amounts to 13 million tokens, while
the XES3G5M-T encompasses 271 million tokens.
Table 2 presents detailed information about these
datasets.

DBE-KT22 XES3G5M-T

#Students 1,361 18,066

#KCs 98 865

#Questions 212 7,652

#Interactions 167,222 5,549,635

Language English English (Translated)
#Tokens 13M 271M

Table 2: Dataset information about DBE-KT22 and
XES3G5M-T. Note that #Tokens are counted after mak-
ing the training data format for LKT.

4.1.3 Training and Evaluation

We conducted standard five-fold cross-validation
for all models and datasets to evaluate the model’s
performance. The number of epochs for training
is set to 200, and the early stopping threshold, acti-
vated when the validation loss does not improve, is
ten epochs. The maximum sequence length is 512,
and the batch size is 512. Due to limited resources,
we employed the gradient accumulation technique
to train our model with the desired large batch size.

4.2 Performance

Table 1 presents the performance of various LKT
and DKT models. The evaluation metrics used
are the Area Under the ROC Curve (AUC) and
accuracy (ACC).

In the large data set (XES3G5M-T), LKT
models generally outperform DKT models in
both AUC and ACC. Among the LKT mod-
els, DeBERTa-V3 shows the best performance
with an AUC of 0.8513+0.0032 and an ACC
of 0.8421+0.0010. RoBERTa also demonstrates
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Figure 3: We examine the cold start problem in KT, which changes performance as model size increases. The Left
shows the AUC of LKTs pre-trained on DBE-KT22 and DKT trained only on XES3G5M-T across different data
sizes (0.1%, 0.5%, 1%, 3%, ..., 15%). The LKTs demonstrate robustness to the cold start problem. The Center
displays AUC scores for different sequence lengths per student (5, 10, 20, etc.). The RoBERTa-based LKT performs
well with fewer data, indicating initial solid performance. The Right compares the performance of large and base
LKTs. Solid lines represent large models, while dashed lines represent base models. ROBERTa and ERNIE models

maintain stable AUC performance regardless of size.

strong results, with an AUC of 0.8508+0.0021 and
an ACC of 0.8420+0.0017. These findings sug-
gest that LKT models effectively capture student
knowledge states in large-scale datasets.

On the smaller dataset (DBE-KT22), DKT mod-
els exhibit better performance than LKT models.
The AKT model achieves the highest AUC of
0.7984+0.0037 and ACC of 0.7953+0.0073, fol-
lowed closely by the DKVMN model with an AUC
of 0.7831+0.0049 and an ACC of 0.7926+0.0063.
This indicates that DKT models may be more suit-
able for KT tasks when the available dataset is
small.

4.3 Cold Start Problem

Figure 4: Performance comparison (AUC) of DKT
and LKT models on XES3G5M-T data. The LKT
model, pre-trained on DBE-KT22, outperformed the
DKT model without additional training on new data.
Note that DKT’s performance is 0.5 due to its inability
to utilize pre-training.

The cold start problem is a common challenge

in KT, where models must predict performance
with insufficient data. To address this issue, we
compared its performance with two scenarios based
on previous KT research (Zhao et al., 2020; Zhang
et al., 2021; Slater and Baker, 2018): (1) when the
overall amount of data is limited, and (2) when the
sequence length for each student is short.

In the first setting (Figure 3 Left and Figure
1), we pre-trained LKT on the DBE-KT22 dataset
and applied it directly to the small XES3G5M-T
dataset. For comparison, we trained DKT only
on the XES3G5M-T dataset. The results show
that LKT outperforms DKT on the small dataset.
Note that Figure 1 shows the results of this ex-
periment for the RoOBERTa model, pre-trained on
DBE-KT22, and DKT.

In the second setting (Figure 3, Center), we ex-
amined the performance of models across different
sequence lengths per student (5, 10, 20, etc.). The
LKT models, pre-trained on DBE-KT22, showed
that the RoBERTa-based LKT performs well even
with less data, indicating initial solid performance.
These results underscore LKT’s capability to lever-
age pre-trained knowledge and textual features to
enhance performance in cold start conditions.

Moreover, we investigated the zero-shot perfor-
mance of LKTs (Figure 4). The performance com-
parison of DKT and LKTs on the XES3G5M-T
dataset reveals that the LKTs, pre-trained on DBE-
KT22, outperformed the DKT model in a zero-
shot scenario. The DKT model had an AUC of
0.5 because it wasn’t measured due to its reliance
on domain-specific numerical data, making pre-
training complex (Liu et al., 2021). In contrast, the
LKT model benefitted from pre-training, demon-
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Table 3: (a) shows the mean attention scores of the first head and layer of the LKT-BERT model. The figure shows
higher averaged attention scores for the word ‘integers.” These averaged attention scores provide insights into which
tokens the model focuses on during the attention mechanism. (b) demonstrates the LIME analysis result of the
model. The highlighted words indicate that the model effectively focuses on the words in each test item related to

its associated concept.

strating the effectiveness of this approach in en-
hancing model performance on new datasets even
without additional training.

Overall, these findings highlight the robustness
of LKT models in handling the cold start prob-
lem. Future research should explore leveraging
pre-trained models for other KT tasks further.

4.4 The Impact of Language Model Size on
Performance

Figure 3, Right compares the performance of large
and base LKTs, with solid lines representing large
models and dashed lines representing base models.
To examine the relationship between PLM size and
performance, we fine-tuned four PLMs: RoBERTa-
Large (335M), Electra-Large (335M), ERNIE-2.0-
en-Large (335M), and DeBERTa-v3-Large (435M).
The experiments showed that large PLMs require
large data, warm-up steps, and longer epochs for
optimal performance. We used the XES3G5M-

T dataset, 2,000 warm-up steps, and 100 epochs
without early stopping.

During training, larger models were challenging
to train, but their performance improved with warm-
up steps. Approximately 2,000 warm-up steps were
introduced to facilitate training and enhance AUC
performance.

Interestingly, RoOBERTa and ERNIE showed
rapid performance improvements early in training,
while Electra and DeBERTa exhibited significant
performance boosts at specific points during train-
ing. Despite these differences, all four models
achieved a maximum AUC performance of over
0.8, demonstrating their effectiveness in the given
task.

4.5 Which tokens are important in LKT?

While DKTs only utilize the sequence of ques-
tion and concept numbers, making it challeng-
ing to interpret which parts of the sequence in-



fluence the model’s performance, LKTs incorpo-
rate textual features of questions and concepts, en-
abling interpretation by analyzing the sequences’
tokens. We employed attention maps and local
interpretable model-agnostic explanations (LIME)
(Ribeiro et al., 2016) to investigate which tokens
significantly impact the model’s prediction results.

Table 3-(a) illustrates the 1D attention map of
the first head and layer of the LKT-BERT model,
representing the mean attention scores. The atten-
tion score for the word ‘integers’ is notably higher
than the scores for other words, suggesting that the
presence of ‘integers’ influences the model’s pre-
diction results. However, it is essential to note that
while higher attention scores indicate the model’s
focus on specific tokens, they do not necessarily
directly impact the final prediction, as the model’s
output is influenced by the complex interaction of
attention across multiple layers and heads.

Table 3-(b) illustrates the interpretation of model
prediction using the LIME technique. The re-
sults show a list of words and their correspond-
ing weights, indicating how much each word con-
tributes to the model’s prediction of [CORRECT]
or [NCORRECT)]. The text with highlighted
words illustrates which words in each test item con-
tribute to predictions of correctness (highlighted in
orange) or incorrectness (highlighted in blue). The
highlighted words indicate that the model effec-
tively focuses on the words in each test item related
to its associated concept, which appropriately in-
fluences the model’s predictions. For instance, the
words that consist of the test item related to the con-
cept ’set’ were ’is,” ’a’, ’collection,” “distinct,” and
“elements.” In addition, the highlighted words in-
dicate that the model effectively focuses on words
closely related to the matching concepts for predic-
tion. Note that the input data sequence consisted of
a concept, a corresponding test item, and masked
answers. This data was part of the sequence of test
items one of the learners received and solved.

4.6 In-depth Analysis of Embedding

We visualized the embedding vectors of the BERT
and BERT-LKT models using T-SNE (Van der
Maaten and Hinton, 2008). Figure 5 shows the
embeddings of the BERT model on the Left and the
embeddings of the BERT-LKT model on the Right.

The BERT model’s embeddings are randomly
distributed, indicating it does not effectively cap-
ture the probability of correct answers. In contrast,
the BERT-LKT model’s embeddings form distinct

clusters based on the probability of correct answers,
with high probabilities grouped on the Right and
lower probabilities moving towards the Left.

These results highlight the BERT-LKT model’s
superior ability to encode educational data and re-
flect students’ performance probabilities, demon-
strating the benefits of integrating KT into the
BERT model.

Figure 5: Visualization of the embedding vector with
T-SNE. Left shows BERT and Right shows the result of
BERT-LKT embedding. We can see that the results of
BERT-LKT embedding represent the correctness proba-
bility well.

5 Conclusion

In this research, we proposed a novel frame-
work that integrates encoder-based PLMs with KT.
Leveraging the rich semantic representations cap-
tured by PLMs, our LKT framework outperforms
state-of-the-art KT models on larger datasets, en-
abling accurate predictions of student performance
on new questions and concepts even with limited
data. This study also explores the impact of lan-
guage model size on performance, showing that
larger models can achieve higher AUC scores with
appropriate training strategies. Additionally, the
LKT framework addresses the cold-start problem
in KT using the semantic knowledge captured by
PLMs.

Our LKT framework provides insights into
which parts of knowledge concepts and questions
affect student performance, aiding in developing
more effective educational materials and interven-
tions. This research highlights the potential of inte-
grating PLMs with KT, and opening new avenues
for future research. The study contributes to cre-
ating refined personalized learning paths and im-
proving feedback mechanisms to address students’
misconceptions.



6 Limitation

While our LKT framework has demonstrated state-
of-the-art performance on large KT benchmark
datasets, a few limitations warrant further inves-
tigation and improvement.

First, additional analyses are necessary to fully
understand which aspects of the PLMs are respon-
sible for LKT’s success and what specific under-
standing of the question and concept text the PLMs
capture. Future work should explore techniques to
improve the interpretability of LKT models, such
as attention visualization and probing tasks.

Second, only some KT datasets containing tex-
tual features are publicly available, limiting the
ability to validate the effectiveness of the LKT
framework on a broader range of KT tasks.

Finally, our LKT framework incorporates tex-
tual features from questions and concepts. How-
ever, educational data often includes other modal-
ities, such as images, videos, and interactive el-
ements. Extending LKT to handle multi-modal
input could lead to further performance improve-
ments and a more comprehensive understanding of
student knowledge. Addressing these limitations
will help refine the LKT framework and pave the
way for more effective and interpretable KT mod-
els to support personalized learning experiences
better.

7 Ethical Consideration

This study utilizes two datasets: DBE-KT-22 and
XES3G5M. To protect personal identifying in-
formation in these datasets, we preprocessed all
personal identification data, ensuring that only
anonymized data remained for research purposes.

Regarding license information, the DBE-KT-22
dataset can be used solely for analytical purposes,
as detailed in the DBE-KT-22 License Informa-
tion. In contrast, the XES3G5M dataset is avail-
able under the MIT license, allowing for both re-
search and commercial use, as specified in the
XES3G5M License Information. Therefore, fu-
ture researchers and companies must consider the
respective licenses when utilizing these datasets.

Additionally, we employed ChatGPT (GPT-4) to
paraphrase and enhance the fluency of the writing
in this paper.
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