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Abstract

Knowledge Tracing (KT) is a critical task in on-001
line learning for modeling student knowledge002
over time. Despite the success of deep learning-003
based KT models, which rely on sequences004
of numbers as data, most existing approaches005
fail to leverage the rich semantic information006
in the text of questions and concepts. This007
paper proposes Language model-based Knowl-008
edge Tracing (LKT), a novel framework that009
integrates pre-trained language models (PLMs)010
with KT methods. By leveraging the power of011
language models to capture semantic represen-012
tations, LKT effectively incorporates textual013
information and significantly outperforms pre-014
vious KT models on large benchmark datasets.015
Moreover, we demonstrate that LKT can effec-016
tively address the cold-start problem in KT by017
leveraging the semantic knowledge captured018
by PLMs. Interpretability of LKT is enhanced019
compared to traditional KT models due to its020
use of text-rich data. We conducted the local021
interpretable model-agnostic explanation tech-022
nique and analysis of attention scores to inter-023
pret the model performance further. Our work024
highlights the potential of integrating PLMs025
with KT and paves the way for future research026
in KT domain.027

1 Introduction028

The COVID-19 pandemic has accelerated the adop-029

tion of online learning, leading to a significant in-030

crease in the number of students participating in031

digital education platforms (Dhawan, 2020; Leo032

et al., 2021). As online learning continues to ex-033

pand, the importance of practical tools for assess-034

ing and supporting student learning has become035

increasingly evident (Gikandi et al., 2011; Ayu,036

2020).037

One of the critical components of many online038

learning platforms is using questions for the forma-039

tive assessment of student’s knowledge and to en-040
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Data Input Format

. . .

KCs : Calculating area 
Questions : A rectangular 
room measures $$12$$ 
feet by $$15$$ feet. What 
is the area of the room in 
square feet?
Responses : [CORRECT]

KCs : [1,2,3, …]
Questions : [7,8,3,…]
Responses : [1,0,0,…]

DKT

LKT Data Format AUC

DKT Data Format

Data Size (%)

Figure 1: Comparison of LKT and DKT on XES3G5M-
T dataset. LKT, using RoBERTa with text data, out-
performs DKT in both cold start and final AUC perfor-
mance by leveraging rich text-based semantic informa-
tion, unlike DKT’s numerical sequences. The x-axis
shows the proportion of the dataset used for cold start,
and the y-axis represents AUC performance.

hance learning outcomes (Ogange et al., 2018). By 041

utilizing data from these assessments, Knowledge 042

Tracing (KT) models can predict students’ knowl- 043

edge states regarding specific Knowledge Concepts 044

(KCs) and individual question items (Corbett and 045

Anderson, 1994). With many students engaging in 046

online learning, improving the performance of KT 047

models can benefit millions of learners worldwide 048

(Shen et al., 2024; Abdelrahman et al., 2023; Song 049

et al., 2022). 050

Starting with Bayesian Knowledge Tracing 051

(BKT) (Corbett and Anderson, 1994), the KT do- 052

main has evolved to incorporate deep learning tech- 053

niques, such as Deep Knowledge Tracing (DKT) 054

(Piech et al., 2015). However, the development of 055

deep learning-based KT models has not kept pace 056

with the rapid advancements in other domains, such 057

as Natural Language Processing (NLP) and Com- 058

puter Vision (CV). 059

Several limitations hinder the progress of cur- 060

rent KT models. First, most KT models rely on 061

sequences of numerical representations for KCs 062
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Figure 2: The comparison between DKT (Left) and LKT (Right). LKT uses encoder-based pre-trained LMs (Lθpre ),
while DKT models are trained from scratch (fθinit). Data formats differ: DKT uses sequences of numbers (KCs,
questions, responses), whereas LKT uses text. The Bottom shows interaction data from one student. In LKT,
interactions are enclosed by [CLS] and [EOS] tokens, separating KCs and questions. Correctness is indicated
by [CORRECT ], [INCORRECT ], and [MASK] tokens. LKT models predict correctness at the [MASK]
position, with 15% of [CORRECT ] or [INCORRECT ] replaced by [MASK], inspired by BERT (Devlin et al.,
2018).

and questions, failing to utilize the rich semantic063

information contained in the text (Liu et al., 2019a;064

Su et al., 2018). Although a few KT models (Su065

et al., 2018; Liu et al., 2019a; Jung et al., 2023)066

have attempted to incorporate text, they primarily067

use it as an auxiliary means to enhance the model068

while still relying on numerical sequences as the069

primary source of model training. This approach is070

not instinctive, as natural language primarily con-071

veys knowledge (Khurana et al., 2023; Lee et al.,072

2022b; Liu et al., 2019a).073

Second, many KT models need help leveraging074

pre-trained models because they are often tailored075

to online learning platforms, making it difficult076

to adapt quickly to other domains, leading to the077

cold start problem (Zhao et al., 2020). In contrast,078

Pre-trained Language Models (PLMs) are more ver-079

satile and can be applied to various text-based tasks080

across different domains, as the text itself serves as081

a medium for transferring knowledge (Devlin et al.,082

2018).083

Third, the interpretability of KT models is lim-084

ited by their reliance on numerical sequences,085

which lack semantic meaning, unlike NLP mod-086

els that utilize human-readable text and apply Ex-087

plainable AI (XAI) techniques (Ribeiro et al., 2016;088

Lundberg and Lee, 2017).089

Finally, the current state of KT research is far090

from the mainstream deep learning community, 091

leading to a lack of interest from researchers work- 092

ing on state-of-the-art deep learning techniques 093

(Shen et al., 2024; Abdelrahman et al., 2023). This 094

is evident when comparing the citation scores of 095

DKT (Piech et al., 2015) and other research ar- 096

eas. This disconnection can slow down progress in 097

the KT research area, potentially impacting human 098

learning and future generations significantly. 099

To address these limitations, we propose a novel 100

Language model-based Knowledge Tracing (LKT) 101

framework, which integrates encoder-based PLMs 102

with KT methods. By leveraging the power of 103

PLMs, such as BERT (Devlin et al., 2018) and 104

RoBERTa (Liu et al., 2019b), LKT effectively in- 105

corporates semantic information from the text of 106

questions and concepts, resulting in significant im- 107

provements in KT performance. Our work aims 108

to bridge the gap between KT research and state- 109

of-the-art deep learning techniques, creating new 110

possibilities for advancing the field of KT and ul- 111

timately benefiting learners worldwide. The main 112

contributions of our work are as follows: 113

• We propose a novel LKT framework that inte- 114

grates PLMs with KT tasks, enabling accurate 115

predictions of student performance on new 116

questions and concepts even with limited data 117
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by leveraging rich semantic information.118

• The LKT framework provides insights into119

which parts of knowledge concepts and ques-120

tions affect student performance for learning121

scientists and educational researchers.122

2 Literature Review123

2.1 Knowledge Tracing124

KT is a critical component of Intelligent Tutoring125

Systems (ITS) that monitors and predicts the de-126

velopment of students’ knowledge over time by127

examining their interactions with instructional con-128

tent, particularly their responses to questions (Piech129

et al., 2015; Abdelrahman et al., 2023). From a130

machine learning perspective, KT is often viewed131

as a sequence prediction task aimed at estimating132

the probability that a student correctly answers an133

upcoming question based on their previous interac-134

tions (Abdelrahman et al., 2023; Lee et al., 2022a).135

Deep learning has significantly advanced KT re-136

search, with various approaches categorized into137

six key domains: sequence modeling, memory-138

augmented models, attentive models, graph-based139

models, text-aware models, and Forgetting (Ab-140

delrahman et al., 2023; Piech et al., 2015; Zhang141

et al., 2017; Pandey and Karypis, 2019; Ghosh142

et al., 2020; Nakagawa et al., 2019; Su et al., 2018;143

Liu et al., 2019a, 2021).144

These advancements in KT are essential for tai-145

loring instructional materials to meet individual146

students’ needs and implementing targeted strate-147

gies to enhance learning outcomes (Zhang et al.,148

2017; Abdelrahman et al., 2023; Ghosh et al., 2020;149

Lee et al., 2022b).150

2.2 Limitations of Previous Knowledge151

Tracing Research152

Despite their limitations, KT models have been153

updated and are showing promising performance154

(Shen et al., 2024). Most KT models represent155

students’ interactions with a sequence of numbers,156

including KC IDs, question IDs. and student re-157

sponses. However, they often neglect other valu-158

able features like textual content, images, and ac-159

tivity logs within the interaction data. (Su et al.,160

2018; Liu et al., 2019a). This suggests that with161

further development, KT models could overcome162

these limitations and offer even more robust perfor-163

mance.164

First, KT models struggle to understand the se-165

mantic meaning of KCs and questions. Most KT166

models are mainly trained in KC IDs and question 167

IDs, which consist of number of sequence, they 168

only learn the patterns of students’ interaction se- 169

quences without understanding what these KCs and 170

questions mean (Su et al., 2018; Liu et al., 2019a). 171

Meanwhile, human teachers can understand the se- 172

mantic meaning of KCs and questions by reading 173

the text (Abdelrahman et al., 2023). Therefore, KT 174

models are trained using an unnatural approach to 175

solve the task. 176

Second, the cold start problem is a latent issue 177

in KT models (Zhao et al., 2020; Das et al., 2021). 178

KT models use KC and question IDs to train for the 179

target ITS or online learning platform in its present 180

state. If the target ITS or platform adds a new 181

KC or question, the KT models must be retrained 182

from scratch because there are no links between 183

old and new IDs. Moreover, if the target ITS or 184

platform is new, KT models must also be retrained 185

from scratch. A few research studies have tried to 186

explore the self-supervised learning method using 187

pre-training and fine-tuning (Liu et al., 2021; Su 188

et al., 2018; Liu et al., 2019a; Wang et al., 2024), 189

but these approaches use only pre-train embeddings 190

and those features are supportive. Therefore, it is 191

necessary to employ models that are pre-trained on 192

main data in an unsupervised manner, similar to 193

the approaches used in the NLP and CV domains. 194

Third, the interpretability of KT models is lim- 195

ited due to their reliance on numerical sequences 196

that need more semantic meaning. Unlike NLP 197

models that utilize human-readable text and apply 198

Explainable AI (XAI) techniques (Ribeiro et al., 199

2016; Lundberg and Lee, 2017), KT models strug- 200

gle to provide clear explanations for their predic- 201

tions (Li et al., 2024). This lack of interpretability 202

hinders the adoption of KT models in real-world 203

educational settings, as educators and stakehold- 204

ers require a deep understanding of the factors in- 205

fluencing student performance to make informed 206

decisions and interventions. 207

3 Method 208

3.1 Problem Definition 209

Each student’s learning progress is documented in 210

the DKT setting through a sequence of question- 211

response pairs over time. For student i at time step 212

t, the record includes the question they answered, 213

their topic, and whether their answer was correct 214

or incorrect. This is denoted as a tuple (qti , c
t
i, r

t
i), 215

where qti ∈ N+ is the question index, cti ∈ N+ is 216
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the topic index, and rti ∈ 0, 1 represents the re-217

sponse, with 1 indicating a correct answer. Hence,218

a record like (qti , c
t
i, 1) indicates that the student i219

correctly answered the question qti on the topic cti220

at time t.221

Meanwhile, the LKT setting is different. To222

transform the numerical IDs qti and cti into textual223

features, one can employ techniques like embed-224

ding or lookup tables where each ID is mapped to225

a specific textual description or feature vector. For226

example, qti could correspond to the actual text of227

the question, and cti could correspond to a descrip-228

tion of the topic.229

3.2 Language Model based-Knowledge230

Tracing231

Masked Language Models (MLMs), such as BERT,232

employ a special token [MASK], which the model233

must predict during the pre-training stage to learn234

the meaning of the language surrounding the235

[MASK] token. In sequence classification tasks,236

MLMs typically use the special token [CLS] to237

capture the meaning of the entire sequence, which238

starts with [CLS] and ends with [EOS]. The MLM239

is only required to predict the label using the repre-240

sentation of the [CLS] token. MLMs are also used241

in token classification tasks, where the model pre-242

dicts the label for each text token. This approach243

is commonly used in Named Entity Recognition244

(NER) tasks.245

However, each student has a sequence of inter-246

actions with associated labels in KT. Therefore,247

the LKT task is a blend of sequence classifica-248

tion and token classification. Formally, for a stu-249

dent i, the interaction sequence is represented as250

xi = ([CLS], c1i ,q
1
i , r

1
i , . . . , c

T
i ,q

T
i , r

T
i , [EOS])251

where cti, q
t
i, and rti are the text representations252

of the KC, question, and response, respectively, at253

time t for the student i.254

Each student’s sequence consists of a combina-255

tion of KC text ci, question text qi, and student256

answers ri. The entire text is concatenated into257

a single line. After each KC text ci and ques-258

tion text qi, if the student answers ri correctly,259

the ri is special token [CORRECT ]; otherwise,260

the ri is [INCORRECT ]. However, 15% of the261

[CORRECT ] or [INCORRECT ] tokens are re-262

placed with [MASK] tokens, inspired by BERT263

(Devlin et al., 2018).264

Encoder-based PLMs are fine-tuned on the for-265

matted dataset to create the LKT model. Specif-266

ically, the PLMs are trained to predict the proba-267

bility of the [MASK] token, which ranges from 0 268

to 1. The PLMs Lθpre takes xi as input and gen- 269

erates logits for each token, and the logits of the 270

[MASK] token at position m is extracted as: 271

Hi = Lθpre(xi) (1) 272

hm
i = Hi[m] (2) 273

Finally, the probability of correctness at the 274

[MASK] position is predicted using a sigmoid 275

σ function: 276

ŷmi = σ(hm
i ) (3) 277

After fine-tuning, the LKT model can predict 278

the probability of correctness at the [MASK] po- 279

sition. This simple yet effective approach outper- 280

forms previous KT methods. The model is trained 281

using a binary cross-entropy loss between the pre- 282

dicted probability ŷmi and the actual correctness 283

ymi ∈ {0, 1}, where N is the total number of stu- 284

dents: 285

L = − 1

N

N∑
i=1

[ymi log(ŷmi )+(1−ymi ) log(1−ŷmi )]

(4) 286

Figure 2 is comparison of DKT (Left) and LKT 287

framework (Right). Note that DKTs have many 288

variants, the figure is simplified for clarity 289

4 Experimental Results 290

4.1 Experiment Setup 291

4.1.1 Models 292

In this study, we employed two distinct types 293

of models: LKT and DKT. The LKT models 294

comprise bidirectional PLMs. We selected well- 295

known PLMs from Hugging Face Transform- 296

ers (Wolf et al., 2020), including BERT (De- 297

vlin et al., 2018), ALBERT (Lan et al., 2019), 298

DistilBERT (Sanh et al., 2019), RoBERTa (Liu 299

et al., 2019b), ELECTRA-discriminator (Clark 300

et al., 2020), ERNIE-2.0-en (Sun et al., 2020) and 301

DeBERTa-v3 (He et al., 2021). For the experi- 302

ments, we used the base size model of each LM 303

(Table 1) 304

For the DKT models, we selected DKT (Piech 305

et al., 2015), DKVMN (Zhang et al., 2017), GKT 306

(Nakagawa et al., 2019), SAKT (Pandey and 307

Karypis, 2019) and AKT (Ghosh et al., 2020). 308

These models were chosen based on the criteria 309
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Type Models DBE-KT22 XES3G5M-T
AUC ACC AUC ACC

LKT BERT 0.7452±0.0058 0.7769±0.0100 0.8458±0.0011 0.8390±0.0015
LKT ALBERT 0.6911±0.0076 0.7617±0.0062 0.8252±0.0302 0.8318±0.0130
LKT DistilBERT 0.7593±0.0028 0.7836±0.0032 0.8440±0.0026 0.8364±0.0056
LKT RoBERTa 0.7643±0.0099 0.7673±0.0056 0.8508±0.0021 0.8420±0.0017
LKT ELECTRA 0.7250±0.0374 0.7751±0.0158 0.8468±0.0036 0.8419±0.0018
LKT ERNIE-2.0 0.7633±0.0084 0.7635±0.0051 0.8480±0.0036 0.8407±0.0015
LKT DeBERTa-v3 0.7415±0.0438 0.7781±0.0096 0.8513±0.0032 0.8421±0.0010
DKT DKT 0.7819±0.0040 0.7902±0.0070 0.7852±0.0006 0.8173±0.0002
DKT DKVMN 0.7831±0.0049 0.7926±0.0063 0.7792±0.0004 0.8155±0.0001
DKT SAKT 0.7782±0.0034 0.7903±0.0060 0.7693±0.0008 0.8124±0.0002
DKT GKT (PAM) 0.7307±0.0469 0.7283±0.0466 0.7727±0.0006 0.8135±0.0004
DKT AKT 0.7984±0.0037 0.7953±0.0073 0.8207±0.0008 0.8273±0.0007

Table 1: Performance of LKTs and DKTs. The performance metrics are AUC and ACC. The models are trained on
200 epochs and ten early stop settings. The performance of DKT in XES3G5M-T referenced (Liu et al., 2024). In a
big dataset (XES3G5M-T), LKTs have higher performance than DKTs, both AUC and ACC. The DeBERTa-V3
shows the best performance. However, in the small dataset (DBE-KT22), DKTs are better than LKTs.

that the KT models use question IDs, knowledge310

concept IDs, and student responses as their primary311

features.312

4.1.2 Datasets313

The DBE-KT22 (Abdelrahman et al., 2022) and314

XES3G5M (Liu et al., 2024) datasets contribute315

significant textual features regarding questions and316

KCs within the field of KT (DBE-KT-22). The317

DBE-KT22 (Abdelrahman et al., 2022) dataset in-318

cludes exercise information from undergraduate319

students participating in a Relational Databases320

course at the Australian National University from321

2018 to 2021, gathered via the CodeBench plat-322

form. This dataset is notable for its wide-ranging323

content, featuring contributions from students of324

various fields of study.325

On the other hand, the XES3G5M dataset (Liu326

et al., 2024), created by the TAL Education Group,327

covers the academic performance of third-grade stu-328

dents in mathematics, recording over 5 million in-329

teractions (XES3G5M). This dataset offers insights330

from the activities of more than 18,000 students331

answering around 8,000 math questions, where332

the original textual data is in Chinese. Given the333

predominance of English in the training of most334

PLMs, the entire textual content of XES3G5M was335

translated into English using GPT-4-turbo (Achiam336

et al., 2023), resulting in the XES3G5M-T.337

Utilizing the BERT-base tokenizer, the DBE-338

KT22 dataset amounts to 13 million tokens, while339

the XES3G5M-T encompasses 271 million tokens.340

Table 2 presents detailed information about these341

datasets.342

DBE-KT22 XES3G5M-T

#Students 1,361 18,066
#KCs 98 865
#Questions 212 7,652
#Interactions 167,222 5,549,635
Language English English (Translated)
#Tokens 13M 271M

Table 2: Dataset information about DBE-KT22 and
XES3G5M-T. Note that #Tokens are counted after mak-
ing the training data format for LKT.

4.1.3 Training and Evaluation 343

We conducted standard five-fold cross-validation 344

for all models and datasets to evaluate the model’s 345

performance. The number of epochs for training 346

is set to 200, and the early stopping threshold, acti- 347

vated when the validation loss does not improve, is 348

ten epochs. The maximum sequence length is 512, 349

and the batch size is 512. Due to limited resources, 350

we employed the gradient accumulation technique 351

to train our model with the desired large batch size. 352

4.2 Performance 353

Table 1 presents the performance of various LKT 354

and DKT models. The evaluation metrics used 355

are the Area Under the ROC Curve (AUC) and 356

accuracy (ACC). 357

In the large data set (XES3G5M-T), LKT 358

models generally outperform DKT models in 359

both AUC and ACC. Among the LKT mod- 360

els, DeBERTa-V3 shows the best performance 361

with an AUC of 0.8513±0.0032 and an ACC 362

of 0.8421±0.0010. RoBERTa also demonstrates 363

5

https://dataverse.ada.edu.au/dataset.xhtml?persistentId=doi:10.26193/6DZWOH
https://github.com/ai4ed/XES3G5M?tab=readme-ov-file


Figure 3: We examine the cold start problem in KT, which changes performance as model size increases. The Left
shows the AUC of LKTs pre-trained on DBE-KT22 and DKT trained only on XES3G5M-T across different data
sizes (0.1%, 0.5%, 1%, 3%, ..., 15%). The LKTs demonstrate robustness to the cold start problem. The Center
displays AUC scores for different sequence lengths per student (5, 10, 20, etc.). The RoBERTa-based LKT performs
well with fewer data, indicating initial solid performance. The Right compares the performance of large and base
LKTs. Solid lines represent large models, while dashed lines represent base models. RoBERTa and ERNIE models
maintain stable AUC performance regardless of size.

strong results, with an AUC of 0.8508±0.0021 and364

an ACC of 0.8420±0.0017. These findings sug-365

gest that LKT models effectively capture student366

knowledge states in large-scale datasets.367

On the smaller dataset (DBE-KT22), DKT mod-368

els exhibit better performance than LKT models.369

The AKT model achieves the highest AUC of370

0.7984±0.0037 and ACC of 0.7953±0.0073, fol-371

lowed closely by the DKVMN model with an AUC372

of 0.7831±0.0049 and an ACC of 0.7926±0.0063.373

This indicates that DKT models may be more suit-374

able for KT tasks when the available dataset is375

small.376

4.3 Cold Start Problem377

Figure 4: Performance comparison (AUC) of DKT
and LKT models on XES3G5M-T data. The LKT
model, pre-trained on DBE-KT22, outperformed the
DKT model without additional training on new data.
Note that DKT’s performance is 0.5 due to its inability
to utilize pre-training.

The cold start problem is a common challenge378

in KT, where models must predict performance 379

with insufficient data. To address this issue, we 380

compared its performance with two scenarios based 381

on previous KT research (Zhao et al., 2020; Zhang 382

et al., 2021; Slater and Baker, 2018): (1) when the 383

overall amount of data is limited, and (2) when the 384

sequence length for each student is short. 385

In the first setting (Figure 3 Left and Figure 386

1), we pre-trained LKT on the DBE-KT22 dataset 387

and applied it directly to the small XES3G5M-T 388

dataset. For comparison, we trained DKT only 389

on the XES3G5M-T dataset. The results show 390

that LKT outperforms DKT on the small dataset. 391

Note that Figure 1 shows the results of this ex- 392

periment for the RoBERTa model, pre-trained on 393

DBE-KT22, and DKT. 394

In the second setting (Figure 3, Center), we ex- 395

amined the performance of models across different 396

sequence lengths per student (5, 10, 20, etc.). The 397

LKT models, pre-trained on DBE-KT22, showed 398

that the RoBERTa-based LKT performs well even 399

with less data, indicating initial solid performance. 400

These results underscore LKT’s capability to lever- 401

age pre-trained knowledge and textual features to 402

enhance performance in cold start conditions. 403

Moreover, we investigated the zero-shot perfor- 404

mance of LKTs (Figure 4). The performance com- 405

parison of DKT and LKTs on the XES3G5M-T 406

dataset reveals that the LKTs, pre-trained on DBE- 407

KT22, outperformed the DKT model in a zero- 408

shot scenario. The DKT model had an AUC of 409

0.5 because it wasn’t measured due to its reliance 410

on domain-specific numerical data, making pre- 411

training complex (Liu et al., 2021). In contrast, the 412

LKT model benefitted from pre-training, demon- 413
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(a) Mean Attention Scores of LKT-BERT:
Concept: Cardinality
Question: The cardinality of a set is the number of elements of the set. What is the cardinality
of the set of odd positive integers less than 10?
Response: [INCORRECT ]

(b) LIME Analysis Result:

Table 3: (a) shows the mean attention scores of the first head and layer of the LKT-BERT model. The figure shows
higher averaged attention scores for the word ‘integers.’ These averaged attention scores provide insights into which
tokens the model focuses on during the attention mechanism. (b) demonstrates the LIME analysis result of the
model. The highlighted words indicate that the model effectively focuses on the words in each test item related to
its associated concept.

strating the effectiveness of this approach in en-414

hancing model performance on new datasets even415

without additional training.416

Overall, these findings highlight the robustness417

of LKT models in handling the cold start prob-418

lem. Future research should explore leveraging419

pre-trained models for other KT tasks further.420

4.4 The Impact of Language Model Size on421

Performance422

Figure 3, Right compares the performance of large423

and base LKTs, with solid lines representing large424

models and dashed lines representing base models.425

To examine the relationship between PLM size and426

performance, we fine-tuned four PLMs: RoBERTa-427

Large (335M), Electra-Large (335M), ERNIE-2.0-428

en-Large (335M), and DeBERTa-v3-Large (435M).429

The experiments showed that large PLMs require430

large data, warm-up steps, and longer epochs for431

optimal performance. We used the XES3G5M-432

T dataset, 2,000 warm-up steps, and 100 epochs 433

without early stopping. 434

During training, larger models were challenging 435

to train, but their performance improved with warm- 436

up steps. Approximately 2,000 warm-up steps were 437

introduced to facilitate training and enhance AUC 438

performance. 439

Interestingly, RoBERTa and ERNIE showed 440

rapid performance improvements early in training, 441

while Electra and DeBERTa exhibited significant 442

performance boosts at specific points during train- 443

ing. Despite these differences, all four models 444

achieved a maximum AUC performance of over 445

0.8, demonstrating their effectiveness in the given 446

task. 447

4.5 Which tokens are important in LKT? 448

While DKTs only utilize the sequence of ques- 449

tion and concept numbers, making it challeng- 450

ing to interpret which parts of the sequence in- 451
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fluence the model’s performance, LKTs incorpo-452

rate textual features of questions and concepts, en-453

abling interpretation by analyzing the sequences’454

tokens. We employed attention maps and local455

interpretable model-agnostic explanations (LIME)456

(Ribeiro et al., 2016) to investigate which tokens457

significantly impact the model’s prediction results.458

Table 3-(a) illustrates the 1D attention map of459

the first head and layer of the LKT-BERT model,460

representing the mean attention scores. The atten-461

tion score for the word ‘integers’ is notably higher462

than the scores for other words, suggesting that the463

presence of ‘integers’ influences the model’s pre-464

diction results. However, it is essential to note that465

while higher attention scores indicate the model’s466

focus on specific tokens, they do not necessarily467

directly impact the final prediction, as the model’s468

output is influenced by the complex interaction of469

attention across multiple layers and heads.470

Table 3-(b) illustrates the interpretation of model471

prediction using the LIME technique. The re-472

sults show a list of words and their correspond-473

ing weights, indicating how much each word con-474

tributes to the model’s prediction of [CORRECT ]475

or [INCORRECT ]. The text with highlighted476

words illustrates which words in each test item con-477

tribute to predictions of correctness (highlighted in478

orange) or incorrectness (highlighted in blue). The479

highlighted words indicate that the model effec-480

tively focuses on the words in each test item related481

to its associated concept, which appropriately in-482

fluences the model’s predictions. For instance, the483

words that consist of the test item related to the con-484

cept ’set’ were ’is,’ ’a’, ’collection,’ ’distinct,’ and485

’elements.’ In addition, the highlighted words in-486

dicate that the model effectively focuses on words487

closely related to the matching concepts for predic-488

tion. Note that the input data sequence consisted of489

a concept, a corresponding test item, and masked490

answers. This data was part of the sequence of test491

items one of the learners received and solved.492

4.6 In-depth Analysis of Embedding493

We visualized the embedding vectors of the BERT494

and BERT-LKT models using T-SNE (Van der495

Maaten and Hinton, 2008). Figure 5 shows the496

embeddings of the BERT model on the Left and the497

embeddings of the BERT-LKT model on the Right.498

The BERT model’s embeddings are randomly499

distributed, indicating it does not effectively cap-500

ture the probability of correct answers. In contrast,501

the BERT-LKT model’s embeddings form distinct502

clusters based on the probability of correct answers, 503

with high probabilities grouped on the Right and 504

lower probabilities moving towards the Left. 505

These results highlight the BERT-LKT model’s 506

superior ability to encode educational data and re- 507

flect students’ performance probabilities, demon- 508

strating the benefits of integrating KT into the 509

BERT model. 510

Figure 5: Visualization of the embedding vector with
T-SNE. Left shows BERT and Right shows the result of
BERT-LKT embedding. We can see that the results of
BERT-LKT embedding represent the correctness proba-
bility well.

5 Conclusion 511

In this research, we proposed a novel frame- 512

work that integrates encoder-based PLMs with KT. 513

Leveraging the rich semantic representations cap- 514

tured by PLMs, our LKT framework outperforms 515

state-of-the-art KT models on larger datasets, en- 516

abling accurate predictions of student performance 517

on new questions and concepts even with limited 518

data. This study also explores the impact of lan- 519

guage model size on performance, showing that 520

larger models can achieve higher AUC scores with 521

appropriate training strategies. Additionally, the 522

LKT framework addresses the cold-start problem 523

in KT using the semantic knowledge captured by 524

PLMs. 525

Our LKT framework provides insights into 526

which parts of knowledge concepts and questions 527

affect student performance, aiding in developing 528

more effective educational materials and interven- 529

tions. This research highlights the potential of inte- 530

grating PLMs with KT, and opening new avenues 531

for future research. The study contributes to cre- 532

ating refined personalized learning paths and im- 533

proving feedback mechanisms to address students’ 534

misconceptions. 535
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6 Limitation536

While our LKT framework has demonstrated state-537

of-the-art performance on large KT benchmark538

datasets, a few limitations warrant further inves-539

tigation and improvement.540

First, additional analyses are necessary to fully541

understand which aspects of the PLMs are respon-542

sible for LKT’s success and what specific under-543

standing of the question and concept text the PLMs544

capture. Future work should explore techniques to545

improve the interpretability of LKT models, such546

as attention visualization and probing tasks.547

Second, only some KT datasets containing tex-548

tual features are publicly available, limiting the549

ability to validate the effectiveness of the LKT550

framework on a broader range of KT tasks.551

Finally, our LKT framework incorporates tex-552

tual features from questions and concepts. How-553

ever, educational data often includes other modal-554

ities, such as images, videos, and interactive el-555

ements. Extending LKT to handle multi-modal556

input could lead to further performance improve-557

ments and a more comprehensive understanding of558

student knowledge. Addressing these limitations559

will help refine the LKT framework and pave the560

way for more effective and interpretable KT mod-561

els to support personalized learning experiences562

better.563

7 Ethical Consideration564

This study utilizes two datasets: DBE-KT-22 and565

XES3G5M. To protect personal identifying in-566

formation in these datasets, we preprocessed all567

personal identification data, ensuring that only568

anonymized data remained for research purposes.569

Regarding license information, the DBE-KT-22570

dataset can be used solely for analytical purposes,571

as detailed in the DBE-KT-22 License Informa-572

tion. In contrast, the XES3G5M dataset is avail-573

able under the MIT license, allowing for both re-574

search and commercial use, as specified in the575

XES3G5M License Information. Therefore, fu-576

ture researchers and companies must consider the577

respective licenses when utilizing these datasets.578

Additionally, we employed ChatGPT (GPT-4) to579

paraphrase and enhance the fluency of the writing580

in this paper.581
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