
A Semantic Framework to Support AI System
Accountability and Audit ?

Iman Naja1, Milan Markovic1, Peter Edwards1, and Caitlin Cottrill2

1 Computing Science, University of Aberdeen, Aberdeen AB24 3UE, UK
2 Centre for Transport Research, University of Aberdeen, Aberdeen AB24 3UE, UK

{iman.naja, milan.markovic, p.edwards, c.cottrill}@abdn.ac.uk

Abstract. To realise accountable AI systems, different types of informa-
tion from a range of sources need to be recorded throughout the system
life cycle. We argue that knowledge graphs can support capture and audit
of such information; however, the creation of such accountability records
must be planned and embedded within different life cycle stages, e.g.
during the design of a system, during implementation, etc. We propose
a provenance based approach to support not only the capture of ac-
countability information, but also abstract descriptions of accountability
plans that guide the data collection process, all as part of a single knowl-
edge graph. In this paper we introduce the SAO ontology, a lightweight
generic ontology for describing accountability plans and corresponding
provenance traces of computational systems; the RAInS ontology, which
extends SAO to model accountability information relevant to the design
stage of AI systems; and a proof-of-concept implementation utilising the
proposed ontologies to provide a visual interface for designing account-
ability plans, and managing accountability records.

Keywords: AI · Provenance · Accountability · Ontology.

1 Introduction

Artificial Intelligence (AI) solutions are increasingly being deployed in diverse
domains such as finance, law and healthcare. However, this widespread adoption
does not come without risks and AI systems are increasingly linked to grievously
erroneous, unintended or even undesirable behaviours (e.g. perpetuating racism
and sexism) [25]. Naturally, then, there is a desire to introduce accountability
measures for such systems; and over the past decade this has attracted consider-
able attention from developers and researchers [6,14], professional bodies [1,25],
as well as regulators and policy makers [12,24].

For the purpose of this paper, the term AI system refers to software compris-
ing ‘core AI’ components (e.g. a machine learning model) and other supporting

? Supported by the award made by the UKRI Digital Economy programme to the
RAInS project (ref: EP/R033846). The authors acknowledge Jatinder Singh and
Richard Cloete for their involvement in the early stages of the Accountability Fabric’s
design.

https://Rainsproject.org/

2 I. Naja et al.

functions (e.g. API wrappers) [19] allowing it to function either as a standalone
solution, or as a part of a larger system. We consider the development and use of
an AI system in terms of four high-level life cycle stages: Design, Implementation,
Deployment, and Operation; this conforms to the recommendation by Amershi
et al. [2] that standard software engineering practices should apply to such sys-
tems. Design involves all aspects associated with designing an AI system; im-
plementation encompasses all activities associated with building and testing the
system; deployment includes installing and configuring the system and, if appli-
cable, integrating it with other systems, producing documentation, and training
users. Finally, operation consists of the actual use of the system and (routine)
monitoring. Moreover, by accountability, we mean the ability to inspect, review
or otherwise interrogate an AI system with the goal of (i) making processes
associated with each of its life cycle stages transparent [1, 6, 7, 14, 24, 25]; (ii)
demonstrating compliance with hard laws (i.e. laws and regulations), and soft
laws (i.e. standards and guidelines) [14, 24]; and (iii) aiding investigations into
the cause(s) of failure or erroneous decisions and supporting the identification
of responsible parties [1, 6, 7, 14,24].

To realize accountable AI systems, different types of information from a range
of sources need to be recorded throughout the system life cycle. We argue that
knowledge graphs can support accountability of AI systems by capturing and
linking critical transparency information across the different life cycle stages.
However, such transparency information must be meaningful and its collection
must be proactive (i.e. planned) so it can be enforced through the means of hard
and soft laws. We introduce the concept of accountability plans, which represent
the information that should be captured at different stages of an AI system’s
life cycle. Accountability plans are linked to accountability traces, which are
records representing the actual manifestation of those plans. These traces capture
structured information describing crucial outcomes of activities influencing the
accountability of the AI system. Such activities may represent, for example,
the creation of tangible artefacts (e.g. design specifications, implemented system
components) or decisions made by key staff members (e.g. approving a design
specification) during the system life cycle. Similar to the idea of model cards
presented by Mitchell et al. [20] which is gaining popularity in the machine
learning (ML) community, the instances of “accountable outputs” produced by
activities recorded in the accountability traces may be understood as reports or
cards detailing the key accountability information. To model accountability plans
and accountability traces, we rely on a provenance-based approach by reusing the
W3C recommendation PROV-O [16] and its extension EP-Plan [17]. We extend
PROV-O’s concepts entity, activity, and agent to represent the accountability
traces as causal provenance graphs and EP-Plan’s concepts step and variable to
describe abstract plans corresponding to such provenance records.

In this paper, we focus on exploring the feasibility of our proposed approach
through exploring the core mechanisms for capturing accountability plans and
their corresponding traces. We then evaluate this idea by implementing a proof

A Semantic Framework to Support AI System Accountability and Audit 3

of concept software tool for documenting the design stage of AI systems which
incorporate ML systems. Specifically, our three main contributions are:

1. The System Accountability Ontology (SAO), a generic, reusable, lightweight
core ontology which introduces a set of concepts to model accountability
plans and their corresponding traces to support accountability of computa-
tional systems.

2. The Realising Accountable Intelligent Systems (RAInS) ontology, an exten-
sion of SAO, for supporting accountability during the design stage of AI
systems, specifically those which employ machine learning.

3. The Accountability Fabric, a proof-of-concept implementation utilising SAO
and RAInS to provide a visual interface for designing accountability plans,
and managing accountability records.

The remainder of this paper is organised as follows: Section 2 discusses related
work; Section 3 describes the methodology used when creating the SAO and
RAInS ontologies; Section 4 discusses the knowledge representation requirements
influencing the design of SAO and RAInS; Section 5 describes SAO and RAInS;
Section 6 discusses the implementation of the Accountability Fabric and an eval-
uation of SAO and RAInS; and finally, Section 7 concludes the paper with dis-
cussion of future work.

2 Related Work

The challenge of how to realise accountable AI systems has attracted consid-
erable attention over the past decade. Professional bodies such as ACM and
IEEE have published statements and reports listing principles for accountable
algorithms and trustworthy AI systems [1, 25]. National and international reg-
ulatory bodies have been working to understand and address the implications
of AI systems use; and legislation is being developed across a number of juris-
dictions, including the UK and the European Union, with a focus on account-
ability and maintaining ethical principles [8, 12, 24]. Developers and researchers
have also been involved in underscoring the need for accountable AI and have
proposed a range of methods to address related issues [28]. Many of these in-
volve documenting how AI systems are designed and developed and how they
operate [6, 11, 14, 20]. Typically, such approaches include questions or prompts
which designers and developers of AI systems need to consider and for which
they should document outcomes. This process is largely manual; however, semi-
automated approaches such as the Model Card toolkit3 are also emerging. On-
tologies which describe AI systems and processes that lead to their creation have
also been proposed (e.g. MEX [9], ML Schema [22], and KBCE [27]). However,
tools to support community uptake (e.g. to automatically produce metadata of
ML experiments) are still largely missing and possibly hinder widespread adop-
tion4. In the same context, PROV-O has been proposed as a means to record the

3 https://github.com/tensorflow/model-card-toolkit
4 https://github.com/ML-Schema/core/issues/23

https://github.com/tensorflow/model-card-toolkit
https://github.com/ML-Schema/core/issues/23

4 I. Naja et al.

provenance of decisions made by AI systems [4,13]; while this has some similar-
ities with the approach we describe here - it has a much narrower scope. In our
work, we utilise PROV-O’s concept of a plan, which represents intended steps or
actions so that an objective may be realised; however, no detailed vocabulary for
representing such plans is provided. Extending PROV-O for documenting plans
was originally proposed for the scientific workflow domain, for example, by the
ProvOne [3] and P-Plan [10] ontologies. More recently, P-Plan, and its exten-
sion EP-Plan [18], has been applied in other domains. For example, Pandit and
Lewis [21] proposed an extension of P-Plan for use in the GDPR context, while
Markovic et al. [17] discussed the role of EP-Plan in increasing transparency of
Internet of Things deployments. Both works demonstrate the cross-domain re-
usability of P-Plan’s simple approach to modelling abstract plans as a series of
steps interlinked through their input and output variables into an acyclic graph.

In summary, ontologies have been proposed to describe AI systems and may
be used to enhance their transparency. Ontologies extending PROV-O to enable
richer descriptions of plans associated with provenance traces have also been
proposed. However, to date we are not aware of any approaches that combine
these two to address the challenge of accountable AI systems, and therefore deem
our approach to be novel.

3 Ontology Development Methodology

The NeOn methodology [23] was adopted to guide the process of ontological
modelling of accountability plans and their corresponding accountability traces.
Knowledge representation requirements for accountable design of AI systems
were gathered from the academic literature, statements and guidelines released
by professional bodies, and publications from regulatory bodies. An application
use-case from the healthcare domain was also analysed to identify information
elements that should be captured as part of accountability traces. The use case
is based on plans by the Scottish Breast Screening Programme to address a
shortage of trained radiologists [26] by examining how a deep-learning image
classifier5 can be used to replace one of the two human radiologists currently
required to analyse mammography images. A number of indicative competency
questions were collected, which were then grouped via further analysis under six
broad themes discussed in Section 4.

A modular approach was chosen to firstly formalise SAO, which contained
the core, reusable concepts for modelling accountability plans and correspond-
ing accountability traces applicable to generic computational systems. This was
followed by formalisation of RAInS which extended SAO for the specific domain
of AI system design. The ontologies were implemented using Protégé and fur-
ther evaluated via a proof-of-concept application for generating and managing
knowledge graphs described using SAO and RAInS (details in Section 6).

5 https://www.abdn.ac.uk/news/12398/

https://www.abdn.ac.uk/news/12398/

A Semantic Framework to Support AI System Accountability and Audit 5

4 Knowledge Capture Requirements

Competency questions (CQs) were extracted from existing literature [4–8, 11,
13, 14, 20, 24]. These covered a range of topics relating to AI systems and their
development, including documenting requirements for specific components (e.g.
ML models) and explanation of automated decision-making. While the literature
did not always explicitly link the identified CQs to a specific life cycle stage
(e.g. design), we used our experience from the aforementioned medical use case
scenario and our own judgement to identify CQs applicable to the design stage of
an AI system incorporating ML. The CQs were then transformed into knowledge
capture requirements organised under the following themes to identify what
should be recorded by accountability traces:

1. System-level information: the intended purpose of the system [4,20,24];
the intended users of the system [5,7,20]; and the compliance specifications
which apply to the system, i.e. the hard laws that must be followed and soft
laws that should be followed [5, 24].

2. Dataset information: its characteristics (e.g. size, composition of instances,
number of features) [4, 5, 7, 11, 20, 24]; collection method [8, 11]; any associ-
ated pre-processing (e.g. sampling, aggregation) [5,11,20,24]; and the tasks
for which it should be used [5, 11] and those for which it should not [11].

3. Model information: its characteristics (e.g. decision threshold, excluded
dataset features) [6,13,20]; details related to implementation (e.g. algorithm
used) [6,20,24]; associated evaluation procedures [6,20,24]; and the tasks for
which it should [8, 20,24] and should not be used [20].

4. Supporting infrastructure information: the specification of system com-
ponents which are not ‘core AI’ but may still be the source of erroneous
behaviour of an AI system (e.g. user interface, API wrappers); the charac-
teristics of supporting infrastructure relevant to the accountability of sys-
tems such as specification of human agency and oversight mechanisms (e.g.
human-in-the-loop or human-in-command [24]); specification of audit mech-
anisms [8, 24]; and specification of the level of explanations to be provided
by the system [5,8, 24].

5. Limitations and risks: the known or expected limitations of the datasets
used to train the decision-making models [5, 8, 24] and the resulting models
[5,20,24]; and the known or expected risks, including biases, associated with
datasets [5–8,11,14,24] and models [5–8,20,24].

6. Human decision making and approvals: who is accountable for the
creation of various specifications including the dataset [11, 13], model [20]
and supporting infrastructure specifications; who assessed the fitness of the
dataset [8, 24], model, and supporting infrastructure specifications against
the system’s purpose (and how was this done); which hard and soft laws
requirements were included in dataset [5,8,24], model [5,24], and supporting
infrastructure [5,24] specifications and who assessed the compliance of such
specifications against those laws (and how was this done); and finally who
approved the various specifications that influence the later life cycle stages
(e.g. implementation stage).

6 I. Naja et al.

sao:InformationElement

sao:
Accountable

Object

sao: InformationRealization
prov:hadMember

sao:relatesToAccountableObject

ep-plan: Entity

ep-plan: EntityCollection

ep-plan:Plan

ep-plan:
MultiVariable

ep-plan: MultiActivity

ep-plan: Activity

ep-plan:
MultiStep

prov:used

prov:wasGeneratedBy

ep-plan:correspondsToStep ep-plan:correspondsToVariable sao:System

sao:
specified

ForSystem
ep-plan:

Constraint
ep-plan:

hasConstraint

ep-plan: Agentprov:
wasAssociatedWith

rdsf:subclassOfowl:ObjectPropertyClass defined in SAOClass defined in EP-Plan

sao:isAccountableFor

sao:
impacts

P
L
A
N

T
R
A
C
E

sao:
AccountableAction sao: AccountableResult

ep-plan:hasInput
Variable ep-plan:

hasOutput
Variable

ep-plan:
isElementOf

Plan
ep-plan:isElementOfPlan

ep-plan:hasPermittedAgent

sao: AccountableAgent

sao: AccountabilityPlan

Fig. 1. An overview of core concepts defined in the SAO ontology.

5 Modelling System Accountability

5.1 The SAO Ontology

SAO6 (Fig. 1) is a generic model for describing accountability plans and corre-
sponding accountability traces to support accountability of computer systems.
SAO introduces sao:AccountableObject to model an abstract representation of
any meaningful grouping (software component, dataset, model, evaluation pro-
cess, etc.) that may be used to organise system-related accountability informa-
tion. The definition is deliberately generic so it can be adapted to the needs
of any organisation thus allowing flexibility in how a system description should
be decomposed into different reference categories that may be used by an au-
dit mechanism. In this context, the system itself (sao:System) is an accountable
object. A larger system may thus be described as a group of sub-systems or a
single system may be broken down into a number of layers/components (e.g. a
decision logic layer).

Each instance of sao:System may be linked to one or more accountability
plans (sao:AccountabilityPlan) which specify the information that should be col-
lected to support future accountability. The mechanism for capturing plans and
their corresponding execution traces is reused from the EP-Plan ontology [17].
Plans consist of steps which take variables as their inputs or outputs; these are
then linked to corresponding accountability traces represented as core PROV-
O concepts which are sub-classed in EP-Plan (Fig. 1). SAO extends EP-Plan
with two concepts for describing accountability plans: sao:AccountableAction
and sao:AccountableResult, and three concepts to describe the corresponding el-
ements of the accountability trace: sao:InformationRealization, sao:Information-
Element and sao:AccountableAgent. An accountable action is any process that

6 https://w3id.org/sao

https://w3id.org/sao

A Semantic Framework to Support AI System Accountability and Audit 7

ex:action1
sao: AccountableAction

ex:result1
sao: AccountableResult

ep-plan:hasOutputVariable

ex:step2
ep-plan:Step

ex:step1
ep-plan:Step

ex:report1
sao: InformationRealization

ep-plan:correspondsToVariable

ex:output1
ep-plan:Variable

ex:output2
ep-plan:Variable

ep-plan:hasOutputVariable ep-plan:hasOutputVariable

ex:plan
ep-plan:Plan

ep-plan:decomposesAsPlan

ex:reportPart1
sao: InformationElement

ex:reportPart2
sao: InformationElement

prov:hadMember
prov:hadMember

Optional descriptions of fine grained plans
using EP-Plan’s plan decomposition mechanism

ep-plan:correspondsToVariable ep-plan:correspondsToVariable

ep-plan:hasPart

ep-plan:hasPart

Execution trace
elements

SAO plan
elements

ep-plan:isElementOfPlan

ep-plan:
isElement

OfPlan

Fig. 2. An example decomposition of sao:AccountableAction into a sub-plan con-
taining two steps producing variables describing in more detail the composite
sao:AccountableResult multivariable and matching execution traces.

produces an output (sao:AccountableResult) which should be documented for
accountability purposes. A description of such an output in the accountability
trace then represents a specific snapshot of the information available at a specific
point in its production. For example, a specification of an ML model may include
characteristics that were believed to be achievable at the design stage (and for
which members of the design team were accountable); however, this may differ
from the characteristics of the implemented model recorded as an accountable
output later in the system life cycle (and for which developers, not designers were
accountable). At the accountability trace level, the information corresponding to
sao:AccountableResult is modelled as a collection (sao:InformationRealization).
This is because, at the plan level, sao:AccountableResult is expected to pro-
vide only a high level reference to the expected information. For example, con-
sider a model specification that takes the form of a written report. Here, the
plan does not define all the individual steps corresponding to the separate re-
port sections containing the different types of information as output variables
(e.g. algorithm details, associated limitations, etc.). Instead, the plan records
a high level reference to an sao:AccountableResult denoting the expected re-
port. The corresponding execution trace instance is recorded as a collection
(sao:InformationRealization), which can be linked to any number of sao: Infor-
mationElement(s) describing the individual records (e.g. algorithm details). The
decision to only represent high-level descriptions of plans was made to support
the reusability of template plan specifications; thus, steering away from detailed
plans which could be more difficult to match to existing internal development
processes of different organisations. However, if required, detailed plan descrip-
tions are supported by EP-Plan through descriptions of sub-plans [18] (Fig. 2).
This could be utilised, for example, within large organisations where different

8 I. Naja et al.

agents contribute different information elements and a detailed provenance trace
of their individual contributions is required.

SAO also defines sao:AccountableAgent to indicate agents that can be held
to account for their actions. These are also subtypes of sao:InformationElement
and may therefore be mentioned as part of an sao:InformationRealization. For
example, a model specification may specify certain agents that are assumed to
be accountable for the realised model. The relationship sao:isAccountableFor
explicitly denotes the direct link between accountable agents and the entities
for which they are accountable. It is also possible to indicate expected re-
sponsibilities of agents within an organisation for specific accountable actions
and results, by linking sao:AccountableAgent to sao:AccountableAction using
ep-plan:hasPermittedAgent.

Finally, the concept ep-plan:Constraint can be used to record details about
any constraints that were associated with the planned sao:AccountableAction,
thus providing mechanisms to further customise generic plans to the require-
ments of individual organisations, allowing further context to be provided on
how accountable results were produced (e.g. explaining why certain information
elements were included as part of the information realization).

5.2 The RAInS Ontology

The RAInS7 ontology extends SAO for the AI systems’ domain by defining a
set of concepts required to document the design stage of such systems. Figure 3
depicts the classes defined in RAInS.

Subclasses of sao:AccountableAction and sao:AccountableResult are defined
to provide a minimal set of high-level constructs for describing accountability
plans consisting of actions producing design specifications (e.g. a ML model de-
sign specification) and human decisions (e.g. approval of a specification by an
accountable person). By design specifications we mean a collection of require-
ments or expected characteristics associated with aspects of an AI system. Such
specifications are produced by the system designers and should be complied with
when the system is realised later in the life cycle. These specifications are not in-
tended to describe specific steps and the order in which they should be performed
- i.e. plans. Subclasses of rains:DesignSpecification are defined to cover descrip-
tions of dataset, model, evaluation, and supporting infrastructure specifications
(see Section 4). Further subclasses of rains:DesignSpecification are also defined
to describe additional metadata through rains:SystemPurposeSpecification and
rains:ComplianceSpecification to indicate the intended qualities of the expected
system, which influence the other individual specifications (e.g. a step producing
a dataset specification using inputs defining the system purpose and desired com-
pliance specification). Subclasses of rains:HumanDecision are used at the plan
level to describe the various decisions (e.g. specification approvals) expected to
be made by the accountable decision-makers within an organisation.

7 https://w3id.org/rains.

https://w3id.org/rains

A Semantic Framework to Support AI System Accountability and Audit 9

At the accountability trace level, RAInS extends sao:InformationElement
with a number of subclasses for capturing metadata relating to risks, compliance,
intended and incorrect use cases, intended user groups, data collection methods,
and data pre-processing methods. Furthermore, information elements may de-
scribe a rains:RealizableObject which represents a tangible system asset such as a
piece of data or software (e.g. training dataset, ML model, component of support-
ing infrastructure, etc.) that will be realised during the implementation stage.
Here, the data property rains:isReusedObject indicates with a Boolean value
whether the resource already exits and is being reused. However, at this stage
this system asset is still referred to in abstract terms using rains:RealizableObject
as it is not yet the implemented AI component. Each rains:RealizableObject may
be linked using the rains:hasRealizableObjectCharacteristic object property to
rains:RealizableObjectCharacteristic, which may be used to structure the descrip-
tion of rains:RealizableObject into separate information elements (e.g. discussing
model performance) within sao:InformationRealization.

To allow for a wide coverage of potential applications, the RAInS ontology
does not dictate what information elements (if any) should be part of an in-
formation realization. Users can associate constraints with plan steps that may
be used to validate the quality of generated knowledge graphs. Fig. 4 illustrates
a SHACL [15] constraint specifying that the rains:Limitation element must be
present in a collection corresponding to the rains:ModelSpecification. Ensuring
the completeness of information captured in the knowledge graph would be an
important factor, for example, if the collection of accountability traces was used
to demonstrate compliance with hard or soft laws. If required, constraints may
be defined at an abstract level (i.e. they cannot be automatically validated by
rules) and their compliance or violation may be determined manually by the
information provided by a human agent contributing the relevant accountability
trace information. This may be implemented via, for example, a question such
as “has this activity been performed without any conflict of interests?”, where
the user is expected to provide a direct answer to this question.

5.3 Design Rationale and Alignment to Other Ontologies

EP-Plan (an extension of PROV-O) defines core concepts used for modelling the
execution traces corresponding to plan specifications. SAO extends EP-Plan to
define concepts for recording accountability plans and corresponding account-
ability traces for computational systems. RAInS then extends SAO further with
domain specific concepts relating to the design stage of AI systems. Accountabil-
ity plans represent simple and generalisable workflows which document record
keeping protocols, whereas much of the actionable information is recorded in the
accountability traces. This approach is similar to the pattern implemented by
the Information Object ontology8. Its concept information object describes an
abstract conceptualisation of an object (e.g. a written text) while the correspond-
ing information realization describes a realisation of that object (e.g. a specific

8 http://www.ontologydesignpatterns.org/ont/dul/IOLite.owl

http://www.ontologydesignpatterns.org/ont/dul/IOLite.owl

10 I. Naja et al.

Fig. 3. RAInS classes as subclasses of SAO classes (in blue-filled rectangles). Third
party classes reused from ML Schema and Dublin Core vocabulary have green borders.

ex:designPlan
(rains:

DesignStageAccountabilityPlan)

ex:exec1
(ep-plan:

ExecutionTraceBundle)

ex:modelSpec
(sao:InformationRealization)ex:step1

(rains:ProduceSpecification)

ex:var1
(rains:ModelSpecification)

ep-plan:
isElementOfPlan

ep-plan:
hasOutputVariable

ex:RequiredElementShape
a sh:NodeShape ;
sh:targetNode ex:step1 ;
sh:sparql [
 sh:message "The rains:Limitation
 element is missing" ;
 sh:prefixes ex:, rains:, prov: ;
 sh:select """
 SELECT $this
 WHERE {
 FILTER NOT EXISTS {
 $this ep-plan:hasOutputVariable ?var.
 ?var a rains:ModelSpecification.
 ?activity ep-plan:correspondsToStep $this.
 ?coll ep-plan:correspondsToVariable ?var;

 prov:wasGeneratedBy ?activity;
 prov:hadMember ?element.
 ?element a rains:Limitation.

}}""" ;] .

prov:hadMember

ex:lim1
(rains:Limitation)

ep-plan:isElementOfTrace

ep-plan:
isElementOfTraceprov:wasGeneratedBy

ep-plan:
satisfied

prov:wasDerivedFrom

“The model has ….”

rdfs:comment

ep-plan:hasConstraint

ep-plan:isElementOfPlan

ep-plan:hasconstraintImplementation

ep-plan:
correspondsToStep

ep-plan:
correspondsToVariable

ex:const1
(ep-plan:Constraint)

ex:act1
(ep-plan:Activity)

Fig. 4. An illustration of linking a SHACL constraint to a plan step using ep-
plan:Constraint. The constraint states that an instance of type rains:Limitation must
be present as part of the sao:InformationRealization

report). In our approach, the abstract conceptualisation is the description of
sao:AccountableResult at a plan level; its subsequent realisation is captured by
sao:InformationRealization. The latter describes a specific information instance
(e.g. a specification report) as part of the accountability trace.

RAInS includes subclasses of sao:InformationElement to provide descriptions
of information captured in the execution traces. Here, concepts from ML Schema
(MLS) and the Dublin Core Vocabulary (DC)9 such as mls:Dataset, mls:Model,
and dc:LicenseDocument are reused as subclasses of sao:InformationElement.
Classes defined in SAO and RAInS may be extended for more detailed domain
specific descriptions. For example, concepts from the Decision Provenance ontol-

9 https://www.dublincore.org/specifications/dublin-core/dcmi-terms/

https://www.dublincore.org/specifications/dublin-core/dcmi-terms/

A Semantic Framework to Support AI System Accountability and Audit 11

ogy10 such as dp:Question, dp:Answer, and dp:Option may be used as subclasses
of rains:InformationElement to further describe documented human decisions.

6 Evaluation

We performed a two stage evaluation11 process where we first verified the design
of SAO and RAInS and then validated their intended application within the
accountability context (see Section 1) through prototype implementation and
an example knowledge graph.

To support clarity of both ontologies we produced standard documentations
using Widoco12. The automated OOPS! Pitfall Scanner13 was used throughout
the ontology development process to prevent common pitfalls and bad modelling
practices. The scanner did not highlight any issues directly related to SAO or
RAINS14.

We then implemented the Accountability Fabric prototype, a web-based tool
for managing accountability plans and accountability traces. The tool (available
on GitHub15) is a Spring Boot16 app with HTML/JavaScript/CSS front end. It
comprises three modules: Accountability Plan Design Module, Provenance Cap-
ture Module, and Audit Module. The Accountability Plan Design Module provides
a web interface to design accountability plans, using steps and variables defined
by SAO and RAInS. The Provenance Capture Module is responsible for record-
ing the execution traces and associating them with the accountability plans.
This module currently only generates web forms for manual human input, which
was sufficient to evaluate SAO and RAInS against our knowledge capture re-
quirements identified in Section 4. However, in future we plan to extend it to
enable programmatic access for automated logging (see Section 7). The Audit
Module provides a simple visual interface which allows the inspection of an AI
system’s accountability traces. Accountable agents are displayed along with their
accountable actions and corresponding accountable results. Lastly, the storage
and querying of the knowledge graphs is supported by the GraphDB17 graph
store, SPARQL and RDF4J library18. Information is described using PROV-O,
EP-Plan, SAO, RAInS, DC and MLS (see Section 5).

10 https://promsns.org/def/decprov/decprov.html
11 Evaluation results and instructions on how to reproduce them are available in the

GitHub repository: https://github.com/RAINS-UOA/ESWC_2021_Evaluation
12 https://w3id.org/widoco
13 http://oops.linkeddata.es/
14 The tool produced one incorrect suggestion about potential class equivalence be-

tween sao:System and prov:Organisation. For completeness, we note that the reused
ontologies PROV-O, DC, P-PLAN (which EP-Plan extends) and MLS - which we
have no control over - produce a number of warnings related to missing domains and
ranges, missing inverse properties, etc.

15 https://github.com/RAINS-UOA/rains-workflow-builder/tree/ESWC-2021
16 https://spring.io/projects/spring-boot
17 https://www.ontotext.com/products/graphdb/
18 https://rdf4j.org/

https://promsns.org/def/decprov/decprov.html
https://github.com/RAINS-UOA/ESWC_2021_Evaluation
https://w3id.org/widoco
http://oops.linkeddata.es/
https://github.com/RAINS-UOA/rains-workflow-builder/tree/ESWC-2021
https://spring.io/projects/spring-boot
https://www.ontotext.com/products/graphdb/
https://rdf4j.org/

12 I. Naja et al.

The Accountability Fabric was used to create an accountability plan19 for
the design stage of an example ML-based medical image classification system.
It was then used to create an accountability trace20 associated with the plan.
Fig. 5 depicts a portion of the generated knowledge graph21 modelling the ac-
countability plan and its corresponding trace. It illustrates an example where a
dataset specification (ex:2) is described as an information realization containing
an information element (ex:5); the latter describes its data collection procedure.

The knowledge graph was imported into Protégé22 and the built-in Hermit
reasoner was used to evaluate the consistency of the populated ontology and
to infer additional relationships. The inferences were then inspected manually
to validate their correctness. While all the inferences were correct, the Hermit
reasoner identified an inconsistency originating from the MLS ontology which
was initially imported in RAInS for the evaluation (owl:Nothing EquivalentTo
mls:Experiment). However, this inconsistency does not affect the concepts reused
by RAInS and MLS ontology is not imported by default.

To validate if our ontologies satisfy the three goals of accountability as out-
lined in Section 1 and the knowledge capture requirements described in Section
4, we used the Audit Module user interface to retrieve relevant information as-
sociated with the design stage of an AI system. The Audit Module presents an
agent-centric interface focused on identifying how agents were involved in dif-
ferent aspects of the system design, the decisions they made and the outputs
they produced. The Audit Module executes SPARQL queries23 to populate the
interface. Fig. 6 illustrates a query used by the tool to retrieve details about
the accountable agents who performed accountable actions along with the corre-
sponding results. Fig. 7 depicts a screenshot of the interface driven by the data
in Fig. 5; the accountable actions of a selected agent are listed in the Results
table. By clicking on the individual values of the results table, more information
about the corresponding instance is presented in the Object Details window.

Using this interface we were able to demonstrate that a system life-cycle stage
can be made transparent by retrieving information about accountable agents,
their activities, and accountable results described using SAO and RAINS to
provide answers satisfying our knowledge requirements (see Section 4). This di-
rectly relates to the first of the three accountability goals discussed in Section 1.
However, we also note that both SAO and RAInS are incomplete as they require
extensions to cover specific domain applications and other life-cycle stages re-
spectively. To satisfy the second accountability goal we inspected the information

19 The example plan was created with 19 steps, each producing one output variable.
20 The trace contained: 19 activities (corresponding to the 19 steps); 19 information

realizations (corresponding to the 19 variables); 16 accountable agents; and 48 in-
formation elements, including the 16 accountable agents.

21 https://github.com/RAINS-UOA/ESWC_2021_Evaluation/tree/main/

exampleKnowledgeGraph
22 https://protege.stanford.edu
23 Relevant Java file https://github.com/RAINS-UOA/rains-workflow-builder/

blob/master/rains-workflow-builder/src/main/java/uoa/web/handlers/

SystemRecordManager.java

https://github.com/RAINS-UOA/ESWC_2021_Evaluation/tree/main/exampleKnowledgeGraph
https://github.com/RAINS-UOA/ESWC_2021_Evaluation/tree/main/exampleKnowledgeGraph
https://protege.stanford.edu
https://github.com/RAINS-UOA/rains-workflow-builder/blob/master/rains-workflow-builder/src/main/java/uoa/web/handlers/SystemRecordManager.java
https://github.com/RAINS-UOA/rains-workflow-builder/blob/master/rains-workflow-builder/src/main/java/uoa/web/handlers/SystemRecordManager.java
https://github.com/RAINS-UOA/rains-workflow-builder/blob/master/rains-workflow-builder/src/main/java/uoa/web/handlers/SystemRecordManager.java

A Semantic Framework to Support AI System Accountability and Audit 13

abdn:bob.smith
(sao:AccountableAgent)

ex:2
(sao:InformationRealization)

ex:1
(ep-plan:MultiActivity)

ex:6
(rains:ProduceSpecification)

ex:7
(rains:DatasetSpecification)

“DS Specs CBISDDSM”

ex:5
(rains:DataCollectionProcedure)

“DS SpecsCBISDDSM”

“collected from
four american

hospitals..”

“Specification for
dataset CBISDDSM”

ex:8
(rains:DesignStage
AcountabilityPlan)

ex:9
(ep-plan:

ExecutionTraceBundle)

ex:3
(ep-plan:MultiActivity)

ex:9
(rains:AI_System)

ex:10
(sao:AccountableObject)

prov:wasAssociatedWith

prov:
was

Generated
By

prov:wasMemberOf

prov:
wasderivedFrom

“Decision Logic”

sao:impacts

sao:specifiedForSystem

ep-plan:correspondsToStep ep-plan:correspondsToVariable

“Decide:Confirm
DS Specs
Fitness”

ep-plan:
hasOutputVariable

“Produce DS Specs
for CBISDDSM”

sao:
relatesTo

AccountableObject

prov:used

rdfs:comment rdfs:label ep-plan:isElementOfPlan ep-plan:isElementOfTrace

Fig. 5. A section of the knowledge graph from the medical image classification example.
Select Distinct *
Where {
?agent a sao:AccountableAgent.
?infoRealization prov:wasGeneratedBy ?activity; ep-plan:correspondsToVariable ?accountableResult.
?accountableResult a ?accountableResultType; sao:relatesToAccountableObject ?accountableObject; rdfs:label ?
accountableResultLabel.
?accountableObject rdfs:label ?accountableObjectLabel. ?activity prov:wasAssociatedWith ?agent; ep-plan:correspondsToStep ?
accountableAction.
?accountableAction a ?accountableActionType; ep-plan:hasOutputVariable ?accountableResult; rdfs:label ?accountableActionLabel.

OPTIONAL {?dependentAccountableActionActivity ep-plan:correspondsToStep ?dependentAccountableAction.
?dependentAccountableAction ep-plan:hasInputVariable ?accountableResult; a ?dependentAccountableActionType; rdfs:label
?dependentAccountableActionLabel.
FILTER (regex(str(?dependentAccountableActionType), "https://w3id.org/rains#"))
}
FILTER(regex(str(?accountableActionType), "https://w3id.org/rains#")
&& regex(str(?accountableResultType), "https://w3id.org/rains#")) }

Fig. 6. An example SPARQL query for auditing accountability traces.

about human agent decisions (e.g. assuring system’s compliance with relevant
hard and soft laws). The ability to retrieve such information also demonstrates
that the coverage of RAInS in this context is greater than, for example, the
reused MLS ontology, and positions SAO and RAInS in a wider context encom-
passing social, technical and legal perspectives.

To demonstrate the ability of our approach to support identification of errors
and responsible parties, consider Fig. 8. Here, it is evident that agents responsible
for producing the design specification of the dataset and those responsible for
its approval could be potentially held to account for the inappropriate design of
the training dataset because of the mismatch between its intended use case and
the intended use case of the AI system.

14 I. Naja et al.

Fig. 7. The user interface of the Accountability Fabric audit module.

Fig. 8. Comparison between the intended use cases associated with the reused 3rd
party training dataset and the overall system. The information shows discrepancy be-
tween the use cases - i.e. dataset is not suitable for production ready solutions.

7 Conclusions and Future Work

In this paper, we have presented an ontology-based approach for supporting ac-
countability of AI systems by increasing the transparency of their design stage
using knowledge graphs. We demonstrated, via a proof of concept implemen-
tation, the application of SAO and RAInS ontologies to record accountability
traces by following accountability plans.

In our future work, we aim to extend the RAInS ontology with further con-
cepts applicable to other AI system life cycle stages such as implementation,
deployment and operation. At the same time, we will expand the functional-
ity of the Accountability Fabric framework to evaluate the practical application
of the ontology. We also intend to enable data exchange pipelines between the
Accountability Fabric and external frameworks through API access. For exam-

A Semantic Framework to Support AI System Accountability and Audit 15

ple, by integrating with the Model Card Toolkit used by developers to generate
model cards [20], the Fabric would be able to extract information related to
the implementation of AI systems. Another strand of activity will investigate
whether the information contained in accountability plans can be passed to a
development environment such as Jupyter Notebook24 to prevent further model
development if accountability information is not provided. Future versions of
the Accountability Fabric are also set to be evaluated with real users (such as
developers of AI systems) to identify real life implications of using such tool.
This may include, for example, issues related to commercial sensitivity of AI
development if too much information is required by the accountability plan.

Finally, because the Accountability Fabric is designed to support collection of
information from different sources, we also propose to investigate the challenges
relating to the veracity of such information, considering questions such as who
created the accountability trace, when was it created, etc. and how emerging
standards such as RDF*25 may help to address them.

References

1. ACM U.S. Public Policy Council (USACM) and ACM Europe Council Pol-
icy Committee (EUACM): Statement on algorithmic transparency and account-
ability. https://www.acm.org/binaries/content/assets/public-policy/2017_

joint_statement_algorithms.pdf (May 2017), accessed: 2019-01-24
2. Amershi, S., et al.: Software engineering for machine learning: A case study. In:

2019 IEEE/ACM 41st Int’l Conf. on Software Engineering: Software Engineering
in Practice (ICSE-SEIP). pp. 291–300. IEEE (2019)

3. Cuevas-Vicentt́ın, V., et al.: Provone: A prov extension data model for scientific
workflow provenance (2015), https://purl.dataone.org/provone-v1-dev

4. Curcin, V., Fairweather, E., Danger, R., Corrigan, D.: Templates as a method for
implementing data provenance in decision support systems. Journal of Biomedical
Informatics 65, 1–21 (2017)

5. Department of Health & Social Care (UK): Code of conduct for data-driven
health and care technology. https://www.gov.uk/government/publications/

code-of-conduct-for-data-driven-health-and-care-technology/

initial-code-of-conduct-for-data-driven-health-and-care-technology

(Jul 2019)
6. Diakopoulos, N.: Algorithmic accountability reporting: On the investigation of

black boxes (2014), Tow Center for Digital Journalism, Columbia University
7. Diakopoulos, N., et al.: Principles for accountable algorithms and a so-

cial impact statement for algorithms. http://www.fatml.org/resources/

principles-for-accountable-algorithms, accessed: 2019-01-10
8. Digital Catapult Machine Intelligence Garage Ethics Committee: Ethics

framework. https://www.migarage.ai/wp-content/uploads/2020/05/MIG_

Ethics-Report_2020_v6.pdf (Apr 2020), accessed: 2020-09-01
9. Esteves, D., et al.: Mex vocabulary: A lightweight interchange format for machine

learning experiments. In: Proc. of the 11th Int’l Conf. on Semantic Systems. pp.
169–176. SEMANTICS ’15, ACM (Sep 2015)

24 https://jupyter.org/
25 https://w3c.github.io/rdf-star/

https://www.acm.org/binaries/content/assets/public-policy/2017_joint_statement_algorithms.pdf
https://www.acm.org/binaries/content/assets/public-policy/2017_joint_statement_algorithms.pdf
https://purl.dataone.org/provone-v1-dev
https://www.gov.uk/government/publications/code-of-conduct-for-data-driven-health-and-care-technology/initial-code-of-conduct-for-data-driven-health-and-care-technology
https://www.gov.uk/government/publications/code-of-conduct-for-data-driven-health-and-care-technology/initial-code-of-conduct-for-data-driven-health-and-care-technology
https://www.gov.uk/government/publications/code-of-conduct-for-data-driven-health-and-care-technology/initial-code-of-conduct-for-data-driven-health-and-care-technology
http://www.fatml.org/resources/principles-for-accountable-algorithms
http://www.fatml.org/resources/principles-for-accountable-algorithms
https://www.migarage.ai/wp-content/uploads/2020/05/MIG_Ethics-Report_2020_v6.pdf
https://www.migarage.ai/wp-content/uploads/2020/05/MIG_Ethics-Report_2020_v6.pdf
https://jupyter.org/
https://w3c.github.io/rdf-star/

16 I. Naja et al.

10. Garijo, D., Gil, Y.: Augmenting prov with plans in p-plan: Scientific processes as
linked data. In: Proc. of the 2nd Int’l Workshop on Linked Science (2012)

11. Gebru, T., et al.: Datasheets for datasets. In: Proc. of the 5th Workshop on Fair-
ness, Accountability, and Transparency in Machine Learning. PMLR 80 (2018)

12. House Of Lords Select Committee on Artificial Intelligence: AI in the UK: Ready,
Willing and Able (Apr 2018), HL Paper 100

13. Huynh, T.D., Stalla-Bourdillon, S., Moreau, L.: Provenance-based Explanations
for Automated Decisions: Final IAA Project Report. Tech. rep. (2019)

14. IBM: Everyday ethics for artificial intelligence. https://www.ibm.com/watson/

assets/duo/pdf/everydayethics.pdf (2019)
15. Knublauch, H., Kontokostas, D.: Shapes constraint language (SHACL). W3C

recommendation, W3C (Jul 2017), https://www.w3.org/TR/2017/REC-shacl-
20170720/

16. Lebo, T., Sahoo, S., McGuinness, D.: PROV-O: The PROV ontology.
W3C recommendation, W3C (Apr 2013), http://www.w3.org/TR/2013/

REC-prov-o-20130430/
17. Markovic, M., et al.: Semantic Modelling of Plans and Execution Traces for En-

hancing Transparency of IoT Systems. In: 6th Int’l Conf. on Internet of Things:
Systems, Management and Security (IOTSMS). pp. 110–115. IEEE (2019)

18. Markovic, M., Garijo, D., Edwards, P.: Linking abstract plans of scientific experi-
ments to their corresponding execution traces. In: Proc. of the 3rd Int’l Workshop
on Capturing Scientific Knowledge (Sciknow 2019). CEUR-WS (2019)

19. Menzies, T.: The Five Laws of SE for AI. IEEE Software 37(1), 81–85 (2020)
20. Mitchell, M., et al.: Model cards for model reporting. In: Proc. of the Conf. on

Fairness, Accountability, and Transparency. pp. 220–229. ACM (2019)
21. Pandit, H.J., Lewis, D.: Modelling provenance for gdpr compliance using linked

open data vocabularies. In: Privacy and the Semantic Web - Policy and Technology
workshop (PrivOn 2017), co-located with ISWC (2017)

22. Publio, G.C., et al.: ML Schema: Exposing the semantics of machine learning with
schemas and ontologies. In: 2nd Reproducibility in Machine Learning Workshop
at ICML 2018 (Jul 2018), poster

23. Suárez-Figueroa, M.C., Gómez-Pérez, A.: Neon methodology for building ontology
networks: a scenario-based methodology. In: Proc. of the Int’l Conf. on Software,
Services & Semantic Technologies (2009)

24. The European Commission Independent High-Level Expert Group on Artifi-
cial Intelligence: Ethics Guidelines for Trustworthy AI. https://ec.europa.eu/
newsroom/dae/document.cfm?doc_id=60419 (Apr 2019)

25. The IEEE Global Initiative on Ethics of Autonomous and Intelligent Sys-
tems: Ethically aligned design: A vision for prioritizing human well-being
with autonomous and intelligent systems. Tech. rep., IEEE (2019), https:

//standards.ieee.org/content/ieee-standards/en/industry-connections/

ec/autonomous-systems.html
26. The Royal College of Radiologists: Clinical radiology scotland workforce 2019

summary report (Aug 2020), https://www.rcr.ac.uk/sites/default/files/

clinical-radiology-scotland-workforce-census-2019-summary-report.pdf
27. Tianxing, M., Zhukova, N., Meltsov, V., Shichkina, Y.: A knowledge-based com-

putational environment for real-world data processing. In: Computational Science
and Its Applications – ICCSA 2019. pp. 257–269. Springer Int’l Publishing (2019)

28. Wieringa, M.: What to account for when accounting for algorithms: A systematic
literature review on algorithmic accountability. In: Proc. of the 2020 Conf. on
Fairness, Accountability, and Transparency. pp. 1–18. FAT* ’20, ACM (2020)

https://www.ibm.com/watson/assets/duo/pdf/everydayethics.pdf
https://www.ibm.com/watson/assets/duo/pdf/everydayethics.pdf
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://www.w3.org/TR/2013/REC-prov-o-20130430/
https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=60419
https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=60419
https://standards.ieee.org/content/ieee-standards/en/industry-connections/ec/autonomous-systems.html
https://standards.ieee.org/content/ieee-standards/en/industry-connections/ec/autonomous-systems.html
https://standards.ieee.org/content/ieee-standards/en/industry-connections/ec/autonomous-systems.html
https://www.rcr.ac.uk/sites/default/files/clinical-radiology-scotland-workforce-census-2019-summary-report.pdf
https://www.rcr.ac.uk/sites/default/files/clinical-radiology-scotland-workforce-census-2019-summary-report.pdf

	A Semantic Framework to Support AI System Accountability and Audit

