
MIM-Refiner: A Contrastive Learning Boost from
Intermediate Pre-Trained Representations

Benedikt Alkin1,2 Lukas Miklautz3 Sepp Hochreiter1,2 Johannes Brandstetter1,2

1 ELLIS Unit Linz, Institute for Machine Learning, JKU Linz, Austria
2 NXAI GmbH, Linz, Austria

3 Faculty of Computer Science, University of Vienna, Vienna, Austria
alkin@ml.jku.at

Abstract

We introduce MIM (Masked Image Modeling)-Refiner, a contrastive learning
boost for pre-trained MIM models. MIM-Refiner is motivated by the insight that
strong representations within MIM models generally reside in intermediate layers.
Accordingly, MIM-Refiner leverages multiple contrastive heads that are connected
to different intermediate layers. In each head, a modified nearest neighbor objective
constructs semantic clusters that capture semantic information which improves
performance on downstream tasks, including off-the-shelf and fine-tuning settings.
The refinement process is short and simple – yet highly effective. Within a few
epochs, we refine the features of MIM models from subpar to state-of-the-art, off-
the-shelf features. Refining a ViT-H, pre-trained with data2vec 2.0 on ImageNet-1K,
sets a new state-of-the-art in linear probing (84.7%) and low-shot classification
among models that are pre-trained on ImageNet-1K. MIM-Refiner efficiently
combines the advantages of MIM and ID objectives and compares favorably against
previous state-of-the-art SSL models on a variety of benchmarks such as low-shot
classification, long-tailed classification, clustering and semantic segmentation.
Project page: https://ml-jku.github.io/MIM-Refiner

1 Introduction

2020/06 2021/04 2022/03 2023/04 2024/02

80

82

84

Ac
cu

ra
cy

 [%
]

BYOL
ResNet-200x2

MoCo v3
ViT-L/7-BN

iBOT
ViT-L/16

MUGS
ViT-L/16

MAE-CT
ViT-H/16

MIM-Refiner
ViT-H/14

+2
.5

+
2.

6

M
IM

-R
ef

in
er

Figure 1: Linear probing state-of-the-art on
ImageNet-1K over the last four years.

Self-supervised learning (SSL) has attracted consider-
able attention, owing to its data efficiency and gen-
eralization ability [49]. SSL leverages pre-training
tasks and creates intricate input representations without
the need for explicit supervision via expensive anno-
tations. In computer vision, Masked Image Modeling
(MIM) [12, 71, 58] has emerged as one of the preva-
lent SSL pre-training paradigms, enabling an efficient
pretraining of large models on unlabeled data by recon-
structing masked parts of the input images.

The success of MIM is driven by methods like Masked
Autoencoder (MAE) [30], data2vec [7, 6], and others [8,
79]. For example, MAE opens the door for sparse pre-training of Vision Transformers (ViTs) [22] by
masking large parts of the image and not processing the masked areas. The computational efficiency,
coupled with the data efficiency of a generative reconstruction task [80, 25, 65] fosters the scaling to
larger architectures on datasets of limited size. However, MIM models tend to spread their attention
across the whole image [72]. When adapting to downstream tasks, a sufficient amount of labels is

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://ml-jku.github.io/MIM-Refiner


Pets
Probe

CIFAR-100

Probe

Sun397Probe

Caltech-101Probe
iNat18
5-shot

iNat18

10-shot

iN
at1

8
Fin

e-t
un

e

VT
AB

-1
K

Fin
e-

tu
ne

ADE20K
Fine-tune

ADE20K

Probe

ImageNet
Robustness ImageNetFine-tune

ImageNet
Probe

ImageNet

k-NN

Im
ag

eN
et

1-s
ho

t
Im

ag
eN

et
Cl

us
te

rin
g

89.6
85.075

.191
.3

53.166.976.9
68.0

50.2

35.6

47
.7

84
.6

78.2
61.3

28.0

18.5

95.8

90.4

79
.2

93
.5

58.8

73.0

82.1

75.2

54.4

41.0

60
.5

86
.7

83.5

81.5

61.7

67.4

MIM ID

MIM-Refiner

Decoder

MIM

Block 1

Block 2

Block 3

Block 4

ID Head

ID

Block 1

Block 2

Block 3

Block 4

MIM-Refiner

Block 1

Block 3

ID Head

Copy

Copy

Copy Block 4

Block 2

Block 5 CopyBlock 5 Block 5 ID Head

Copy

Figure 2: Left: Downstream evaluations of pre-trained SSL models. MIM-Refiner effectively
combines their respective advantages of MIM and ID without suffering from their respective disad-
vantages. Right: Comparison of different pre-training schemes. ID uses a single ID head, whereas
MIM models use a light-weight decoder to train an encoder. MIM-Refiner attaches multiple ID heads
to the later third of the blocks of a pre-trained MIM encoder.

required to rewire the attention to focus on important regions in the image. In the absence thereof,
MIM models perform poorly. In contrast, for example, Instance Discrimination (ID) [31, 14, 10, 29]
methods implicitly focus on objects and form semantic clusters in the latent space [11], which
eases adaption to downstream tasks in the absence of vast amounts of labels. In summary, the most
important desiderata for efficient SSL pre-training methods in computer vision are rich representations
of the input – ideally in the form of semantic clusters in the latent space – alongside efficiency in
both compute and data, and, most notably, favorable scaling to larger architectures.

In this work, we first analyze pre-trained MIM models, where we find that MIM models have different
types of blocks: those that mainly improve the pre-training objective and others that are responsible
for abstraction within the MIM encoder. The origin of this behavior can be traced back to the fact that
MIM architectures usually comprise a large ViT encoder together with a very light-weight decoder.
For larger models, the light-weight decoder reaches a point, where it cannot further improve the
pre-training objective on its own and passes part of the reconstruction task back to the last encoder
blocks. Consequently, the feature quality for downstream tasks of the later blocks degrades, and,
somewhat unusual, the representation quality peaks in the middle blocks of the encoder.

Based on these insights, we introduce MIM-Refiner, a simple – yet highly effective – sequential
refinement approach tailored to MIM models. MIM-Refiner applies an ensemble of ID heads that
enforce semantic clusters via an ID objective. Most importantly, those ID heads are attached to
intermediate blocks of the encoder including those that exhibit peak representation quality, instead of
only a single ID head attached to the last block.

Experimentally, we show that within few epochs, MIM-Refiner refines the features of a MIM model
to (i) incorporate the beneficial properties of ID objectives (ii) preserves the advantages of the MIM
model (iii) exploits the synergies of both methods to improve upon each individual pre-training
objective, advancing the state-of-the-art across various benchmarks, see Figure 2.

2 Challenges of Masked Image Modeling

MIM models, such as MAE [30] and data2vec 2.0 [6], enable an efficient pre-training of large models.
In terms of architecture, the encoder and decoder are intentionally designed asymmetrically. The
encoder, on the one hand, is a large ViT, where discarding 75% of the input patches drastically
reduces the cost of a forward pass. The decoder, on the other hand, operates on the full sequence
length – by concatenating mask tokens to the encoded visible patches – and, thus, is typically very
lightweight to compensate for the increased number of tokens (Figure 3a). As models increase in

2



MAE data2vec 2.00

100

200

300

400

500

600

#P
ar

am
et

er
s [

M
]

Encoder
Decoder
ViT-B/16
ViT-L/16
ViT-H/14

76.7%

92.1%

96.0%

97.1%

98.1%

99.0%

(a) Encoder-decoder Parameter Count

ViT Blocks
0

10

20

30

40

50

60

70

k-
NN

 A
cc

ur
ac

y 
[%

]

MAE B/16
MAE L/16
MAE H/14

(b) ImageNet-1K k-NN Accuracy per Block

10% 1% 5-shot 2-shot 1-shot
Labels per Class

20

30

40

50

60

70

80

Ac
cu

ra
cy

 [%
]

MAE
iBOT
MAE-Refined

(c) ImageNet-1K Low-shot Accuracy.

MAE-H/14 Blocks

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

Im
pr

ov
em

en
t

Reconstruction Loss
k-NN Accuracy

(d) Relative Improvements per Block.

Figure 3: (a) MIM models are asymmetrically designed where the encoder has most of the parameters,
as indicated by the percentages in the bars. (b) The representation quality of MAE encoders (measured
by k-NN accuracy) peaks in the middle blocks before degrading when the later blocks take over parts
of the decoder’s task. Various MIM models and also a semantic segmentation task follow this pattern
(see Appendix E.4) (c) The decline in representation quality in later blocks primarily contributes to
the degradation in downstream performance. ID methods (represented by iBOT [86]) and our MAE-
Refined do not suffer from this issue. (d) Correlation of the relative improvement of the reconstruction
loss and the relative improvement in the k-NN accuracy per block. The relative k-NN accuracy
improvement is obtained from the k-NN accuracy shown in (b). Similarly, the relative improvement
of the reconstruction loss is obtained from Figure 8 in the appendix. Middle blocks form abstract
representations (large improvements in the k-NN accuracy, almost no improvement in reconstruction
loss), later blocks take over parts of the reconstruction task (decrease in the k-NN accuracy, large
improvement in the reconstruction loss). Additional details can be found in Appendix G.2.

size, the decoder eventually reaches a point where it cannot further improve the pre-training objective
on its own. Consequently, it begins to delegate a portion of the reconstruction task back to the last
encoder blocks. This transfer adversely affects the feature quality for downstream tasks associated
with those blocks (Figure 3b), especially when only few labels are available (Figure 3c). We observe
this phenomenon by correlating the relative improvement in the reconstruction loss vs the k-NN
accuracy (Figure 3d). Roughly speaking, the blocks of the encoder operate in three different regimes:

1. In early ViT blocks, general purpose features are learned, which improve the reconstruction
loss and the k-NN accuracy simultaneously.

2. In middle ViT blocks, abstractions are formed. The reconstruction loss improves only
slightly, while the k-NN accuracy improves drastically.

3. In late ViT blocks, features are prepared for the reconstruction task. The reconstruction loss
improves at a faster rate, while the k-NN accuracy decreases.

3



Table 1: Evaluating MIM-Refiner on a broad range of downstream tasks. “VTAB-6” reports the
average accuracy over six datasets from the VTAB benchmark [83] and “VTAB-1K” is the average
over all 19 datasets of the VTAB-1K benchmark. ADE20K reports the mean intersection over union
(mIoU) of a semantic segmentation probe. MIM-Refiner learns strong general-purpose features that
be readily used for various datasets and tasks. All models are pre-trained on ImageNet-1K [20].
“Probe” benchmarks and VTAB-6 train a linear layer on top of a frozen encoder using the full dataset.
Other benchmarks fine-tune the encoder. See Appendix G for further implementation details.

ImageNet iNat18 VTAB ADE20K
ViT Method 5-shot Probe 5-shot Probe VTAB-6 VTAB-1K Probe

L/16

MAE 56.9 77.5 51.6 42.8 83.0 73.7 33.6
iBOT 66.5 81.1 51.5 56.0 87.6 70.8 35.6
Mugs 69.4 82.1 53.2 61.5 87.9 68.0 34.8
MAE-Ref 72.0 82.8 58.0 60.6 88.5 75.2 37.3

H/14
MAE 40.2 78.2 53.3 43.0 83.2 72.7 35.5
MAE-CT 67.4 82.3 60.1 62.8 88.8 75.7 37.6
MAE-Ref 73.8 83.7 62.4 64.6 89.3 75.9 39.4

2B/14 MAE 62.9 79.7 53.7 51.0 85.4 74.1 37.3
MAE-Ref 74.8 84.5 63.5 69.6 89.8 75.6 40.3

When naïvely using the features of the last encoder block, those features are suited for reconstruction,
but not particularly for downstream tasks. If lots of labels are available, this can be compensated
by fine-tuning the last encoder blocks on the downstream task. However, if not enough labels are
available, or the last encoder blocks are not fine-tuned, downstream performance suffers.

One would think that simply using a larger decoder solves these problems. However, there are
multiple problems with this solution. (i) The decoder commonly operates on the full sequence length,
making it costly to increase its size. (ii) Scaling the decoder can decrease performance as shown, for
example, in MAE [30] (Table 1). (iii) Models that can use a deeper decoder (such as CrossMAE [27])
also show degrading representation quality in later blocks, as shown in Appendix Figure 6d.

3 Method & Experiments

We propose MIM-Refiner, a novel approach aimed at improving downstream performance by refining
the later blocks of a pre-trained MIM model. MIM-Refiner leverages the abstract intermediate
representations with an ensemble of Instance Discrimination (ID) heads, which are attached to
multiple blocks towards the end of the encoder, as visualized on the right side of Figure 2. As ID
objective, we use Nearest Neighbor Alignment (NNA), which we introduce as a variant of NN-based
ID methods [24, 4] to stabilize training of large-scale models (see Appendix B).

We refine MAE [30, 65] models, evaluate them on a variety of benchmarks and compare against
state-of-the-art MIM and ID methods in Table 1. A comprehensive ablation study together with many
more evaluations and additional refined MIM models can be found in Appendix C.

4 Conclusion

We introduce MIM-Refiner, a procedure to refine pre-trained MIM models. Motivated by the
insights that the representation quality of MIM models peaks in the middle of the encoder, we
employ an ensemble of instance discrimination heads attached at multiple blocks towards the end
of the encoder, including the blocks where representation quality peaks, to improve upon the best
existing representation. We train this ensemble for a short duration to improve the representation for
downstream tasks such as classification, clustering or semantic segmentation.

Our refined MIM models learn strong features from ImageNet-1K alone that can be readily used
for downstream tasks without fine-tuning the model but also improve performance when the model
is fine-tuned, particularly in few-shot settings. Our models outperform competitors that were also
trained on ImageNet-1K and sometimes also ones that were trained on more data or use larger models.

4



Acknowledgements

We thank Johannes Lehner for helpful discussions and suggestions.

We acknowledge EuroHPC Joint Undertaking for awarding us access to Karolina at IT4Innovations,
Czech Republic, MeluXina at LuxProvide, Luxembourg, LUMI at CSC, Finland and Leonardo at
CINECA, Italy. We acknowledge access to LEONARDO at CINECA, Italy, via an AURELEO
(Austrian Users at LEONARDO supercomputer) project.

The ELLIS Unit Linz, the LIT AI Lab, the Institute for Machine Learning, are supported by the
Federal State Upper Austria. We thank the projects Medical Cognitive Computing Center (MC3),
INCONTROL-RL (FFG-881064), PRIMAL (FFG-873979), S3AI (FFG-872172), EPILEPSIA (FFG-
892171), AIRI FG 9-N (FWF-36284, FWF-36235), AI4GreenHeatingGrids (FFG- 899943), IN-
TEGRATE (FFG-892418), ELISE (H2020-ICT-2019-3 ID: 951847), Stars4Waters (HORIZON-
CL6-2021-CLIMATE-01-01). We thank Audi.JKU Deep Learning Center, TGW LOGISTICS
GROUP GMBH, Silicon Austria Labs (SAL), FILL Gesellschaft mbH, Anyline GmbH, Google, ZF
Friedrichshafen AG, Robert Bosch GmbH, UCB Biopharma SRL, Merck Healthcare KGaA, Verbund
AG, GLS (Univ. Waterloo), Software Competence Center Hagenberg GmbH, Borealis AG, TÜV
Austria, Frauscher Sensonic, TRUMPF and the NVIDIA Corporation.

References
[1] Adaloglou, N., Michels, F., Kalisch, H., Kollmann, M.: Exploring the limits of deep image

clustering using pretrained models. In: BMVC. pp. 297–299. BMVA Press (2023)

[2] Assran, M., Caron, M., Misra, I., Bojanowski, P., Bordes, F., Vincent, P., Joulin, A., Rabbat, M.,
Ballas, N.: Masked siamese networks for label-efficient learning. In: Avidan, S., Brostow, G.J.,
Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022 - 17th European
Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXXI. Lecture Notes in
Computer Science, vol. 13691, pp. 456–473. Springer (2022)

[3] Assran, M., Duval, Q., Misra, I., Bojanowski, P., Vincent, P., Rabbat, M.G., LeCun, Y., Ballas,
N.: Self-supervised learning from images with a joint-embedding predictive architecture. In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver,
BC, Canada, June 17-24, 2023. pp. 15619–15629. IEEE (2023)

[4] Azabou, M., Azar, M.G., Liu, R., Lin, C., Johnson, E.C., Bhaskaran-Nair, K., Dabagia, M.,
Hengen, K.B., Roncal, W.R.G., Valko, M., Dyer, E.L.: Mine your own view: Self-supervised
learning through across-sample prediction. CoRR abs/2102.10106 (2021)

[5] Bachlechner, T., Majumder, B.P., Mao, H.H., Cottrell, G., McAuley, J.J.: Rezero is all you need:
fast convergence at large depth. In: de Campos, C.P., Maathuis, M.H., Quaeghebeur, E. (eds.)
Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, UAI
2021, Virtual Event, 27-30 July 2021. Proceedings of Machine Learning Research, vol. 161, pp.
1352–1361. AUAI Press (2021)

[6] Baevski, A., Babu, A., Hsu, W., Auli, M.: Efficient self-supervised learning with contextualized
target representations for vision, speech and language. In: Krause, A., Brunskill, E., Cho, K.,
Engelhardt, B., Sabato, S., Scarlett, J. (eds.) International Conference on Machine Learning,
ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA. Proceedings of Machine Learning
Research, vol. 202, pp. 1416–1429. PMLR (2023)

[7] Baevski, A., Hsu, W., Xu, Q., Babu, A., Gu, J., Auli, M.: data2vec: A general framework for
self-supervised learning in speech, vision and language. In: ICML. Proceedings of Machine
Learning Research, vol. 162, pp. 1298–1312. PMLR (2022)

[8] Bao, H., Dong, L., Piao, S., Wei, F.: Beit: BERT pre-training of image transformers. In: The
Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net (2022)

[9] Cai, Z., Ravichandran, A., Favaro, P., Wang, M., Modolo, D., Bhotika, R., Tu, Z., Soatto, S.:
Semi-supervised vision transformers at scale. In: NeurIPS (2022)

5



[10] Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning
of visual features by contrasting cluster assignments. In: Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual (2020)

[11] Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging
properties in self-supervised vision transformers. In: 2021 IEEE/CVF International Conference
on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021. pp. 9630–9640.
IEEE (2021)

[12] Chen, M., Radford, A., Child, R., Wu, J., Jun, H., Luan, D., Sutskever, I.: Generative pretraining
from pixels. In: Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event. Proceedings of Machine Learning Research, vol. 119, pp.
1691–1703. PMLR (2020)

[13] Chen, M., Radford, A., Child, R., Wu, J., Jun, H., Luan, D., Sutskever, I.: Generative pretraining
from pixels. In: ICML. Proceedings of Machine Learning Research, vol. 119, pp. 1691–1703.
PMLR (2020)

[14] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning
of visual representations. In: Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event. Proceedings of Machine Learning
Research, vol. 119, pp. 1597–1607. PMLR (2020)

[15] Chen, X., Ding, M., Wang, X., Xin, Y., Mo, S., Wang, Y., Han, S., Luo, P., Zeng, G., Wang, J.:
Context autoencoder for self-supervised representation learning. Int. J. Comput. Vis. 132(1),
208–223 (2024)

[16] Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the
wild. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014,
Columbus, OH, USA, June 23-28, 2014. pp. 3606–3613. IEEE Computer Society (2014)

[17] Clark, K., Luong, M., Le, Q.V., Manning, C.D.: ELECTRA: pre-training text encoders as
discriminators rather than generators. In: 8th International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net (2020)

[18] Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: Practical automated data aug-
mentation with a reduced search space. In: 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR Workshops 2020, Seattle, WA, USA, June 14-19, 2020. pp.
3008–3017. Computer Vision Foundation / IEEE (2020)

[19] Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach.
Intell. 1(2), 224–227 (1979)

[20] Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical
image database. In: 2009 IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA. pp. 248–255. IEEE
Computer Society (2009)

[21] Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional
transformers for language understanding. In: NAACL-HLT (1). pp. 4171–4186. Association for
Computational Linguistics (2019)

[22] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16
words: Transformers for image recognition at scale. In: 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net
(2021)

[23] Dosovitskiy, A., Fischer, P., Springenberg, J.T., Riedmiller, M.A., Brox, T.: Discriminative
unsupervised feature learning with exemplar convolutional neural networks. IEEE Trans. Pattern
Anal. Mach. Intell. 38(9), 1734–1747 (2016)

6



[24] Dwibedi, D., Aytar, Y., Tompson, J., Sermanet, P., Zisserman, A.: With a little help from my
friends: Nearest-neighbor contrastive learning of visual representations. In: 2021 IEEE/CVF
International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October
10-17, 2021. pp. 9568–9577. IEEE (2021)

[25] El-Nouby, A., Izacard, G., Touvron, H., Laptev, I., Jégou, H., Grave, E.: Are large-scale datasets
necessary for self-supervised pre-training? CoRR abs/2112.10740 (2021)

[26] Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE transactions on
pattern analysis and machine intelligence 28(4), 594–611 (2006)

[27] Fu, L., Lian, L., Wang, R., Shi, B., Wang, X., Yala, A., Darrell, T., Efros, A.A., Goldberg, K.:
Rethinking patch dependence for masked autoencoders. CoRR abs/2401.14391 (2024)

[28] Gadetsky, A., Jiang, Y., Brbic, M.: Let go of your labels with unsupervised transfer. arXiv
preprint arXiv:2406.07236 (2024)

[29] Grill, J., Strub, F., Altché, F., Tallec, C., Richemond, P.H., Buchatskaya, E., Doersch, C., Pires,
B.Á., Guo, Z., Azar, M.G., Piot, B., Kavukcuoglu, K., Munos, R., Valko, M.: Bootstrap your
own latent - A new approach to self-supervised learning. In: Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual (2020)

[30] He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable
vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2022. pp. 15979–15988 (2022)

[31] He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.B.: Momentum contrast for unsupervised visual
representation learning. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. pp. 9726–9735. Computer
Vision Foundation / IEEE (2020)

[32] Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F., Dorundo, E., Desai, R., Zhu, T.,
Parajuli, S., Guo, M., Song, D., Steinhardt, J., Gilmer, J.: The many faces of robustness: A
critical analysis of out-of-distribution generalization. ICCV (2021)

[33] Hendrycks, D., Dietterich, T.G.: Benchmarking neural network robustness to common corrup-
tions and perturbations. In: ICLR (Poster). OpenReview.net (2019)

[34] Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415
(2016)

[35] Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., Song, D.: Natural adversarial examples.
CVPR (2021)

[36] Horn, G.V., Aodha, O.M., Song, Y., Cui, Y., Sun, C., Shepard, A., Adam, H., Perona, P.,
Belongie, S.J.: The inaturalist species classification and detection dataset. In: 2018 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT,
USA, June 18-22, 2018. pp. 8769–8778. Computer Vision Foundation / IEEE Computer Society
(2018)

[37] Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth.
In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision - ECCV 2016 - 14th
European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part
IV. Lecture Notes in Computer Science, vol. 9908, pp. 646–661. Springer (2016)

[38] Huang, Z., Jin, X., Lu, C., Hou, Q., Cheng, M., Fu, D., Shen, X., Feng, J.: Contrastive masked
autoencoders are stronger vision learners. CoRR abs/2207.13532 (2022)

[39] Hubert, L., Arabie, P.: Comparing partitions. Journal of classification 2, 193–218 (1985)

7



[40] Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In: Bach, F.R., Blei, D.M. (eds.) Proceedings of the 32nd International
Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015. JMLR Workshop
and Conference Proceedings, vol. 37, pp. 448–456. JMLR.org (2015)

[41] Jiang, Z., Chen, Y., Liu, M., Chen, D., Dai, X., Yuan, L., Liu, Z., Wang, Z.: Layer grafted
pre-training: Bridging contrastive learning and masked image modeling for label-efficient
representations. In: The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net (2023)

[42] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Bengio, Y., LeCun, Y.
(eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings (2015)

[43] Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S.,
Berg, A.C., Lo, W., Dollár, P., Girshick, R.B.: Segment anything. In: ICCV. pp. 3992–4003.
IEEE (2023)

[44] Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)

[45] Kvalseth, T.O.: Entropy and correlation: Some comments. IEEE Transactions on Systems, Man,
and Cybernetics 17(3), 517–519 (1987)

[46] Lee, C., Xie, S., Gallagher, P.W., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: Lebanon,
G., Vishwanathan, S.V.N. (eds.) Proceedings of the Eighteenth International Conference on
Artificial Intelligence and Statistics, AISTATS 2015, San Diego, California, USA, May 9-12,
2015. JMLR Workshop and Conference Proceedings, vol. 38. JMLR.org (2015)

[47] Lehner, J., Alkin, B., Fürst, A., Rumetshofer, E., Miklautz, L., Hochreiter, S.: Contrastive
tuning: A little help to make masked autoencoders forget. In: Thirty-Eighth AAAI Conference
on Artificial Intelligence, AAAI 2024, February 20-27, 2024, Vancouver, Canada. pp. 2965–
2973. AAAI Press (2024)

[48] Leiber, C., Miklautz, L., Plant, C., Böhm, C.: Benchmarking deep clustering algorithms with
clustpy. In: ICDM (Workshops). pp. 625–632. IEEE (2023)

[49] Liu, X., Zhang, F., Hou, Z., Mian, L., Wang, Z., Zhang, J., Tang, J.: Self-supervised learning:
Generative or contrastive. IEEE transactions on knowledge and data engineering 35(1), 857–876
(2021)

[50] Liu, X., Zhou, J., Kong, T., Lin, X., Ji, R.: Exploring target representations for masked
autoencoders. CoRR abs/2209.03917 (2022)

[51] Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Con-
ference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net (2019)

[52] Mairal, J.: Cyanure: An open-source toolbox for empirical risk minimization for python, c++,
and soon more. CoRR abs/1912.08165 (2019)

[53] McInnes, L., Healy, J., Saul, N., Grossberger, L.: Umap: Uniform manifold approximation and
projection. The Journal of Open Source Software 3(29), 861 (2018)

[54] Nguyen, X.V., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison:
is a correction for chance necessary? In: ICML. ACM International Conference Proceeding
Series, vol. 382, pp. 1073–1080. ACM (2009)

[55] Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes.
In: 2008 Sixth Indian conference on computer vision, graphics & image processing. pp. 722–729.
IEEE (2008)

8



[56] Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V., Fernandez, P.,
Haziza, D., Massa, F., El-Nouby, A., Assran, M., Ballas, N., Galuba, W., Howes, R., Huang, P.,
Li, S., Misra, I., Rabbat, M.G., Sharma, V., Synnaeve, G., Xu, H., Jégou, H., Mairal, J., Labatut,
P., Joulin, A., Bojanowski, P.: Dinov2: Learning robust visual features without supervision.
CoRR abs/2304.07193 (2023)

[57] Parkhi, O.M., Vedaldi, A., Zisserman, A., Jawahar, C.V.: Cats and dogs. In: 2012 IEEE
Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, June 16-21,
2012. pp. 3498–3505. IEEE Computer Society (2012)

[58] Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: Feature
learning by inpainting. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. pp. 2536–2544. IEEE Computer Society
(2016)

[59] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., VanderPlas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in python. J. Mach. Learn. Res.
12, 2825–2830 (2011)

[60] Polyak, B.T., Juditsky, A.B.: Acceleration of stochastic approximation by averaging. SIAM
journal on control and optimization 30(4), 838–855 (1992)

[61] Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell,
A., Mishkin, P., Clark, J., Krueger, G., Sutskever, I.: Learning transferable visual models
from natural language supervision. In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event.
Proceedings of Machine Learning Research, vol. 139, pp. 8748–8763. PMLR (2021)

[62] Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language understand-
ing by generative pre-training (2018)

[63] Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis. Journal of computational and applied mathematics 20, 53–65 (1987)

[64] Sculley, D.: Web-scale k-means clustering. In: WWW. pp. 1177–1178. ACM (2010)

[65] Singh, M., Duval, Q., Alwala, K.V., Fan, H., Aggarwal, V., Adcock, A., Joulin, A., Dollár,
P., Feichtenhofer, C., Girshick, R.B., Girdhar, R., Misra, I.: The effectiveness of MAE pre-
pretraining for billion-scale pretraining. CoRR abs/2303.13496 (2023)

[66] Singh, M., Gustafson, L., Adcock, A., de Freitas Reis, V., Gedik, B., Kosaraju, R.P., Mahajan,
D., Girshick, R.B., Dollár, P., van der Maaten, L.: Revisiting weakly supervised pre-training
of visual perception models. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022. pp. 794–804. IEEE
(2022)

[67] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan, D., Vanhoucke, V.,
Rabinovich, A.: Going deeper with convolutions. In: IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. pp. 1–9. IEEE
Computer Society (2015)

[68] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture
for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. pp. 2818–2826. IEEE Computer Society
(2016)

[69] Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., Jégou, H.: Going deeper with image
transformers. In: 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021,
Montreal, QC, Canada, October 10-17, 2021. pp. 32–42. IEEE (2021)

[70] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.,
Polosukhin, I.: Attention is all you need. In: NIPS. pp. 5998–6008 (2017)

9



[71] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.: Stacked denoising autoencoders:
Learning useful representations in a deep network with a local denoising criterion. J. Mach.
Learn. Res. 11, 3371–3408 (2010)

[72] Walmer, M., Suri, S., Gupta, K., Shrivastava, A.: Teaching matters: Investigating the role of
supervision in vision transformers. In: CVPR. pp. 7486–7496. IEEE (2023)

[73] Wang, H., Ge, S., Lipton, Z., Xing, E.P.: Learning robust global representations by penalizing
local predictive power. In: Advances in Neural Information Processing Systems. pp. 10506–
10518 (2019)

[74] Wang, L., Liang, F., Li, Y., Zhang, H., Ouyang, W., Shao, J.: Repre: Improving self-supervised
vision transformer with reconstructive pre-training. In: Raedt, L.D. (ed.) Proceedings of the
Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna,
Austria, 23-29 July 2022. pp. 1437–1443. ijcai.org (2022)

[75] Wei, C., Fan, H., Xie, S., Wu, C., Yuille, A.L., Feichtenhofer, C.: Masked feature prediction for
self-supervised visual pre-training. In: CVPR. pp. 14648–14658. IEEE (2022)

[76] Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance
discrimination. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018. pp. 3733–3742. Computer Vision Foundation
/ IEEE Computer Society (2018)

[77] Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: SUN database: Large-scale scene
recognition from abbey to zoo. In: The Twenty-Third IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2010, San Francisco, CA, USA, 13-18 June 2010. pp. 3485–3492.
IEEE Computer Society (2010)

[78] Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene understanding.
In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision - ECCV 2018
- 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part V.
Lecture Notes in Computer Science, vol. 11209, pp. 432–448. Springer (2018)

[79] Xie, Z., Zhang, Z., Cao, Y., Lin, Y., Bao, J., Yao, Z., Dai, Q., Hu, H.: Simmim: a simple
framework for masked image modeling. In: IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022. pp. 9643–9653.
IEEE (2022)

[80] Xie, Z., Zhang, Z., Cao, Y., Lin, Y., Wei, Y., Dai, Q., Hu, H.: On data scaling in masked
image modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 10365–10374 (2023)

[81] Yang, Y., Xu, D., Nie, F., Yan, S., Zhuang, Y.: Image clustering using local discriminant models
and global integration. IEEE Transactions on Image Processing 19(10), 2761–2773 (2010)

[82] Yi, K., Ge, Y., Li, X., Yang, S., Li, D., Wu, J., Shan, Y., Qie, X.: Masked image modeling with
denoising contrast. In: The Eleventh International Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net (2023)

[83] Zhai, X., Puigcerver, J., Kolesnikov, A., Ruyssen, P., Riquelme, C., Lucic, M., Djolonga, J.,
Pinto, A.S., Neumann, M., Dosovitskiy, A., et al.: A large-scale study of representation learning
with the visual task adaptation benchmark. arXiv preprint arXiv:1910.04867 (2019)

[84] Zhang, H., Cissé, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimiza-
tion. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net (2018)

[85] Zhou, B., Zhao, H., Puig, X., Xiao, T., Fidler, S., Barriuso, A., Torralba, A.: Semantic
understanding of scenes through the ADE20K dataset. Int. J. Comput. Vis. 127(3), 302–321
(2019)

[86] Zhou, J., Wei, C., Wang, H., Shen, W., Xie, C., Yuille, A.L., Kong, T.: ibot: Image BERT
pre-training with online tokenizer. CoRR abs/2111.07832 (2021)

10



[87] Zhou, P., Zhou, Y., Si, C., Yu, W., Ng, T.K., Yan, S.: Mugs: A multi-granular self-supervised
learning framework. CoRR abs/2203.14415 (2022)

11



A Related Work

A.1 Pre-training in Computer Vision

Following the success of generative pre-training of transformers [70] in language modeling [21, 62],
similar directions were explored in computer vision [22, 79, 75, 13]. With the introduction of Vision
Transformers [22], large Masked Image Modeling (MIM) models could be efficiently trained [30, 6,
65] by using the ability of transformers to effortlessly process sparse input by dropping masked patch
tokens in the input and subsequently reconstructing the masked parts. In order to optimize the MIM
pre-training objective, models have to infer the missing regions by efficiently encoding foreground
and background alike which leads to a rich representation.

Building on rich features learned by MIM models has been explored in various ways. MAWS [65]
first pre-trains an MAE, followed by weakly supervised training on a billion-scale dataset using
billion-scale models. SemiViT [9] uses a pre-trained MAE as a starting point for semi-supervised
learning. Segment Anything [43] use MAE as basis for a segmentation foundation model. MIM-
Refiner also builds on the rich features of MIM models and refines them with a ID objective to ease
adaption to downstream tasks.

Instance Discrimination (ID) is another branch of self-supervised learning that uses augmentations to
create multiple views of the same sample where the task is then to find matching pairs within the
views from all samples within a batch [14, 31, 23, 76] or align features of one view with the features
from another [29, 11]. We use the terminology that views from the same sample are “positive pairs”
and views of different samples are “negative pairs”. When describing a single view of a sample,
it is called the “anchor” to which all other views in a batch are either “positives” or “negatives”.
NN-based ID [24, 4] extends this setting to use NNs in various ways to create views or otherwise
augment samples during training. MIM-Refiner introduces Nearest Neighbor Alignment, which is a
modification of previous NN-based ID methods to use the NN only for the alignment part, i.e. pulling
the anchor closer to the NN of its positives while pushing the anchor away from its negatives.

A.2 Combining MIM and ID

Adding a MIM to ID methods has emerged as a powerful pre-training scheme. However, in contrast to
ID models, the MIM objective in the end-to-end training either uses significantly lower masking ratios
with mask tokens getting processed by the encoder [86, 56], or requires a target encoder to encode
the unmasked image [38, 2]. Both drastically increase the computational requirements as the encoder
operates on the full sequence length. Consequently, these models either require copious amounts of
compute to train [56] or limit themselves to relatively small models [86, 38]. Contrary, MIM models
have shown success and scalability to large models with comparatively little compute [30, 6, 65].
MIM-Refiner can build on these models which allows us to scale to large model sizes without a
large amount of compute. Our largest model, MAE-Refined-2B contains approximately twice the
parameters of the currently largest uni-modal contrastive model DINOv2-g [56] and can be trained
on two orders of magnitude less data.

Attempts to preserve the efficiency while training MIM and ID objectives end-to-end have been
less successful [47, 41], where both works came to the conclusion that sequential training (MIM
→ ID) circumvents various problem with end-to-end training. First, a powerful encoder is trained
solely with a MIM objective. Second, the encoder is trained with a ID objective while preserving
the rich features in early blocks with a layer-wise learning rate decay [17] in lower blocks and either
constraining changes in early blocks [41] or completely freezing them [47].

MIM-Refiner is also a sequential MIM → ID method. In contrast to our work, previous works
start from the representation after the last MIM encoder block and are therefore highly reliant on a
good representation thereof. This can be seen for example on MAE-CT [47] where their ViT-H/14
model is worse than their ViT-H/16 model, despite using 30% more FLOPS. Additionally, previous
works [47, 41] omit current go-to techniques such as multi-crop augmentation [10] which has been
shown to improve performance [11, 87, 86].

Training models with additional losses from intermediate layers dates back to the early deep learning
days [46, 67] where these auxiliary losses were used to alleviate optimization issues in lower layers.
MIM-Refiner relates to deep supervision in the sense that we use multiple ID heads attached at
intermediate layers where each head produces a loss for training.

12



B Nearest Neighbor Alignment Objective

In addition to the method described in Section 3, we propose an adapted ID objective to stabilize
training of larger models. Inspired by NN based contrastive learning [24, 4], we propose Nearest
Neighbor Alignment (NNA). NN contrastive objectives introduce an inter-sample correlation by
retrieving NNs of samples in a batch and subsequently applying an objective between the samples and
their NNs. In practice, the NN retrieval is typically done by tracking samples from previous iterations
in a first-in-first-out queue [24, 31]. Therefore, the samples in the queue are from a previous model
state which creates a tradeoff between the benefit of the NN-swap and the worse signal from the
out-of-sync samples. We argue that the NN-swap does not offer a benefit for negative samples, since
they are already different images, and instead, degrades the signal from the contrastive objective. We
therefore propose to use the NN only for the alignment of positive samples. Omitting the NN-swap
for the negatives stabilizes training for large models and slightly improves performance (see Table 2).
NNA is a variant of NNCLR and we visualize their difference in Figure 10.

Formally, given a batch of features Z = {z1, . . . , zN} and a queue Q the NNA objective is:

LNNA
i = − log

exp(NN(zi,Q) · zi/τ)

exp(NN(zi,Q) · zi/τ) +
N∑
j=1

exp(SG(zj) · zi/τ)[i ̸= j]

(1)

NN(zi,Q) = argmax
q∈Q

(zi · q) (2)

where zi is the anchor, NN(zi,Q) is the positive, zj are the negatives, τ is the temperature, and SG is
the stop-gradient operation. [i ̸= j] denotes the Iverson bracket that evaluates to 1 if i ̸= j and to 0 if
i = j. All vectors are assumed to be normalized to length 1.

C Comprehensive Experimental Evaluation

We refine a series of MIM models, namely MAE [30, 65], data2vec 2.0 [6] (abbreviated as D2V2),
dBOT [50] and CrossMAE [27]. These models were pre-trained on ImageNet-1K [20], which we also
use for the refinement. For visual clarity, we compare our best model against previous state-of-the-art
models and show the full result tables in the Appendix. We evaluate our models in classification (low-
and many-shot), feature evaluation, clustering, transfer learning and semantic segmentation.

C.1 Ablation Study

We first investigate various design choices of our method in Table 2.

(a) Adding multiple heads at intermediate features improves k-NN accuracy by 0.8%. The best
settings include the blocks with the best representation quality (see Figure 3b). Adding additional
heads before the best blocks does not improve performance while increasing training costs. (b) The
benefit doubles to 1.6% for a ViT-H since deeper models degrade more (see Figure 3b). Additionally,
we investigate where to attach the ID heads in Appendix E.2 where we find that simply attaching ID
head to the last 8 (or 12 for ViT-H) blocks to perform best across model scales.

(c) Scheduling the loss weight of each intermediate head is not necessary, i.e. simply summing all
losses is sufficient to achieve good performances. “Uniform Decay” decays the loss weight of all
intermediate heads during training. “Staggered Decay” starts by decaying the first head and gradually
starts to decay more and more heads as training progresses. “Staggered Step” disables the first head
after some time followed by gradually disabling more and more heads. “One Hot” trains the encoder
with only one intermediate head at a time where training starts with the earliest intermediate head
and gradually iterates through the heads. Details to the loss schedules are in Appendix G.14.

(d) Using the NN swap only for aligning the positive with the anchor gives a small but consistent
improvement on smaller models. (e) The improved signal quality is cruicial to avoid training
instabilities in larger models. These instabilities manifest in a sudden representation quality drop
mid-training leading to a much worse final model.

(f) Relying only on the data-driven augmentation of the NN-swap [24] by omitting color/blur
augmentations, is beneficial for certain downstream tasks such as extreme low-shot classification [47].
We show more results without color/blur augmentations in Appendix E.5.

13



Table 2: Ablation study by refining data2vec 2.0 [6] models. Default settings

(a) Head Count L/16

#Heads k-NN
1 80.2
2 80.2
4 80.9
8 81.0

12 81.0

(b) Head Count H/14

#Heads k-NN
1 80.7
2 81.1
4 81.7
8 82.1

12 82.3

(c) Head Schedule L/16

Schedule k-NN
Constant 81.0
Uniform Decay 80.9
Staggered Decay 81.0
Staggered Step 80.9
One Hot 80.7

(d) NN-swap L/16

Swap Neg. k-NN
✗ 81.0
✓ 80.9

(e) NN-swap H/14

Swap Neg. k-NN
✗ 82.3
✓ 80.7

(f) Augmentations L/16

Color/blur k-NN 1-shot
✓ 81.0 61.7
✗ 80.5 63.4

C.2 Low-shot and Feature Evaluations

We evaluate the ability of our models to perform low-shot classification in Table 3. Additionally, linear
probing and k-NN accuracy are reported which are computed from the features of the frozen encoder.
These metrics are typically correlated to low-shot performance as it indicates that the representation
is already linear separable which eases drawing decision boundaries given only few labels. For linear
probing, we use the protocol of DINOv2 [56] which includes using features of the last four blocks in
its hyperparameter grid. Therefore, linear probing evaluates the feature representation at the end of
the encoder, while k-NN accuracy evaluates only the features of the last block.

MIM-Refiner drastically improves upon MIM models and other SSL models. In the 1-shot settings
D2V2-Refined-H sets a new state-of-the-art of 64.2%, outperforming the 63.6% of MAWS-6.5B [65]
which is pre-trained on a private dataset with approximately 2000 times the size of ImageNet-1K.

Table 3: Low-shot and feature evaluations of recent SSL models on ImageNet-1K. MIM-Refiner
significantly improves upon MIM models and previous state-of-the-art SSL models. Appendix
Table 11 extends this comparison to more methods and to models that were trained on more data
(such as DINOv2) where MIM-Refiner outperforms DINOv2-g in some benchmarks.

Low-shot Evaluation Feature Eval
ViT Method 1-shot 2-shot 5-shot 1% 10% Probe k-NN

L/16

MAE [30] 14.3 34.9 56.9 67.7 79.3 77.5 60.6
D2V2 [6] 24.1 58.8 72.1 75.1 81.5 78.2 51.8
iBOT [86] 48.5 58.2 66.5 73.3 79.0 81.1 78.0
Mugs [87] 52.9 62.3 69.4 76.2 80.3 82.1 80.4
MAE-Refined 57.8 66.3 72.0 76.1 81.2 82.8 81.5
D2V2-Refined 61.7 69.6 73.9 78.1 82.1 83.5 81.0

H/14

MAE [30] 7.2 14.1 40.2 72.8 81.2 78.2 58.1
D2V2 [6] 21.6 60.8 74.2 77.6 83.3 80.4 48.0
MAE-CT [47] 49.4 59.6 67.4 74.4 81.7 82.3 79.1
MAE-Refined 59.5 68.5 73.8 77.4 82.1 83.7 82.3
D2V2-Refined 64.2 71.3 75.5 78.1 83.5 84.7 82.3

2B/14 MAE [30, 65] 17.8 29.1 62.9 73.6 82.0 79.7 67.1
MAE-Refined 58.2 68.6 74.8 78.7 82.5 84.5 83.2

C.3 Cluster Evaluations

We compare the cluster performance of MIM-Refiner against recent SSL models in Table 4. We
apply mini-batch k-means [64] 100 times to the validation set of ImageNet-1K and select the run
with the lowest k-means loss for comparison (average performance is reported in Appendix Table
13). We report commonly used metrics for measuring Cluster Performance w.r.t. the ground truth

14



Table 4: k-means cluster performance and class separation on ImageNet of recent SSL models.
MIM-Refiner drastically improves performance of MIM-models and even outperforms DINOv2-g
which has 2x more parameters and is trained on on 100x more data.

Cluster Performance Class Separation
ViT Method ACC NMI AMI ARI SIL (↑) DBS (↓)

L/16

D2V2 [6] 10.5 45.1 19.5 2.5 -9.1 6.4
iBOT [86] 52.2 80.5 67.0 33.4 13.3 3.5
Mugs [87] 54.3 78.6 65.5 22.4 14.9 3.3
D2V2-Refined 67.4 86.3 76.2 40.5 37.1 2.2

H/14 D2V2 [6] 9.9 45.8 18.0 2.6 -10.8 6.5
D2V2-Refined 67.3 87.2 77.9 42.2 34.5 2.3

H/16 MAE-CT 58.0 81.8 69.3 36.8 - -
g/14 DINOv2 [56] (LVD-142M) 47.7 76.3 63.6 5.1 30.4 2.8

ACC: 19.3 | SIL: -12.2

(a) D2V2
ACC: 70.3 | SIL: 32.4

(b) D2V2-Refined
ACC: 64.3 | SIL: 10.0

(c) Mugs

Figure 4: UMAP [53] plots of ViT-L embeddings using all 53 food related classes of ImageNet. The
corresponding k-means cluster accuracy (ACC) and class separation measured in silhouette score
(SIL) is shown below each plot. The clustering after refinement (b) is visually more condensed and
better separated with corresponding improvements in ACC and SIL than before refinement (a). Mugs
(c) does not separate the clusters that well, as shown by the merged clusters in the middle and the
lower SIL score. The colors show the 53 ground truth food classes.

clustering: Cluster Accuracy (ACC) [81], Normalized Mutual Information (NMI) [45], Adjusted
Mutual Information (AMI) [54], Adjusted Rand Index (ARI) [39], where higher values indicate a
better match of the found clustering with the ground truth labels. Further, we measure the Class
Separation in the embedded space using the Davies-Bouldin score (DBS) [19] and silhouette score
(SIL) [63] w.r.t. the ground truth classes. The DBS measures the separation and compactness of
classes, where lower values are better and zero is the minimum. The SIL ranges from -100 to 100,
where higher values are better. Negative SILs relate to mismatches between classes and embedding,
where scores close to zero indicate a potential overlap of classes.

Table 4 shows that MIM-Refiner greatly improves various clustering metrics. The reached ACC
of 67.4% outperforms the current state-of-the-art of 61.6% reached by TEMI MSN [1]. Figure 4
illustrate this drastic increase in cluster performance and class separation visually. Additionally, we
evaluate combining multiple models using the TURTLE [28] framework in Appendix Table 14.

C.4 Transfer Learning Evaluations

We investigate generalization of pre-trained MIM-Refiner models to other datasets in Table 5,
which shows the benefits of MIM-Refiner models when transferring a pre-trained representation. We
consider a variety of classification downstream tasks and a semantic segmentation task. MAE-Refined
consistently improves over MAE and state-of-the-art SSL methods. Additionally MIM-Refiner further
improves when scaling up to a 2B parameter model.

15



Table 5: Transferring MIM-Refiner models to other datasets. “VTAB-6” reports the average accuracy
over six datasets from the VTAB benchmark [83] and “VTAB-1K” is the average over all 19 datasets
of the VTAB-1K benchmark. ADE20K reports the mean intersection over union (mIoU) of a semantic
segmentation probe. MIM-Refiner learns general features that can easily be transferred to various
datasets and tasks. Table 15 confirms this finding on additional models and Appendix E.10 shows
individual VTAB performances for VTAB-6 probing and VTAB-1K fine-tuning.

iNat18 Fine-tuning Linear Probe VTAB-1K
ViT Method 1-shot 5-shot 10-shot iNat18 VTAB-6 ADE20K Fine-tuning

L/16

MAE 7.1 51.6 68.9 42.8 83.0 33.6 73.7
iBOT 15.8 51.5 65.5 56.0 87.6 35.6 70.8
Mugs 19.5 53.2 66.9 61.5 87.9 34.8 68.0
MAE-Ref. 19.0 58.0 71.7 60.6 88.5 37.3 75.2

H/14
MAE 6.5 53.3 71.7 43.0 83.2 35.5 72.7
MAE-CT 16.5 60.1 74.7 62.8 88.8 37.6 75.7
MAE-Ref. 20.9 62.4 75.4 64.6 89.3 39.4 75.9

2B/14 MAE 10.0 53.7 72.2 51.0 85.4 37.3 74.1
MAE-Ref. 22.5 63.5 76.5 69.6 89.8 40.3 75.6

Table 6: Full fine-tuning using 100% of the labels. MIM-Refiner consistently improves performance
slightly even though ID methods typically perform worse than MIM models on this benchmark.
Appendix Table 18 confirms this pattern on additional MIM models. “Robustness” shows the average
performance of the trained IN-1K classifier on robustness datasets (individual results in Table 19).

ViT-L/16 ViT-H/14
Model IN-1K Robustness iNat18 ADE20K IN-1K Robustness iNat18
D2V2 86.6 60.2 81.0 54.4 86.6 63.2 79.6
D2V2-Ref. 86.7 60.5 81.6 54.4 86.8 64.1 79.8
dBOT [50] 85.8 55.3 81.9 53.1 87.1 63.7 84.1
dBOT-Ref. 85.9 55.3 82.1 53.3 87.1 64.0 84.5
Mugs [87] 85.2 46.4 76.9 50.2 - -

C.5 Fine-tuning with Large Amounts of Labels

MIM models typically outperform ID methods when given enough labels to fine-tune the model.
As our refinement process employs an ID objective, we investigate whether MIM-Refiner involun-
tarily degrades performance given an abundance of labels. To this end, we fine-tune MIM models
and their refined version on ImageNet-1K [20], iNat18 [36] and ADE20K [85] using a classifica-
tion/UperNet [78] head. Table 6 shows a small but consistent improvent of MIM-Refiner models.

D Limitations

One limitation of MIM-Refiner is that it requires batch normalization [40] layers in the ID head.
Without them, performance decreases significantly. As we do not change anything in the MIM
pre-training, we hypothesize that feature statistics after MIM pre-training are not suited for an ID task
and therefore require per-feature normalization. The batch normalization layers significantly decrease
scalability to distributed hardware setups as each layer requires a synchronization of batch statistics.

MIM-Refiner addresses a common issue with MIM models: their typically lightweight decoder often
delegates part of the reconstruction to the encoder, resulting in subpar representations for the later
encoder blocks in downstream tasks. Alternatively, one could simply argue for a larger decoder.
However, a larger decoder increases computational costs since the decoder typically operates on the
full sequence length. Additionally, the direction of a larger decoder was explored to a certain extent
in the original MAE paper [30], where larger decoders performed worse in fine-tuning and linear
probing. Successor models such as CrossMAE perform well with a deeper decoder but still show
decreasing representation quality in later layers, as shown in Appendix E.4.

16



During early development, we tried various ways to propagate the intermediate representation towards
the end. While we found that a simple ensemble of contrastive heads attached to later blocks works
very well, there might be even better ways to leverage the rich intermediate MIM representations.
We explored the following variants in with little success: (i) completely deleting the last few blocks
(ii) reinitializing the last few blocks while setting the weights/biases of the last projection in the
attention/MLP to 0 which leads to the result of the previous block being propagated to the end via the
residual connection (iii) gating the last few blocks via ReZero [5].

To address the limitation of MIM-Refiner requiring batch normalization layers, we explore another
variant that copies the weights of the intermediate block with the highest k-NN accuracy to all
subsequent blocks and sets the weights/biases of the last projection in the copied attention/MLP
blocks to 0. This is similar to the above mentioned approach (ii), except that the weights of the copied
blocks are not random but copied from an intermediate block. We then train the model with only a
single head attached at the last block. This drastically reduces the number of batch normalization
layers. Table 7 shows that such an approach can yield competitive performances on smaller models,
but is outperformed by MIM-Refiner on larger ones.

Table 7: Copying the peak-representation block to subsequent blocks while setting the last atten-
tion/MLP projection weights/biases to 0 can improve scalability to even larger distributed setups due
to requiring less batch normalization [40] layers. This approach (“Copy Blocks”) is competitive to an
ensemble of ID heads (“MIM-Refiner”) on smaller models but is worse on larger models.

k-NN MAE L/16 MAE H/14
Copy Blocks 81.5 81.8
MIM-Refiner 81.5 82.3

Another approach to improve scalability to larger distributed systems is to only aggregate batch
statistics within a node. This avoids costly inter-node communication and instead only requires
intra-node connections which is typically much faster.

As MIM-Refiner is quite computationally efficient even with the batchnorm synchronization limitation,
we do not explore these approaches further.

17



E Extended Results

E.1 Extended Representation Quality Comparison

We compare linear probing performance and runtime against non-publicly available models using the
reported values from their respective paper in Figure 5.

0 1000 2000 3000 4000
Pre-training GPU Hours

77

79

81

83

85

Ac
cu

ra
cy

 [%
]

I-JEPA
MSN

DINO

iBOT

MoCo v3

MAE-CT

D2V2

+
5.

3%
MAE

MAE-Refined

ImageNet-1K Linear Probing

FLOPS
L/16
H/14
L/7

D2V2-Refined
84.7%

Figure 5: Representation quality of SSL methods evaluated via linear probing. MIM-Refiner advances
state-of-the-art among models pre-trained on ImageNet-1K in low- and high-compute regimes.

E.2 Where to Attach ID Heads?

Table 8 ablates different choices of where to attach ID heads on a D2V2 pre-trained ViT-L/16 and
ViT-H/14. On ViT-L/16, there is almost no difference of where to attach the ID heads in the last third
of blocks. We tried to transfer this insight to ViT-H/14 where the default setting of attaching ID heads
to all later blocks performs better. We therefore use the default setting of attaching ID heads to the
last 8 blocks (ViT-L and ViT-2B) or the last 12 blocks (ViT-H).

Table 8: Spacing heads out more across the later ViT blocks can achieve comparable performances
for ViT-L/16 but does not generalize to ViT-H/14. The default setting of attaching ID heads to all
later blocks generalizes well across model scales.

Block Indices k-NN
20,24 80.9

16,20,24 81.1
15,18,21,24 81.1
18,20,22,24 81.0

17-24 81.0

(a) ViT-L/16

Block Indices k-NN
22,24,26,28,30,32 82.0

16,18,20,22,24,26,28,30,32 82.1
20-32 82.3

(b) ViT-H/14

E.3 Freezing Early Blocks

Freezing early blocks as a form of regularization to preserve MIM features (similar to related
works [47, 41]) is not necessary. Note that we still use a layer-wise learning rate decay [17].

Table 9: Freezing early blocks is not necessary and slightly decreases performance. Ablation
conducted with D2V2-L/16. We freeze the first 6 layers to refine MAE-2B to save memory/compute.

#Frozen k-NN
0 81.0
6 80.9

12 80.6

18



E.4 Intermediate Representation Analysis of Additional MIM Methods

We visualize the k-NN accuracies of various MIM models in Figure 6 where all of them show the
pattern that the representation quality of larger models degrades towards the end of the encoder.

ViT Blocks
0

10

20

30

40

50

60

70

k-
NN

 A
cc

ur
ac

y 
[%

]

MAE B/16
MAE L/16
MAE H/14

(a) MAE [30] k-NN classification

ViT Blocks
0

5

10

15

20

25

30

35

m
Io

U

MAE B/16
MAE L/16
MAE H/14

(b) MAE [30] segmentation probe

ViT Blocks
0

10

20

30

40

50

60

70

k-
NN

 A
cc

ur
ac

y 
[%

]

D2V2 B/16
D2V2 L/16
D2V2 H/14

(c) data2vec 2.0 [6] k-NN classification

ViT Blocks
0

10

20

30

40

50

60

70

k-
NN

 A
cc

ur
ac

y 
[%

]

CrossMAE S/16
CrossMAE B/16
CrossMAE L/16

(d) CrossMAE [27] k-NN classification

ViT Blocks
0

10

20

30

40

50

60

70

k-
NN

 A
cc

ur
ac

y 
[%

]

dBOT B/16
dBOT L/16
dBOT H/14

(e) dBOT [50] k-NN classification

ViT Blocks
0

10

20

30

40

50

60

70

k-
NN

 A
cc

ur
ac

y 
[%

]

CAE L/16
CAE B/16

(f) CAE [15] k-NN classification

Figure 6: Intermediate representation analysis of various MIM models. As models get bigger, the k-
NN accuracy degrades more towards the end of the encoder, especially for L/16 and H/14 models.
This pattern is consistent over various MIM models and across tasks. k-NN accuracy is calculated on
ImageNet-1K [20]. (b) shows the mIoU of linear segmentation probes on ADE20K [85].

19



E.5 Low-shot Classification Without Color Augmentations

MAE-CT [47] showed that omitting color augmentations can lead to performance gains for low-shot
classification, especially on larger models. We therefore train our ViT-H/14 models also without
color augmentations. We use the same hyperparameters as with color augmentations (see Table 23)
except that we disable color augmentations (i.e. we train with only crop & flip augmentations) and
half the training duration. Table 10 confirms the findings of [47] as omitting color augmentations
also improves low-shot performance of MIM-Refiner.

Table 10: ImageNet-1K low-shot and feature evaluations of a D2V2-Refined-H/14 with and without
color augmentations. Omitting color augmentations improves ImageNet-1K low-shot performance.

Low-shot Evaluation Feature Eval
Model Color/blur 1-shot 2-shot 5-shot 1% 10% Probe k-NN

D2V2-Refined ✗ 64.7 72.0 75.9 79.1 83.5 84.1 82.1
✓ 64.2 71.3 75.5 78.1 83.5 84.7 82.3

E.6 Extended ImageNet-1K Low-shot and Feature Evaluations

Table 11: Extending Table 3 with additional MIM-Refiner models and more SSL models. The last
row-group compares the best MIM-Refiner model to models with longer sequence length (MSN-
L/7) and models that were pre-trained on more data. Parentheses show pre-training dataset size.
MIM-Refiner consistently improves MIM models, outperforms other SSL models with the same
pre-training data and even outperforms DINOv2-g/14 in some settings.

Low-shot Evaluation Feature Eval
ViT Method 1-shot 2-shot 5-shot 1% 10% Probe k-NN

L/16

CrossMAE [27] 16.8 34.0 52.4 63.2 77.7 74.4 53.4
MAE [30] 14.3 34.9 56.9 67.7 79.3 77.5 60.6
dBOT [50] 28.0 46.9 62.4 70.0 80.2 77.8 61.3
D2V2 [6] 24.1 58.8 72.1 75.1 81.5 78.2 51.8
CAE [15] 28.1 56.5 68.4 71.4 79.5 80.0 66.9
iBOT [86] 48.5 58.2 66.5 73.3 79.0 81.1 78.0
Mugs [87] 52.9 62.3 69.4 76.2 80.3 82.1 80.4
CrossMAE-Refined 50.3 60.9 68.2 71.7 79.3 81.8 79.9
MAE-Refined 57.8 66.3 72.0 76.1 81.2 82.8 81.5
dBOT-Refined 57.4 66.0 71.7 76.6 81.6 83.3 81.3
D2V2-Refined 61.7 69.6 73.9 78.1 82.1 83.5 81.0

H/14

MAE [30] 7.2 14.1 40.2 72.8 81.2 78.2 58.1
dBOT [50] 23.9 45.0 63.0 73.0 82.1 79.0 60.0
D2V2 [6] 21.6 60.8 74.2 77.6 83.3 80.4 48.0
I-JEPA [3] 35.1 47.9 59.9 73.3 79.5 79.3 71.6
MAE-CT [47] 49.4 59.6 67.4 74.4 81.7 82.3 79.1
MAE-Refined 59.5 68.5 73.8 77.4 82.1 83.7 82.3
dBOT-Refined 59.2 67.6 72.9 77.3 82.5 84.0 82.0
D2V2-Refined 64.2 71.3 75.5 78.1 83.5 84.7 82.3

2B/14 MAE [30, 65] 17.8 29.1 62.9 73.6 82.0 79.7 67.1
MAE-Refined 58.2 68.6 74.8 78.7 82.5 84.5 83.2

L/16 iBOT [86] (14M) 37.4 49.9 61.9 70.9 80.3 82.7 72.9
L/7 MSN [2] (1.3M) 57.1 66.4 72.1 75.1 - 80.7 -
H/14 D2V2-Refined (1.3M) 64.2 71.3 75.5 78.1 83.5 84.7 82.3
g/14 DINOv2 [56] (142M) 60.5 68.3 74.4 79.1 83.8 86.5 83.5

20



E.7 Extended ImageNet-1K Cluster Evaluations

Table 12 extends the main paper results (Table 4) with additional models. Table 13 shows the average
clustering results of the 100 mini-batch k-means runs as described in Section C.3. We see that
MIM-Refiner has also better average performance than competitor methods.

Table 12: Best k-means cluster performance and class separation on ImageNet of recent SSL models.
This table extends Table 4 from the main paper with additional comparison and refined models.

Cluster Performance Class Separation
ViT Method ACC NMI AMI ARI SIL (↑) DBS (↓)

L/16

MAE [30] 18.5 55.2 29.1 6.9 -5.9 5.0
D2V2 [6] 10.5 45.1 19.5 2.5 -9.1 6.4
iBOT [86] 52.2 80.5 67.0 33.4 13.3 3.5
Mugs [87] 54.3 78.6 65.5 22.4 14.9 3.3
MAE-Refined 61.8 84.0 72.6 40.7 21.4 2.9
D2V2-Refined 67.4 86.3 76.2 40.5 37.1 2.2

H/14

MAE [30] 14.3 50.2 24.2 4.3 -7.8 5.2
D2V2 [6] 9.9 45.8 18.0 2.6 -10.8 6.5
MAE-Refined 64.6 85.3 74.6 45.5 21.0 2.9
D2V2-Refined 67.3 87.2 77.9 42.2 34.5 2.3

2B/14 MAE [30] 19.9 54.1 33.1 6.2 -3.6 4.8
MAE-Refined 63.0 85.0 74.4 44.0 14.0 3.2

g/14 DINOv2 [56] 47.7 76.3 63.6 5.1 30.4 2.8

Table 13: Average k-means cluster performance on ImageNet of recent SSL models. MIM-Refiner
drastically improves performance of unrefined models and outperforms competitors.

Cluster Performance
ViT Method ACC NMI AMI ARI

L/16

MAE [30] 17.9 54.5 28.9 6.5
D2V2 [6] 10.2 44.5 19.3 2.3
iBOT [86] 50.5 80.0 66.6 31.6
Mugs [87] 50.7 77.4 64.4 18.1
MAE-Refined 60.6 83.5 71.9 35.0
D2V2-Refined 60.6 83.9 72.9 30.0

H/14

MAE [30] 13.8 49.8 24.4 4.2
D2V2 [6] 9.7 45.2 18.1 2.5
MAE-Refined 63.2 84.7 74.0 40.1
D2V2-Refined 60.4 84.5 74.3 28.4

2B/14 MAE [30, 65] 19.2 53.5 32.9 5.7
MAE-Refined 59.4 84.0 73.4 38.0

g/14 DINOv2 [56] 46.8 75.6 62.7 3.5

Figure 7 shows an additional analysis on the cluster structure in each of the blocks for the refined
and unrefined MAE and D2V2 models with ViT-H/14 on ImageNet-1K. Corresponding to the k-NN
accuracy analysis in Figure 3b, we see that MAE and D2V2 have a higher cluster accuracy (ACC) in
the intermediate blocks than in the last block. MIM-Refiner turns this behaviour around and causes
a steep increase of ACC starting from the intermediate block and continuing to almost 70% in the
last layer. The silhouette score (SIL) confirms this as well. The early blocks allow no separation of
the ground truth ImageNet-1K classes leading to negative SIL values, whereas later blocks of the
refined models increase separation by 30-50% compared to unrefined counterparts. Interestingly,
MAE-Refined is not plateauing in SIL and ACC compared to D2V2-Refined, pointing to potential
room for improvement in MAE refinement by using additional ID heads at earlier layers. The bottom
part of Figure 7 measures the pairwise cluster label similarity between subsequent blocks in terms
of normalized mutual information (NMI) [45] as (NMI(yi, yi+1)) · 100, where yi are the k-means

21



ViT Blocks
0

10

20

30

40

50

60

70

Cl
us

te
r A

cc
ur

ac
y 

[%
]

MAE
D2V2
MAE-Refined
D2V2-Refined

ViT Blocks
40

30

20

10

0

10

20

30

40

Si
lh

ou
et

te
 S

co
re

MAE
D2V2
MAE-Refined
D2V2-Refined

ViT Blocks
50

60

70

80

90

Cl
us

te
r L

ab
el

 S
im

ila
rit

y 
[%

]

MAE
MAE-Refined
D2V2
D2V2-Refined

Figure 7: Block-wise cluster analysis for refined and unrefined MAE and D2V2 (H/14). Upper Left:
Cluster accuracy w.r.t. lowest k-means loss per block. Upper Right: Silhouette score w.r.t. ground
truth ImageNet-1K classes. Bottom: Pairwise cluster label similarity between subsequent blocks
(details in Section E.7).

cluster labels at block i. The low cluster label similarity in the early blocks for all models indicates
that the found cluster labels focus on different clusterings. The later blocks of MIM-Refined models
have high alignment with similarities of more than 90%. The higher ACC w.r.t. the ground truth
ImageNet-1K classes in the later blocks indicates that they focus more on object-centric features.
This is in contrast to the overall lower cluster label similarity in unrefined models, which focus on
different cluster structures in each block.

E.8 Multi-model Clustering Evaluations

We evaluate unsupervised cluster accuracy of MIM-Refiner in combination with other foundation
models using the TURTLE [28] framework. The results in Table 14 show that MIM-Refiner learns
features that are complementary to features learned from foundation models. Combining multiple
MIM-Refiner models boosts unsupervised classification accuracy of individual models surpassing the
best k-means accuracy of D2V2-Ref.-H/14 (67.3%). TURTLE with the feature spaces of MAE-Ref.,
dBOT-Ref. and D2V2-Ref improves the state-of-the-art of unsupervised classification accuracy using
only ImageNet-1K for pre-training to 71.6%. When additionally including foundation models that
were pre-trained on web-scale data, MIM-Refiner consistently improves performance. MAE-Refined
in combination with DINOv2 [56], CLIP [61] and SWAG [66] sets a new state-of-the-art of 76.8%.

We conduct this study by implementing MIM-Refiner models into the official implementation of
TURTLE1 and train with the recommended default settings. We do not tune any hyperparameters.

1https://github.com/mlbio-epfl/turtle

22



Table 14: Unsupervised classification evaluation using the TURTLE [28] framework. MIM-Refiner
models synergize well with foundation models such as DINOv2 [56], CLIP [61] and SWAG [66].
MIM-Refiner in combination with TURTLE [28] sets a new state-of-the-art in ImageNet-1K unsuper-
vised classification without additional data (71.6%) and with additional data (76.8%). Model sizes
are H/14 for MIM-Refiner and SWAG [66], g/14 for DINOv2 [56] and L/14 for CLIP [61].

ImageNet-1K pre-training Web-scale pre-training

MAE-Ref. dBOT-Ref. D2V2-Ref. DINOv2 CLIP SWAG ACC
MIM-Refiner only

✗ ✓ ✓ ✗ ✗ ✗ 61.7
✓ ✗ ✓ ✗ ✗ ✗ 62.2
✓ ✓ ✗ ✗ ✗ ✗ 70.4
✓ ✓ ✓ ✗ ✗ ✗ 71.6

MIM-Refiner + DINOv2
✗ ✗ ✗ ✓ ✗ ✗ 68.5
✗ ✗ ✓ ✓ ✗ ✗ 58.3
✗ ✓ ✗ ✓ ✗ ✗ 74.0
✓ ✗ ✗ ✓ ✗ ✗ 73.7

MIM-Refiner + DINOv2 + CLIP
✗ ✗ ✗ ✓ ✓ ✗ 72.9
✗ ✗ ✓ ✓ ✓ ✗ 69.4
✗ ✓ ✗ ✓ ✓ ✗ 75.0
✓ ✗ ✗ ✓ ✓ ✗ 75.0

MIM-Refiner + DINOv2 + CLIP + SWAG
✗ ✗ ✗ ✓ ✓ ✓ 74.8
✗ ✗ ✓ ✓ ✓ ✓ 74.9
✗ ✓ ✗ ✓ ✓ ✓ 76.4
✓ ✗ ✗ ✓ ✓ ✓ 76.8

E.9 Extended Transfer Learning Results

Table 15 extends Table 5 with additional results and comparison to more SSL models.

Table 15: Extending Table 5 with additional MIM-Refiner models and additional SSL models.
MIM-Refiner learns general features that can easily be transferred to various datasets and tasks.

iNat18 Fine-tuning Linear Probe

ViT Method 1-shot 5-shot 10-shot iNat18 VTAB-6 ADE20K

L/16

CrossMAE [27] 5.4 45.6 63.7 39.8 81.2 30.9
MAE [30] 7.1 51.6 68.9 42.8 83.0 33.6
dBOT [50] 7.1 53.1 71.2 44.6 83.4 34.1
D2V2 [6] 5.5 53.1 70.6 39.4 81.5 38.8
CAE [15] 7.4 54.5 71.2 46.4 84.8 36.5
iBOT [86] 15.8 51.5 65.5 56.0 87.6 35.6
Mugs [87] 19.5 53.2 66.9 61.5 87.9 34.8
CrossMAE-Ref 18.0 52.9 67.8 60.5 88.3 34.3
MAE-Ref 19.0 58.0 71.7 60.6 88.5 37.3
dBOT-Ref 18.3 58.8 73.0 61.7 88.5 38.4
D2V2-Refined 15.2 56.3 71.8 52.0 85.9 41.0

H/14

MAE [30] 6.5 53.3 71.7 43.0 83.2 35.5
dBOT [50] 6.8 53.1 73.2 46.2 84.6 36.1
D2V2 [6] 5.9 55.7 73.4 41.7 83.1 42.4
MAE-CT [47] 16.5 60.1 74.7 62.8 88.8 37.6
MAE-Ref 20.9 62.4 75.4 64.6 89.3 39.4
dBOT-Ref 20.0 60.9 75.8 65.8 89.5 37.6
D2V2-Refined 16.1 59.2 74.8 54.4 87.1 43.7

2B/14 MAE [65] 10.0 53.7 72.2 51.0 85.4 37.3
MAE-Ref 22.5 63.5 76.5 69.6 89.8 40.3

L/7 MSN [2] 17.0 38.0 48.1 - - -

23



E.10 VTAB Individual Dataset Results

We show the individual accuracies for each VTAB [83] dataset from Table 5 of the main paper.
Table 16 shows linear probing results on VTAB and Table 17 shows fine-tuning results on VTAB-1K.
We use only six datasets for linear probing, as the other datasets are quite different to the ImageNet-1K
images seen during training and therefore benefit heavily from fine-tuning which makes them more
suited for evaluation via fine-tuning instead of linear probing.

Table 16: Linear probing accuracy on six VTAB [83] datasets from the “Natural” category:
Caltech101 [26], CIFAR100 [44], DTD [16], Flowers102 [55], Pets [57] and Sun397 [77].

VTAB Dataset
ViT Method CF100 CT101 DTD FL102 Pets Sun397 Average

L/16

CrossMAE 81.4 88.8 75.6 84.2 84.1 72.7 81.2
MAE 80.0 91.8 75.6 86.3 89.6 74.7 83.0
dBOT 84.3 91.3 75.7 88.0 86.0 75.1 83.4
D2V2 85.0 89.8 74.0 84.9 80.7 74.6 81.5
CAE 87.0 92.3 76.1 88.4 89.2 75.9 84.8
iBOT 89.3 91.3 78.1 95.8 93.7 77.1 87.6
Mugs 89.5 90.5 78.0 96.8 95.3 77.2 87.9
CrossMAE-Ref 88.7 93.5 79.0 95.7 95.2 78.1 88.3
MAE-Ref 89.1 91.9 79.0 96.2 95.8 78.8 88.5
dBOT-Ref 90.4 91.3 78.6 95.9 95.5 79.2 88.5
D2V2-Ref 88.9 88.8 73.9 92.1 94.7 77.1 85.9

H/14

MAE 81.0 90.3 76.9 85.9 89.5 75.3 83.2
dBOT 85.5 91.7 77.7 88.1 88.2 76.3 84.6
D2V2 87.1 91.4 77.4 85.9 79.9 76.9 83.1
I-JEPA 87.1 92.7 72.5 90.4 92.4 74.9 85.0
MAE-CT 87.7 93.9 80.1 97.0 95.0 79.2 88.8
MAE-Ref 90.1 92.0 80.4 97.5 96.0 79.8 89.3
dBOT-Ref 91.7 92.1 80.6 96.7 96.1 80.1 89.5
D2V2-Ref 90.4 89.0 75.9 93.3 95.6 78.4 87.1

2B/14 MAE 82.5 92.0 78.2 90.5 91.8 77.1 85.4
MAE-Ref 90.8 92.6 81.1 97.7 96.5 80.3 89.8

Table 17: Fine-tuning accuracy of all 19 VTAB-1K [83] datasets (averages are reported in Table 5).
Row-groups correspond to ViT-L/16, ViT-H/14 and ViT-2B/14 models respectively.

Natural Specialized Structured

M
et

ho
d

C
F1

00

C
T

10
1

D
T

D

FL
10

2

Pe
ts

SV
H

N

Su
n3

97

C
am

el
yo

n

E
ur

oS
A

T

R
es

is
c4

5

R
et

in
op

at
hy

C
le

vr
-C

ou
nt

C
le

vr
-D

is
t

D
M

L
ab

K
IT

T
I-

D
is

t

dS
pr

i-
L

oc

dS
pr

-O
ri

sN
O

R
B

-A
zi

sN
O

R
B

-E
le

MAE 50.3 90.1 68.0 90.8 92.7 92.2 35.1 85.5 93.2 81.7 72.7 93.2 63.9 55.8 84.5 93.9 58.6 46.1 51.9
iBOT 68.3 91.5 71.5 95.8 91.8 80.1 47.6 85.4 93.4 86.6 74.5 79.9 61.7 52.3 80.2 74.5 47.2 27.5 35.4
Mugs 69.4 89.2 71.4 95.4 92.9 78.1 47.6 85.2 94.0 86.2 74.7 75.1 53.0 51.1 77.9 46.8 45.5 26.3 32.6
MAE-Ref 62.2 90.6 71.5 97.2 93.7 91.7 49.1 85.3 94.8 86.8 73.4 92.5 64.3 57.4 84.3 88.4 60.5 39.0 46.5
MAE 44.3 88.3 67.8 90.8 90.8 91.1 30.4 85.9 94.0 81.3 73.9 92.7 63.6 54.0 84.9 92.2 62.8 37.1 55.2
MAE-CT 58.5 93.2 72.3 97.5 93.4 90.7 48.3 85.9 94.4 86.1 75.0 93.0 64.9 58.3 83.6 91.9 63.8 38.0 48.7
MAE-Ref 62.3 91.3 73.1 97.9 93.9 89.5 49.7 86.8 94.9 87.7 75.1 92.9 63.3 57.5 85.9 93.5 62.2 36.0 49.3
MAE 44.7 90.4 70.0 91.8 92.4 92.3 33.8 85.9 94.2 82.6 74.2 92.4 63.9 55.5 85.5 94.6 61.1 44.9 57.9
MAE-Ref 61.8 91.0 73.9 97.5 94.5 91.3 49.1 86.6 94.7 87.0 73.8 92.6 64.7 58.8 85.3 93.5 61.2 37.9 40.9

24



E.11 Extended Comparison of Fine-tuning on ImageNet-1K and iNat18

Table 18 extends Table 6 with additional MIM models. MIM-Refiner consistently improves also on
fine-tuning with an abundance of labels.

Table 18: Full fine-tuning using 100% of the labels. MIM-Refiner consistently improves performance
slightly even though ID methods typically perform worse than MIM models on this benchmark. This
table extends Table 6 from the main paper with additional MIM models and SSL models.

ViT-L/16 ViT-H/14
Model ImageNet-1K iNat18 ImageNet-1K iNat18
MAE 85.7 80.7 86.7 82.7
MAE-CT [47] 85.4 80.9 86.8 82.9
MAE-Refined 85.6 80.9 86.9 83.3
CrossMAE 84.9 77.7 - -
CrossMAE-Refined 85.1 78.4 - -
D2V2 86.6 81.0 86.6 79.6
D2V2-Refined 86.7 81.6 86.8 79.8
dBOT 85.8 81.9 87.1 84.1
dBOT-Refined 85.9 82.1 87.1 84.5
iBOT 84.8 76.9 - -
Mugs 85.2 76.9 - -
I-JEPA - - 84.9 75.9

Table 19: Robustness and domain generalization evaluation on ImageNet-C(orruption) [33] ImageNet-
A(dversarial) [35], ImageNet-R(endition) [32] and ImageNet-Sketch [73]. For ImageNet-C we report
the mean corruption error [33]. MIM-Refiner consistently improves robustness, particularly on larger
models. Table 6 reports the average accuracy of IN-A, IN-R and IN-Sketch.

ViT Method IN-C (↓) IN-A (↑) IN-R (↑) Sketch (↑) Validation (↑)

L/16 CrossMAE 41.0 51.8 57.1 42.0 84.9
CrossMAE-Ref. 40.7 52.1 57.0 42.1 85.1

L/16 MAE 39.2 56.2 60.0 45.6 85.7
MAE-Ref. 39.0 57.0 60.1 45.9 85.6

L/16 D2V2 34.0 66.1 64.4 50.0 86.6
D2V2-Ref. 33.5 67.2 64.3 50.1 86.7

L/16 dBOT 36.1 60.0 60.5 45.5 85.8
dBOT-Ref. 36.1 60.3 60.4 45.3 85.9

L/16 iBOT 37.8 47.6 53.7 41.9 84.5
Mugs 39.9 47.8 52.0 39.3 84.6

H/14 MAE 34.6 67.8 64.1 48.9 86.7
MAE-Ref. 34.3 68.0 65.1 49.7 86.9

H/14 D2V2 30.7 72.9 65.7 51.0 86.6
D2V2-Ref. 30.2 74.1 66.1 52.1 86.8

H/14 dBOT 31.8 71.1 68.1 51.8 87.1
dBOT-Ref. 31.8 72.3 68.0 51.8 87.1

H/14 I-JEPA 37.4 51.7 57.4 43.7 81.7

2B/14 MAE 32.6 68.4 65.4 50.0 86.7
MAE-Ref. 32.2 68.9 66.2 50.5 86.8

25



E.12 Fine-tuning ViT-2B Models

Table 20 shows results for fine-tuning ViT-2B models.

Table 20: Fine-tuning ViT-2B models using 100% of the labels. As fine-tuning these models is
expensive, we freeze the first 6 of the 24 blocks to save memory and compute.

ViT-2B/14
Model ImageNet-1K iNat18
MAE 86.7 82.2
MAE-Refined 86.9 83.2

E.13 Impact of Multi-Crop Augmentation

Multi-crop augmentation [10] has been shown to greatly improve the performance of ID methods [10,
11, 86, 87] and also improves MIM-Refiner significantly, where the k-NN accuracy of a D2V2-
Refined L/16 drops by 2.6% when omitting multi-crop augmentations. When comparing to drops of
other models, this is a relatively small drop. For example, the performance of DINO B/16 drops by
7.2% and iBOT B/16 drops by 5.6% when omitting multi-crop augmentations (see Table 10 in [86]).

E.14 High-dimensional k-NN

The linear probing protocol of DINOv2 [56] includes the possibility to concatenate features of the
last 4 blocks as input to the linear probe. We find that this outperforms using only the features of the
last block in most cases. As the best linear probe uses features from the last 4 blocks and the fact that
the k-NN and linear probing metrics are typically correlated [56], we report the k-NN accuracy using
only the features of the last block in Table 3 to use the last 4 blocks for one metric and only the last
block for the other. In Table 21 we investigate using the concatenation of features from the last 4
blocks for a k-NN classifier. Most models benefit from using more features, especially MIM models.

Table 21: ImageNet-1K k-NN accuracy at 224x224 resolution of the [CLS] token of the last block or
the concatenation of the [CLS] tokens of the last 4 blocks.

#Blocks
ViT Method 1 4 Delta

L/16

MAE 60.6 63.3 +2.7
D2V2 51.8 52.9 +1.1
iBOT 78.0 78.9 +0.9
Mugs 80.4 80.1 -0.3
MAE-Refined 81.5 81.5 0.0
D2V2-Refined 81.0 81.7 +0.7

H/14

MAE 58.1 61.4 +3.3
D2V2 48.0 52.2 +4.2
I-JEPA 71.6 72.3 +0.7
MAE-CT 79.1 78.6 -0.5
MAE-Refined 82.3 82.5 +0.2
D2V2-Refined 82.3 83.4 +1.1

g/14 DINOv2 83.0 83.9 +0.9

E.15 MIM-Refiner on Smaller Models

MIM-Refiner builds on pre-trained MIM models which excel at larger scales (ViT-L and upwards), we
mainly focus on large-scale models in our paper. However, MIM-Refiner also improves MIM models
on smaller scales (ViT-B). Additionally, combinations of MIM and ID methods have been explored
in various works [38, 74, 82]. However, as these methods introduce significant runtime overhead
over MIM models, they mainly focus on smaller models (ViT-L and smaller) where the pre-trained

26



models are also often not published, which makes a comprehensive comparison against these models
impossible. Nevertheless, we show that MIM-Refiner is complementary to these methods by refining
a Contrastive MAE [38] ViT-B/16 model with MIM-Refiner. Table 22 shows that MIM-Refiner also
significantly improves representation quality on smaller models.

Table 22: MIM-Refiner also significantly improves ViT-B models. Methods that improve MIM by
incorporating ID already during pre-training are orthogonal to MIM-Refiner where the refinement
process also significantly improves representation quality of these models.

ViT-B/16 k-NN 5-shot 2-shot 1-shot
MAE 51.1 43.1 27.1 14.0
MAE-Refined 76.6 64.5 58.6 50.0
CMAE [38] 76.7 43.3 31.2 21.7
CMAE-Refined 78.5 70.1 65.7 57.9

F Implementation Details

F.1 Evaluations

To avoid slight performance differences due to minor implementation details or version changes and
facilitate a fair comparison between models, we run all evaluations on our own in accordance with
the suggested hyperparameters of the respecitve methods.

F.2 Hardware

All models are pre-trained on multiple nodes of 4xA100-64GB GPUs where ViT-L uses 4 nodes (i.e.
16 GPUs), ViT-H 8 nodes of 4xA100 (i.e. 32 GPUs) and ViT-2B uses 16 nodes (i.e. 64 GPUs). For
evaluations, we use a mix of 4xA100-64GB nodes, 8xA100-40GB nodes and various smaller nodes
that vary in number of GPUs. We estimate the total number of A100 GPU-hours used for this project
to be 40K hours. This estimate includes everything from initial exploration, method development,
analysis and evaluations.

F.3 Vision Transformer

The architecture of our models follows the ones from the respective MIM model that is refined. That
is a pre-norm architecture for MAE [30] and a post-norm architecture for data2vec 2.0 [6]. We attach
the ID heads to the [CLS] tokens and also use the [CLS] token for evaluation.

We download the official checkpoints from the respective MIM works. Note that the official Cross-
MAE model is pre-trained for less epochs than all other MIM models. For dBOT we use the models
where a teacher of the same size is used (i.e. dBOT-L used MAE-L as teacher and dBOT-H used
MAE-H as teacher).

F.4 ID Head Architecture

We use a three layer MLP with hidden dimension 2048 as projector and a two layer MLP with hidden
dimension 4096 as predictor. Each linear projection is followed by a GELU [34] and a batchnorm [40]
layer. For the last linear projection in projector and predictor, no GELU is used.

F.5 Refinement Hyperparameters

Hyperparameters for the refinement stage are listed in Table 23. Following MAE-CT [47], we
initialize all ID heads first by training them with a frozen encoder to ensure a good learning signal
from the start of the refinement process. For this initialization, we use the same hyperparameters
as in Table 23 except that we use 20 epochs for all models, a learning rate of 2e-4 and a top1-NN
lookup. As we do not use a momentum encoder during training, we instead track an EMA of the
encoder and use the EMA then for downstream tasks. As ViT-2B is very expensive to train, we freeze
the first 6 blocks (for refinement and also for evaluation). As shown in Table 9 this slightly reduces
performance but also reduces memory consumption and runtime.

27



Table 23: MIM-Refiner hyperparameters.
Parameter Value

Epochs 30 (MAE/dBOT L/H)
20 (MAE 2B, data2vec 2.0)

Batch Size 1024 (L), 512 (H, 2B)
Optimizer AdamW [42, 51]

Learning Rate 4e-4
Momentum β1 = 0.9, β2 = 0.95

Learning Rate Schedule Linear Warmup → Cosine Decay
Warmup Epochs 4
End Learning Rate 1e-6

Encoder
Layer-wise LR Decay [17] 0.65
Freeze Blocks 0 (L/H), 6 (2B)
Weight Decay 0.05
EMA [60] 0.9999

Parameter Value
NNCLR Heads

Weight Decay 1e-5
Temperature 0.2 (L), 0.3 (H), 0.35 (2B)
topk-NN k 20
NN-swap for Positives ✓
NN-swap for Negatives ✗

Data Augmentation
Color & Blur Settings see BYOL [29]
Global Views 2
Global View Resolution 224
Global View Scale [0.25, 1.0]
Local Views 10
Local View Resolution 96 (L), 98 (H, 2B)
Local View Scale [0.05, 0.25]

G Evaluation Details

G.1 GPU Hours Benchmark

For benchmarking GPU hours, we follow the setup from MAE-CT [47]: we conduct a comparison by
implementing all methods in a single code-base and conducting short training runs on a single A100
40GB PCIe card. These runs are executed in mixed precision training mode and with the highest
possible batchsize that is a power of 2. The runtime of these benchmark runs is then extrapolated to
the reported number of epochs. Benchmarks are conducted in pytorch 2.1 with CUDA 12.1. FLOPS
are measured with the fvcore library2. For the 1-shot classification plot in Figure 2, we do not take
into account that some models train on higher resolutions (e.g. DINOv2) for visual clarity.

G.2 MAE Intermediate Representation Analysis

We analyze how well the features of a ViT block are suited for reconstruction by training an MAE
with a decoder attached after every ViT block. We use the same parameters as for training from
scratch [30] but reduce training duration to 20 epochs, warmup to 5 epochs and the depth of all
decoders to 2. The encoder remains fully frozen during training and only the decoders are trained.

For the visualization in Figure 3d, we calculate the delta from one block to the next and normalize
the deltas by dividing by the maximum delta. We do this for both the k-NN accuracy and the
reconstruction loss. Figure 8 shows the reconstruction loss per block and the same plot for a MAE
L/16, where a similar behavior can be observed.

ViT Blocks

0.40

0.42

0.44

0.46

Tr
ai

n 
Re

co
ns

tru
ct

io
n 

Lo
ss

MAE B/16
MAE L/16
MAE H/14

MAE-L/16 Blocks
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

Im
pr

ov
em

en
t

Reconstruction Loss
k-NN Accuracy

Figure 8: Left: Reconstruction loss per block of MAEs. Right Relative improvement of reconstruc-
tion loss and k-NN accuracy for a MAE L/16.

2https://github.com/facebookresearch/fvcore

28



G.3 ImageNet-1K Low-shot Evaluation Details

For the 1, 2 and 5-shot benchmarks we train a logistic regression [11, 2] using the [CLS] token after
the last encoder block with the cyanure [52] library. As MIM models benefit from fine-tuning in
this setting [2], MAE and data2vec 2.0 are fine-tuned instead. We report the average of three dataset
splits from MSN [2].

In the 1% and 10% low-shot benchmark, all models are fine-tuned with hyperparameters similar to
those used in related works [47, 3, 9]. As the parameters vary between 1%/10% and also between
model sizes, we refer to the codebase for the exact protocols.

For a fair comparison, we conduct the low-shot evaluations of DINOv2 at 224 resolution. We study the
impact of the higher resolution where we observe minimal gains at the original resolution (518x518).
Note that DINOv2 first trains at 224x224 followed by a short training at 518x518 resolution.

Table 24: ImageNet-1K low-shot evaluation of DINOv2 g/14 on higher resolutions.

resolution #patches FLOPS [G] 1-shot 2-shot 5-shot
224x224 256 291 60.5 68.3 74.4
518x518 1369 1553 61.1 68.8 74.8

G.4 ImageNet-1K k-NN Classification Details

For k-NN classification, we follow the protocol of DINO [76, 11]. We train a soft k-NN classifier
weighted by cosine similarity with k = 10. For MIM models, higher values for k are beneficial, so
we tune this parameter for MAE and data2vec 2.0.

G.5 ImageNet-1K Linear Probing Evaluation Details

For linear probing, we use the protocol from DINOv2 [56] for publicly released models and the
values from the original papers otherwise. We train for 50 epochs using SGD with momentum 0.9.
As data augmentation we use RandomResizedCrop and HorizontalFlip. The DINOv2 protocol
sweeps over the following hyperparameters by training multiple linear classifiers at once:

• 13 learning rates ranging from 0.0001 to 0.5
• Use the last block output or concatenate the output of the last 4 blocks
• Use the [CLS] token or the concatenation of [CLS] and [AVG] token

As the linear probes trained on the concatenation of the last 4 blocks have more features and more
parameters to discriminate between classes, they tend to be the best within the sweeped parameters.
Note that we evaluate the representation of the last block in isolation via k-NN classification. We
investigate k-NN classification with features from the last 4 blocks in Appendix E.14.

G.6 ImageNet-1K Cluster Evaluation Details

For each considered model in the clustering experiments in Section C.3 we used the CLS token
embeddings of the ImageNet validation set and preprocessed the embeddings using L2 normaliza-
tion. For conducting mini-batch k-means and calculating the cluster related metrics we used the
scikit-learn package [59], except for calculating the cluster accuracy where we used the imple-
mentation in ClustPy [48]. The UMAP plots in Figure 4 where generated by applying UMAP on
top of the L2 normalized CLS token embeddings of the 53 food related classes of ImageNet for each
model. We use the default UMAP parameters of umap-learn [53] for all plots (n_neighbors=15).

G.7 iNat18 Transfer Learning Evaluation Details

We report the accuracy on the validation set averaged over three seeds.

For 1-shot classification on iNat18, we use the linear probing protocol from DINOv2 [56]. We also
attempted to fine-tune MIM models where some models fail to exceed random performance and
therefore also use linear probing.

29



For 5-shot and 10-shot classification on iNat18, we fine-tune all models. The hyperparameters for
fine-tuning (Table 25) are inspired by MAWS [65].

Table 25: Hyperparameters for fine-tuning on iNat18 low-shot classification.
Parameter Value
Epochs 50
Batch size 256
Optimizer AdamW [51, 42]

Learning rate 1e-3
Layer-wise lr decay [17] 0.75
Weight decay 0.05
Momentum β1 = 0.9, β2 = 0.999

Learning rate schedule linear warmup → cosine decay
Warmup epochs 5

Parameter Value
Label smoothing [68] 0.1
Data Augmentation
Resize 256
interpolation bicubic

RandomResizedCrop 224
scale [0.08, 1.0]
interpolation bicubic

RandomHorizontalFlip p = 0.5
Normalize ImageNet statistics

G.8 Transfer Learning Linear Probing

For transfering the pre-trained features to iNat18, six VTAB datasets and ADE20K (Table 5) we use
the DINOv2 [56] linear probing protocol as described in Appendix G.5. For ADE20K and iNat18,
we reduce the hyperparameter grid to fit into 40GB GPU memory.

G.9 ADE20K Semantic Segmentation Linear Probe

Large models (such as ViT-H or ViT-2B) are expensive to train on ADE20K. Therefore, we opt for a
simple light-weight evaluation protocol to compare our models on a segmentation task:

• We keep resolution at 224x224
• We freeze the encoder
• We train a linear classifier similar to DINOv2 [56] that predicts a class for each patch. The

resulting low-resolution prediction is then upsampled to 224x224 resolution.
• For evaluation, we use the original resolution image and slide a 224x224 window over the

image with a stride of 170 pixels and average the logits per pixel.

As intermediate representations are commonly used for semantic segmentation, we use features from
the last block, the 5th last block, the 9th last block and the 13th last block. Compared to simply using
the last 4 blocks, this improves performance for all compared models.

G.10 Fine-tuning on VTAB-1K

For fine-tuning models on VTAB-1K we provide the hyperparameters in Table 26. We search for the
best learning rate for each dataset by fine-tuning the model 25 times (5 learning rates with 5 seeds
each) on the 800 training samples and evaluating them on the 200 validation samples. With the best
learning rate, we then train each model 5 times on concatenation of training and validation split,
evaluate on the test split and report the average accuracy.

Table 26: Hyperparameters for fine-tuning on VTAB-1K.
Parameter Value
Epochs 50
Batch size 64
Seeds 5
Optimizer AdamW [51, 42]

Learning rate 1e-3, 7.5e-4, 5.0e-4, 2.5e-4, 1.0e-4
Layer-wise lr decay [17] 0.75
Weight decay 0.05
Momentum β1 = 0.9, β2 = 0.999

Parameter Value
Learning rate schedule linear warmup → cosine decay

Warmup epochs 5
Data Augmentation
Resize
interpolation bicubic
size 224x224

Normalize ImageNet-1K statistics

G.11 Fine-tuning With 100% Labels

For fine-tuning with 100% of the labels (Table 6), we use the hyperparameters provided in MAE [30]
for both iNat18 and ImageNet-1K (see Table 27). As D2V2 models are unstable with the default

30



learning rate of the MAE fine-tuning protocol, we use the highest stable learning rate out of 5e-4,
2.5e-4 and 1e-4.

For ViT-2B/14 (Table 20), we freeze the first 6 of the 24 blocks to reduce computational costs.
Additionally, as the 2B models are sometimes unstable with a learning rate of 1e-3, we reduce it to
7.5e-4 or 5e-4 using the largest stable learning rate.

To fine-tune I-JEPA [3], we adjust hyperparameters to match their fine-tuning setting of a ViT-H/16448.
We reduce peak stochastic depth from 0.3 to 0.25. To fine-tune on iNat18, we found that a learning
rate 1e-3 performs better than the 1e-4 used in the original work.

Table 27: Hyperparameters for fine-tuning on ImageNet-1K and iNat18 many-shot classification.

Parameter Value
Epochs 50
Batch size 1024
Stochastic depth [37]

Peak rate 0.2 (L/2B), 0.3 (H)
Decay ✓

Optimizer AdamW [51, 42]
Learning rate 1e-3
Layer-wise lr decay [17] 0.75
Weight decay 0.05
Momentum β1 = 0.9, β2 = 0.999
Freeze Blocks 0 (L/H), 6 (2B)

Learning rate schedule linear warmup → cosine decay
Warmup epochs 5
End Learning Rate 1e-6

Label smoothing [68] 0.1

Parameter Value
Train Data Augmentation
RandomResizedCrop 224
scale [0.08, 1.0]
interpolation bicubic

RandomHorizontalFlip p = 0.5
RandAug [18]
magnitude 9
magnitude_std 0.5

Normalize ImageNet statistics
Mixup [84] α 0.8
Cutmix [84] α 1.0

Test Data Augmentation
Resize 256
interpolation bicubic

CenterCrop 224
Normalize ImageNet statistics

G.12 ADE20K Semantic Segmentation Fine-tuning

We fine-tune ViT-L models using an UperNet [78] segmentation head to predict a segmentation
mask. We follow common practices and fine-tune on 512x512 resolution, where we interpolate the
absolute positional embedding from 224x224 to 512x512, add relative position bias to the attention
layers (initialized to 0) [30] and introduce layerscale [69] (initialized to 1). A common augmentation
pipeline is used that consists of random rescaling, random horizontal flipping, color jitter and padding
if necessary. We train for 160K updates using a batchsize of 16, a learning rate of 2e-5, weight
decay 0.05, linear warmup for 1.5K update steps followed by cosine decay, stochastic depth rate 0.2,
dropout 0.1, layer-wise learning rate decay 0.95. We evaluate after 160K update steps using a sliding
window of 341 pixels and report mIoU over the validation set.

G.13 k-NN Classification and Semantic Segmentation Probe per Block

For the per-block analysis in Figure 3b and Figure 6 we follow the respective settings of k-NN classi-
fication (Appendix Section G.4) and semantic segmentation linear probing (Appendix Section G.9).
The only change is that for semantic segmentation linear probing per-block, we fix the learning rate
to 0.1 and only use the patch tokens of the respective block as input to the linear probe.

31



G.14 Loss Schedule Visualizatios

We visualize the schedules used for scheduling the loss weight of ID heads attached at intermediate
blocks in the ablation study (Table 2) in Figure 9.

0 4 8 12 16 20
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
He

ad
 L

os
s W

ei
gh

t
Uniform Decay

All Heads

0 4 8 12 16 20
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

He
ad

 L
os

s W
ei

gh
t

Staggered Decay

Block 17
Block 18
Block 19
Block 20
Block 21
Block 22
Block 23

0 4 8 12 16 20
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

He
ad

 L
os

s W
ei

gh
t

Staggered Step
Block 17
Block 18
Block 19
Block 20
Block 21
Block 22
Block 23

0 4 8 12 16 20
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

He
ad

 L
os

s W
ei

gh
t

One Hot
Block 17
Block 18
Block 19
Block 20
Block 21
Block 22
Block 23

Figure 9: Loss weight schedules for the ablation in Table 2. For visual clarity, small offsets are added
when values overlap (for “One Hot” and “Staggered Step”).

32



H Relation to NNCLR

Figure 10 shows the difference between NNCLR [24] and NNA. NNCLR uses the NN-swap also
for the negatives, resulting in a worse signal due to the NNs being retrieved from a FIFO queue of
features from previous model states.

NNCLR NNA

Sample in Queue

Sample in Batch

Stop Gradient

Attracting Force

Repelling Force

Nearest Neighbor

Figure 10: The NN-swap of NNCLR introduces inter-sample correlations between positives but uses
features from a previous state of the model. Using the NN-swap only for the positives preserves the
inter-sample correlations while using features from the current state of the model as negatives to
improve the loss signal.

I Practitioner’s Guide

We find MIM-Refiner to be easy to tune. By freezing the encoder and training multiple ID heads
attached to the encoder with different hyperparameters, one can get a quick and cheap evaluation of
suitable hyperparameters. We mainly use two metrics to judge the performance of an ID head:

• Accuracy of a k-NN classifier trained on a subset of the data (e.g. 10% of the data). This
is relativley cheap to compute and can be done periodically during training. For the k-NN
classifier, one can use either features of an encoder block or features of intermediate blocks
in an ID head to judge the representation at the respective location in the network.

• The accuracy of the NN-swap, i.e. how often is the NN from the NN-swap from the same
class as the query sample. This metric is essentially free to compute as the NN-swap is
required for training anyways.

J Acknowledgements

We thank Johannes Lehner for helpful discussions and suggestions.

We acknowledge EuroHPC Joint Undertaking for awarding us access to Karolina at IT4Innovations,
Czech Republic, MeluXina at LuxProvide, Luxembourg, LUMI at CSC, Finland and Leonardo at
CINECA, Italy. We acknowledge access to LEONARDO at CINECA, Italy, via an AURELEO
(Austrian Users at LEONARDO supercomputer) project.

The ELLIS Unit Linz, the LIT AI Lab, the Institute for Machine Learning, are supported by the
Federal State Upper Austria. We thank the projects Medical Cognitive Computing Center (MC3),
INCONTROL-RL (FFG-881064), PRIMAL (FFG-873979), S3AI (FFG-872172), EPILEPSIA (FFG-
892171), AIRI FG 9-N (FWF-36284, FWF-36235), AI4GreenHeatingGrids (FFG- 899943), IN-
TEGRATE (FFG-892418), ELISE (H2020-ICT-2019-3 ID: 951847), Stars4Waters (HORIZON-
CL6-2021-CLIMATE-01-01). We thank Audi.JKU Deep Learning Center, TGW LOGISTICS
GROUP GMBH, Silicon Austria Labs (SAL), FILL Gesellschaft mbH, Anyline GmbH, Google, ZF
Friedrichshafen AG, Robert Bosch GmbH, UCB Biopharma SRL, Merck Healthcare KGaA, Verbund
AG, GLS (Univ. Waterloo), Software Competence Center Hagenberg GmbH, Borealis AG, TÜV
Austria, Frauscher Sensonic, TRUMPF and the NVIDIA Corporation.

33



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We introduce MIM-Refiner, a method to refine pre-trained MIM models via an
ensemble of contrastive heads.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in Section D, for example, the reliance on batch
normalization.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

34



Answer: [NA]
Justification: No theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide implementation details in Appendix F and provide the code that
was used for this work in the supplemental materials. The code includes all exact run
configurations used for training and evaluation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

35



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the code that was used for this work in the supplemental materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Appendix Section F lists implementation details and hyperparameters. Addi-
tionally, the code in the supplementary materials contains all exact run configurations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Reruns on large-scale models are expensive. However, we report average
performances in cheap benchmarks such as low-shot classification.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

36

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report used compute resources in Appendix Section F.2 and compare
runtimes to train models in Figure 2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper conforms with the guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: -

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

37

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: -
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Authors of code, data and models are cited accordingly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

38

paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Details on how the new models were trained are described in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: -
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: -
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

39


	Introduction
	Challenges of Masked Image Modeling
	Method & Experiments
	Conclusion
	Related Work
	Pre-training in Computer Vision
	Combining MIM and ID

	Nearest Neighbor Alignment Objective
	Comprehensive Experimental Evaluation
	Ablation Study
	Low-shot and Feature Evaluations
	Cluster Evaluations
	Transfer Learning Evaluations
	Fine-tuning with Large Amounts of Labels

	Limitations
	Extended Results
	Extended Representation Quality Comparison
	Where to Attach ID Heads?
	Freezing Early Blocks
	Intermediate Representation Analysis of Additional MIM Methods
	Low-shot Classification Without Color Augmentations
	Extended ImageNet-1K Low-shot and Feature Evaluations
	Extended ImageNet-1K Cluster Evaluations
	Multi-model Clustering Evaluations
	Extended Transfer Learning Results
	VTAB Individual Dataset Results
	Extended Comparison of Fine-tuning on ImageNet-1K and iNat18
	Fine-tuning ViT-2B Models
	Impact of Multi-Crop Augmentation
	High-dimensional k-NN
	MIM-Refiner on Smaller Models

	Implementation Details
	Evaluations
	Hardware
	Vision Transformer
	ID Head Architecture
	Refinement Hyperparameters

	Evaluation Details
	GPU Hours Benchmark
	MAE Intermediate Representation Analysis
	ImageNet-1K Low-shot Evaluation Details
	ImageNet-1K k-NN Classification Details
	ImageNet-1K Linear Probing Evaluation Details
	ImageNet-1K Cluster Evaluation Details
	iNat18 Transfer Learning Evaluation Details
	Transfer Learning Linear Probing
	ADE20K Semantic Segmentation Linear Probe
	Fine-tuning on VTAB-1K
	Fine-tuning With 100% Labels
	ADE20K Semantic Segmentation Fine-tuning
	k-NN Classification and Semantic Segmentation Probe per Block
	Loss Schedule Visualizatios

	Relation to NNCLR
	Practitioner's Guide
	Acknowledgements

