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ABSTRACT

Scaling vision foundation models is limited by the quadratic cost of self-attention.
Generalized Spatial Propagation Networks (GSPN) provide a linear-time alter-
native that propagates context directly on the 2D grid and removes positional
embeddings, but have not been scaled to foundation-level training. We present
Compact GSPN (C-GSPN), a ViT block with a compressed propagation space
that preserves accuracy while cutting propagation latency by nearly 10×, comple-
mented by lightweight projections and fused CUDA kernels for further efficiency.
To pretrain at scale, we use a two-stage distillation scheme with module-wise su-
pervision and end-to-end alignment. In a representative 1K configuration (batch
32, C=1152), C-GSPN yields up to 2× speedup, while maintaining competitive
zero-shot accuracy and improving segmentation by +2.1%. Extensive experi-
ments and ablations confirm that the proposed compression and two-stage distil-
lation are key to achieving strong transfer while substantially reducing compute,
offering a practical path toward subquadratic vision foundation models.

1 INTRODUCTION
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Figure 1: Comparison of C-GSPN (ours) vs.
ViT-Distill on dense prediction at 378 and 1K res-
olutions; lower latency and higher accuracy are
better.

Scaling up vision foundation models is increasingly
constrained by the cost of self-attention (Vaswani
et al., 2017). As input resolution grows, token
counts explode, and attention’s quadratic complexity
quickly becomes the dominant cost for both mem-
ory and latency. This scalability bottleneck limits
the practical use of high-resolution inputs and slows
down training and inference for large models.

A rich line of work has tried to address this by
making attention subquadratic—through token spar-
sity (Child et al., 2019), local windows (Dai et al.,
2019), or kernelized approximations (Choromanski
et al., 2020)—reducing computation while attempt-
ing to preserve global context. These approaches
boost throughput but still struggle to provide a con-
sistently good accuracy–latency trade-off, often re-
quiring careful tuning or additional components.
Generalized Spatial Propagation Networks (GSPN) (Wang et al., 2025) offer an alternative: they
propagate information directly over the 2D grid, capture long-range context with linear complexity,
and eliminate the need for positional embeddings. Despite these advantages, GSPN has not yet been
scaled to the data and model sizes of modern vision foundation models, leaving open the question
of how to pretrain such architectures effectively at foundation scale.

In this work, we study how to scale GSPN to a vision foundation model. We introduce Compact
GSPN (C-GSPN), a block that replaces the attention sublayer with a compressed Generalized Spatial
Propagation Network. Unlike attention, which aggregates affinities across channels, GSPN propa-
gates features independently per channel. Theoretically, propagation time remains flat if the number
of channels stays below the GPU’s concurrency threshold; beyond this, runtime grows roughly lin-
early with the channel dimension due to hardware limits (see Fig. 2). To control this growth, we
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project the propagation into a compressed latent space that preserves accuracy while cutting the cost
of the propagation step, yielding nearly 10× latency reduction at the layer-level, without accuracy
degradation. Building on this, we further reduce overhead from surrounding operators through two
key refinements: a lightweight redesign of the Q/K/V projection and a fused CUDA kernel that low-
ers the cost of non-linearities such as sigmoid. Together, these improvements form a compact yet
faithful substitute for attention within a ViT block. Compared to the original GSPN, this compact de-
sign yields large practical speedups (e.g., 13.7× at 1K resolution). Against softmax attention—even
with highly optimized FlashAttention (Dao et al., 2022)— C-GSPN reduces block latency by 2× at
1K and 4× at 2K resolution, positioning it as a competitive alternative for foundation-scale encoders.

To retain model quality, we introduce a two-stage cross-operator distillation recipe. In the first
stage, we perform sublayer-wise supervision that aligns intermediate representations of each GSPN
block with its attention-based teacher block. In the second stage, we fine-tune the entire network
end-to-end. On top of this, we adopt a sparse feature distillation strategy that supervises two anchor
points—Post-Propagation and Post-Block—providing both local and block-level guidance. Distill-
ing from a SigLIP-v2 (Tschannen et al., 2025) teacher on 600M image–text pairs, the resulting
C-GSPN encoder achieves 81.3% (vs. 82.2% baseline) and improves segmentation accuracy by
+2.1% on ADE20K. Finally, we leverage C-GSPN’s inherent spatial structure for efficient resolu-
tion transfer, enabling smooth adaptation across resolutions—from 378×378 to 1036×1036—using
just 1/200 of the data required for training from scratch. This property makes its efficiency advan-
tage even more pronounced at higher resolutions.

We evaluate C-GSPN against established vision foundation models across multiple downstream
tasks. In particular, we conduct ablations with a SigLIP-v2 teacher to analyze: (i) the impact
of latent compression on accuracy–latency trade-offs, (ii) the effectiveness of two-tap supervision
(post-propagation vs. post-block), and (iii) high-resolution transfer without positional embeddings.
These studies show that C-GSPN achieves superior computational efficiency while maintaining
competitive performance across diverse vision tasks.

Contributions. (1) We propose C-GSPN, a compressed spatial propagation block that serves as a
drop-in, positional-embedding-free substitute for attention in ViTs, scaling linearly with resolution.
(2) We design a compute-aware implementation combining latent-space propagation and a fused
CUDA normalization kernel that substantially reduces latency at high resolution. (3) We introduce
a progressive, cross-operator distillation recipe with two supervision taps per block and lightweight
feature adaptors, enabling effective transfer from attention to propagation. (4) We demonstrate
practical high-resolution encoder transfer without tiling or positional embeddings via curriculum
learning with upsampling self-distillation, yielding strong dense-task performance.

2 RELATED WORK
Due to space limits, we focus on subquadratic alternatives to full softmax attention; a broader survey
appears in the Appendix.
Subquadratic Attention and Alternatives. Subquadratic alternatives to full softmax attention
aim to reduce the O(N2) dependence on token count while preserving global interactions. Sparsity-
and window-based designs such as Longformer and BigBird in NLP and Swin for vision constrain
attention to local windows with a few global tokens, yielding near-linear scaling but making long-
range mixing sensitive to the chosen sparsity pattern and hyperparameters (Beltagy et al., 2020;
Zaheer et al., 2020; Liu et al., 2021). Kernelized/low-rank approaches linearize attention—e.g.,
Linear Transformers, Performer, Nyströmformer, Linformer—trading exactness for approximation;
their accuracy often depends on the feature map, rank, or landmark scheme and requires careful
tuning (Katharopoulos et al., 2020; Choromanski et al., 2020; Xiong et al., 2021; Wang et al., 2020).
IO-aware exact attention like FlashAttention reduces constant factors via optimized memory ac-
cess, yet latency still scales quadratically with tokens at high resolution (Dao et al., 2022). Beyond
attention, state-space models (S4; Mamba) offer linear-time sequence operators, but adapting 1D
formulations to high-resolution vision typically requires extra 2D inductive bias or hierarchical de-
signs (Gu et al., 2021; Gu & Dao, 2023). In contrast, spatial propagation networks operate natively
on 2D grids and remove positional embeddings; recent GSPN extends this idea to four-direction
propagation with linear complexity (Liu et al., 2017; Wang et al., 2025). Our work scales GSPN to
foundation-model pretraining through a compact, CUDA-optimized instantiation distilled from ViT
teachers, achieving substantially lower latency at 1K–2K while maintaining competitive transfer.
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3 BACKGROUND

To facilitate a clear understanding of our C-GSPN approach, we start with an overview of the 2D
Spatial Propagation architecture as the foundation of our C-GSPN model. Then, we provide the
GPU Hardware Capabilities and the Kernel Execution of 2D Linear Propagation to understand the
performance of our C-GSPN model.

2D Linear Propagation Algorithm. Spatial propagation (Wang et al., 2025; Liu et al., 2017)
provides a linear alternative to attention by propagating features along four directions of the 2D grid.
For an input x ∈ RH×W×C , the hidden state h with the same dimension is computed sequentially
across one dimension (e.g., row by row), while all positions within each row are updated in parallel.
Taking the top-to-bottom pass as an example, with i ∈ [0,H − 1] and channel c, let hi,:,c, xi,:,c ∈
RW , λi,:,c ∈ RW , and wi,c ∈ RW×W . The recurrence is:

hi,:,c = wi,c hi−1,:,c +Diag(λi,:,c)xi,:,c (1)

with h0,:,c initialized from x0,:,c.

The final output for row i and channel c is given by yi,:,c = ui,:,c ⊙ hi,:,c. All parameters λ, w, and
u are input-dependent.

To satisfy the Stability–Context Condition (Wang et al., 2025), each wi,c is row-stochastic (rows
sum to 1). We parameterize this by normalizing the nonzero connections within the neighbor set
N (j) for position j in row i:

wi,c(j, k) =
σ(w̃i,c(j, k))∑

k′∈N (j) σ(w̃i,c(j, k′))
(2)

Propagation along four directions—top-to-bottom, bottom-to-top, left-to-right, and right-to-
left—produces dense pairwise connectivity with only three coefficients per pixel per pass. In the
tridiagonal case (N (j) = {j−1, j, j+1}), this reduces to three nonzero entries per row, normalized
locally.

A single top-to-bottom pass performs O(H) sequential steps while all W elements of each row are
computed in parallel (symmetrically O(W ) for a column pass). Running both row- and column-
wise scans gives an effective sequential depth of O(max(H,W )), i.e., O(

√
N) for a square map

with N=HW pixels. We describe the preliminary of GPU Hardware and Kernel Execution of
GSPN in the Appendix.

4 METHODOLOGY

We align C-GSPN closely with the ViT structure and adopt consistent terminology: (i) Sublayer:
the latent-space 2D propagation unit, analogous to the scaled dot-product attention sublayer, (ii)
Layer: a full C-GSPN layer (Fig. 4), which parallels a multi-head attention layer, and (iii) Block: a
Transformer block where the attention layer is replaced by a C-GSPN layer (Fig. 8). In Sec. 4.1, we
discuss how to improve the sublayer efficiency of a ViT block; then in Sec. 4.1, we show how to
reduce the overhead of a full C-GSPN layer with respect to the non-propagation components.

4.1 EFFICIENCY BOOST WITH LATENT SPACE AND CUDA KERNEL

Original GSPN sublayers propagate features independently on each channel C of x ∈ RB×C×H×W ,
performing four directional line scans as in Eq. 1. Since modern GPUs support only limited resident
blocks per SM with constrained registers, when either the batch size B or channel dimension C
grows, excess slices serialize, causing latency spikes despite theoretical parallelism (see Appendix).
Figure 2 illustrates this effect: latency remains flat at small B/C, but jumps sharply once concurrency
saturates (e.g., 11.57× increase when C grows from 288 to 576, and 7.76× when B grows from 8
to 16).

Latent-space 2D propagation. To avoid hitting the concurrency wall, we move the propagation
into a compressed latent space. Let s > 1 be a compression factor and compressed channel number

3
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Cc = ⌊C/s⌋. We introduce linear projections P↓ : RC → RCc and P↑ : RCc → RC applied per
spatial location (i.e., 1× 1 convolutions across channels):

xc = P↓(x) ∈ RB×Cc×H×W (3)

We generate propagation parameters directly in the latent channel space:

u = Lu(xc), λ = Lλ(xc), w̃ = Lw(xc) (4)

where u, λ ∈ RB×Cc×H×W and w̃ ∈ RB×Cc×H×W×3. Lu, Lλ, and Lw denote learned linear heads
implemented as 1× 1 convolutions over channels (applied at each spatial position) that predict per-
position parameters.

For a top-to-bottom propagation and any compressed channel c̃ ∈ {1, . . . , Cc}, the per-row recur-
rence mirrors Eq. 1 but operates entirely in the latent channels using Eq. 4 and Eq. 2 (tridiagonal
specialization):

hi,:,c̃ = wi,c̃ hi−1,:,c̃ +Diag(λi,:,c̃)xc, i,:,c̃, yi,:,c̃ = ui,:,c̃ ⊙ hi,:,c̃ (5)

Here w is normalized row-stochastically as in Sec. 3. We run the four directional scans in the latent
space and then up-project only once at the end:

yc = Prop2D(xc;u, λ, w), y = P↑(yc) ∈ RB×C×H×W (6)

This reformulation reduces the effective grid size from B×C to B×Cc (with Cc=⌊C/s⌋), lowering
per-SM pressure and avoiding serialization. Empirically at 1K resolution, latency remains nearly flat
across channels and batch sizes; compared to the raw-space kernel, latent-space propagation attains
54.46× speedup at C=1152 and 55.74× at B=32 (Fig. 2).

Importantly, because w̃ are defined in the latent channels, the row-stochastic normalization of Eq. 2
is evaluated over Cc rather than C, yielding an additional 38.9× speedup for weight normalization.
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Figure 2: Original GSPN vs C-GSPN Propagation sublayer
latency under increasing channels (left) and batch size (right)
at 1K resolution. Original GSPN exhibits spikes as C/B
grow due to GPU concurrency limits; C-GSPN remains flat,
yielding large speedups.

Non-GSPN Overhead Reduction. Is
the propagation sublayer really the bottle-
neck? For softmax attention at high res-
olution, yes. But for GSPN—already ef-
ficient—the overhead of non-propagation
parts dominates, especially at low to mid
resolutions. At 1K, these non-propagation
parts cost 9.6× more than the core prop-
agation (Fig. 3). To address this, we
remove: (i) the inner-module residual
path around the propagation kernel, (ii)
the linear projections inherited from the
attention-based template, and (iii) the in-
termediate upsample projections that pre-
viously expanded channels before propa-
gation. Cumulatively, these edits yield a ∼5.5× reduction in overhead latency (Fig. 3).

Fused CUDA Normalization. We optimize the row-stochastic normalization step (Sec. 3) by fus-
ing its sequence of operations—sigmoid activation, local reduction, clamping, and division—into
a single custom CUDA kernel. By executing all steps in one pass, this eliminates intermediate
memory traffic and kernel launch overhead, achieving a 2.15× speedup over PyTorch’s baseline.
Combined with latent-space structural reduction (C → Cc; e.g., 1152 → 64), the effective cost of
normalization is reduced by 83.68× at 1K resolution.

Overall, these three improvements yield a 13.7× speedup of the GSPN layer at 1K resolution. Thor-
ough comparisons are reported in Sec. 5.

4.2 SCALING C-GSPN VIA DISTILLATION

Although GSPN Wang et al. (2025) has shown strong performance on mid-scale tasks such as image
classification and generation, its usage in foundation-scale vision models remains underexplored.

4
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Figure 3: Left: Block latency vs. image resolution (B=32, C=1152), where the original GSPN is dominated
by weight normalization and other overhead at high resolution; C-GSPN substantially reduces both. Right:
Overhead reduction at 1K resolution from removing (1) Additional linear projections inherited from attention,
(2) inner-module residual, and (3) Channel Extension projections; cumulative speedup about ×5.5.

We scale C-GSPN to this regime by aligning its block design with a SigLIP 2-style ViT Zhai et al.
(2023), a widely used architecture for efficient contrastive pretraining and robust benchmarking.
Training such models from scratch is computationally prohibitive, so we adopt knowledge distilla-
tion: a pre-trained quadratic-attention teacher supervises a GSPN-based student. However, cross-
operator transfer is non-trivial: attention mixes tokens via explicit pairwise interactions, whereas
GSPN attains global context through sequential local propagation that reduces the effective sequence
length to

√
N for N elements. This mismatch makes direct attention layer weight transfer inappro-

priate and induces a feature-distribution gap that must be handled explicitly. In the following, we
address this gap with a progressive, two-stage distillation strategy that first aligns intermediate fea-
tures block by block, and then fine-tunes the full model end-to-end.

Stage 1: Sublayer-wise Pretraining. As shown in Fig. 8, we begin by aligning each C-GSPN
propagation sublayer with its corresponding attention sublayer in the teacher. For each block i, both
teacher and student take the output of the (i−1)-th teacher block as input:

ht,(0) = x, ht,(i) = TeacherBlock(i)
(
ht,(i−1)

)
. (7)

Given this shared input ht,(i−1), we compute the sublayer features:

F s,(i) = f
(i)
C-GSPN-prop

(
ht,(i−1)

)
, F t,(i) = f

(i)
Attention

(
ht,(i−1)

)
, (8)

where F s,(i) and F t,(i) denote outputs immediately after the student’s propagation sublayer and the
teacher’s attention sublayer, respectively. We minimize a simple feature alignment loss:

L(i)
prop = |F s,(i) − F t,(i)|22. (9)

The teacher is frozen, and gradients flow only through the student sublayer. Importantly, each block
is trained independently without backpropagation across blocks, so every C-GSPN sublayer directly
learns to mimic the representational pattern of its paired attention sublayer. This parallel scheme
stabilizes training and provides a strong initialization for subsequent end-to-end distillation.

Stage 2: End-to-end Distillation. After layer-wise pretraining, we optimize end-to-end with two
supervision taps per block. For clarity, we refer to the feature taken after the propagation/attention
sublayer as post-propagation (PP) and the feature taken after the entire block (prop/attn + MLP
+ norms) as post-block (PB). The rationale is to decompose cross-operator transfer: PB super-
vision preserves the teacher’s block transformation, where the MLP is largely isomorphic across
student/teacher, while PP supervision directly pressures the GSPN sublayer to learn the teacher’s
attention-style mixing, rather than letting the MLP “absorb” the mismatch.

Let V s/t
PP and V

s/t
PB denote student/teacher features at PP and PB, and let P (·) be token-wise softmax.

We use MSE loss for feature alignment and Kullback–Leibler divergence (KL) loss for distribution
matching:

LPP = MSE
(
V s

PP, V
t

PP

)
+ λ1 KL

(
P (V s

PP) ∥P (V t
PP)

)
, (10)

LPB = MSE
(
V s

PB, V
t

PB

)
+ λ2 KL

(
P (V s

PB) ∥P (V t
PB)

)
.
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Figure 4: Layer comparison of GSPN and C-GSPN. Left: Original GSPN operates in raw channel space
and retains extra projections and residuals inherited from attention. Right: C-GSPN introduces latent-space
propagation and fused normalization, while removing redundant projections and residuals, resulting in a lighter
and faster design.

We insert lightweight adaptors before each tap when needed to reduce feature-space mismatch,
which is discussed in the following. This dual-tap design regularizes cross-operator distillation by
giving the GSPN sublayer a dedicated teacher target (PP) while keeping block-level alignment (PB),
which we validate via ablations in Sec. 5.3. Similar principles—tap supervision for ViTs and staged
cross-architecture alignment—have been validated in recent knowledge distillation work (Touvron
et al., 2021; Yang et al., 2022; Bick et al., 2024).

Feature Adaptor for Distillation. Even with dual supervision, directly matching C-GSPN and ViT
features is difficult because the two architectures compute representations in fundamentally different
ways: spatial propagation aggregates context sequentially, whereas attention mixes all tokens at
once. This mismatch leads to unstable training if features are compared in raw space.

To address this, we introduce lightweight feature adaptors that act as learnable bridges between
student and teacher features. As shown in Fig. 8, adaptors are inserted before the distillation losses
at both taps. At the post-propagation (PP) tap, the adaptor maps the raw GSPN output V s

PP into an
aligned representation V̂ s

PP ; at the post-block (PB) tap, it transforms the student block output V s
PB

into V̂ s
PB . The distillation objectives then become:

LPP = MSE(V̂ s
PP , V

t
PP ) + λ1 KL(P (V̂ s

PP )∥P (V t
PP )), (11)

LPB = MSE(V̂ s
PB , V

t
PB) + λ2 KL(P (V̂ s

PB)∥P (V t
PB)),

and the total objective is
Ltotal = αLPP + β LPB. (12)

By transforming the supervision task from direct feature matching to learnable feature alignment,
adaptors ease cross-operator transfer. In practice, they stabilize optimization at PP (where the op-
erator gap is largest) and yield consistent improvements in downstream accuracy (See ablations in
Sec. 5.3).

Furthermore, inspired by the hybrid Mamba-Transformer design in MaTVLM (Li et al., 2025),
which demonstrates that a balanced integration of sequential state-space models with attention
mechanisms yields superior performance over pure architectures, we similarly observe that allo-
cating a small attention budget results in a better accuracy-latency trade-off compared to either pure
attention or pure C-GSPN. With this insight, we adopt a hybrid architecture that preserves a modest
fraction of attention layers while incorporating C-GSPN blocks. Further details on our implemen-
tation and empirical validation are provided in Sec. 5 and Appendix.

4.3 HIGH-RESOLUTION ENCODER DISTILLATION

High-resolution in downstream tasks is often handled with tiling because attention cost grows
quadratically with resolution; however, tiling increases engineering complexity, introduces bound-
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ary artifacts, and sacrifices global context. By contrast, C-GSPN maintains low latency at 1K–2K
resolution and supports single-pass inference without tiling (Sec. 5.1), which enables high-resolution
encoders. Importantly, C-GSPN requires no positional embeddings, so moving to higher resolutions
does not involve modifying the architecture—only adapting training.

We therefore study how to transfer low-resolution checkpoints to higher resolutions under limited
compute. Two challenges emerge. First, naively transferring from a base resolution r0 (e.g., 378) to a
target resolution rK (e.g., 756) yields suboptimal performance. A curriculum learning strategy (Bai
et al., 2023; Chen et al., 2023b;a; Li et al., 2024) that gradually increases resolution (378 → 518 →
756) significantly improves results (80.4% vs. 70.2% with equal sample budgets), showing that
progressive scaling stabilizes adaptation. Second, contrastive objectives alone provide sufficient
supervision for classification but fail to capture the fine-grained spatial detail needed in dense tasks
like segmentation (Sec. 5).

To address these challenges, we propose to combine curriculum learning with upsampling self-
distillation. At each step k > 0, the model at resolution rk−1 serves as a frozen teacher, whereas its
features are bilinearly upsampled to rk and guide the student at both module and block levels using
the dual objectives from Sec. 4.2:

Ṽ t,(k)
m = Up

(
V t,(k−1)
m

)
, Ṽ

t,(k)
b = Up

(
V

t,(k−1)
b

)
, (13)

L(k)
hr = αL(k)

module + β L(k)
block, (14)

where Up(·) denotes bilinear upsampling from resolution rk−1 to rk; L(k)
module and L(k)

block follow the
same MSE + KL formulation as in Sec. 4.2, applied to the upsampled teacher features Ṽ t,(k)

m , Ṽ t,(k)
b

and student features V s,(k)
m , V s,(k)

b at resolution rk. Despite using approximate supervision, Table 2
shows that it substantially improves dense-task performance, enabling the student to align feature
distributions while preserving C-GSPN’s global context modeling.

5 EXPERIMENTS

We evaluate C-GSPN along two axes: system efficiency-latency of the core sublayer and the full
Transformer block across resolutions, and model quality at foundation scale (zero-shot transfer and
dense tasks), followed by ablations and high-resolution transfer under limited compute.

5.1 SYSTEM EFFICIENCY (LATENCY/THROUGHPUT)

We benchmark C-GSPN against attention mechanisms and original GSPN across varying resolu-
tions, evaluating both the propagation sublayer and complete ViT blocks.

Experimental Setup. We report latency on A100 GPUs with batch size 32 and 1152 channels,
sweeping input side length from 378 to 2058. We compare four cores—standard attention, FlashAt-
tention, original GSPN, and C-GSPN—and their corresponding blocks (core + MLP, norms, residu-
als). Tiled FlashAttention is included as a high-resolution baseline.

Sublayer Results. Fig. 5 (top) shows dramatic scaling differences. Original GSPN remains
67.2×–86.9× slower than C-GSPN at 1K and 2K. FlashAttention requires 500 ms per layer at
2K, but C-GSPN maintains just 0.462 ms, providing a 1000× speedup over FlashAttention.

Block Results. The complete block comparison (Fig. 5, bottom) includes MLP, normalization, and
residual connections. While FlashAttention blocks require over 600ms at 2K resolution, C-GSPN
blocks complete in under 150ms, yielding a 4× end-to-end speedup at 2K.

Tiling Replacement. To manage computational constraints, attention models often rely on tiling
to fit high-resolution inputs, but this adds complexity, coordination overhead, and boundary artifacts.
In contrast, C-GSPN processes inputs in a single pass without tiling, outperforming tiled FlashAt-
tention: 78.48× faster at the core sublayer and 10% faster at the block level for 2K resolution.
This enables seamless ultra-high-resolution processing while preserving global context, which is
especially valuable for dense prediction and high-resolution analysis tasks.
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Figure 5: Latency comparison across resolutions. Left: Sublayer latency (attention vs. C-GSPN) in log
scales. Right: Full block latency. C-GSPN maintains low, resolution-stable latency while attention methods
scale quadratically. At 2K, C-GSPN outperforms FlashAttention by 1000× at the sublayer and 4× at the block
level, while still surpassing tiled FlashAttention 78.48× at the sublayer and 10% fasterat the block level.

5.2 PERFORMANCE EVALUATION OVER VISION TASKS

We next evaluate C-GSPN’s end-to-end model quality at foundation scale, complementing the
system-level efficiency in Sec. 5.1. We compare against two student baselines trained under the same
data/budget: (i) an isomorphic ViT→ViT student (identical block topology and parameter shapes),
and (ii) an original GSPN student. All students are distilled from a strong contrastive ViT teacher
(OpenCLIP ViT-SO/14 at 378) (Radford et al., 2021; Ilharco et al., 2021), and evaluated on zero-shot
classification (ImageNet Top-1/Top-5) (Russakovsky et al., 2015), dense segmentation (ADE20K-F,
ADE20K, PASCAL) (Zhou et al., 2019; Everingham et al., 2010), and object detection (COCO) (Lin
et al., 2014). For context, we also report large-scale pretrained variant (OpenCLIP), which served
as the teacher model.

Results. As summarized in Table 1, C-GSPN uses 15% fewer parameters yet nearly matches the
ViT→ViT student on the macro average (63.3 vs. 63.5), while outperforming the original GSPN
student across all reported metrics and achieving stronger segmentation scores than the teacher.
Coupled with Sec. 5.1, C-GSPN preserves its large efficiency advantage at high resolution, deliv-
ering up to 3.3× end-to-end network speedup at 2K and enabling single-pass (no-tiling) infer-
ence—particularly beneficial for dense prediction.

5.3 ABLATION STUDIES

Training Strategy. We ablate the supervision scheme from Sec. 4.2 cumulatively: (i) contrastive-
only baseline; (ii) + PB loss (post-block; features after the entire block); (iii) + a lightweight 2-layer
MLP adaptor at the taps to reduce feature-space mismatch; (iv) + PP loss (post-propagation; features
after the propagation sublayer); (v) + Stage-1 sublayer-wise pretraining. Fig. 6a shows monotonic
gains at each step: the largest jump comes from PP supervision (direct signal to the propagation
sublayer); the adaptor provides steady improvements by aligning feature spaces; and sublayer-wise
pretraining yields a strong initialization that persists through end-to-end training.

Module Structure. We compare structural variants (Fig. 6b): C-GSPN with compression ratios
12/18/72, pure 2D propagation, and hybrid variants that replace a small subset of propagation layers
with attention (3 out of 27 in experiments). We discovered two interesting findings: (i) Lower com-
pression (more latent channels) improves representational capacity up to a point; reducing compres-
sion further does not yield additional accuracy gains. Under a fixed budget, C-GSPN-18 provides
the best accuracy–efficiency balance. (ii) Replacing 3 out of 27 layers ( 1/9) with attention yields
consistent gains over pure C-GSPN. The intuition is targeted: attention is used sparingly to inject
long-range pairwise mixing in a few layers, while the remaining layers retain efficient global prop-
agation. This avoids quadratic cost throughout the network yet improves accuracy, and is gaining
popularity in recent works (Waleffe et al., 2024; Dong et al., 2025; Basant et al., 2025). At a com-
pression ratio of 18, the hybrid variant both improves accuracy over its pure counterpart and remains
2.4× faster at 1K and 3.3× faster at 2K compared to pure-attention baselines.

5.4 HIGH-RESOLUTION TRANSFER EXPLORATION

C-GSPN’s single-pass efficiency enables compute-aware transfer to higher resolutions without
tiling. Instead of costly full-scale training (600M samples), we adopt a lightweight resolution cur-
riculum of 3M samples (1M per stage), scaling 378 → 518 → 756 → 1036. At each stage, the
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Figure 6: Ablations on training strategy and module structure. (a) Cumulative strategy: the module-level
distillation provides the largest jump by directly supervising 2D propagation; the adaptor mitigates feature
mismatch; layer-wise pretraining gives a strong start. (b) Structure: moderate compression (ratio 18) strikes
the best accuracy–efficiency balance; a small attention budget (3 of 27 layers) further improves accuracy while
preserving speed.

Method Params. Res. Patches Classification Segmentation Detection Avg.
Top-1 Top-5 ADE20K-F ADE20K Pascal COCO

OpenCLIP SO/14 427M 378 729 84.1 97.4 42.8 45.8 77.5 47.7 64.6

ViT-Distill 427M 378 729 82.2 96.7 43.2 45.5 77.2 45.8 63.5
GSPN 477M 378 729 80.5 95.8 44.3 45.3 77.2 44.3 62.7
C-GSPN (ours) 365M 378 729 81.3 96.3 44.7 46.0 77.6 45.0 63.3

Table 1: Comprehensive evaluation across vision tasks. OpenCLIP SO/14 is the teacher for distilled mod-
els. We report classification, segmentation, and detection metrics alongside parameters (Params.), resolution
(Res.), and number of patches. Average (Avg.) is a macro average over tasks: mean(mean(Top-1, Top-5),
mean(ADE20K-F, ADE20K, Pascal), COCO). AED20K-F uses feature tokens as in EfficientViT (Cai et al.,
2023); ADE20K uses both feature and summary tokens as in TIPS (Maninis et al., 2025).

Resolution 378 518 756 1036 Latency(1K)
ViT-Distill 45.5 – – 44.1 633.6(s)

C-GSPN w/o KD 46.0 45.1 44.5 43.5 242.4(s)
C-GSPN w/ KD 46.0 46.3 46.2 45.8 (2.64× Speed up)

Table 2: High-resolution transfer under limited compute. We report segmentation accuracy (ADE20K)
across increasing input resolutions. KD indicates knowledge distillation. We also report single-GPU inference
latency at 1036 resolution per 1000 samples with batch size 1. C-GSPN yields a 2.64× speedup.

previous checkpoint is frozen as a teacher whose post-propagation and post-block features supervise
the next resolution via MSE+KL (See Sec. 4.3). As shown in Table 2, this staged self-distillation
yields gains on dense tasks segmentation at 518 resolution by +1.2 points over contrastive-only
training. Furthermore, at resolution 1036 the student reaches a 2.64× speedup over ViT-Distill.

6 LIMITATION AND FUTURE WORK

While C-GSPN delivers clear gains in high-resolution scalability by replacing attention with Latent
2D Linear Spatial Propagation, the block’s feed-forward MLP remains unmodified. Profiling at
batch size 32 indicates that, at resolutions ≥ 512, the MLP accounts for over 52% of the total C-
GSPN block latency. Future work will focus on targeted MLP optimization, including compression,
kernel fusion, and low-rank variants to unlock additional end-to-end speedups.

7 CONCLUSION
We introduced C-GSPN, a compact spatial propagation block that replaces attention in ViTs. Prop-
agating in a compressed latent space with fused CUDA normalization and distilled via dual PP/PB
taps, C-GSPN delivers large high-resolution speedups without tiling while maintaining competi-
tive zero-shot accuracy and stronger dense prediction, offering a practical path toward subquadratic
foundation vision encoders.
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Howard Zhou, and André Araujo. TIPS: Text-Image Pretraining with Spatial Awareness. In
ICLR, 2025.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

11

https://openreview.net/forum?id=A1ztozypga
https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. Imagenet large scale visual recognition challenge. Int. J. Comput. Vision, 115(3):211–252,
December 2015. ISSN 0920-5691. doi: 10.1007/s11263-015-0816-y. URL https://doi.
org/10.1007/s11263-015-0816-y.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
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A ADDITIONAL RELATED WORK

A.1 SUBQUADRATIC ATTENTION AND ALTERNATIVES

Subquadratic alternatives to full softmax attention aim to reduce the O(N2) dependence on token
count while preserving global interactions. Sparsity- and window-based designs such as Longformer
and BigBird in NLP and Swin for vision constrain attention to local windows with a few global to-
kens, yielding near-linear scaling but making long-range mixing sensitive to the chosen sparsity pat-
tern and hyperparameters (Beltagy et al., 2020; Zaheer et al., 2020; Liu et al., 2021). Kernelized/low-
rank approaches linearize attention—e.g., Linear Transformers, Performer, Nyströmformer, Lin-
former—trading exactness for approximation; their accuracy often depends on the feature map,
rank, or landmark scheme and may require careful tuning (Katharopoulos et al., 2020; Choromanski
et al., 2020; Xiong et al., 2021; Wang et al., 2020). IO-aware exact attention like FlashAttention
reduces constant factors via optimized memory access, yet latency still scales quadratically with
tokens at high resolution (Dao et al., 2022). Beyond attention, state-space models (S4; Mamba)
offer linear-time sequence operators, but adapting 1D formulations to high-resolution vision typi-
cally requires extra 2D inductive bias or hierarchical designs (Gu et al., 2021; Gu & Dao, 2023).
In contrast, spatial propagation networks operate natively on 2D grids and remove positional em-
beddings; recent GSPN extends this idea to four-direction propagation with linear complexity (Liu
et al., 2017; Wang et al., 2025). Our work scales GSPN to foundation-model pretraining through a
compact, CUDA-optimized instantiation distilled from ViT teachers, achieving substantially lower
latency at 1K–2K while maintaining competitive transfer.

A.2 FOUNDATION MODEL DISTILLATION

Knowledge distillation (KD) has long been employed to compress large models into more efficient
students. Early works explored attention transfer in CNNs (Zagoruyko & Komodakis, 2017), while
DeiT (Touvron et al., 2021) demonstrated that ViT-to-ViT distillation can achieve strong perfor-
mance at scale, highlighting the potential of KD for transformers. Subsequent studies refined these
ideas: ViTKD guidelines (Yang et al., 2022) emphasized the importance of intermediate super-
vision and careful layer alignment for stable training. More recently, KD research has extended
beyond isomorphic student–teacher pairs to span across operator families. For instance, quadratic-
to-subquadratic transfer has been explored to compress attention-heavy architectures into efficient

A1



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Post-Block

Post-Propagation

Student
C-GSPN Layer Low-res

Teacher 
Features

High-res
Student 
Features

MLP

Teacher
C-GSPN Layer

Loss

Loss

Upsampled 
Teacher 
Features

Feature 
Interpolation

C-GSPN 
Block

C-GSPN 
Block

MLP

Figure 7: High-resolution encoder distillation: a frozen low-resolution teacher supervises a higher-resolution
student via upsampled features at two taps (post-propagation and post-block), with feature interpolation bridg-
ing resolutions and applied progressively in a resolution curriculum. See Sec. 4.3 in the main paper for details.

approximations (Bick et al., 2024), and hybrid schemes distilling Mamba into Transformer back-
bones have emerged (Li et al., 2025). These works suggest that KD can serve as a bridge across
heterogeneous operator classes, though most prior efforts remain at modest scales or focus on small
task-specific settings. In contrast, our work investigates foundation-scale distillation across opera-
tor families, targeting the challenging scenario of attention-to-propagation transfer. We demonstrate
that staged supervision (layer-wise and block-level) combined with CUDA-optimized latent prop-
agation enables both competitive accuracy and substantial efficiency gains, scaling effectively to
high-resolution inputs (1K–2K) while preserving transfer performance.

B GPU HARDWARE AND KERNEL EXECUTION FOR 2D LINEAR
PROPAGATION

Modern GPUs, such as NVIDIA’s A100, enable high parallelism through a hierarchical execution
model involving grids, thread blocks, and warps. A kernel—a compiled function for GPU execu-
tion—is launched as a grid of thread blocks, where each block contains up to 1024 threads orga-
nized into 32-thread warps, the basic scheduling unit on streaming multiprocessors (SMs; 108 on
A100). Warps execute in a single-instruction, multiple-thread (SIMT) manner, maximizing through-
put when occupancy—the proportion of active warps per SM—is high, balanced against constraints
like register usage (up to 65,536 per SM) and shared memory (up to 164 KB per SM).

In sequence modeling architectures like 2D linear propagation (Wang et al., 2025; Liu et al., 2017),
input tensors of shape B×C×H×W (batch size B, channels C, height H , width W ) are processed
via a line-scan propagation scheme. This involves sequential row or column updates with parallel
computations within each step. The CUDA implementation maps spatial dimensions (H × W ) to
threads, while B and C define independent slices for concurrent processing. In the kernel, a 1D
block configuration might allocate blockDim.x to a fixed number of threads (e.g., 512), with the
grid size scaled by B × C × H (or B × C × W ) to distribute the workload across SMs. Each
thread handles a pixel along the parallel spatial axis, launching a separate kernel per propagation
step (e.g., per row or column), which results in thousands of micro-launches. This design, however,
faces scalability challenges with large B × C. GPUs have finite concurrency limits, constrained
by the number of SMs and per-SM block capacity (32 blocks). When B × C exceeds these limits,
excess slices are processed sequentially, causing runtime spikes despite the theoretical parallelism.
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Figure 8: Two-stage distillation for scaling C-GSPN. Stage 1: Sublayer-wise pretraining aligns each C-
GSPN propagation sublayer to the teacher’s attention sublayer. Stage 2: End-to-end distillation applies dual
taps—post-propagation (PP) and post-block (PB)—with lightweight feature adaptors to reduce feature-space
mismatch.

C IMPLEMENTATION DETAILS

C.1 PRETRAINING

Before initiating end-to-end distillation, we conduct a lightweight pretraining stage designed to sta-
bilize optimization and provide a strong initialization. Specifically, we train on 5M image–text pairs
sampled from the DataComp benchmark (Gadre et al., 2023), which balances diversity and scale.
We adopt the AdamW optimizer (Loshchilov & Hutter, 2017) with a learning rate of 4 × 10−5,
a global batch size of 1024, and 300 warmup steps. The schedule follows linear decay, gradually
annealing the learning rate to zero. This setup encourages early convergence without overfitting,
and the pretrained weights serve as a robust initialization for subsequent supervised distillation. Our
empirical analysis shows that omitting this step leads to unstable training in the early epochs and
consistently lower downstream performance.

C.2 END-TO-END DISTILLATION TRAINING

For full-scale training, we distill C-GSPN on 600M curated image–text pairs from DataComp. The
student model is optimized to align with its teacher (OpenCLIP SO/14) through staged supervision,
as outlined in Section 4.2. We adopt a sparse distillation strategy, where we only distill every ninth
block of the teacher model. We again use AdamW with a higher learning rate of 4× 10−4, a global
batch size of 8192, and a cosine decay learning-rate schedule with 10 000 warmup steps. This
configuration provides both the stability required for large-batch training and the flexibility to adapt
across the different supervision stages.

C.3 LOSS COMPOSITION AND BALANCING

The total distillation loss combines the two supervision taps per block—post-propagation (PP) and
post-block (PB):

L = αLPP + β LPB, (15)

with

LPP = MSE
(
V s

PP, V
t

PP

)
+ λ1 KL

(
P (V s

PP) ∥P (V t
PP)

)
, (16)

LPB = MSE
(
V s

PB, V
t

PB

)
+ λ2 KL

(
P (V s

PB) ∥P (V t
PB)

)
.

Here, V s/t
PP and V

s/t
PB denote student/teacher features at the PP and PB taps, and P (·) is the token-

wise softmax distribution. We set α = β = 0.5 to balance PP and PB supervision, ensuring that the
propagation sublayer is directly constrained without being overshadowed by block-level matching.
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Dataset 378-teacher 378-multires 448-multires 518-multires

ADE20K 46.0 45.8 45.8 45.9

Table 3: Multi-resolution distillation on ADE20K (mIoU). A single student trained to support mul-
tiple input resolutions matches the single-resolution baseline.

The divergence weights λ1 = λ2 = 7/3 provide a balance between feature-level alignment (MSE)
and distributional matching (KL). To reduce feature-space mismatch, a lightweight 2-layer MLP
adaptor is inserted before each tap (Sec. 4.2).

C.4 STABILITY PRACTICES

Layer-wise pretraining (Stage 1) provides consistent signals to each sublayer before end-to-end
optimization (Stage 2). In ablations, removing either the adaptors or Stage 1 degrades stability
and final accuracy.

D MORE EXPERIMENTAL RESULTS

We evaluate multi-resolution distillation by training a single C-GSPN model that operates across
multiple input resolutions without special positional embeddings. A low-resolution teacher super-
vises a multi-resolution student during distillation. As shown in Table 3, the student maintains com-
parable performance across 378, 448, and 518 resolutions, indicating that our approach transfers
effectively across scales.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (OpenAI GPT) only for wording suggestions. All outputs were
reviewed and edited by the authors; no analyses, results, or code central to our contributions were
generated by LLMs, and no sensitive data were provided.
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