
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COMPACT GSPN: SCALING SPATIAL PROPAGATION
TO VISION FOUNDATION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Scaling vision foundation models is limited by the quadratic cost of self-attention.
Generalized Spatial Propagation Networks (GSPN) provide a linear-time alter-
native that propagates context directly on the 2D grid and removes positional
embeddings, but have not been scaled to foundation-level training. We present
Compact GSPN (C-GSPN), a ViT block with a compressed propagation space
that preserves accuracy while cutting propagation latency by nearly 10×, comple-
mented by lightweight projections and fused CUDA kernels for further efficiency.
To pretrain at scale, we use a two-stage distillation scheme with module-wise su-
pervision and end-to-end alignment. In a representative 1K configuration (batch
32, C=1152), C-GSPN yields up to 2× speedup, while maintaining competitive
zero-shot accuracy and improving segmentation by +2.1%. Extensive experi-
ments and ablations confirm that the proposed compression and two-stage distil-
lation are key to achieving strong transfer while substantially reducing compute,
offering a practical path toward subquadratic vision foundation models.

1 INTRODUCTION

0 650

45

47

44

C-GSPN-378

ViT-Distill-378

365M 427M

Inference Latency(s) Per 1000 samples

Better

Better

2.64x Faster

ViT-Distill-1K

C-GSPN-1K
46

250

Se
gm

en
ta

tio
n

m
Io

U

Performance vs. Latency vs. Model Size

Figure 1: Comparison of C-GSPN (ours) vs.
ViT-Distill on dense prediction at 378 and 1K res-
olutions; lower latency and higher accuracy are
better.

Scaling up vision foundation models is increasingly
constrained by the cost of self-attention (Vaswani
et al., 2017). As input resolution grows, token
counts explode, and attention’s quadratic complexity
quickly becomes the dominant cost for both mem-
ory and latency. This scalability bottleneck limits
the practical use of high-resolution inputs and slows
down training and inference for large models.

A rich line of work has tried to address this by
making attention subquadratic—through token spar-
sity (Child et al., 2019), local windows (Dai et al.,
2019), or kernelized approximations (Choromanski
et al., 2020)—reducing computation while attempt-
ing to preserve global context. These approaches
boost throughput but still struggle to provide a con-
sistently good accuracy–latency trade-off, often re-
quiring careful tuning or additional components.
Generalized Spatial Propagation Networks (GSPN) (Wang et al., 2025) offer an alternative: they
propagate information directly over the 2D grid, capture long-range context with linear complexity,
and eliminate the need for positional embeddings. Despite these advantages, GSPN has not yet been
scaled to the data and model sizes of modern vision foundation models, leaving open the question
of how to pretrain such architectures effectively at foundation scale.

In this work, we study how to scale GSPN to a vision foundation model. We introduce Compact
GSPN (C-GSPN), a block that replaces the attention sublayer with a compressed Generalized Spatial
Propagation Network. Unlike attention, which aggregates affinities across channels, GSPN propa-
gates features independently per channel. Theoretically, propagation time remains flat if the number
of channels stays below the GPU’s concurrency threshold; beyond this, runtime grows roughly lin-
early with the channel dimension due to hardware limits (see Fig. 2). To control this growth, we

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

project the propagation into a compressed latent space that preserves accuracy while cutting the cost
of the propagation step, yielding nearly 10× latency reduction at the layer-level, without accuracy
degradation. Building on this, we further reduce overhead from surrounding operators through two
key refinements: a lightweight redesign of the Q/K/V projection and a fused CUDA kernel that low-
ers the cost of non-linearities such as sigmoid. Together, these improvements form a compact yet
faithful substitute for attention within a ViT block. Compared to the original GSPN, this compact de-
sign yields large practical speedups (e.g., 13.7× at 1K resolution). Against softmax attention—even
with highly optimized FlashAttention (Dao et al., 2022)— C-GSPN reduces block latency by 2× at
1K and 4× at 2K resolution, positioning it as a competitive alternative for foundation-scale encoders.

To retain model quality, we introduce a two-stage cross-operator distillation recipe. In the first
stage, we perform sublayer-wise supervision that aligns intermediate representations of each GSPN
block with its attention-based teacher block. In the second stage, we fine-tune the entire network
end-to-end. On top of this, we adopt a sparse feature distillation strategy that supervises two anchor
points—Post-Propagation and Post-Block—providing both local and block-level guidance. Distill-
ing from a SigLIP-v2 (Tschannen et al., 2025) teacher on 600M image–text pairs, the resulting
C-GSPN encoder achieves 81.3% (vs. 82.2% baseline) and improves segmentation accuracy by
+2.1% on ADE20K. Finally, we leverage C-GSPN’s inherent spatial structure for efficient resolu-
tion transfer, enabling smooth adaptation across resolutions—from 378×378 to 1036×1036—using
just 1/200 of the data required for training from scratch. This property makes its efficiency advan-
tage even more pronounced at higher resolutions.

We evaluate C-GSPN against established vision foundation models across multiple downstream
tasks. In particular, we conduct ablations with a SigLIP-v2 teacher to analyze: (i) the impact
of latent compression on accuracy–latency trade-offs, (ii) the effectiveness of two-tap supervision
(post-propagation vs. post-block), and (iii) high-resolution transfer without positional embeddings.
These studies show that C-GSPN achieves superior computational efficiency while maintaining
competitive performance across diverse vision tasks.

Contributions. (1) We propose C-GSPN, a compressed spatial propagation block that serves as a
drop-in, positional-embedding-free substitute for attention in ViTs, scaling linearly with resolution.
(2) We design a compute-aware implementation combining latent-space propagation and a fused
CUDA normalization kernel that substantially reduces latency at high resolution. (3) We introduce
a progressive, cross-operator distillation recipe with two supervision taps per block and lightweight
feature adaptors, enabling effective transfer from attention to propagation. (4) We demonstrate
practical high-resolution encoder transfer without tiling or positional embeddings via curriculum
learning with upsampling self-distillation, yielding strong dense-task performance.

2 RELATED WORK
Due to space limits, we focus on subquadratic alternatives to full softmax attention; a broader survey
appears in the Appendix.
Subquadratic Attention and Alternatives. Subquadratic alternatives to full softmax attention
aim to reduce the O(N2) dependence on token count while preserving global interactions. Sparsity-
and window-based designs such as Longformer and BigBird in NLP and Swin for vision constrain
attention to local windows with a few global tokens, yielding near-linear scaling but making long-
range mixing sensitive to the chosen sparsity pattern and hyperparameters (Beltagy et al., 2020;
Zaheer et al., 2020; Liu et al., 2021). Kernelized/low-rank approaches linearize attention—e.g.,
Linear Transformers, Performer, Nyströmformer, Linformer—trading exactness for approximation;
their accuracy often depends on the feature map, rank, or landmark scheme and requires careful
tuning (Katharopoulos et al., 2020; Choromanski et al., 2020; Xiong et al., 2021; Wang et al., 2020).
IO-aware exact attention like FlashAttention reduces constant factors via optimized memory ac-
cess, yet latency still scales quadratically with tokens at high resolution (Dao et al., 2022). Beyond
attention, state-space models (S4; Mamba) offer linear-time sequence operators, but adapting 1D
formulations to high-resolution vision typically requires extra 2D inductive bias or hierarchical de-
signs (Gu et al., 2021; Gu & Dao, 2023). In contrast, spatial propagation networks operate natively
on 2D grids and remove positional embeddings; recent GSPN extends this idea to four-direction
propagation with linear complexity (Liu et al., 2017; Wang et al., 2025). Our work scales GSPN to
foundation-model pretraining through a compact, CUDA-optimized instantiation distilled from ViT
teachers, achieving substantially lower latency at 1K–2K while maintaining competitive transfer.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 BACKGROUND

To facilitate a clear understanding of our C-GSPN approach, we start with an overview of the 2D
Spatial Propagation architecture as the foundation of our C-GSPN model. Then, we provide the
GPU Hardware Capabilities and the Kernel Execution of 2D Linear Propagation to understand the
performance of our C-GSPN model.

2D Linear Propagation Algorithm. Spatial propagation (Wang et al., 2025; Liu et al., 2017)
provides a linear alternative to attention by propagating features along four directions of the 2D grid.
For an input x ∈ RH×W×C , the hidden state h with the same dimension is computed sequentially
across one dimension (e.g., row by row), while all positions within each row are updated in parallel.
Taking the top-to-bottom pass as an example, with i ∈ [0,H − 1] and channel c, let hi,:,c, xi,:,c ∈
RW , λi,:,c ∈ RW , and wi,c ∈ RW×W . The recurrence is:

hi,:,c = wi,c hi−1,:,c +Diag(λi,:,c)xi,:,c (1)

with h0,:,c initialized from x0,:,c.

The final output for row i and channel c is given by yi,:,c = ui,:,c ⊙ hi,:,c. All parameters λ, w, and
u are input-dependent.

To satisfy the Stability–Context Condition (Wang et al., 2025), each wi,c is row-stochastic (rows
sum to 1). We parameterize this by normalizing the nonzero connections within the neighbor set
N (j) for position j in row i:

wi,c(j, k) =
σ(w̃i,c(j, k))∑

k′∈N (j) σ(w̃i,c(j, k′))
(2)

Propagation along four directions—top-to-bottom, bottom-to-top, left-to-right, and right-to-
left—produces dense pairwise connectivity with only three coefficients per pixel per pass. In the
tridiagonal case (N (j) = {j−1, j, j+1}), this reduces to three nonzero entries per row, normalized
locally.

A single top-to-bottom pass performs O(H) sequential steps while all W elements of each row are
computed in parallel (symmetrically O(W) for a column pass). Running both row- and column-
wise scans gives an effective sequential depth of O(max(H,W)), i.e., O(

√
N) for a square map

with N=HW pixels. We describe the preliminary of GPU Hardware and Kernel Execution of
GSPN in the Appendix.

4 METHODOLOGY

We align C-GSPN closely with the ViT structure and adopt consistent terminology: (i) Sublayer:
the latent-space 2D propagation unit, analogous to the scaled dot-product attention sublayer, (ii)
Layer: a full C-GSPN layer (Fig. 4), which parallels a multi-head attention layer, and (iii) Block: a
Transformer block where the attention layer is replaced by a C-GSPN layer (Fig. 8). In Sec. 4.1, we
discuss how to improve the sublayer efficiency of a ViT block; then in Sec. 4.1, we show how to
reduce the overhead of a full C-GSPN layer with respect to the non-propagation components.

4.1 EFFICIENCY BOOST WITH LATENT SPACE AND CUDA KERNEL

Original GSPN sublayers propagate features independently on each channel C of x ∈ RB×C×H×W ,
performing four directional line scans as in Eq. 1. Since modern GPUs support only limited resident
blocks per SM with constrained registers, when either the batch size B or channel dimension C
grows, excess slices serialize, causing latency spikes despite theoretical parallelism (see Appendix).
Figure 2 illustrates this effect: latency remains flat at small B/C, but jumps sharply once concurrency
saturates (e.g., 11.57× increase when C grows from 288 to 576, and 7.76× when B grows from 8
to 16).

Latent-space 2D propagation. To avoid hitting the concurrency wall, we move the propagation
into a compressed latent space. Let s > 1 be a compression factor and compressed channel number

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Cc = ⌊C/s⌋. We introduce linear projections P↓ : RC → RCc and P↑ : RCc → RC applied per
spatial location (i.e., 1× 1 convolutions across channels):

xc = P↓(x) ∈ RB×Cc×H×W (3)

We generate propagation parameters directly in the latent channel space:

u = Lu(xc), λ = Lλ(xc), w̃ = Lw(xc) (4)

where u, λ ∈ RB×Cc×H×W and w̃ ∈ RB×Cc×H×W×3. Lu, Lλ, and Lw denote learned linear heads
implemented as 1× 1 convolutions over channels (applied at each spatial position) that predict per-
position parameters.

For a top-to-bottom propagation and any compressed channel c̃ ∈ {1, . . . , Cc}, the per-row recur-
rence mirrors Eq. 1 but operates entirely in the latent channels using Eq. 4 and Eq. 2 (tridiagonal
specialization):

hi,:,c̃ = wi,c̃ hi−1,:,c̃ +Diag(λi,:,c̃)xc, i,:,c̃, yi,:,c̃ = ui,:,c̃ ⊙ hi,:,c̃ (5)

Here w is normalized row-stochastically as in Sec. 3. We run the four directional scans in the latent
space and then up-project only once at the end:

yc = Prop2D(xc;u, λ, w), y = P↑(yc) ∈ RB×C×H×W (6)

This reformulation reduces the effective grid size from B×C to B×Cc (with Cc=⌊C/s⌋), lowering
per-SM pressure and avoiding serialization. Empirically at 1K resolution, latency remains nearly flat
across channels and batch sizes; compared to the raw-space kernel, latent-space propagation attains
54.46× speedup at C=1152 and 55.74× at B=32 (Fig. 2).

Importantly, because w̃ are defined in the latent channels, the row-stochastic normalization of Eq. 2
is evaluated over Cc rather than C, yielding an additional 38.9× speedup for weight normalization.

0

2

4

6

8

10

12

18 36 72 144 288 576 1152

GSPN C-GSPN

0

2

4

6

8

10

12

1 2 4 8 16 32

GSPN C-GSPN

La
te

nc
y

(m
s)

Input Channel Batch Size

2D Propagation Performance
vs Channels

2D Propagation Performance
vs Batch Size

11.57x

1.20x 1.29x1.43x 1.61x

1.98x

x54.46
Speed Up

1.09x 1.17x 1.28x

7.76x

1.98x

x55.74
Speed Up

Resolution = 1024
Batch Size = 32

Resolution = 1024
Channel = 1152

Figure 2: Original GSPN vs C-GSPN Propagation sublayer
latency under increasing channels (left) and batch size (right)
at 1K resolution. Original GSPN exhibits spikes as C/B
grow due to GPU concurrency limits; C-GSPN remains flat,
yielding large speedups.

Non-GSPN Overhead Reduction. Is
the propagation sublayer really the bottle-
neck? For softmax attention at high res-
olution, yes. But for GSPN—already ef-
ficient—the overhead of non-propagation
parts dominates, especially at low to mid
resolutions. At 1K, these non-propagation
parts cost 9.6× more than the core prop-
agation (Fig. 3). To address this, we
remove: (i) the inner-module residual
path around the propagation kernel, (ii)
the linear projections inherited from the
attention-based template, and (iii) the in-
termediate upsample projections that pre-
viously expanded channels before propa-
gation. Cumulatively, these edits yield a ∼5.5× reduction in overhead latency (Fig. 3).

Fused CUDA Normalization. We optimize the row-stochastic normalization step (Sec. 3) by fus-
ing its sequence of operations—sigmoid activation, local reduction, clamping, and division—into
a single custom CUDA kernel. By executing all steps in one pass, this eliminates intermediate
memory traffic and kernel launch overhead, achieving a 2.15× speedup over PyTorch’s baseline.
Combined with latent-space structural reduction (C → Cc; e.g., 1152 → 64), the effective cost of
normalization is reduced by 83.68× at 1K resolution.

Overall, these three improvements yield a 13.7× speedup of the GSPN layer at 1K resolution. Thor-
ough comparisons are reported in Sec. 5.

4.2 SCALING C-GSPN VIA DISTILLATION

Although GSPN Wang et al. (2025) has shown strong performance on mid-scale tasks such as image
classification and generation, its usage in foundation-scale vision models remains underexplored.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0

20

40

60

80

100

2D Propagation
Other Overhead
Weight Normalization

GSPN C-GSPN

Image Resolution
378 518 770 1036

Batch Size = 32 Input Channel= 1152

Block Performance(Exclude MLP) vs Image Resolution
La

te
nc

y
(m

s)

55.0%

35.4%

x13.67
Speed Up

55.0%

35.4%

x13.67
Speed Up

Attention/2D Propagation
Other Overhead
Weight Normalization

GSPN C-GSPN

Batch Size = 32 Input Channel= 1152
FlashAttention

x5.01
Speed Up

Overhead Latency

Original GSPN Overhead

Remove Linear Projections
from Attention

Remove Inner Core Residual

Remove Channel Extension
Linear Propagations

Speed Up
1.19x

Speed Up
1.44x

Speed Up 3.21x

Total Speed Up 5.50x

Overhead Reduction

Figure 3: Left: Block latency vs. image resolution (B=32, C=1152), where the original GSPN is dominated
by weight normalization and other overhead at high resolution; C-GSPN substantially reduces both. Right:
Overhead reduction at 1K resolution from removing (1) Additional linear projections inherited from attention,
(2) inner-module residual, and (3) Channel Extension projections; cumulative speedup about ×5.5.

We scale C-GSPN to this regime by aligning its block design with a SigLIP 2-style ViT Zhai et al.
(2023), a widely used architecture for efficient contrastive pretraining and robust benchmarking.
Training such models from scratch is computationally prohibitive, so we adopt knowledge distilla-
tion: a pre-trained quadratic-attention teacher supervises a GSPN-based student. However, cross-
operator transfer is non-trivial: attention mixes tokens via explicit pairwise interactions, whereas
GSPN attains global context through sequential local propagation that reduces the effective sequence
length to

√
N for N elements. This mismatch makes direct attention layer weight transfer inappro-

priate and induces a feature-distribution gap that must be handled explicitly. In the following, we
address this gap with a progressive, two-stage distillation strategy that first aligns intermediate fea-
tures block by block, and then fine-tunes the full model end-to-end.

Stage 1: Sublayer-wise Pretraining. As shown in Fig. 8, we begin by aligning each C-GSPN
propagation sublayer with its corresponding attention sublayer in the teacher. For each block i, both
teacher and student take the output of the (i−1)-th teacher block as input:

ht,(0) = x, ht,(i) = TeacherBlock(i)
(
ht,(i−1)

)
. (7)

Given this shared input ht,(i−1), we compute the sublayer features:

F s,(i) = f
(i)
C-GSPN-prop

(
ht,(i−1)

)
, F t,(i) = f

(i)
Attention

(
ht,(i−1)

)
, (8)

where F s,(i) and F t,(i) denote outputs immediately after the student’s propagation sublayer and the
teacher’s attention sublayer, respectively. We minimize a simple feature alignment loss:

L(i)
prop = |F s,(i) − F t,(i)|22. (9)

The teacher is frozen, and gradients flow only through the student sublayer. Importantly, each block
is trained independently without backpropagation across blocks, so every C-GSPN sublayer directly
learns to mimic the representational pattern of its paired attention sublayer. This parallel scheme
stabilizes training and provides a strong initialization for subsequent end-to-end distillation.

Stage 2: End-to-end Distillation. After layer-wise pretraining, we optimize end-to-end with two
supervision taps per block. For clarity, we refer to the feature taken after the propagation/attention
sublayer as post-propagation (PP) and the feature taken after the entire block (prop/attn + MLP
+ norms) as post-block (PB). The rationale is to decompose cross-operator transfer: PB super-
vision preserves the teacher’s block transformation, where the MLP is largely isomorphic across
student/teacher, while PP supervision directly pressures the GSPN sublayer to learn the teacher’s
attention-style mixing, rather than letting the MLP “absorb” the mismatch.

Let V s/t
PP and V

s/t
PB denote student/teacher features at PP and PB, and let P (·) be token-wise softmax.

We use MSE loss for feature alignment and Kullback–Leibler divergence (KL) loss for distribution
matching:

LPP = MSE
(
V s

PP, V
t

PP

)
+ λ1 KL

(
P (V s

PP) ∥P (V t
PP)

)
, (10)

LPB = MSE
(
V s

PB, V
t

PB

)
+ λ2 KL

(
P (V s

PB) ∥P (V t
PB)

)
.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Up
𝑦

C-GSPN Layer

… …

Compressed
Latent Space

𝑥

Weight Normalization

b) Compact GSPN Layer

2D Propagation

𝑥

𝑦

𝑢

GSPN Layer

𝑤
… …

Weight Normalization

ALP

𝜆

a) GSPN Layer

Inner Core Residual

Raw Space

Element-wise
Addition

Element-wise
Multiplication

Channel Reduction(Down)
Linear Projections

Down

Down

Linear Projections
from Attention Template𝑥

𝑦!

Channel Extension(Up)
Linear Projections

Up
Linear Projections

Latent 2D Propagation

ALP ALP

ALP

𝜆𝑢 𝑤

Figure 4: Layer comparison of GSPN and C-GSPN. Left: Original GSPN operates in raw channel space
and retains extra projections and residuals inherited from attention. Right: C-GSPN introduces latent-space
propagation and fused normalization, while removing redundant projections and residuals, resulting in a lighter
and faster design.

We insert lightweight adaptors before each tap when needed to reduce feature-space mismatch,
which is discussed in the following. This dual-tap design regularizes cross-operator distillation by
giving the GSPN sublayer a dedicated teacher target (PP) while keeping block-level alignment (PB),
which we validate via ablations in Sec. 5.3. Similar principles—tap supervision for ViTs and staged
cross-architecture alignment—have been validated in recent knowledge distillation work (Touvron
et al., 2021; Yang et al., 2022; Bick et al., 2024).

Feature Adaptor for Distillation. Even with dual supervision, directly matching C-GSPN and ViT
features is difficult because the two architectures compute representations in fundamentally different
ways: spatial propagation aggregates context sequentially, whereas attention mixes all tokens at
once. This mismatch leads to unstable training if features are compared in raw space.

To address this, we introduce lightweight feature adaptors that act as learnable bridges between
student and teacher features. As shown in Fig. 8, adaptors are inserted before the distillation losses
at both taps. At the post-propagation (PP) tap, the adaptor maps the raw GSPN output V s

PP into an
aligned representation V̂ s

PP ; at the post-block (PB) tap, it transforms the student block output V s
PB

into V̂ s
PB . The distillation objectives then become:

LPP = MSE(V̂ s
PP , V

t
PP) + λ1 KL(P (V̂ s

PP)∥P (V t
PP)), (11)

LPB = MSE(V̂ s
PB , V

t
PB) + λ2 KL(P (V̂ s

PB)∥P (V t
PB)),

and the total objective is
Ltotal = αLPP + β LPB. (12)

By transforming the supervision task from direct feature matching to learnable feature alignment,
adaptors ease cross-operator transfer. In practice, they stabilize optimization at PP (where the op-
erator gap is largest) and yield consistent improvements in downstream accuracy (See ablations in
Sec. 5.3).

Furthermore, inspired by the hybrid Mamba-Transformer design in MaTVLM (Li et al., 2025),
which demonstrates that a balanced integration of sequential state-space models with attention
mechanisms yields superior performance over pure architectures, we similarly observe that allo-
cating a small attention budget results in a better accuracy-latency trade-off compared to either pure
attention or pure C-GSPN. With this insight, we adopt a hybrid architecture that preserves a modest
fraction of attention layers while incorporating C-GSPN blocks. Further details on our implemen-
tation and empirical validation are provided in Sec. 5 and Appendix.

4.3 HIGH-RESOLUTION ENCODER DISTILLATION

High-resolution in downstream tasks is often handled with tiling because attention cost grows
quadratically with resolution; however, tiling increases engineering complexity, introduces bound-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

ary artifacts, and sacrifices global context. By contrast, C-GSPN maintains low latency at 1K–2K
resolution and supports single-pass inference without tiling (Sec. 5.1), which enables high-resolution
encoders. Importantly, C-GSPN requires no positional embeddings, so moving to higher resolutions
does not involve modifying the architecture—only adapting training.

We therefore study how to transfer low-resolution checkpoints to higher resolutions under limited
compute. Two challenges emerge. First, naively transferring from a base resolution r0 (e.g., 378) to a
target resolution rK (e.g., 756) yields suboptimal performance. A curriculum learning strategy (Bai
et al., 2023; Chen et al., 2023b;a; Li et al., 2024) that gradually increases resolution (378 → 518 →
756) significantly improves results (80.4% vs. 70.2% with equal sample budgets), showing that
progressive scaling stabilizes adaptation. Second, contrastive objectives alone provide sufficient
supervision for classification but fail to capture the fine-grained spatial detail needed in dense tasks
like segmentation (Sec. 5).

To address these challenges, we propose to combine curriculum learning with upsampling self-
distillation. At each step k > 0, the model at resolution rk−1 serves as a frozen teacher, whereas its
features are bilinearly upsampled to rk and guide the student at both module and block levels using
the dual objectives from Sec. 4.2:

Ṽ t,(k)
m = Up

(
V t,(k−1)
m

)
, Ṽ

t,(k)
b = Up

(
V

t,(k−1)
b

)
, (13)

L(k)
hr = αL(k)

module + β L(k)
block, (14)

where Up(·) denotes bilinear upsampling from resolution rk−1 to rk; L(k)
module and L(k)

block follow the
same MSE + KL formulation as in Sec. 4.2, applied to the upsampled teacher features Ṽ t,(k)

m , Ṽ t,(k)
b

and student features V s,(k)
m , V s,(k)

b at resolution rk. Despite using approximate supervision, Table 2
shows that it substantially improves dense-task performance, enabling the student to align feature
distributions while preserving C-GSPN’s global context modeling.

5 EXPERIMENTS

We evaluate C-GSPN along two axes: system efficiency-latency of the core sublayer and the full
Transformer block across resolutions, and model quality at foundation scale (zero-shot transfer and
dense tasks), followed by ablations and high-resolution transfer under limited compute.

5.1 SYSTEM EFFICIENCY (LATENCY/THROUGHPUT)

We benchmark C-GSPN against attention mechanisms and original GSPN across varying resolu-
tions, evaluating both the propagation sublayer and complete ViT blocks.

Experimental Setup. We report latency on A100 GPUs with batch size 32 and 1152 channels,
sweeping input side length from 378 to 2058. We compare four cores—standard attention, FlashAt-
tention, original GSPN, and C-GSPN—and their corresponding blocks (core + MLP, norms, residu-
als). Tiled FlashAttention is included as a high-resolution baseline.

Sublayer Results. Fig. 5 (top) shows dramatic scaling differences. Original GSPN remains
67.2×–86.9× slower than C-GSPN at 1K and 2K. FlashAttention requires 500 ms per layer at
2K, but C-GSPN maintains just 0.462 ms, providing a 1000× speedup over FlashAttention.

Block Results. The complete block comparison (Fig. 5, bottom) includes MLP, normalization, and
residual connections. While FlashAttention blocks require over 600ms at 2K resolution, C-GSPN
blocks complete in under 150ms, yielding a 4× end-to-end speedup at 2K.

Tiling Replacement. To manage computational constraints, attention models often rely on tiling
to fit high-resolution inputs, but this adds complexity, coordination overhead, and boundary artifacts.
In contrast, C-GSPN processes inputs in a single pass without tiling, outperforming tiled FlashAt-
tention: 78.48× faster at the core sublayer and 10% faster at the block level for 2K resolution.
This enables seamless ultra-high-resolution processing while preserving global context, which is
especially valuable for dense prediction and high-resolution analysis tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

378 518 770 1036 1554 20580

10!

10"

Resolution (pixels) per side

La
te

nc
y

pe
r B

lo
ck

(m
s)

Sublayer Time Comparison
Channels = 1152 BS = 32

FlashAttention

C-GSPN
GSPN

FlashAttention

C-GSPN

GSPN

0

10!
10"

10#

378 518 770 1036 1554 2058

Block Time Comparison
Channels = 1152 BS = 32

Resolution (pixels) per side

La
te

nc
y

pe
r s

ub
la

ye
r(m

s)
Tiling

Tiling

Figure 5: Latency comparison across resolutions. Left: Sublayer latency (attention vs. C-GSPN) in log
scales. Right: Full block latency. C-GSPN maintains low, resolution-stable latency while attention methods
scale quadratically. At 2K, C-GSPN outperforms FlashAttention by 1000× at the sublayer and 4× at the block
level, while still surpassing tiled FlashAttention 78.48× at the sublayer and 10% fasterat the block level.

5.2 PERFORMANCE EVALUATION OVER VISION TASKS

We next evaluate C-GSPN’s end-to-end model quality at foundation scale, complementing the
system-level efficiency in Sec. 5.1. We compare against two student baselines trained under the same
data/budget: (i) an isomorphic ViT→ViT student (identical block topology and parameter shapes),
and (ii) an original GSPN student. All students are distilled from a strong contrastive ViT teacher
(OpenCLIP ViT-SO/14 at 378) (Radford et al., 2021; Ilharco et al., 2021), and evaluated on zero-shot
classification (ImageNet Top-1/Top-5) (Russakovsky et al., 2015), dense segmentation (ADE20K-F,
ADE20K, PASCAL) (Zhou et al., 2019; Everingham et al., 2010), and object detection (COCO) (Lin
et al., 2014). For context, we also report large-scale pretrained variant (OpenCLIP), which served
as the teacher model.

Results. As summarized in Table 1, C-GSPN uses 15% fewer parameters yet nearly matches the
ViT→ViT student on the macro average (63.3 vs. 63.5), while outperforming the original GSPN
student across all reported metrics and achieving stronger segmentation scores than the teacher.
Coupled with Sec. 5.1, C-GSPN preserves its large efficiency advantage at high resolution, deliv-
ering up to 3.3× end-to-end network speedup at 2K and enabling single-pass (no-tiling) infer-
ence—particularly beneficial for dense prediction.

5.3 ABLATION STUDIES

Training Strategy. We ablate the supervision scheme from Sec. 4.2 cumulatively: (i) contrastive-
only baseline; (ii) + PB loss (post-block; features after the entire block); (iii) + a lightweight 2-layer
MLP adaptor at the taps to reduce feature-space mismatch; (iv) + PP loss (post-propagation; features
after the propagation sublayer); (v) + Stage-1 sublayer-wise pretraining. Fig. 6a shows monotonic
gains at each step: the largest jump comes from PP supervision (direct signal to the propagation
sublayer); the adaptor provides steady improvements by aligning feature spaces; and sublayer-wise
pretraining yields a strong initialization that persists through end-to-end training.

Module Structure. We compare structural variants (Fig. 6b): C-GSPN with compression ratios
12/18/72, pure 2D propagation, and hybrid variants that replace a small subset of propagation layers
with attention (3 out of 27 in experiments). We discovered two interesting findings: (i) Lower com-
pression (more latent channels) improves representational capacity up to a point; reducing compres-
sion further does not yield additional accuracy gains. Under a fixed budget, C-GSPN-18 provides
the best accuracy–efficiency balance. (ii) Replacing 3 out of 27 layers (1/9) with attention yields
consistent gains over pure C-GSPN. The intuition is targeted: attention is used sparingly to inject
long-range pairwise mixing in a few layers, while the remaining layers retain efficient global prop-
agation. This avoids quadratic cost throughout the network yet improves accuracy, and is gaining
popularity in recent works (Waleffe et al., 2024; Dong et al., 2025; Basant et al., 2025). At a com-
pression ratio of 18, the hybrid variant both improves accuracy over its pure counterpart and remains
2.4× faster at 1K and 3.3× faster at 2K compared to pure-attention baselines.

5.4 HIGH-RESOLUTION TRANSFER EXPLORATION

C-GSPN’s single-pass efficiency enables compute-aware transfer to higher resolutions without
tiling. Instead of costly full-scale training (600M samples), we adopt a lightweight resolution cur-
riculum of 3M samples (1M per stage), scaling 378 → 518 → 756 → 1036. At each stage, the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0

10

20

30

40

50

60

70

80

10 20 30 40 50 60

Block Loss +
Adaptor + Module
Loss + Layer Loss
Block Loss +
Adaptor + Module
Loss
Block Loss +
Adaptor

Block Loss

Contrastive Loss
55

60

65

70

75

0

10

20

30

40

50

60

70

80

10 20 30 40 50 60

C-GSPN-18-hybrid

C-GSPN-72-hybrid

C-GSPN-12

C-GSPN-18

C-GSPN-72

GSPN

GSPN + Q, K, V Residual +
Layer Residual

55

60

65

70

Training Epoch Training Epoch

Ze
ro

-s
ho

t A
cc

ur
ac

y(
%

)

a) Training Strategy b) Model Structure

Ze
ro

-s
ho

t A
cc

ur
ac

y(
%

)

Figure 6: Ablations on training strategy and module structure. (a) Cumulative strategy: the module-level
distillation provides the largest jump by directly supervising 2D propagation; the adaptor mitigates feature
mismatch; layer-wise pretraining gives a strong start. (b) Structure: moderate compression (ratio 18) strikes
the best accuracy–efficiency balance; a small attention budget (3 of 27 layers) further improves accuracy while
preserving speed.

Method Params. Res. Patches Classification Segmentation Detection Avg.
Top-1 Top-5 ADE20K-F ADE20K Pascal COCO

OpenCLIP SO/14 427M 378 729 84.1 97.4 42.8 45.8 77.5 47.7 64.6

ViT-Distill 427M 378 729 82.2 96.7 43.2 45.5 77.2 45.8 63.5
GSPN 477M 378 729 80.5 95.8 44.3 45.3 77.2 44.3 62.7
C-GSPN (ours) 365M 378 729 81.3 96.3 44.7 46.0 77.6 45.0 63.3

Table 1: Comprehensive evaluation across vision tasks. OpenCLIP SO/14 is the teacher for distilled mod-
els. We report classification, segmentation, and detection metrics alongside parameters (Params.), resolution
(Res.), and number of patches. Average (Avg.) is a macro average over tasks: mean(mean(Top-1, Top-5),
mean(ADE20K-F, ADE20K, Pascal), COCO). AED20K-F uses feature tokens as in EfficientViT (Cai et al.,
2023); ADE20K uses both feature and summary tokens as in TIPS (Maninis et al., 2025).

Resolution 378 518 756 1036 Latency(1K)
ViT-Distill 45.5 – – 44.1 633.6(s)

C-GSPN w/o KD 46.0 45.1 44.5 43.5 242.4(s)
C-GSPN w/ KD 46.0 46.3 46.2 45.8 (2.64× Speed up)

Table 2: High-resolution transfer under limited compute. We report segmentation accuracy (ADE20K)
across increasing input resolutions. KD indicates knowledge distillation. We also report single-GPU inference
latency at 1036 resolution per 1000 samples with batch size 1. C-GSPN yields a 2.64× speedup.

previous checkpoint is frozen as a teacher whose post-propagation and post-block features supervise
the next resolution via MSE+KL (See Sec. 4.3). As shown in Table 2, this staged self-distillation
yields gains on dense tasks segmentation at 518 resolution by +1.2 points over contrastive-only
training. Furthermore, at resolution 1036 the student reaches a 2.64× speedup over ViT-Distill.

6 LIMITATION AND FUTURE WORK

While C-GSPN delivers clear gains in high-resolution scalability by replacing attention with Latent
2D Linear Spatial Propagation, the block’s feed-forward MLP remains unmodified. Profiling at
batch size 32 indicates that, at resolutions ≥ 512, the MLP accounts for over 52% of the total C-
GSPN block latency. Future work will focus on targeted MLP optimization, including compression,
kernel fusion, and low-rank variants to unlock additional end-to-end speedups.

7 CONCLUSION
We introduced C-GSPN, a compact spatial propagation block that replaces attention in ViTs. Prop-
agating in a compressed latent space with fused CUDA normalization and distilled via dual PP/PB
taps, C-GSPN delivers large high-resolution speedups without tiling while maintaining competi-
tive zero-shot accuracy and stronger dense prediction, offering a practical path toward subquadratic
foundation vision encoders.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethics Statement This work adheres to the ICLR Code of Ethics. In this study, no human sub-
jects or animal experimentation was involved. All datasets used, including DataComp, Ade20K,
Pascal, COCO, were sourced in compliance with relevant usage guidelines, ensuring no violation of
privacy. We have taken care to avoid any biases or discriminatory outcomes in our research process.
No personally identifiable information was used, and no experiments were conducted that could
raise privacy or security concerns. We are committed to maintaining transparency and integrity
throughout the research process.

Reproducibility Statement We have made every effort to ensure that the results presented in this
paper are reproducible. The experimental setup, including hyperparameters and hardware details, is
described in detail in the paper. Additionally, all datasets used in the paper are publicly available,
ensuring consistent and reproducible evaluation results. We will release all code upon publication
to enable replication and verification.

REFERENCES

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
ization, text reading, and beyond. arXiv preprint arXiv:2308.12966, 2023.

Aarti Basant, Abhijit Khairnar, Abhijit Paithankar, Abhinav Khattar, Adi Renduchintala, Adithya
Renduchintala, Aditya Malte, Akhiad Bercovich, Akshay Hazare, Alejandra Rico, et al. Nvidia
nemotron nano 2: An accurate and efficient hybrid mamba-transformer reasoning model. arXiv
preprint arXiv:2508.14444, 2025.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv:2004.05150, 2020.

Aviv Bick, Kevin Li, Eric Xing, J Zico Kolter, and Albert Gu. Transformers to ssms: Distilling
quadratic knowledge to subquadratic models. Advances in Neural Information Processing Sys-
tems, 37:31788–31812, 2024.

Han Cai, Junyan Li, Muyan Hu, Chuang Gan, and Song Han. Efficientvit: Lightweight multi-scale
attention for high-resolution dense prediction. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 17302–17313, 2023.

Xi Chen, Josip Djolonga, Piotr Padlewski, Basil Mustafa, Soravit Changpinyo, Jialin Wu, Car-
los Riquelme Ruiz, Sebastian Goodman, Xiao Wang, Yi Tay, et al. Pali-x: On scaling up a
multilingual vision and language model. arXiv preprint arXiv:2305.18565, 2023a.

Xi Chen, Xiao Wang, Lucas Beyer, Alexander Kolesnikov, Jialin Wu, Paul Voigtlaender, Basil
Mustafa, Sebastian Goodman, Ibrahim Alabdulmohsin, Piotr Padlewski, et al. Pali-3 vision lan-
guage models: Smaller, faster, stronger. arXiv preprint arXiv:2310.09199, 2023b.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers, 2019. URL https://arxiv.org/abs/1904.10509.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-XL: Attentive language models beyond a fixed-length context. In Anna Korhonen,
David Traum, and Lluı́s Màrquez (eds.), Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 2978–2988, Florence, Italy, July 2019. Association for
Computational Linguistics. doi: 10.18653/v1/P19-1285. URL https://aclanthology.
org/P19-1285/.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems,
35:16344–16359, 2022.

10

https://arxiv.org/abs/1904.10509
https://aclanthology.org/P19-1285/
https://aclanthology.org/P19-1285/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xin Dong, Yonggan Fu, Shizhe Diao, Wonmin Byeon, ZIJIA CHEN, Ameya Sunil Mahabalesh-
warkar, Shih-Yang Liu, Matthijs Van keirsbilck, Min-Hung Chen, Yoshi Suhara, Yingyan Celine
Lin, Jan Kautz, and Pavlo Molchanov. Hymba: A hybrid-head architecture for small language
models. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=A1ztozypga.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):
303–338, 2010.

Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao
Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, et al. Datacomp: In
search of the next generation of multimodal datasets. Advances in Neural Information Processing
Systems, 36:27092–27112, 2023.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
Farhadi, and Ludwig Schmidt. Openclip, July 2021. URL https://doi.org/10.5281/
zenodo.5143773. If you use this software, please cite it as below.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Yingyue Li, Bencheng Liao, Wenyu Liu, and Xinggang Wang. Matvlm: Hybrid mamba-transformer
for efficient vision-language modeling. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2025.

Zhang Li, Biao Yang, Qiang Liu, Zhiyin Ma, Shuo Zhang, Jingxu Yang, Yabo Sun, Yuliang Liu, and
Xiang Bai. Monkey: Image resolution and text label are important things for large multi-modal
models. In proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 26763–26773, 2024.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Sifei Liu, Shalini De Mello, Jinwei Gu, Guangyu Zhong, Ming-Hsuan Yang, and Jan Kautz. Learn-
ing affinity via spatial propagation networks. Advances in Neural Information Processing Sys-
tems, 30, 2017.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Kevis-Kokitsi Maninis, Kaifeng Chen, Soham Ghosh, Arjun Karpur, Koert Chen, Ye Xia, Bingyi
Cao, Daniel Salz, Guangxing Han, Jan Dlabal, Dan Gnanapragasam, Mojtaba Seyedhosseini,
Howard Zhou, and André Araujo. TIPS: Text-Image Pretraining with Spatial Awareness. In
ICLR, 2025.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

11

https://openreview.net/forum?id=A1ztozypga
https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. Imagenet large scale visual recognition challenge. Int. J. Comput. Vision, 115(3):211–252,
December 2015. ISSN 0920-5691. doi: 10.1007/s11263-015-0816-y. URL https://doi.
org/10.1007/s11263-015-0816-y.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
Proceedings of the 38th International Conference on Machine Learning (ICML), 2021.

Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdul-
mohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, Olivier Hénaff,
Jeremiah Harmsen, Andreas Steiner, and Xiaohua Zhai. Siglip 2: Multilingual vision-language
encoders with improved semantic understanding, localization, and dense features. arXiv preprint
arXiv:2502.14786, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. An empirical study of mamba-
based language models. arXiv preprint arXiv:2406.07887, 2024.

Hongjun Wang, Wonmin Byeon, Jiarui Xu, Jinwei Gu, Ka Chun Cheung, Xiaolong Wang, Kai Han,
Jan Kautz, and Sifei Liu. Parallel sequence modeling via generalized spatial propagation network.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2025.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nyströmformer: A nyström-based algorithm for approximating self-attention. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 14138–14148, 2021.

Zhendong Yang, Zhe Li, Ailing Zeng, Zexian Li, Chun Yuan, and Yu Li. Vitkd: Practical guidelines
for vit feature knowledge distillation. arXiv preprint arXiv:2209.02432, 2022.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the perfor-
mance of convolutional neural networks via attention transfer. In ICLR, 2017.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 11975–11986, 2023.

Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Semantic understanding of scenes through the ade20k dataset. International Journal of Computer
Vision, 127(3):302–321, 2019.

12

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

TABLE OF CONTENTS

A Additional Related Work A1

A.1 Subquadratic Attention and Alternatives . A1

A.2 Foundation Model Distillation . A1

B GPU Hardware and Kernel Execution for 2D Linear Propagation A2

C Implementation Details A3

C.1 Pretraining . A3

C.2 End-to-End Distillation Training . A3

C.3 Loss Composition and Balancing . A3

C.4 Stability Practices . A4

D More Experimental Results A4

E The Use of Large Language Models (LLMs) A4

A ADDITIONAL RELATED WORK

A.1 SUBQUADRATIC ATTENTION AND ALTERNATIVES

Subquadratic alternatives to full softmax attention aim to reduce the O(N2) dependence on token
count while preserving global interactions. Sparsity- and window-based designs such as Longformer
and BigBird in NLP and Swin for vision constrain attention to local windows with a few global to-
kens, yielding near-linear scaling but making long-range mixing sensitive to the chosen sparsity pat-
tern and hyperparameters (Beltagy et al., 2020; Zaheer et al., 2020; Liu et al., 2021). Kernelized/low-
rank approaches linearize attention—e.g., Linear Transformers, Performer, Nyströmformer, Lin-
former—trading exactness for approximation; their accuracy often depends on the feature map,
rank, or landmark scheme and may require careful tuning (Katharopoulos et al., 2020; Choromanski
et al., 2020; Xiong et al., 2021; Wang et al., 2020). IO-aware exact attention like FlashAttention
reduces constant factors via optimized memory access, yet latency still scales quadratically with
tokens at high resolution (Dao et al., 2022). Beyond attention, state-space models (S4; Mamba)
offer linear-time sequence operators, but adapting 1D formulations to high-resolution vision typi-
cally requires extra 2D inductive bias or hierarchical designs (Gu et al., 2021; Gu & Dao, 2023).
In contrast, spatial propagation networks operate natively on 2D grids and remove positional em-
beddings; recent GSPN extends this idea to four-direction propagation with linear complexity (Liu
et al., 2017; Wang et al., 2025). Our work scales GSPN to foundation-model pretraining through a
compact, CUDA-optimized instantiation distilled from ViT teachers, achieving substantially lower
latency at 1K–2K while maintaining competitive transfer.

A.2 FOUNDATION MODEL DISTILLATION

Knowledge distillation (KD) has long been employed to compress large models into more efficient
students. Early works explored attention transfer in CNNs (Zagoruyko & Komodakis, 2017), while
DeiT (Touvron et al., 2021) demonstrated that ViT-to-ViT distillation can achieve strong perfor-
mance at scale, highlighting the potential of KD for transformers. Subsequent studies refined these
ideas: ViTKD guidelines (Yang et al., 2022) emphasized the importance of intermediate super-
vision and careful layer alignment for stable training. More recently, KD research has extended
beyond isomorphic student–teacher pairs to span across operator families. For instance, quadratic-
to-subquadratic transfer has been explored to compress attention-heavy architectures into efficient

A1

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Post-Block

Post-Propagation

Student
C-GSPN Layer Low-res

Teacher
Features

High-res
Student
Features

MLP

Teacher
C-GSPN Layer

Loss

Loss

Upsampled
Teacher
Features

Feature
Interpolation

C-GSPN
Block

C-GSPN
Block

MLP

Figure 7: High-resolution encoder distillation: a frozen low-resolution teacher supervises a higher-resolution
student via upsampled features at two taps (post-propagation and post-block), with feature interpolation bridg-
ing resolutions and applied progressively in a resolution curriculum. See Sec. 4.3 in the main paper for details.

approximations (Bick et al., 2024), and hybrid schemes distilling Mamba into Transformer back-
bones have emerged (Li et al., 2025). These works suggest that KD can serve as a bridge across
heterogeneous operator classes, though most prior efforts remain at modest scales or focus on small
task-specific settings. In contrast, our work investigates foundation-scale distillation across opera-
tor families, targeting the challenging scenario of attention-to-propagation transfer. We demonstrate
that staged supervision (layer-wise and block-level) combined with CUDA-optimized latent prop-
agation enables both competitive accuracy and substantial efficiency gains, scaling effectively to
high-resolution inputs (1K–2K) while preserving transfer performance.

B GPU HARDWARE AND KERNEL EXECUTION FOR 2D LINEAR
PROPAGATION

Modern GPUs, such as NVIDIA’s A100, enable high parallelism through a hierarchical execution
model involving grids, thread blocks, and warps. A kernel—a compiled function for GPU execu-
tion—is launched as a grid of thread blocks, where each block contains up to 1024 threads orga-
nized into 32-thread warps, the basic scheduling unit on streaming multiprocessors (SMs; 108 on
A100). Warps execute in a single-instruction, multiple-thread (SIMT) manner, maximizing through-
put when occupancy—the proportion of active warps per SM—is high, balanced against constraints
like register usage (up to 65,536 per SM) and shared memory (up to 164 KB per SM).

In sequence modeling architectures like 2D linear propagation (Wang et al., 2025; Liu et al., 2017),
input tensors of shape B×C×H×W (batch size B, channels C, height H , width W) are processed
via a line-scan propagation scheme. This involves sequential row or column updates with parallel
computations within each step. The CUDA implementation maps spatial dimensions (H × W) to
threads, while B and C define independent slices for concurrent processing. In the kernel, a 1D
block configuration might allocate blockDim.x to a fixed number of threads (e.g., 512), with the
grid size scaled by B × C × H (or B × C × W) to distribute the workload across SMs. Each
thread handles a pixel along the parallel spatial axis, launching a separate kernel per propagation
step (e.g., per row or column), which results in thousands of micro-launches. This design, however,
faces scalability challenges with large B × C. GPUs have finite concurrency limits, constrained
by the number of SMs and per-SM block capacity (32 blocks). When B × C exceeds these limits,
excess slices are processed sequentially, causing runtime spikes despite the theoretical parallelism.

A2

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Linear Layer

Layer Norm

MLP

Layer Norm

Post-Propagation
Supervision

&()

',,+

Loss

Loss
Adapter

Adapter

Teacher
Features

Student
Features

C-GSPN
Block

Attention

Linear Layer

MLP

Layer Norm

ViT
Block

Linear Layer

Layer Norm

C-GSPN
Block

Layer-wise
Pretraining

End to End
Distillation

(+()

Loss

Teacher
Features

Student
Features

Gradient
Stop

Student

Teacher Student

Layer Norm

2D Propagation

',,)',,+ &()

',,)̂

',,)̂

',-)

',-+

',-+

',-)̂

',-)̂&() &()

2D Propagation

Post-Block Supervision

Figure 8: Two-stage distillation for scaling C-GSPN. Stage 1: Sublayer-wise pretraining aligns each C-
GSPN propagation sublayer to the teacher’s attention sublayer. Stage 2: End-to-end distillation applies dual
taps—post-propagation (PP) and post-block (PB)—with lightweight feature adaptors to reduce feature-space
mismatch.

C IMPLEMENTATION DETAILS

C.1 PRETRAINING

Before initiating end-to-end distillation, we conduct a lightweight pretraining stage designed to sta-
bilize optimization and provide a strong initialization. Specifically, we train on 5M image–text pairs
sampled from the DataComp benchmark (Gadre et al., 2023), which balances diversity and scale.
We adopt the AdamW optimizer (Loshchilov & Hutter, 2017) with a learning rate of 4 × 10−5,
a global batch size of 1024, and 300 warmup steps. The schedule follows linear decay, gradually
annealing the learning rate to zero. This setup encourages early convergence without overfitting,
and the pretrained weights serve as a robust initialization for subsequent supervised distillation. Our
empirical analysis shows that omitting this step leads to unstable training in the early epochs and
consistently lower downstream performance.

C.2 END-TO-END DISTILLATION TRAINING

For full-scale training, we distill C-GSPN on 600M curated image–text pairs from DataComp. The
student model is optimized to align with its teacher (OpenCLIP SO/14) through staged supervision,
as outlined in Section 4.2. We adopt a sparse distillation strategy, where we only distill every ninth
block of the teacher model. We again use AdamW with a higher learning rate of 4× 10−4, a global
batch size of 8192, and a cosine decay learning-rate schedule with 10 000 warmup steps. This
configuration provides both the stability required for large-batch training and the flexibility to adapt
across the different supervision stages.

C.3 LOSS COMPOSITION AND BALANCING

The total distillation loss combines the two supervision taps per block—post-propagation (PP) and
post-block (PB):

L = αLPP + β LPB, (15)

with

LPP = MSE
(
V s

PP, V
t

PP

)
+ λ1 KL

(
P (V s

PP) ∥P (V t
PP)

)
, (16)

LPB = MSE
(
V s

PB, V
t

PB

)
+ λ2 KL

(
P (V s

PB) ∥P (V t
PB)

)
.

Here, V s/t
PP and V

s/t
PB denote student/teacher features at the PP and PB taps, and P (·) is the token-

wise softmax distribution. We set α = β = 0.5 to balance PP and PB supervision, ensuring that the
propagation sublayer is directly constrained without being overshadowed by block-level matching.

A3

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Dataset 378-teacher 378-multires 448-multires 518-multires

ADE20K 46.0 45.8 45.8 45.9

Table 3: Multi-resolution distillation on ADE20K (mIoU). A single student trained to support mul-
tiple input resolutions matches the single-resolution baseline.

The divergence weights λ1 = λ2 = 7/3 provide a balance between feature-level alignment (MSE)
and distributional matching (KL). To reduce feature-space mismatch, a lightweight 2-layer MLP
adaptor is inserted before each tap (Sec. 4.2).

C.4 STABILITY PRACTICES

Layer-wise pretraining (Stage 1) provides consistent signals to each sublayer before end-to-end
optimization (Stage 2). In ablations, removing either the adaptors or Stage 1 degrades stability
and final accuracy.

D MORE EXPERIMENTAL RESULTS

We evaluate multi-resolution distillation by training a single C-GSPN model that operates across
multiple input resolutions without special positional embeddings. A low-resolution teacher super-
vises a multi-resolution student during distillation. As shown in Table 3, the student maintains com-
parable performance across 378, 448, and 518 resolutions, indicating that our approach transfers
effectively across scales.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (OpenAI GPT) only for wording suggestions. All outputs were
reviewed and edited by the authors; no analyses, results, or code central to our contributions were
generated by LLMs, and no sensitive data were provided.

A4

	Introduction
	Related Work
	Background
	Methodology
	Efficiency Boost with Latent Space and CUDA Kernel
	Scaling C-GSPN via Distillation
	High-Resolution Encoder Distillation

	Experiments
	System Efficiency (Latency/Throughput)
	Performance Evaluation over Vision Tasks
	Ablation Studies
	High-Resolution Transfer Exploration

	Limitation and Future Work
	Conclusion
	Additional Related Work
	Subquadratic Attention and Alternatives
	Foundation Model Distillation

	GPU Hardware and Kernel Execution for 2D Linear Propagation
	Implementation Details
	Pretraining
	End-to-End Distillation Training
	Loss Composition and Balancing
	Stability Practices

	More Experimental Results
	The Use of Large Language Models (LLMs)

