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ABSTRACT

Large Language Models (LLMs) based agents have demonstrated remarkable po-
tential in autonomous task-solving across complex, open-ended environments. A
promising approach for improving the reasoning capabilities of LLM agents is
to better utilize prior experiences in guiding current decisions. However, LLMs
acquire experience either through implicit memory via training, which suffers
from catastrophic forgetting and limited interpretability, or explicit memory via
prompting, which lacks adaptability. In this paper, we introduce a novel agent-
centric, trainable, multi-layered graph memory framework and evaluate how
context memory enhances the ability of LLMs to utilize parametric information.
The graph abstracts raw agent trajectories into structured decision paths in a state
machine and further distills them into high-level, human-interpretable strategic
meta-cognition. In order to make memory adaptable, we propose a reinforcement-
based weight optimization procedure that estimates the empirical utility of each
meta-cognition based on reward feedback from downstream tasks. These opti-
mized strategies are then dynamically integrated into the LLM agent’s training
loop through meta-cognitive prompting. Empirically, the learnable graph mem-
ory delivers robust generalization, improves LLM agents’ strategic reasoning per-
formance, and provides consistent benefits during Reinforcement Learning (RL)
training.

1 INTRODUCTION

LLM-based agents are rapidly advancing the frontier of automated task execution, particularly in
open-ended environments that demand long-horizon reasoning, strategic tool use, and adaptation
from experience (Yao et al., 2022; Gao et al., 2023; Chai et al., 2025). While these agents demon-
strate strong capabilities in decomposing and tackling complex tasks, their decision-making pro-
cesses remain unstable, often resulting in inefficient action sequences, repeated mistakes, or even
complete task failure (Singh et al., 2023). A central challenge lies in empowering agents not only
to act, but to continuously learn and adapt by extracting insights from past successes and failures.

Methods for enabling LLMs to better leverage prior experience can be broadly categorized into
two paradigms. The first type is implicit memory, typically formed through training procedures
such as RL, meaning that LLMs encode syntactic structures and semantic relations into parameter
space (Li et al., 2025b; Bai et al., 2022). A more flexible alternative is explicit memory leveraged
via contextual prompting, which improves performance by injecting context directly into the input
without modifying model weights. (Xu et al., 2025; Chhikara et al., 2025; Zhao et al., 2024).

However, both paradigms suffer from fundamental yet contrasting limitations. While explicit mem-
ory facilitates transparency by making reasoning steps externally visible through prompts, it often
lacks adaptability and struggles to generalize beyond specific tasks or contexts. Conversely, implicit
memory enables generalization via training, yet its black-box nature renders the contribution of spe-
cific past experiences untraceable. Furthermore, encoding knowledge directly into parameters often
incurs information loss and is vulnerable to catastrophic forgetting. This dilemma motivates our
central research question: Can dynamic and structured explicit memory be used to provide a stable,
learnable prior that meaningfully improves implicit policy learning in LLM agents?

This paper introduces a novel agent-centric, trainable, multi-layered graph memory framework
and investigates its utility within RL paradigms. First, we map raw agent trajectories into canonical

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026
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Figure 1: Our method and existing approach Expel (Zhao et al., 2024).

paths on a Finite State Machine(FSM), which allows us to extract high-level, reusable meta-cognitive
strategies. Second, we build a trainable graph memory whose edge weights can be optimized via
reinforcement learning, enabling the system to learn which strategies are truly useful for down-
stream tasks. Finally, the dynamic graph serves as an explicit policy prior, selectively injecting
high-quality strategies into the agent’s context during training. Empirical results across seven di-
verse question-answering benchmarks demonstrate that our framework delivers strong gains in both
cross-task generalization and final task performance.

Our main contributions are threefold:

• We propose a novel agent-centric graph memory framework that abstracts low-level
agent trajectories into canonical FSM paths, enabling the distillation of high-level, gener-
alizable meta-cognitive strategies.

• We design a reinforcement-driven weight optimization mechanism that dynamically
calibrates the utility of graph weights, ensuring the graph prioritizes strategies with high
empirical utility.

• We demonstrate that integrating this graph memory as an explicit policy prior significantly
enhances RL efficiency and final task performance.

Ultimately, this work presents a unified framework for adaptive agents that continuously learn and
reason from their own evolving experiences.

2 RELATED WORK

2.1 LLM AGENTS AND PLANNING WITH EXTERNAL TOOLS

LLM agents increasingly incorporate external tools to overcome reasoning limitations and expand
their problem-solving capabilities. Early prompt-based approaches, including ReAct (Yao et al.,
2022) and WebGPT (Nakano et al., 2021), demonstrate how agents can interleave reasoning and act-
ing, embedding tool calls directly in the generation trace. Building on these foundations, Search-o1
introduces agentic RAG that dynamically retrieves knowledge during reasoning. Building on these
foundations, Search-o1 (Li et al., 2025a) advances tool-augmented reasoning by enabling agents
to autonomously decide when to invoke search tools during multi-step problem solving. Recent
research has proposed more sophisticated coordination mechanisms using RL-based training (Sun
et al., 2025; Zheng et al., 2025; Song et al., 2025). Search-R1 (Jin et al., 2025) represents a break-
through RL framework that trains LLMs for alternating reasoning and search, enabling autonomous
query generation and real-time information retrieval during step-by-step reasoning. Other recent ap-
proaches include optimized reward designs (Wang et al., 2025; Qian et al., 2025) and strategic tool
integration (Feng et al., 2025), with frameworks like RL-Factory (Chai et al., 2025) accelerating
research in this domain.Despite these advances, the lack of explicit long-term memory for reusable
tool-use patterns leaves deciding when and which tools to invoke as a key bottleneck. To address
this limitation, we propose a differentiable graph-based memory system that encodes past decision
paths into reusable strategic priors, enabling agents to systematically learn and generalize planning
strategies across domains.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 MEMORY ARCHITECTURES AND STRATEGIC LEARNING

Recent research has increasingly explored how to extract strategic knowledge and meta-cognition
from agent experience. Reflexion (Zhang et al., 2023) equips agents with self-verbalized feedback
to refine future behavior, while Expel (Zhao et al., 2024) identifies reusable reasoning trajectories
to guide subsequent decisions. MEM1 (Zhou et al., 2025) and MemAgent (Yu et al., 2025) adapt
memory usage over long-horizon tasks. A-MEM (Xu et al., 2025) builds dynamic memory notes
that evolve with new inputs, Zep (Rasmussen et al., 2025)and HopRAG (Liu et al., 2025) construct
logic-aware graphs to facilitate retrieval.

However, these methods typically apply graph structure in a static manner and lack mechanisms to
assess or refine the utility of memory components. G-Memory (Zhang et al., 2025) demonstrates
how hierarchical graph-based memory can evolve by assimilating new collaborative trajectories,
enabling systems to leverage cross-trial knowledge and learn from prior experiences progressively.
Pan & Zhao (2025)focus on whether different forms of memory can enhance reasoning. Xiong et al.
(2025) investigate long-term memory evolution.While prior memory methods often rely on static
storage or task-specific designs, they lack mechanisms for evaluating and refining strategies. In
contrast, we propose a trainable graph-based memory that supports utility-aware strategy selection
and reinforcement learning–driven updates, enabling generalizable and adaptive decision-making.

3 PRELIMINARIES

3.1 HETEROGENEOUS GRAPH STRUCTURE

Graphs provide a natural formalism for modeling structured dependencies among diverse entities.
A heterogeneous graph (Zhang et al., 2019)can be defined as

G = (V,E,OV ,RE , C),

where V denotes the set of nodes, E ⊆ V ×V denotes the set of directed edges,OV denotes the set
of node types, RE denotes the set of relation types, and C is the collection of node contents. Each
edge e = (u, v, r) ∈ E specifies a relation of type r from node u to node v.

Connectivity in G is represented by node-type adjacency matrices

Axy ∈ {0, 1}|Vx|×|Vy|, (x, y) ∈ OV ×OV ,

where Vx and Vy denote the sets of nodes of type x and y, respectively. An entry (Axy)ij = 1
indicates that node i of type x is connected to node j of type y. This formulation emphasizes the
structural dependencies across different node types.

To enable learning, each Axy is coupled with a weight matrix W xy , so that propagation is governed
by the weighted operator Axy⊙W xy . Thus, structure defines feasible paths, while weights determine
effective information flow. Formally,

Hy = σ
(
(Axy ⊙W xy)⊤Hx

)
,

where Hx are source values and σ(·) denotes an activation function.

3.2 LLM AGENTS WITH TOOL-AUGMENTED REASONING

The interaction between a LLM and external tools can be formalized as a structured multi-turn
decision process (Chai et al., 2025). At each time step t, the agent observes

st = (q, h1:t−1), at ∼ πθ(at | st).

where q is the user query and h1:t−1 the dialogue or reasoning history, then generates an action
a which may correspond to internal reasoning, a tool invocation, or answer generation, using a
protocol with tags such as <think>, <tool call>, and <answer>.

The process continues until either the tag <answer> is generated or the agent has issued up to a
maximum of K tool invocations. A trajectory τ = (s1, a1, o1, . . . , sT , aT , oT ) yields reward R(τ)
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<think>\nOkay, I need to figure out 
which film category both .....</think>
<tool_call>\n{\"name\": \"search\", 
\"arguments\": {\"query\": \"Call Me 
Kuchu\"}}\n</tool_call>
<answer>documentary film</answer>

Qd

Stage 2: Memory Graph Weight Training

With meta-cognition
You are guided by a set of general metacognitive strategies. General Metacognitive Strategies: ……
Do both MODE and Women's Health focus on the issues faced by women?
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<answer>Yes</answer>  Correct answer

Without meta-cognition

Do both MODE and Women's Health focus on the issues faced by women?

query
<answer>No</answer>  Wrong answer

Reward(Δ𝑅!) = R_with	–	R_w/o

 ℒℛℒ = −𝐸"!∼$[Δ𝑅! ⋅ log 𝑝 𝑚! 𝑞new
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similarity
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Stage 3:Memory-Guided Reinforcement Learning

RL data processing

Raw data

Query1：
Meta 1: xxx
Meta 2: xxx
Meta 3: xxxTop-k

New_prompt

Update Policy

(Multi turn RL) 0
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Figure 2: The framework of the trainable memory graph. Stage 1 builds a graph from LLM trajectories,
encoding queries, decision paths, and meta-cognition. Stage 2 estimates strategy utility via counterfactual
rewards and updates graph weights. Stage 3 injects top-k strategies into RL training for policy optimization.

, where ot denotes the observation, i.e., the environment’s response (e.g., tool outputs) if at is a tool
call, and the policy is optimized via

J(θ) = Eτ∼πθ
[R(τ)], ∇θJ(θ) ≈ Eτ

[ T∑
t=1

∇θ log πθ(at | st) Ât

]
.

4 METHOD

In this section, we detail our proposed method in three stages. First, we describe how to construct
a memory graph that encodes decision trajectories and strategic principles. Second, we present
the learning framework for optimizing the weights within this memory graph. Finally, we explain
how this structured memory is integrated into the RL training process to guide agent behavior and
improve learning efficiency.The overall process of our method is shown in the Figure 2.

4.1 STAGE 1: HIERARCHICAL MEMORY GRAPH CONSTRUCTION

Memory Graph Structure. We instantiate a heterogeneous graph G = (V,E) with a three-tier
reasoning hierarchy consisting of three node types: queries, transition paths, and meta-cognitions
(see Figure 2 Stage 1):
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• The Query Layer Q: Each query node qi stores the input, sampled trajectories, and out-
come labels. Because a single query may yield multiple rollouts, qi connects to several
transition paths via edges (qi→ tj).

• The Transition Path Layer T : Each path node tj represents a canonical cognitive trajec-
tory produced by mapping raw reasoning traces into FSM paths. This abstraction removes
surface-level linguistic noise and exposes the underlying decision structure shared across
tasks.

• The Meta-Cognition LayerM: Each meta-cognition node mk captures a reusable strate-
gic principle distilled from one or more transition paths. These principles reflect why rea-
soning patterns succeed or fail (e.g., conflict resolution) and serve as domain-agnostic be-
havioral heuristics.

The complete construction process is illustrated in Figure 3. Formally, the graph connectivity is
encoded by the bipartite adjacency matrices augmented with learnable weights wqt and wtm respec-
tively. This yields a directed acyclic graph enabling information to flow from concrete experiences
toward increasingly abstract strategic knowledge.

Aq→t ∈ {0, 1}|Q|×|T |, At→m ∈ {0, 1}|T |×|M|,

Finite State Machine. Given that raw reasoning trajectories are often laden with stylistic noise and
redundancy, we define an FSM S = (S,A, T ) to map each trajectory onto a standardized sequence
of cognitive states, such as StrategyPlanning or InternalConflict. This abstraction
effectively distills noisy natural-language reasoning into canonical decision paths tj . Crucially,
this transformation filters out execution-level details to expose the underlying decision structure,
enabling robust comparison across tasks. Refer to Appendix C for the full FSM specification.

Meta-Cognition Induction and Update. For each query, we sample trajectories {τ (i)1 , . . . , τ
(i)
N }.

If both successful and failed trajectories exist, their FSM paths are contrasted to extract a high-
confidence causal meta-cognition explaining the divergence. When only failures occur, we retrieve
semantically similar queries (using cos(eqi , eqj )) and borrow successful patterns from their transi-
tion paths:

Mspec(qi) =
⋃

qj∈TopK(qi)

{mk : tj ∈ SuccessPaths(qj), mk ∈M(tj)}.

As new trajectories accumulate, the graph evolves. If the candidate insight aligns with an exist-
ing meta-cognition, the system refines that principle by integrating new evidence and sharpening its
conditions of applicability. If the candidate reflects a previously unseen failure mode or reasoning
strategy, the system creates a new meta-cognition node. Through this mechanism, the memory graph
expands only when necessary while compressing redundant patterns into stronger, more generaliz-
able principles. Concrete cases and prompt templates are shown in Appendix G.3.

The hierarchical structure thus abstracts low-level trajectories into reusable strategies. At inference,
G functions as a structured policy prior guiding decision-making, while during training it provides
supervision signals for reward-driven consolidation of meta-cognitive knowledge.

4.2 STAGE 2: TRAINABLE GRAPH WEIGHT OPTIMIZATION

The memory graph provides structural priors, but not all meta-cognition contribute equally. To
adaptively capture their utility, we introduce a reinforcement-driven weight optimization procedure.

Parameterizing the Graph for Utility Learning. We parameterize G as a sparsely connected
weighted network, where each edge is associated with a trainable coefficient reflecting its utility.
Given query features H(0)

Q , information propagates through the graph via weighted aggregation:

H
(1)
T = σ

(
(Aqt ⊙Wqt)

⊤H
(0)
Q

)
, H

(2)
M = σ

(
(Atm ⊙Wtm)⊤H

(1)
T

)
,

which corresponds to the flow from the query layer, through the transition layer, and finally to the
meta-cognition layer in Figure 2.
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Query: Are the bands The Blakes and Big Supreme, from the same country?

<think>
Okay, I need to figure out if The Blakes and Big Supreme are 
from the same country. Let me start by recalling what I know 
about these bands. \n\nFirst, The Blakes. I think they might be a 
British band. Let me check. The Blakes were indeed a British 
rock band from the 60s. Big Supreme, I think, is also British. 
But to be certain, I should use the search tool to verify their 
origins. Let me call the search function for each band to get 
accurate information.
</think>
<tool_call> search-query_rag("The Blakes origin country") 
</tool_call>
<tool_call> search-query_rag("Big Supreme origin 
country") </tool_call>
<tool_response>…</tool_response>
<think>
From the search results:
First, I looked up The Blakes. The search results mention that 
The Blakes are a band named after a dream by bassist Snow 
Keim involving William Blake, an 18th-century English poet. 
The band originated in Seattle, Washington, USA. 
Alternatively, perhaps the user is referring to the brand as a 
band, but that's unclear. However, the search results for 
\"Big Supreme origin country\" point to the brand Supreme 
being American. But if \"Big Supreme\" is a band, maybe 
they are associated with the brand.
</think>
<answer>Yes</answer>

Start -> CorrectGoalEstablished -> KnowledgeUncertainGap -> 
StrategyPlanning ->ParallelStrategy -> ToolExecution -> 
InformationAnalysi s -> KnowledgeAligned -> DecisionMaking -> 
SufficientInformation -> AnswerGeneration -> Success -> End

Start -> CorrectGoalEstablished -> KnowledgeUncertainGap -> 
StrategyPlanning -> ParallelStrategy -> ToolExecution -> 
InformationAnalysis -> InternalConflict -> DecisionMaking -> 
ContradictoryInformation -> AnswerGeneration -> 
WrongAnswer -> DiagnosisHub -> InadequatePlanning -> End

When processing multiple unknown entities in parallel, one must detect and resolve internal knowledge conflicts arising 
during the information analysis phase, as they are a direct consequence of inadequate planning and lead to an incorrect 
final answer.

Trajectory (Fail) Trajectory (Success)

Meta-cognition

<think>
Okay, I need to figure out if The Blakes and Big Supreme are 
from the same country.First, The Blakes. I think they might be a 
British band, but I'm not entirely sure. I should verify that.
Then there's Big Supreme. I'm less familiar with them and not 
sure about their origin either.Since I'm not certain, I should use the 
search tool.
</think>
<tool_call>
{"name": "search-query_rag", "arguments": {"query": "The 
Blakes band country", "topk": 3}}
</tool_call>
<tool_call>
{"name": "search-query_rag", "arguments": {"query": "Big 
Supreme band country", "topk": 3}}
</tool_call>
<tool_response>…</tool_response>
<think>
First, I searched for The Blakes. The results mention Norman 
Blake, an American musician from Tennessee and Alabama. 
The search for "Big Supreme" clearly shows they are from the 
United Kingdom.
However, given the available information, the answer would be 
that Big Supreme is from the UK, and The Blakes (if referring to 
Norman Blake) are from the US. 
Therefore, based on available info, they are not from the same 
country.
</think>
<answer>No</answer>

Finite State Machine PATH Finite State Machine PATH

Figure 3: An example of graph construction.

In our formulation, a new query is represented by its similarity to historical queries in the graph,
and the top-k most relevant neighbors are selected to activate a task-specific subgraph G(qnew) =
(Q′, T ′,M′).Within this subgraph, a candidate meta-cognition mk ∈ M′ is sampled according to
a relevance score ρ(mk), derived from the learned graph weights.

To estimate its empirical utility, we contrast two trajectories: one guided by mk, which yields reward
Rwith(mk), and another without such guidance, yielding reward Rw/o. The resulting reward gap
∆Rk = Rwith(mk) − Rw/o is employed as a utility signal, quantifying the marginal contribution of
mk to overall task performance.

Policy Gradient-Based Weight Optimization. The relevance score ρ(mk | qnew) is computed by
aggregating path strengths from historical queries and transitions leading to mk:

ρ(mk | qnew) =
∑

qi,tj : qi→tj→mk

Sim(qnew, qi) · w(i,j)
qt · w(j,k)

tm .

Using a softmax over these scores, the selection probabilityp(mk | qnew) ∝ exp(ρ(mk | qnew)).
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We apply the REINFORCE algorithm to optimize the weights:

LRL = −Emk∼p [∆Rk · log p(mk | qnew)] .

A positive ∆Rk increases the relevance score and strengthens the supporting paths, while a negative
∆Rk decreases them, enabling the memory graph to refine itself over time.

4.3 STAGE 3: MEMORY-GUIDED POLICY OPTIMIZATION

Departing from prior works that leverage memory solely during inference, our framework explicitly
integrates the structured memory into the training loop. Meta-cognitive strategies are dynamically
retrieved from the optimized memory graph and incorporated into the agent’s context, serving as
high-level strategic priors that guide the RL process.

Strategic Context Retrieval. For each training instance qtrain, we compute a relevance score for
every meta-cognition node m ∈ M. This score is derived from the aggregated weights of all paths
connecting the corresponding query node to the meta-cognition node within the memory graph G
(as formulated in Section 4.2). We then select the top-k meta-cognitions {m1, . . . ,mk} with the
highest scores. This mechanism ensures that the guidance is not only relevant but also grounded in
empirically successful past trajectories, as encoded by the learned edge weights.

The retrieved strategies are verbalized and prepended to the original query to form an augmented
prompt, q̃train =

[
m1,m2, . . . ,mk ; qtrain

]
, this augmented prompt serves as the input to the policy

network.

Optimization Objective. The agent’s policy, πθ, is optimized to maximize the expected cumula-
tive reward conditioned on the augmented context. We employ a policy gradient method, where the
parameters θ are updated by minimizing the following loss function:

LRL+Mem = −Ea∼πθ(·|q̃train)

[
R(a)

]
.

This tight integration ensures that the policy does not learn in isolation but is continually guided by
a dynamically evolving corpus of strategic knowledge. This allows the agent to effectively bootstrap
its learning process from a distilled representation of past successes.

In practice, we adopt the Generalized Reinforcement Policy Optimization (GRPO) algorithm to
optimize the memory-augmented policy. The GRPO loss can be written as:

LGRPO = −Et

[
min

(
πθ(at | q̃train)

πθold(at | q̃train)
Ât, clip

(
πθ(at | q̃train)

πθold(at | q̃train)
, 1− ϵ, 1 + ϵ

)
Ât

)]
,

where Ât is the advantage estimator and ϵ the clipping parameter.

5 EXPERIMENT

5.1 DATASETS

To evaluate the effectiveness and generalizability of our approach, we conduct experiments on
seven widely-used question answering datasets, covering both single-turn and multi-hop reason-
ing tasks. (1) General QA Datasets: We include Natural Questions (Kwiatkowski et al., 2019),
TriviaQA (Joshi et al., 2017), and PopQA (Mallen et al., 2022), which consist of open-domain fac-
toid questions requiring retrieval and basic reasoning capabilities. (2) Multi-hop QA Datasets: For
more complex reasoning scenarios, we adopt HotpotQA (Yang et al., 2018), 2WikiMultiHopQA (Ho
et al., 2020), Musique (Trivedi et al., 2022), and Bamboogle (Press et al., 2022), which require inte-
grating information across multiple documents.

5.2 BASELINE EVALUATION

To comprehensively evaluate the effectiveness of our proposed method, we design experiments from
two complementary perspectives: (1) Direct Inference Impact: We assess how the integration of

7
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Table 1: Performance comparison across seven QA datasets in inference. †indicates in-domain datasets, while
⋆denotes out-of-domain datasets. Percentages in Avg. column denote relative improvement over TIR.

Methods Avg. (↑ / ↓ vs. TIR)
General QA Multi-Hop QA

NQ⋆ TriviaQA⋆ PopQA⋆ HotpotQA† 2wiki⋆ Musique⋆ Bamboogle⋆

Qwen3-8B
TIR 0.334 (–) 0.275 0.593 0.358 0.325 0.324 0.094 0.365
Direct Inference 0.269 (↓19.5%) 0.200 0.519 0.191 0.230 0.275 0.058 0.410
CoT 0.252 (↓24.6%) 0.209 0.512 0.182 0.223 0.271 0.055 0.308
Raw Trajectory 0.352 (↑5.4%) 0.317 0.604 0.380 0.329 0.363 0.105 0.364
A-MEM 0.334 (0.0%) 0.286 0.590 0.366 0.339 0.332 0.112 0.313
EXPEL 0.329 (↓1.5%) 0.306 0.594 0.379 0.317 0.327 0.092 0.287
Ours 0.365(↑9.3%) 0.316 0.622 0.382 0.358 0.354 0.128 0.392
Qwen3-4B
TIR 0306 (–) 0.298 0.581 0.351 0.268 0.281 0.077 0.290
Direct Inference 0.211 (↓31.0%) 0.158 0.413 0.157 0.183 0.240 0.033 0.290
CoT 0.181 (↓40.8%) 0.149 0.375 0.146 0.156 0.190 0.022 0.228
Raw Trajectory 0.325 (↑6.2%) 0.310 0.558 0.379 0.282 0.344 0.076 0.327
A-MEM 0.319 (↑4.2%) 0.310 0.586 0.381 0.272 0.269 0.091 0.325
EXPEL 0.321 (↑4.9%) 0.312 0.570 0.388 0.294 0.347 0.075 0.263
Ours 0.351 (↑14.6%) 0.335 0.596 0.393 0.299 0.347 0.099 0.391

Table 2: Performance comparison across seven QA datasets in training. Avg. column also reports relative
improvement (%) compared to Search-R1 as the base. † indicates in-domain datasets, while ⋆ denotes out-of-
domain datasets.

Methods Avg. (↑ / ↓ vs. Search-R1)
General QA Multi-Hop QA

NQ⋆ TriviaQA⋆ PopQA⋆ HotpotQA† 2wiki⋆ Musique⋆ Bamboogle⋆

Qwen3-8B
Search-R1 0.395 (–) 0.384 0.651 0.429 0.391 0.386 0.143 0.380
Raw Trajectory 0.400 (↑1.27%) 0.406 0.657 0.433 0.376 0.367 0.139 0.423
A-MEM 0.403(↑2.03%) 0.398 0.656 0.436 0.389 0.409 0.138 0.398
EXPEL 0.371 (↓6.08%) 0.362 0.621 0.407 0.354 0.375 0.121 0.357
Ours 0.408 (↑3.29%) 0.386 0.662 0.434 0.387 0.403 0.152 0.435
Qwen3-4B
Search-R1 0.375 (–) 0.357 0.625 0.426 0.354 0.402 0.115 0.348
Raw Trajectory 0.415 (↑10.67%) 0.403 0.624 0.434 0.420 0.428 0.186 0.412
A-MEM 0.388 (↑3.47%) 0.393 0.603 0.439 0.385 0.322 0.157 0.418
EXPEL 0.337 (↓10.13%) 0.322 0.577 0.399 0.311 0.363 0.081 0.305
Ours 0.426 (↑13.60%) 0.408 0.646 0.462 0.410 0.407 0.189 0.463

our memory workflow influences model performance in zero-training settings, i.e., during direct
inference. (2) Training Impact: We investigate how the memory architecture affects RL training
dynamics, focusing on convergence speed and the final performance achieved.

We compare our framework against a spectrum of methods ranging from standard prompting to
advanced memory-augmented agents. We classify these baselines into three categories based on
their utilization of experience:

• Memory-Free Approaches: Direct Inference relies solely on the internal parametric knowledge
of the LLM. Chain-of-Thought(CoT) (Wei et al., 2022) enables large language models to solve
complex problems by breaking them down into a series of intermediate reasoning steps before
providing the final answer. Tool-Integrated Reasoning(TIR) (Chai et al., 2025)and Search-
R1 (Jin et al., 2025): agents augmented with search tools. While Search-R1 further learns an
RL-based tool-use policy, both lack any mechanism to reuse experience across tasks.

• Raw Experience Replay: Raw Trajectory stores raw execution traces and retrieves the nearest
trajectory as a few-shot demonstration. It uses unprocessed, unstructured experiences, offering no
abstraction or learnable retrieval strategy.

• Static Abstract Memory: We compare against two representative structured memory systems:
A-MEM (Xu et al., 2025)constructs a Zettelkasten-style memory graph by generating structured
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notes for new experience, linking them to past memories through LLM-based semantic similarity
checks. Expel (Zhao et al., 2024) distills experiences into a flat set of high-level textual insights.
Crucially, while these methods abstract experience, rely on LLM-generated abstractions whose
quality cannot be verified, making the stored memories potentially incomplete or misleading.

5.3 EXPERIMENT SETTING

From the HotpotQA training set, we sample 1,000 examples to construct the memory and an ad-
ditional 5,000 examples for weight training. For each training query, we retrieve the top-k (k=5)
similar historical queries, and the activation probability of a meta-cognition node is computed by
propagating similarity scores through the graph.We sample N=2 distinct meta-cognitive strategies
and conduct an independent counterfactual evaluation for each sampled strategies separately.

We conduct experiments with two model scales, Qwen-3-4B and Qwen-3-8B. For the retrieval
component, we adopt the 2018 Wikipedia dump (Karpukhin et al., 2020) as the knowledge source
and employ the E5 (Wang et al., 2024) retriever. We report Exact Match (EM) as the primary
evaluation metric.

5.4 MAIN RESULTS

Experimental Analysis: Memory-Guided Inference. The detailed inference results are summa-
rized in Table 1. On the 8B-scale model, our method demonstrates strong competitiveness, achiev-
ing an average score of 0.365, which represents a notable +9.3% relative improvement over the
TIR baseline and ranks first among all contenders. The advantages of our method become even
more dramatic on the smaller Qwen3-4B model. It achieves a staggering +14.6% relative improve-
ment in average performance over the TIR baseline, this significant performance improvement on a
model with limited capacity suggests that our method effectively addresses its inherent deficiencies
by providing a robust and structured reasoning framework.

A particularly noteworthy finding is that the memory component of our method was constructed
exclusively using data from HotpotQA, the single in-domain dataset. Despite this, our method
not only excels on HotpotQA but also achieves state-of-the-art or highly competitive performance
across all out-of-domain datasets, including NQ, TriviaQA, PopQA, and 2wiki. This outcome is a
strong testament to the remarkable generalization capability of our approach. It demonstrates that
the reasoning structures learned from HotpotQA are not merely overfitted patterns.

Experimental Analysis: Memory-Guided Reinforcement Learning. We further evaluated our
method by integrating it into RL training process. The detailed training results are in Table 2.

On the Qwen3-8B model, our method achieves the best average performance (0.408), improving
upon Search-R1 baseline by 3.29%. This shows that our method provides additional benefits
even after the model is already optimized with RL. The gains are most notable on challenging out-
of-domain datasets like TriviaQA and Bamboogle, suggesting our memory helps the RL agent
learn more general reasoning strategies that transfer well to new tasks.

（a） （b）

Figure 4: (a) Training curve of 4B models.
(b) Training curve of 8B models.

On the smaller Qwen3-4B model, the results
are even more impressive. Our method achieves
a remarkable 13.60% relative improvement
over Search-R1. As seen in our inference
experiments, the benefit of our method is espe-
cially pronounced on smaller models. Remark-
ably, our trained Qwen3-4B model (0.426)
outperforms the baseline Qwen3-8B model
(0.395), demonstrating a significant gain in ef-
ficiency.

In summary, adding our method to inference or
RL training framework significantly boosts QA performance, especially for smaller models. Our
structured memory helps the model learn general reasoning skills from the in-domain HotpotQA
data and apply them successfully to other datasets. This allows smaller models to match or even
exceed the performance of larger ones, offering a path to more efficient and capable models.

9
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5.5 ABLATION STUDIES

We conduct ablation studies across three dimensions: (1) disabling memory weight updates (2)
varying the number of meta-cognitions used as context and (3) altering the granularity of memory
composition (i.e., API call structure).

0.29

0.359
0.391

ITR no-weight weight

Bamboogle

0.077
0.09

0.099

ITR no-weight weight

Musique

(a) (b)

0.279

0.351 0.357

base gpt-4o gemini-2.5

(c)

Top_k

(d)

LLM backends

0.279

0.344 0.351 0.355

0 1 3 5

Figure 5: Ablation studies of the structured memory framework. (a) and (b) show the effect of disabling
weight optimization. (c) varying the number of meta-cognition k. (d) generalization across LLM backends.

Effect of Disabling Weight Optimization. We first examine the impact of freezing the memory
graph weights (i.e., no learning of edge confidence). In this setup, we keep all memory edges at uni-
form weight and retrieve strategies purely based on structural presence. As shown in figure 5(a)(b),
performance drops significantly, particularly on 2WikiMultiHopQA, indicating that learning to
prioritize high-utility memory connections is crucial for effective strategy reuse. This validates our
reinforcement-based update mechanism, which helps distinguish broadly useful meta-cognitions
from less effective or overly specific ones.

Varying the Number of Meta-Cognitions. We further evaluate how the number of retrieved meta-
cognitive strategies (k) affects model performance. Figure 5(c) presents the average accuracy of
the 4B model on seven benchmarks as a function of the number of meta-cognitions. Increasing k
from 0 (no memory) to 3 leads to steady improvement, as more strategic signals are injected into
the prompt. However, further increasing k yields diminishing returns and can even introduce noise
due to overlapping or irrelevant strategies. This highlights a trade-off between strategy diversity and
clarity, and suggests that a moderate value of k = 3 offers the best balance between guidance and
prompt efficiency. The detailed results are shown in Table 4.

Generalization across LLMs backends. To evaluate whether our memory construction is tied to
a specific LLM API, we replace the original OpenAI gpt-4o model with Gemini-2.5-pro
and rerun the downstream evaluation using the same memory graph. As shown in Table 5, our
memory-augmented approach consistently outperforms its non-memory counterpart even under a
different LLM backend, though the absolute numbers differ slightly due to model capability gaps.
This demonstrates that our structured memory graph and retrieval-guided prompting strategy are
largely model-agnostic, enabling plug-and-play use across modern foundation models.

6 CONCLUSION

In this paper, we address the dual challenges of inefficient decision-making and poor experience
reuse in LLM-based agents. We introduce a trainable, multi-level graph memory framework that
structurally encodes historical queries, policy trajectories, and high-level metacognitive strategies.
This design facilitates explicit strategy recall and integrates memory into the RL loop to guide and
accelerate policy optimization.

Unlike prior works that rely on either implicit optimization or static prompting, our approach unifies
explicit memory with dynamic learning. By updating memory weights via RL signals, the frame-
work selectively reinforces high-utility strategies and re-injects them into the agent’s training process
through prompt augmentation. This mechanism promotes strategic transfer and generalization from
past experiences. Our experiments demonstrate that this method not only improves reasoning ac-
curacy at inference time but also accelerates convergence during RL training, ultimately yielding
superior final performance and strong generalization across diverse tasks.
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A USE OF LLMS

In this study, LLMs are employed solely for text refinement and grammatical correction. Their role is
restricted to enhancing the clarity, coherence, and linguistic accuracy of the written content, thereby
ensuring compliance with academic standards, without affecting the research design, methodology,
or decision-making.

B EXPERIMENTAL SETUP DETAILS

B.1 MULTI-TURN TOOL-INTERGRATED QA

When tackling QA benchmarks, we observe that incorporating external knowledge retrieval plays
a crucial role in enhancing answer accuracy. To this end, we utilize the 2018 Wikipedia dump as
our external knowledge base and adopt the E5 retriever for efficient document retrieval. Within our
framework, the entire retrieval process is encapsulated as a modular MCP tool, which the LLM can
invoke autonomously based on its reasoning needs.
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Specifically, the Qwen3 model follows a structured interaction protocol in which reasoning and
planning are carried out between <think> and </think> tags,tool invocation commands are
embedded within <tool call> and </tool call>, and the corresponding outputs are captured
between <tool response> and </tool response>. The model engages in multiple rounds
of tool interaction until it either generates a final answer enclosed in <answer></answer> or
reaches the maximum limit of tool invocations, which is set to six in our experiments.

A concrete case study B.1 is presented in the following table to illustrate how this structured retrieval
mechanism enables the model to access external knowledge and perform informed reasoning. And
the table G.3presents a representative prompt designed to encourage agent to invoke tool.

Case 1: Example Response with Tool-Integrated Reasoning

response: <think> Okay, let’s tackle this question. The user is asking which U.S. state
was historically dominated by the Republican party from 1860 to 1932 and is represented by
State Senator George D. Maziarz.
First, I need to figure out the state in question. The key points here are the time period
(1860-1932) and the Republican dominance. I remember that during the 19th century, the
Republican Party was a major political force, especially after the Civil War. States like Ohio,
New York, and Pennsylvania were known for their Republican strongholds. However, I’m
not entirely sure which one fits the specific time frame mentioned.
Next, the mention of State Senator George D. Maziarz. I need to check if this senator is from
a state that fits the historical Republican dominance. But I don’t recall specific information
about George D. Maziarz. Maybe I should look up his state of origin. However, since I can’t
access external resources right now, I need to rely on my existing knowledge.
... </think>
<tool_call>
{"name": "search-query_rag",
"arguments": {"query": "George D. Maziarz state", "topk": 3}}
</tool_call>}

<tool response> Execute the tool search-query rag successed - The args are: ’query’:
’George D. Maziarz state’, ’topk’: 3 - The result is:...... </tool response>
<answer> New York </answer>

B.2 EXPERIMENTAL SETTINGS

Table 3: Comparison of Agent Memory Architectures

Method Memory Structure Retrieval Mechanism Trainable? Key Limitation

Direct Inference/ COT/ TIR None N/A No No experience reuse across tasks
Raw Trajectory Raw Flat Trajectories Embedding Similarity No No abstraction; noisy
A-MEM Semantic Graph Similarity + Traversal No Heuristic; task-agnostic structure
Expel Flat Insights Semantic Similarity No No structure; static memories

Ours FSM-based Hierarchical Graph RL-learned Utility Weights Yes –

B.2.1 DETAILED BASELINE SPECIFICATIONS

To provide a clearer understanding of the baselines used in our experiments, we offer extended
descriptions of each method, including their core mechanisms, how they utilize memory or retrieval,
and their inherent limitations. The table 3 presents some of the main differences among several
types of memory using baselines.

Direct Inference represents the most basic setting, where the model generates answers purely based
on its parametric knowledge from pretraining. It does not use any historical experience, external
tools, or structured memory, and thus serves as an anchor point for evaluating the benefit of addi-
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tional components. While simple and efficient, it lacks the ability to recall past mistakes or exploit
cross-query information, making it limited for tasks requiring planning or adaptive strategies.

Chain-of-Thought (CoT) (Wei et al., 2022) enhances the basic model by encouraging it to articulate
intermediate reasoning steps before producing an answer. This improves performance on tasks
requiring logical decomposition. However, CoT still does not incorporate any past experience, and
the reasoning steps themselves may be unstable or hallucinated, as they are freshly generated per
query and not grounded in historical trajectories or external validation.

Tool-Integrated Reasoning (TIR) (Chai et al., 2025)equips the agent with external tool-use ca-
pabilities, allowing factual queries to be resolved by integrating retrieved evidence. Although this
greatly improves factual correctness, the method still lacks any persistent memory, each query is
resolved independently, and the agent does not reflect on past successes or failures. Moreover, the
tool-use strategy is rule-based and not learned from reward.

Search-R1 (Jin et al., 2025)adopts RL to optimize tool-use decisions, allowing the agent to learn
better search strategies than TIR. Nevertheless, the agent lacks structured experience retention and
cannot build reusable abstractions, making it limited for cumulative learning scenarios.

Raw Trajectory stores raw past execution traces and retrieves the most similar trajectories as
demonstrations for new queries. This method leverages episodic experience more directly than the
previous baselines, but its memory remains unstructured: the system stores full trajectories without
abstraction, relevance assessment, or quality control.

A-MEM (Xu et al., 2025)constructs a Zettelkasten-style memory graph by generating structured
notes for each new experience and linking them to past memories through LLM-based semantic
similarity checks.

ExpeL (Zhao et al., 2024)abstracts experiences into concise textual insights distilled from past tra-
jectories. This improves interpretability and reduces redundancy relative to raw trajectories. How-
ever, its memory is static: once distilled, these insights do not adapt to new tasks or feedback.
The system cannot evaluate which memories are more useful, nor update their importance across
training, leaving it unable to perform long-term strategic refinement.

B.2.2 OTHER EXPERIMENT SETTINGS

We exclusively use the HotpotQA dataset, both for model optimization and for constructing mem-
ory during the memory formation process. Evaluation is then carried out on the test or validation
sets of seven diverse datasets, enabling assessment of performance both within the training domain
and in out-of-domain settings. We report Exact Match (EM) as the primary evaluation metric. And
for memory construction in A-Mem (Xu et al., 2025), Expel (Zhao et al., 2024), and our proposed
method, where a high-capability large language model is required, we utilized GPT-4o.

We conduct experiments on seven datasets, where HotpotQA is selected as the in-domain test set,
while the remaining six datasets are used for out-of-domain evaluation.

During the RL training phase, we use the rest of the HotpotQA training set as the training corpus.
We adopt a batch size of 512 with a micro batch size of 64, and the rollout sampling is performed
with a temperature of 1.0. To accelerate the rollout process of the LLM, we deploy vLLM v1 with a
tensor parallel size of 1.

Specifically for the GRPO algorithm, the number of rollout samples (n) is set to 8. All experiments
are conducted on a cluster of 8 NVIDIA A100 GPUs.

C MEMORY GRAPH CONSTRUCTION

The detailed descriptions of each type of node in the memory graph are as follows:

• Query Layer Q: Each node qi ∈ Q represents a specific task instance, such as a user-
issued query. It encapsulates the entirety of an interaction, including the initial input, the
agent’s generated output, the complete execution trajectory, and a resultant outcome label
(e.g., success or failure).
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• Transition Path Layer T : Each node tj ∈ T corresponds to a standardized decision-
making pathway. These pathways are grounded in a predefined FSM S, representing a
canonical sequence of the agent’s states and actions. This layer abstracts away instance-
specific details to reveal underlying behavioral patterns.

• Meta-Cognition Layer M: Each node mk ∈ M encodes a high-level, human-readable
strategic principle. These principles are distilled from a comparative analysis of success-
ful and failed transition paths, representing generalized heuristics for effective problem-
solving.

The pseudo-code for the overall process of the graph, which is composed of the specific paths of
LLM models, is as shown in the algorithm 1.And in order to better explain the concept and workflow
of the memory graph, we illustrate how our framework processes a specific HotpotQA query:”Are
the bands The Blakes and Big Supreme from the same country?” in Figure 3.

C.1 MAPPING TRAJECTORIES INTO THE FINITE STATE MACHINE

The FSM serves as a structured cognitive map that regularizes highly variable CoT traces. Instead of
relying on raw natural-language reasoning—which is verbose, stylistically inconsistent, and difficult
to compare across tasks—the FSM abstracts an entire reasoning episode into a series of interpretable
cognitive states. These states cover the complete lifecycle of decision-making, including intent
parsing, uncertainty assessment, planning, tool execution, evidence analysis, and failure diagnosis.
This abstraction removes surface-level linguistic noise and allows the system to analyze trajectories
purely in terms of decision logic, the overall architecture of which is depicted in Figure 6.

A key requirement for accurate modeling of agent behavior is capturing how the agent re-
acts to external information. For this reason, the FSM contains an InformationAnalysis
state that branches into three distinct cognitive responses: KnowledgeAligned (external ev-
idence matches internal belief), KnowledgeGap (evidence provides new information), and
InternalConflict (evidence contradicts prior parametric knowledge). Many reasoning fail-
ures—such as hallucination or incorrect synthesis—occur exactly at such conflict points. Including
these branches allows the memory system to identify and aggregate structurally similar reasoning
failures across tasks.

We use a powerful LLM to map the unstructured text into a sequence of predefined cognitive states
(prompt in Table G.3). A concrete HotpotQA FSM example is shown in Table C.

Case 2: An example of Finite State Machine

Illustrative Decision Path. The following sequence illustrates a canonical decision path
encoded within our framework:

Start→ CorrectGoalEstablished→ KnowledgeUncertainGap
→ StrategyPlanning→ SequentialDependentPlanning
→ ToolExecution→ InformationAnalysis
→ KnowledgeAligned→ DecisionMaking
→ InsufficientInformation→ AssumptionBasedReasoning
→ AnswerGeneration→WrongAnswer
→ DiagnosisHub→ InternalKnowledgeConflict→ End

This path represents a chain of cognitive states traversed by the agent. It begins with goal
establishment, proceeds through planning and execution, encounters a knowledge gap lead-
ing to flawed reasoning, and concludes with self-diagnosis. By encoding such trajectories as
nodes in the transition path layer, the graph provides a structured and abstract representation
of a complex reasoning process, which can be analyzed, compared, and learned from.
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Overall, the FSM enables the system to preserve the essential decision dynamics of the agent, in-
cluding how it processes uncertainty and conflicting evidence, while eliminating noisy linguistic
variability, providing a reliable basis for downstream learning and strategy induction.

Algorithm 1 Hierarchical Memory Graph Construction and Update

1: Input: Memory Graph G, new query qi, policy π, FSM S, sample count N , similarity threshold
K.

2: Ensure: Updated Memory Graph G′.
3: procedure UPDATEMEMORYGRAPH(G, qi, π,S, N,K)
4: Ts ← ∅, Tf ← ∅ ▷ Initialize sets for successful and failed paths
5: G ← AddNode(G, qi) ▷ Add current query to the graph
6: for n = 1 to N do ▷ Sample N trajectories from the policy
7: τn ← SampleRollout(π, qi)
8: tn ← GroundTrajectoryToPath(τn,S) ▷ Map trajectory to a canonical FSM path
9: G ← AddNode(G, tn)

10: G ← AddEdge(G, qi, tn)
11: if IsSuccess(τn) then
12: Ts ← Ts ∪ {tn}
13: else
14: Tf ← Tf ∪ {tn}
15: end if
16: end for
17: Mnew ← InduceMetaCognition(qi, Ts, Tf ,G,K) ▷ Derive new strategic principles
18: for each new meta-cognition m in Mnew do
19: mexist ← FindMatchingMetaCognition(m,G)
20: if mexist is null then
21: mfinal ← CreateNewMetaCognitionNode(m)
22: G ← AddNode(G,mfinal)
23: else
24: UpdateConfidence(mexist)
25: mfinal ← mexist

26: end if
27: for each path t that generated m do ▷ Link paths to the principles they support
28: G ← AddEdge(G, t,mfinal)
29: end for
30: end for
31: return G
32: end procedure

33: procedure INDUCEMETACOGNITION(qi, Ts, Tf ,G,K)
34: if Ts ̸= ∅ and Tf ̸= ∅ then ▷ Case 1: High-confidence induction
35: ts ← SelectOne(Ts), tf ← SelectOne(Tf )
36: m← ContrastPaths(ts, tf ) ▷ e.g., find first diverging decision
37: return {m}
38: else if Ts = ∅ and Tf ̸= ∅ then ▷ Case 2: Speculative induction
39: Mspec ← ∅
40: Qsim ← FindSimilarQueries(qi,G,K) ▷ Based on embedding similarity
41: for each similar query qj in Qsim do
42: for each successful path tj of qj do
43: Mspec ←Mspec ∪ GetMetaCognitionsFromPath(tj ,G)
44: end for
45: end for
46: return Mspec

47: else
48: return ∅ ▷ No new insights if only successes or no rollouts
49: end if
50: end procedure
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C.2 META-COGNITION INDUCTION AND EVOLUTIONARY UPDATE

We define a Meta-Cognition Node (mk ∈ M) not as a summary of a specific trajectory, but as
a generalizable heuristic distilled from FSM transition paths. While a transition path describes
what the agent did, a meta-cognition captures why a behavior led to success or failure and provides
explicit guidance for future decisions. For example: “When external evidence contradicts parametric
memory, prioritize the external source unless the task demands internal knowledge.” Thus, meta-
cognitions convert raw trajectory patterns into reusable, high-level behavioral principles.

The meta-cognition layer is built and refined by a high-capacity Teacher LLM (e.g., GPT-4o), prompt
is given in Appendix G.3. Given a new trajectory pair, the LLM performs an iterative Knowledge
Consolidation process: it first abstracts and contrasts the FSM paths to extract a candidate insight;
then checks whether this insight matches an existing principle; and finally either refines that princi-
ple by integrating new evidence or creates a new node when a previously unseen reasoning pattern
is detected. This keeps the memory compact while ensuring that it evolves with accumulated expe-
rience.

Three Meta-Cognition Induction Scenarios To cover diverse evidence conditions, meta-
cognitions are induced under three complementary scenarios.

• Scenario I: Intra-Query Causal Analysis (High Confidence). When both a successful
and failed trajectory exist for the same query, their FSM paths are aligned to locate the
exact decision point of divergence. This yields the most reliable, strongly causal principles
because all contextual factors are identical.

• Scenario II: Inter-Query Analogical Analysis. If a query contains only failures, we
retrieve semantically similar queries with successful trajectories and compare their FSM
patterns. Although less direct, this produces analogical heuristics that transfer successful
behavioral patterns from related tasks.

• Scenario III: Positive Behavior Distillation. When only successful trajectories exist, the
system extracts “good practice” heuristics such as effective planning or careful evidence
verification, forming stable priors that guide reasoning in typical cases.

Together, these three scenarios allow the memory graph to capture causal rules, transferable strate-
gies, and general positive behaviors, providing broad coverage of the agent’s reasoning patterns.

D THE IMPACT OF META-COGNITION

D.1 QUALITATIVE ANALYSIS: THE CORRECTIVE ROLE OF META-COGNITION

To illustrate how meta-cognitive strategies regulate agent behavior, we present a case study in Fig-
ure 7 involving complex multi-hop reasoning.

In the baseline scenario (top), the agent relies on erroneous parametric memory, confidently hallu-
cinating “Al Gore” as the 44th Vice President and explicitly refusing to use external tools (“I don’t
think I need to use the search tool”). This typifies intuition-driven failure.

In contrast, the meta-cognition-augmented agent (bottom) retrieves a strategy emphasizing “struc-
tured planning and early synthesis verification.” Guided by this prior, the agent exhibits a distinct
behavioral shift: it detects internal conflicts during reasoning (“Wait, maybe I’m mixing up the num-
bers”), suspends judgment to structure its thoughts, and strategically invokes the retrieval tool to
verify the lineage. This case demonstrates that the induced meta-cognition effectively suppresses
overconfident hallucinations and enforces a rigorous, evidence-based reasoning process.

D.2 META-COGNITION ACTIVATION ANALYSIS ACROSS QUERY TYPES

To understand how the proposed memory graph enables task-adaptive reasoning, we analyze the
activation probabilities of all 31 meta-cognition nodes under two representative multi-hop query
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"<think>\nOkay, let's tackle this question. The user is asking about Eugene Collins Pulliam's maternal granddaughter, who became the 
44th Vice President of the US from 1989 to 1993. \n\nFirst, I know that the 44th Vice President was Al Gore. But wait, the question 
specifies the maternal grandfather. So I need to confirm if Al Gore's mother is related to Eugene Pulliam.\n\nEugene Pulliam founded 
Central Newspapers Inc., and his daughter was Dorothy Pulliam. Dorothy married Albert Gore Sr., who was the father of Al Gore. So 
Al Gore's maternal grandfather would be Eugene Pulliam. \n\nWait, let me make sure. If Dorothy is the daughter of Eugene Pulliam, 
and she married Albert Gore Sr., then Al Gore's mother is Dorothy Gore. Therefore, Eugene Pulliam is Al Gore's maternal grandfather. 
That makes Al Gore the answer. \n But I should double-check if there's any possibility of another person. The 44th VP was Al 
Gore, so the answer should be Al Gore. I don't think I need to use the search tool here because this is a well-known historical 
fact. So the answer is Al Gore.\n</think>\n\n<answer>Al Gore</answer><|im_end|>",

"<think>\nOkay, let's tackle this question. The user is asking about Eugene Collins Pulliam's maternal granddaughter who became the 
44th Vice President of the US from 1989 to 1993. First, I need to recall who that VP was. I know that the 44th VP was Al Gore, but wait, 
Al Gore was the Vice President under Bill Clinton. Wait, no, actually, the 44th VP was Al Gore, but he was the 45th President. Wait, 
maybe I'm mixing up the numbers. Let me think again.\n\nWait, the 44th Vice President was Dan Quayle, right? No, Dan Quayle 
was the 44th VP, serving under George H.W. Bush. But the user is asking about the maternal granddaughter of Eugene Pulliam. Wait, 
Eugene Pulliam was the founder of Central Newspapers Inc. and a newspaper publisher. His daughter was named Dorothy, and Dorothy's 
husband was Dan Quayle's father? Wait, no. Let me check.\n\nAlternatively, maybe the answer is Al Gore. Wait, Al Gore's mother was 
Pauline Gore, and his father was Albert Gore Sr. But Eugene Pulliam's daughter was Dorothy, and Dorothy married Dan Quayle's father? 
Wait, I'm getting confused here. Let me try to structure this.\n\nEugene Collins Pulliam's maternal granddaughter would be the 
daughter of his daughter. Wait, the question says \"maternal grandfather,\" so the maternal side. So, if Eugene Pulliam is the maternal 
grandfather, then his daughter would be the mother of the VP. So, the VP's mother is Eugene's daughter. Let me think about who that 
could be.\n\nI recall that Dan Quayle's mother was Dorothy Quayle, and Dorothy Quayle was the daughter of Eugene Pulliam. So, Dan 
Quayle would be the maternal grandson of Eugene Pulliam. Therefore, the VP in question is Dan Quayle, who was the 44th Vice 
President under George H.W. Bush. Wait, but Dan Quayle was the 44th VP, serving from 1989 to 1993. Yes, that matches the time frame 
given. So the answer should be Dan Quayle. But wait, the user is asking for the politician and lawyer who was the 44th VP. Dan Quayle 
was a lawyer and politician, so that fits. \n\nBut I'm not 100% sure. Maybe I should verify. Let me check if there's any conflicting 
information. Alternatively, maybe the answer is Al Gore. But Al Gore's mother was Pauline Gore, and I don't think she was 
related to Eugene Pulliam. So I think Dan Quayle is correct. However, to be certain, I should use the search tool to confirm the 
connection between Eugene Pulliam and Dan Quayle.\n</think>\n\n<tool_call>\n{\"name\": \"search-query_rag\", \"arguments\": 
{\"query\": \"Eugene Collins Pulliam maternal granddaughter 44th Vice President\", \"topk\": 
3}}\n</tool_call><|im_end|><|im_start|>user\n<tool_response>\n# Execute the tool search-query_rag successed\n - The args are: {'query': 
'Eugene Collins Pulliam maternal granddaughter 44th Vice President', 'topk': 3}\n - The result is:\n{\n \"result\": [\n [\n {\n \"document\": 
{\n \"id\": \"17806128\",\n \"contents\": \"\\\"Eugene C. Pulliam\\\"\\nEugene C. Pulliam Eugene 
……
The Eugene S. Pulliam First Amendment Award is awarded annually by the Society of Professional Journalists in honor of Pulliam's 
dedication to First Amendment rights and values. The award seeks \\\"\\\"to honor a person or persons who have fought to protect and 
preserve one or more of the rights guaranteed by the First Amendment.\\\"\\\" Eugene S. Pulliam\"\n },\n \"score\": 
0.8502768874168396\n }\n ]\n ]\n}\n</tool_response><|im_end|>\n<|im_start|>assistant\n<think>\nLooking at the search results: The 
first document mentions that Eugene C. Pulliam was the maternal grandfather of Dan Quayle. The third document also states that Dan 
Quayle, his half-nephew, was Vice President from 1989 to 1993. The second document talks about Myrta Pulliam, but she's mentioned as 
a cousin of Dan Quayle, not the granddaughter. \n\nSo, the maternal granddaughter would be Dan Quayle's mother. Wait, but the 
documents say Eugene Pulliam was the maternal grandfather, meaning his daughter is the mother of Dan Quayle. However, the third 
document refers to Dan Quayle as a half-nephew, which might imply a different family connection. But the first document clearly states 
he's the maternal grandfather. \n\nTherefore, the answer should be Dan Quayle. The search results confirm his role as VP and his 
relation to Pulliam. No conflicting info here. So the answer is Dan Quayle.\n</think>\n\n<answer> Dan Quayle 
</answer><|im_end|>",

Query: Eugene Collins Pulliam, was an American newspaper publisher and businessman who was the founder and longtime president of Central 
Newspapers Inc., and was the maternal grandfather of which American politician and lawyer who was the 44th Vice President of the United 
States from 1989 to 1993?

Fact-based errors

Excessive 
confidence, lack of 
structured 
verification or 
stable reasoning 
strategies

Meta-cognition
For factual queries with synthesis challenges due to ambiguous internal and external data, implementing 
structured sequential dependent planning and early focused synthesis verification tends to enhance accuracy. 
Recognizing ambiguities and consistently applying verification strategies can help mitigate synthesis errors.

No Meta-cognition response

At the initial stage, 
promptly identified the 
conflicts between the 
timeline and the 
conditions, avoiding the 
entire reasoning being 
based on wrong premise.

Without relying on 
subjective 
familiarity, use the 
tool for structural 
verification

Based on 
external search 
tools and own 
reasoning, 
provide an 
accurate answer.

Figure 7: An example that demonstrates how meta-cognition affects reasoning

types—Comparison and Bridge. For each trained model, we record the selection probability of every
meta-cognition node during inference and visualize this high-dimensional preference space using a
t-SNE projection (Figure 8). Crucially, the purpose of this visualization is not to perform semantic
clustering, but to characterize the functional preference patterns of the agent—specifically, which
strategies are prioritized under distinct reasoning demands.

General Meta-Cognitions. We observe that a subset of meta-cognitions—such as InternalKnowl-
edgeCheck exhibit consistently moderate activation across both Comparison and Bridge tasks. These
meta-cognitions implement generic verification behaviors (e.g., quickly checking internal consis-
tency or confirming tool outputs) and therefore serve as broadly applicable reasoning heuristics.
Their stable appearance across task types indicates that the agent learns a set of universally useful
verification habits.

Task-Specific Meta-Cognitions. In contrast, certain meta-cognitions—including SequentialDe-
pendentPlanning show sharply elevated activation in Bridge queries but low usage in Comparison
queries. Bridge tasks typically rely on chained dependencies and frequently require the agent to
identify missing information and execute follow-up tool calls. The selective activation of these
strategies demonstrates that the memory system captures scenario-specific reasoning preferences
rather than applying uniform heuristics.
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For complex or multi-hop factual queries, if an initial tool search results in 'InsufficientInformation', this is a critical juncture. 
A more robust strategy appears to be executing a swift, targeted follow-up action (e.g., 'ReExecuteTool') to fill a 
specific, identified information gap, especially within a structured multi-hop plan.",

General Meta-cognition

For multi-hop queries, the initial choice of planning strategy appears critical. A plan that mirrors the query's dependency 
(e.g., `SequentialDependentPlanning`) tends to create a robust framework, allowing for productive `Refinement` loops 
to resolve insufficiency. 

Directed Meta-cognition

Figure 8: Visualization of Meta-Cognitive Strategy Preferences. The t-SNE projection maps the functional
space of meta-cognition nodes based on their activation probabilities. This visualization reveals how the agent’s
preference shifts between Comparison and Bridge queries.

Taken together, these activation patterns show that the hierarchical memory graph does not merely
store abstract advice—it supports task-adaptive meta-cognition. Comparison queries emphasize
lightweight verification, while Bridge queries require multi-step planning or targeted gap resolu-
tion. Such differential behavior would not emerge from static rule-based memory systems; it arises
specifically from our utility-weighted selection mechanism trained with reinforcement learning.

D.3 EVOLUTION OF META-COGNITION SELECTION DURING RL TRAINING

To understand how RL reshapes the agent’s strategic preferences, we tracked the selection probabil-
ity of each meta-cognition node across three distinct training checkpoints (Batch 10, 150, and 250).
Figure 9 visualizes this evolutionary process, providing a dynamic view of how the memory graph
optimizes its retrieval distribution.

Suppression of Low-Quality Meta-cognitions. As illustrated in the top panel of Figure 9,
the selection probability of brittle heuristics—such as IncorrectInformationSynthesis
and PrematureKnowledgeSufficient—declines sharply throughout the training process
(0.136 → 0.028 → 0.017). These strategies typically encourage over-reliance on parametric mem-
ory or premature halting of the reasoning chain. Since trajectories guided by these heuristics fre-
quently lead to incorrect answers (and thus negative rewards), the RL policy naturally suppresses
their activation weights to maximize expected return.

Emergence of High-Quality Meta-cognitions. As shown in the top panel of Figure 9, the se-
lection probability of several low-quality meta-cognitive heuristics (e.g., IncorrectInformationSyn-
thesis, PrematureKnowledgeSufficient) drops sharply from 0.136 → 0.028 → 0.017 over training.
These heuristics typically encourage over-reliance on the agent’s parametric memory or insufficient
validation of dependency chains, leading to brittle multi-hop reasoning. RL naturally suppresses
them because trajectories associated with these heuristics produce lower returns.

This analysis confirms that RL training does not merely tune the model’s internal parameters—it
fundamentally reshapes the distribution over strategic principles. The system actively filters out
hallucination-prone shortcuts while cementing task-robust reasoning habits. This provides direct
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For multi-step factual queries, a primary risk is 'IncorrectInformationSynthesis', which can occur even when retrieved information seems to align 
('KnowledgeAligned'). It is suggested to explicitly verify each logical link in the query's dependency chain before final synthesis.

Low-quality Meta-cognition selection probability :  0.136         0.028        0.017

High-quality Meta-cognition selection probability : 0.015         0.053        0.113 
For specific factual recall queries, particularly multi-hop or multi-constraint ones, the reliability of internal knowledge self-assessment appears 
low. Trusting an initial 'KnowledgeSufficient' assessment is a high-risk path that can lead to errors from flawed or outdated internal memory. 

Figure 9: Evolution of Strategic Preferences during RL Training. We visualize the selection probability of
meta-cognition nodes across three training checkpoints (Batch 10, 150, 250) using t-SNE projections. Each
point represents a strategic principle; color intensity encodes the selection probability (Red = High, Gray =
Low). As training progresses, the agent suppresses hallucination-prone heuristics (Top Panel) and converges
toward robust verification strategies (Bottom Panel).

empirical evidence that our memory graph functions as a trainable policy prior that evolves from
experience, rather than a static retrieval module.

E EXPERIMENT ANALYSIS

E.1 THE NUMBER OF THE META-COGNITION

To better understand how the quantity of retrieved meta-cognitive strategies affects agent perfor-
mance, we evaluate four configurations: using 0 (no memory, denoted as TIR), 1, 3, and 5 strategies
as contextual input. Results across seven QA benchmarks are presented in Table 4.

We observe that introducing even a single meta-cognitive strategy leads to a notable improvement
over the baseline (TIR), especially on multi-hop tasks such as Bamboogle (+11.6%) and HotpotQA
(+2.9%). This suggests that explicit strategic signals can substantially aid reasoning even in limited
quantities. As the number of strategies increases, performance generally improves, but the marginal
gains become smaller—likely due to redundancy or prompt saturation. The best overall result is
achieved at top k=5, which balances diversity and relevance.

These findings imply that a moderate number of well-curated strategies can enhance generaliza-
tion and decision quality, without incurring the risks of prompt overload or noise from irrelevant
memories.

Table 4: Performance of different numbers of meta-cognition.

Methods
General QA Multi-Hop QA

Avg.
NQ⋆ TriviaQA⋆ PopQA⋆ HotpotQA† 2wiki⋆ Musique⋆ Bamboogle⋆

Qwen3-4B
TIR 0.298 0.581 0.351 0.268 0.281 0.077 0.290 0.306
topk = 1 0.326 0.583 0.382 0.290 0.327 0.096 0.406 0.344
topk = 3 0.335 0.596 0.393 0.299 0.347 0.099 0.391 0.351
topk = 5 0.333 0.594 0.392 0.299 0.349 0.094 0.418 0.355
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E.2 CROSS-API MEMORY ROBUSTNESS

To further validate the portability and reliability of our structured memory graph, we construct the
memory using two distinct LLM APIs: gpt-4o and Gemini-2.5-pro. These memory graphs
are then integrated into the same downstream agent architecture (Qwen3-4B and Qwen3-8B), and
evaluated across seven QA datasets. As shown in Table 5, the resulting performance differences are
minor, with Gemini-based memory slightly outperforming its 4o counterpart in most cases.

Specifically, on the multi-hop benchmark Bamboogle, the Gemini-constructed memory shows a no-
table increase (e.g., +0.043 on Qwen3-8B), while maintaining parity or marginal gains in general
QA datasets like TriviaQA and PopQA. These results indicate that while different APIs may in-
troduce slight variations in strategy abstraction, our framework is robust to such differences and
maintains high effectiveness regardless of the underlying model used to generate the memory.

Table 5: Performance comparison across LLM .

Methods
General QA Multi-Hop QA

Avg.
NQ⋆ TriviaQA⋆ PopQA⋆ HotpotQA† 2wiki⋆ Musique⋆ Bamboogle⋆

Qwen3-8B
Ours(4o) 0.316 0.622 0.382 0.358 0.354 0.128 0.392 0.365
Ours(gemini) 0.318 0.621 0.385 0.362 0.336 0.123 0.434 0.369
Qwen3-4B
Ours(4o) 0.335 0.596 0.393 0.299 0.347 0.099 0.391 0.351
Ours(gemini) 0.337 0.598 0.396 0.314 0.360 0.093 0.397 0.357

E.3 ADDITIONAL STUDY: 2WIKI FOR MEMORY CONSTRUCTION

In our main experiments, we utilized HotpotQA to construct the FSM and memory graph due to
its rich coverage of reasoning types (bridge, comparison, etc.). To rigorously examine whether our
FSM abstraction relies on HotpotQA-specific structures, we conducted a cross-dataset portability
study.

We repeated the entire memory construction pipeline using only trajectories sampled from the
2WikiMultiHopQA dataset. The FSM definition (states and transitions) remained unchanged. We
then evaluated this memory graph on the same seven downstream benchmarks using the Qwen3-4B
model.

Table 6: Performance comparison across memory dataset.

Methods
General QA Multi-Hop QA

Avg.
NQ⋆ TriviaQA⋆ PopQA⋆ HotpotQA⋆ 2wiki† Musique⋆ Bamboogle⋆

Qwen3-4B
TIR 0.298 0.581 0.351 0.268 0.281 0.077 0.290 0.306
2wiki-memory 0.317 0.591 0.394 0.290 0.308 0.091 0.322 0.330

As shown in the result (table 6), the memory graph constructed from 2Wiki still yields clear im-
provements over memory-free inference. This confirms that the FSM abstraction is dataset-agnostic
and does not rely on Hotpot-specific structure. Our method is not tied to HotpotQA, and similar ben-
efits are observed when using alternative multi-hop datasets.This experiment validates the generality
and robustness of the proposed memory construction pipeline.

F COMPUTATIONAL OVERHEAD ANALYSIS

To assess the practical efficiency of our framework, we provide a granular breakdown of the com-
putational overhead, categorized into offline graph construction (Stage 1 & 2) and online inference
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Algorithm 2 Trainable Graph Weight Optimization via Policy Gradient

1: Input: Memory Graph G with initial weights w, Training Queries D, Agent model, Reward
functionR, learning rate α.

2: Output: Optimized Memory Graph G with updated weights w∗.
3: procedure OPTIMIZEGRAPHWEIGHTS(G,D, α)
4: for each query qnew in D do
5: ▷ — Step 1: Stochastic Guidance Selection —
6: mk, p(mk | qnew)← SelectGuidingMetaCognition(G, qnew)
7: if mk is null then ▷ No relevant guidance found
8: continue
9: end if

10: ▷ — Step 2: Counterfactual Evaluation —
11: Responsewith ← Agent.generate(qnew, guidance = mk)
12: Rwith ← R(Responsewith, qnew)
13: Responsew/o ← Agent.generate(qnew, guidance = null)
14: Rw/o ← R(Responsew/o, qnew)
15: ∆Rk ← Rwith −Rw/o ▷ Calculate reward gap (utility signal)
16: ▷ — Step 3: Policy Gradient Update —
17: ∇wL ← −∆Rk · ∇w log p(mk | qnew) ▷ Compute gradient for REINFORCE
18: w← w − α · ∇wL ▷ Update all contributing weights
19: end for
20: return G
21: end procedure

22: procedure SELECTGUIDINGMETACOGNITION(G, qnew)
23: ▷ Activate relevant subgraph based on semantic similarity
24: Mact ← ActivateSubgraph(qnew,G)
25: ifMact is empty then
26: return null, 0
27: end if
28: ▷ Compute relevance scores for all activated meta-cognitions
29: for all m ∈Mact do
30: S(m | qnew)← 0
31: for all path qi → tj → m in G do
32: if qi is in activated subgraph then
33: S(m | qnew)← S(m | qnew) + Sim(qnew, qi) · w(i,j)

qt · w(j,m)
tm

34: end if
35: end for
36: end for
37: ▷ Compute selection probabilities using softmax
38: Z ←

∑
m′∈Mact

exp(S(m′ | qnew))
39: for all m ∈Mact do
40: p(m | qnew)← exp(S(m | qnew))/Z
41: end for
42: ▷ Stochastically sample a meta-cognition based on probabilities
43: mk ← Sample(Mact, probabilities = {p(m | qnew)})
44: return mk, p(mk | qnew)
45: end procedure

latency (Stage 3). All measurements were conducted on the same hardware setup used for the main
experiments.

F.1 OFFLINE GRAPH CONSTRUCTION (ONE-TIME COST)

The construction of the memory graph is an offline preprocessing step performed once prior to RL
training. As shown in Table 7, the primary costs stem from parsing trajectories into FSM paths and
inducing meta-cognition via the powerful LLM.
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• Component-level Breakdown: FSM parsing is efficient, averaging 4.086±0.879 seconds
per rollout. The meta-cognition update, which involves calling the powerful LLM (e.g.,
GPT-4o) to distill insights from trajectory pairs, requires 4.754± 3.418 seconds per query.

• Total Preprocessing Time: For a seed set of 500 queries, the cumulative time for Stage 1
is approximately 2.3 hours. The subsequent utility-weight optimization (Stage 2) is a batch
process that takes an additional 2–3 hours.

Crucially, this combined cost of ∼5 hours is fully amortized. The resulting graph structure and
weights are frozen and reused throughout the entire RL training process and final inference, intro-
ducing zero recurrent cost during the agent’s learning loop.

Table 7: Offline Construction Cost Breakdown. Statistics are measured over 500 seed queries. Note that
Utility Update is a batch process measured end-to-end.

Component Unit Time (Mean ± Std) Variance Notes

FSM Parsing per rollout 4.086± 0.879 s 0.772 Depends on trajectory length
Meta-cognition Induction per query 4.754± 3.418 s 11.685 Triggered once per 3 rollouts

Stage 1 Total 500 queries ≈ 2.3 hours – One-time construction
Stage 2 Total End-to-End ≈ 2.0–3.0 hours – One-time weight optimization

F.2 ONLINE INFERENCE LATENCY

A key concern is whether the longer prompts (augmented with retrieved meta-cognition) signifi-
cantly slow down inference. To quantify this, we measured the runtime on the HotpotQA test set
(using a batch size of 8 with the Qwen3-8B backbone).

As detailed in Table 8, the inclusion of meta-cognition increases the average batch processing time
from 32.156s to 32.511s. This results in an additional latency of only 0.355 seconds per batch (or
∼0.044s per query). This represents a marginal overhead of approximately 1.1%, which is negli-
gible compared to the natural variability of LLM token generation. The minimum and maximum
latencies are also nearly identical, confirming that our method does not introduce significant variance
or instability to the inference pipeline.

Table 8: Inference Time Comparison. Statistics are derived from HotpotQA test dataset with a batch size of
8. The overhead introduced by meta-cognitive prompting is marginal (∼1.1%).

Setting Unit Mean Time (s) Std (s) Min (s) Max (s) Relative Overhead

w/o Meta-cognition per batch 32.156 3.759 26.715 38.675 –
w/ Meta-cognition per batch 32.511 4.363 26.628 40.314 +1.10%

Difference per batch +0.355 s – – – –
Difference per query +0.044 s – – – –

G PROMPT TEMPLATES

G.1 MULTI-TURN TOOL-INTERGRATED QA PROMPT

When LLMs needs to interact with tools multiple times to answer a question, it is necessary to guide
the LLM on which tools to use and how to use them. The specific prompt is shown in table G.3.

G.2 CONSTRUCTING FSM PATH

Given the specific response path of the LLM and the complete structure of the state machine, we
employ an LLM (e.g., GPT-4o) to map the generated answer onto one of the predefined paths in the
state machine. The following shows the exact prompt used in G.3.
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G.3 META-COGNITION CONSTRUCTING

With both successful and failed state-machine paths available, we derive high-level meta-cognitions
by contrasting the two. The following prompt G.3 illustrates how a pair of successful and failed
paths under the same query is used to induce meta-cognition.

Prompt A: System and User Prompt

SYSTEM PROMPT:
# Tools
You may call one or more functions to assist with the user query.
You are provided with function signatures within <tools></tools> XML

tags:
<tools>
{
"name": "search-query_rag",
"description": "MCP RAG Query Tool (Synchronous Version)
Args:
query: query text
topk: The default number of documents returned is 3

Returns:
str: The formatted query result",

"parameters": {
"type": "object",
"properties": {
"query": {"title": "Query", "type": "string"},
"topk": {"default": 3, "title": "Topk", "type": "integer"}

},
"required": ["query"]

}
}
</tools>

# Tool call format
For each function call, return a JSON object with function name and

arguments within <tool_call></tool_call> XML tags:
<tool_call>
{

"name": <function-name>,
"arguments": <args-json-object>

}
</tool_call>

USER PROMPT:
Answer the given question. After reasoning, if you find you lack

some knowledge, you can call the search tool.
You may search as many times as you want.
If you find no further external knowledge is needed, you can

directly provide the answer inside <answer> and </answer>,
without detailed illustrations.

For example: <answer> Beijing </answer>.

Question: Which US State, historically dominated by the Republican
party from 1860 to 1932, is represented by State Senator George
D. Maziarz?
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Prompt B: Prompt for constructing FSM path

Instruction: You are a metacognition analysis expert specialized in extracting generalized
decision principles and guidance strategies from state machine execution paths.
State machine transition rules: {transitions info}
Core Requirements:

1. Generalizability Focus: Output strategies and principles must be general, applicable
to similar problems, without specific query details.

2. Direct Usability: Generated content should be directly usable as guidance principles
for new problems.

3. Principled Expression: Use cautious guidance terms like “consider”, “may help”,
“tends to” rather than definitive statements.

4. Concise Effectiveness: Output only the most core insights, avoid redundancy and com-
plexity.

5. Quality Control: Strictly evaluate whether there is sufficient evidence to support new
metacognition.

6. Knowledge Confidence Awareness: Recognize that LLM’s internal knowledge confi-
dence varies across queries — success patterns may be domain-specific.

7. Uncertainty Acknowledgment: Express appropriate uncertainty in guidance princi-
ples, avoiding overly definitive conclusions.

8. Quantity Management: When metacognition count exceeds 30, prioritize updating
low-confidence existing metacognitions.

Output Format (Quantity-Aware):
Your output must be a JSON object with the following structure:

{
"decision": "update" or "create" or "skip",
"target_meta_id": <ID of metacognition to update (only when

decision is "update")>,
"reasoning": "Brief explanation including quantity management when

count > 30.",
"meta_cognition": {
"summary": "Concise general guidance summary (use cautious

language).",
"strategy_principles": [
{
"principle": "...",
"confidence": "high" | "medium" | "low",
"confidence_score": 30 - 85

},
...

],
"overall_confidence": "high" | "medium" | "low",
"evidence_paths": <int>,
"uncertainty_note": "Brief acknowledgment of limitations or

knowledge-dependency concerns."
}

}
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Prompt C: Metacognition Prompt Specification

State machine transition rules: {transitions info}

Core Requirements:
1. Generalizability Focus: Output strategies and principles must be general, applicable

to similar problems, without specific query details.
2. Direct Usability: Generated content should be directly usable as guidance principles

for new problems.
3. Principled Expression: Use cautious guidance terms like “consider”, “may help”,

“tends to” rather than definitive statements.
4. Concise Effectiveness: Output only the most core insights, avoid redundancy and com-

plexity.
5. Quality Control: Strictly evaluate whether there is sufficient evidence to support new

metacognition.
6. Knowledge Confidence Awareness: Recognize that LLM’s internal knowledge con-

fidence varies across queries—success patterns may be domain-specific.
7. Uncertainty Acknowledgment: Express appropriate uncertainty in guidance prin-

ciples, avoiding overly definitive conclusions.
8. Quantity Management: When metacognition count exceeds 30, prioritize updating

low-confidence existing metacognitions.

Critical Self-Reflection Requirements:
• Pattern Validity: Question whether identified patterns truly represent generalizable

principles.
• Knowledge Dependency: Consider if success stems from strategy effectiveness or

the LLM’s domain familiarity.
• Evidence Sufficiency: Demand higher evidence standards for strategies that could mis-

lead future queries.
• Simplicity Over Complexity: Favor simple, robust principles over complex, brittle

ones.

Metacognition Quantity Control Strategy:
When metacognition count ≤ 30: • Normal decision making: create, update, or skip

based on evidence quality.
• Prefer creating new metacognition when patterns are sufficiently distinct.
• Express appropriate uncertainty in new metacognitions.

When metacognition count > 30: • Strongly prefer UPDATE over CREATE: Prior-
itize improving existing low-confidence metacognitions.

• Only create new metacognition if the pattern is exceptionally valuable and com-
pletely distinct.

• Target metacognitions with confidence levels “low” or “medium” for updates.

Analysis Focus:
1. Success Pattern Identification: Abstract reusable decision patterns from successful

paths.
2. Failure Cause Summary: Identify generalizable errors to avoid from failed paths.
3. State Transition Optimization: Extract best practice principles for state machine exe-

cution.
4. Knowledge Dependency Assessment: Evaluate whether patterns might be specific

to certain knowledge domains.
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5. Existing Knowledge Enhancement: When quantity is high, focus on strengthening
weak metacognitions.

Decision Options:
• create: Create new metacognition (when discovering valuable and distinct patterns, or

when quantity ≤ 30).
• update: Update existing metacognition (preferred when quantity > 30, especially tar-

geting low-confidence ones).
• skip: Skip metacognition operation (when evidence is insufficient or has no new value).

Skip Metacognition Situations:
• Path data quality is poor, patterns are unclear.
• Existing metacognition already covers the pattern, new evidence shows no significant

improvement.
• Success/failure path differences are not obvious, difficult to extract effective strategies.
• Cannot distinguish whether success stems from strategy effectiveness or knowl-

edge domain familiarity.
• When quantity > 30 and no suitable low-confidence metacognition found for update.

Output Format (Quantity-Aware): Your output must be a JSON object containing:

{
"decision": "update" or "create" or "skip",
"target_meta_id": (when decision is update) ID of metacognition to

update,
"reasoning": "Brief decision analysis, must include quantity

management when count > 30.",
"meta_cognition": {
"summary": "...",
"strategy_principles": [
{"principle": "...", "confidence": "high", "confidence_score":

80},
{"principle": "...", "confidence": "medium", "confidence_score

": 60}
],
"overall_confidence": "medium",
"evidence_paths": 7,
"uncertainty_note": "..."

}
}
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