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ABSTRACT

Implicit neural representations (INRs) have recently emerged as a powerful tool
that provides an accurate and resolution-independent encoding of data. Their ro-
bustness as general approximators has been shown in a wide variety of data sources,
with applications on image, sound, and 3D scene representation. However, little
attention has been given to leveraging these architectures for the representation and
analysis of time series data. In this paper, we propose a new INR architecture for
time series (iISIREN) designed to perform an accurate reconstruction of univariate
and multivariate data, while also providing an interpretable encoding of the signal.
We compare our architecture against SIREN and INRs with different activations, in
terms of training convergence, and the reconstruction accuracy of both the signal
and its spectral distribution. To achieve generalization, we propose a hypernetwork
architecture (HyperTime) that leverages iSIRENS to learn a latent representation of
an entire time series dataset. In addition to the traditional reconstruction loss, we
introduce an FFT-based loss that guides the training by enforcing a good match
of the ground truth spectral distribution. We show how these architectures can
be used for time series generation, and evaluate our method through fidelity met-
rics, presenting results that exceed the performance of state-of-the-art techniques.
Finally, we propose an alternative hypernetwork architecture (iHyperTime) that
incorporates interpretability into the latent representation, enabling the introduction
of prior knowledge by imposing constraints into the generation process.

1 INTRODUCTION

Modeling time series data has been a key topic of research for many years, constituting a crucial
component in a wide variety of areas such as climate modeling, medicine, biology, retail and
finance (Lim & Zohren,|2021)). Traditional methods for time series modeling have relied on parametric
models informed by expert knowledge. However, the development of modern machine learning
methods has provided purely data-driven techniques to learn temporal relationships. In particular,
neural network-based methods have gained popularity in recent times, with applications to a wide
range of tasks, such as time series classification (Ismail Fawaz et al.,|2020), clustering (Ma et al.,[2019;
Alqgahtani et al.,|2021), segmentation (Perslev et al., 2019} Zeng et al.,|2022)), anomaly detection (Choi
et al.} 2021} |Xu et al., [2018; Hundman et al.| [2018)), upsampling (Oh et al., [2020; Bellos et al.| [2019),
imputation (Liu} 2018}, |Luo et al 2018} |Cao et al., 2018]), forecasting (Lim & Zohren| 2021} Torres
et al.,|2021) and synthesis (Alaa et al.,|2021; | Yoon et al., 2019b; Jordon et al.,|2019). In particular,
generation of synthetic time series has recently gained attention due to the large number of potential
applications in medical and financial fields, where data cannot be shared, either due to privacy reasons
or proprietary restrictions (Jordon et al., [2021; 2019; |Assefa et al.,|2020). Moreover, synthetic time
series can be used to augment training datasets to improve model generalization on downstream tasks,
such as classification (Fons et al., |2021)), forecasting and anomaly detection.

In recent years, implicit neural representations (INRs) have gained popularity as an accurate and
flexible method to parameterize signals from diverse sources, such as images, video, audio and
3D scene data (Sitzmann et al., [2020b; Mildenhall et al., 2020). Conventional methods for data
encoding often rely on discrete representations, such as data grids, which are limited by their spatial
resolution and present inherent discretization artifacts. In contrast, INRs encode data in terms of
continuous functional relationships between signals, and thus are uncoupled to spatial resolution. In
practical terms, INRs provide a new data representation framework that is resolution-independent,
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with many potential applications to time series, where missing values and irregularly sampled data are
common occurrences (Fang & Wangl 2020). While there have been a few recent works exploring the
application of INRs to time series data, there is virtually no work on leveraging these architectures for
generating synthetic time series or producing interpretable time series representations (Jeong & Shin)
2022;|Woo et al.,2022). Applications with regulatory focus such as finance often require transparency
and interpretability of proposed machine learning solutions as well as injection of expert knowledge
as constraints into the training process to guide learning. For instance, explainable construction of
trading agents is preferred when actions of trading agents need to be explicitly attributed to market
signals (Vyetrenko & Xul [2019).

In this paper, we propose a novel methodology that utilizes INRs to encode and generate time series
data based on interpretable latent representations. To the best of our knowledge, we are the first to
incorporate an interpretable decomposition into the generation of time-series. Our contributions are
as follows:

Representation and Generation of time-series using INRs: We introduce iSIREN, an INR archi-
tecture for multivariate time-series representation which provides an interpretable trend-seasonality
decomposition of the data. We show that interpretability does not lead to a loss of reconstruction
accuracy, and in some cases increases the spectral reconstruction quality. Moreover, we leverage a
hypernetwork for time-series generation via interpolation of learned embeddings.

Spectral Loss: To improve the training of the hypernetwork, we introduce a novel spectral loss
that enforces the correct reconstruction of the signal’s spectral distribution. We show that for some
datasets this loss plays a crucial role in the learning process.

Interpretable time-series generation: We propose iHyperTime, a hypernetwork architecture for
time-series generation that learns a disentangled seasonal-trend representation of time series, enabling
the introduction of expert knowledge into the synthesis process. We compare iHyperTime against
current state-of-the-art methods for time-series generation, showing improved results in terms of
standard fidelity metrics.

2 RELATED WORK

Implicit Neural Representations Implicit Neural Representations (INRs) provide a continuous
representation of multidimensional data, by encoding a functional relationship between input co-
ordinates and signal values, avoiding possible discretization artifacts. They have recently gained
popularity in visual computing (Mescheder et al.| [2019; Mildenhall et al) 2020) due to the key
development of positional encodings (Tancik et al.,[2020) and periodic activations (SIREN (Sitzmann
et al.,[2020b)), which have proven to be critical for the learning of high-frequency details. Whilst
INRs have been shown to produce accurate reconstructions in a wide variety of data sources, such as
video, images and audio (Sitzmann et al.,2020b; Chen et al.} 2021} Rott Shaham et al., [2021)), few
works have leveraged them for time series representation (Jeong & Shin, |[2022; Woo et al., [2022), and
none have focused on interpretability and generation.

Hypernetworks Hypernetworks are neural network architectures that are trained to predict the
parameters of secondary networks, referred to as Hyponetworks (Ha et al., 2017; Sitzmann et al.,
2020a). In the last few years, some works have leveraged different hypernetwork architectures for the
prediction of INR weights, in order to learn priors over image data (Skorokhodov et al.,[2021)) and
3D scene data (Littwin & Wolf}, |2019; [Sitzmann et al., 2019;|Sztrajman et al., 2021). Sitzmann et al.
(2020Db) leverage a set encoder and a hypernetwork decoder to learn a prior over SIRENs encoding
image data, and apply it for image in-painting. Our HyperTime and iHyperTime architectures detailed
in Section[3|use a similar encoder-decoder structure, however they learn a latent representation over
our interpretable SIREN INRs (iSIREN), which encode time series data. Moreover, we apply these
architectures for time series generation via interpolation of learned embeddings.

Time Series Generation Synthesis of time series data using deep generative models has been
previously studied in the literature. Examples include the TimeGAN architecture (Yoon et al.|
2019a), as well as QuantGAN (Wiese et al., 2020). More recently, |[Desai et al.| (2021)) proposed
TimeVAE as a variational autoencoder alternative to GAN-based time series generation. |Alaa et al.
(2021)) introduced Fourier Flows, a normalizing flow model for time series data that leverages the
frequency domain representation, which is currently considered together with TimeGAN as state-
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of-the-art for time series generation. In the last few years, multiple methods have used INRs for
data generation, with applications on image synthesis (Chan et al., 2021; Skorokhodov et al., 2021),
super-resolution (Chen et al.,|2021)) and panorama synthesis (Anokhin et al., 2021). However, there
are currently no applications of INRs on the generation of time series data.

Interpretable Time Series Seasonal-trend decomposition is a standard tool in time series analysis.
The trend encapsulates the slow time-varying behavior of the signal, while seasonal components
capture periodicity. These techniques introduce interpretability in time series, which plays an impor-
tant role in downstream tasks such as forecasting and anomaly detection. The classic approaches for
decomposition are the widely used STL algorithm (Cleveland et al.,[1990), and its variants (Wen et al.,
2019 Bandara et al.| [2022). Relevant to this work is the recent N-BEATS architecture (Oreshkin
et al.}|2020), a deep learning-based model for univariate time series forecasting that provides inter-
pretability capabilities. The model explicitly encodes seasonal-trend decomposition into the network
by defining separate trend and seasonal blocks, which fit a low degree polynomial and a Fourier series.
While N-BEATS provides an interpretable decomposition, its applications do not cover multivariate
time series and data synthesis. [Desai et al.|(2021)) recently proposed TimeVAE, combining a VAE
architecture with a trend-seasonality decomposition structure to allow for interpretable generation.
However no results highlighting the advantages of this capability were demonstrated.

3 FORMULATION

In this Section, we describe the iSIREN network architecture for time series representation and
interpretable decomposition, and the HyperTime and iHyperTime networks leveraged for prior
learning and new data generation.

3.1 TIME SERIES REPRESENTATION

We consider a time series signal encoded by a discrete sequence of N observations y = (y1,...,Yn)
where y; € R™ is the m-dimensional observation at time ¢;. This time series defines a dataset
D = {(t;,y:)}Y, of time coordinates t; associated with observations y;. We want to find a
continuous mapping f : R — R™,¢t — f(t) that parameterizes the discrete time series, so that
f(t;) = y; fori = 1...N. The function f can be approximated by an implicit neural representation

(INR) architecture conditioned on the training loss £ =) . ||y; — F(£:)]|2. The network is composed
of fully-connected layers with sine activations (SIREN) as defined by [Sitzmann et al.| (2020b):

¢j (Xz) = SiIl(OJ()W]'XZ' + bj) (l)

where ¢;(-) corresponds to the j th layer of the network. A general factor wy multiplying the network
weights determines the order of magnitude of the frequencies that will be used to encode the signal.
Input and output of the INR are of dimensions 1 and m, corresponding to the time coordinate ¢ and

the prediction f (t). After training, the network encodes a continuous representation of the functional
relationship f(t) for a single time series.

3.1.1 INTERPRETABLE SIREN
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Figure 1: Interpretable SIREN (iSIREN) architecture comprised of two blocks. Trend Block:Single
FC layer that outputs a polynomial fit of a fixed degree. Seasonality Block: SIREN network.
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We propose an interpretable architecture to encode time series that reuses the INR with sine activation
functions from the previous section. In particular, we assume that our INR follows a classic time
series additive decomposition, i.e.,

where fi,(t) represents the trend component and f5(t) represents the seasonal component of f(t),
respectively. Note that this is a standard assumption for time series decomposition techniques, such
as STL and others. We elaborate on the structure of fi,(¢) and f;(¢) in the following.

Trend block The trend component of a time series aims to model slow-varying (and occasionally
monotonic) behavior. Following the work by |Oreshkin et al.| (2020) (N-BEATS), for the trend
component of the interpretable architecture, we consider a polynomial regressor, i.e.,

p
fult) =Y wil, (3)
=0

where p denotes the degree of the polynomial, and wgtr) denotes the weight vector associated with
the ith degree. In practice, p is chosen to be small (e.g., p = 2) to capture low frequency behavior.

Seasonality block The seasonal component of the time series f5(¢) aims to capture the periodic
behavior of the signal. In classical techniques, a pre-determined and fixed period (or set of periods)
determines the resulting extracted seasonal components (e.g., STL supports single seasonal compo-
nent, whereas MSTL supports multiple). In this work, we propose to model the seasonal component
of the time series as a SIREN with J layers (see Section[3.1)). Importantly, a single layer SIREN has
been shown to be structurally similar to a Fourier mapped perception (FMP). An FMP h : di;, — dous
is a perceptron with identity activation and Fourier mapped input, i.e., for x € R%» we have

cos(27B - x)] ’

h(x) = W - 5(x) + b, 700) = Lin@ﬂs x) @

where WS ¢ Rdoutx2M j5 3 Fourier weight matrix, b'S € Ru and ~(x) is a Fourier mapping of
the input x, with B € RM*%n the Fourier mapping matrix of M frequencies. For a particular choice
of B and b"S = 0, an FMP is equivalent to a Fourier series representation and the Fourier mapping
~(x) is equivalent to a single layer SIREN with fixed Fourier mapping matrix (Benbarka et al., [2022).
A Fourier series is precisely what is used in the N-BEATS algorithm to model the seasonal component
of the time series (Oreshkin et al.,2020). The benefit of using a SIREN is that the Fourier mapping
becomes a trainable parameter — enabling the learning of the seasonal component of the time series
in an unsupervised manner.

Training of iSIREN The training of iSIREN is performed in a supervised manner with an MSE
reconstruction loss, as described for SIREN in Section However, in order to stabilize the training,
the process is performed in two stages: 1) we train the Trend Block for 100 epochs, computing the
MSE loss between the ground truth time series y and the output of the block: £ =Y, |ly; — Fu®)]?.
This leads to a smooth approximation of the time series, which we use as initial guess for the second
stage. 2) We then train the Trend and Seasonality blocks together, computing the MSE reconstruction

loss between the ground truth and the added output of both iSIREN blocks: L2 = >, |ly; — f ()2

3.2 TIME SERIES GENERATION WITH HYPERTIME

In Figure 2}top, we display a diagram of the HyperTime architecture, which allows us to leverage
INRs to learn priors over the space of time series. The Set Encoder (green network), composed of
SIREN layers (Sitzmann et al.l [2020b)), takes as input a pair of values, corresponding to the time-
coordinate ¢ and the time series signal f(¢). Each pair of values is thus encoded into an embedding
and evaluated by the HyperNet decoder (blue network), composed of fully-connected layers with
ReLU activations (MLP). The output of the HyperNet is a one-dimensional vector that contains the
network weights of an INR which encodes the time series data from the input. The INR architecture
used within HyperTime is our interpretable SIREN (iSIREN), discussed in the previous section and
illustrated in Figure[I] However, in Section[4.2] we will also consider the case of using SIREN as
target INR. Following previous works (Sitzmann et al.||2020a), in the context of hypernetworks we
refer to these predicted INRs as HypoNets in order to avoid ambiguities.
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Figure 2: Diagram of HyperTime network architecture. Each pair of time-coordinate ¢ and time
series f(t) is encoded as a 40-values embedding Z by the Set Encoder. The HyperNet decoder learns
to predict HypoNet weights from the embeddings. During training, the output of the HyperNet is
used to build a HypoNet and evaluate it on in the input time-coordinates. The loss is computed as a

difference between f(t) and the output of the HypoNet f(t).

During the training of HyperTime, we use the weights predicted by the HyperNet decoder to instantiate
a HypoNet and evaluate it on the input time-coordinate ¢, to produce the predicted time series value

f(t). The entire chain of operations is implemented within the same differentiable pipeline, and
hence the training loss can be computed as the difference between the ground truth time series signal

f(t) and the value predicted by the HypoNet f (t).

The use of a Set Encoder in the architecture introduces permutation invariance in the computation.
This enables the encoding of data with missing values or irregularly sampled, which are common oc-
currences in time series datasets. After training, the Set Encoder is able to generate latent embeddings
Z to encode entire time series. In Section 4.2} we show that these embeddings can be interpolated to
produce new samples from the distribution learned by the network, enabling the synthesis of new
time series from known ones.

Training Loss The training of HyperTime is done by optimizing the following loss, which contains
an MSE reconstruction term L. and two regularization terms Lyeighis a0d Liaent, for the network
weights and the latent embeddings, respectively:

1 & L 1 <&, 1,
L=+ ; Hf(ti) — ft) ’ +M 3 ;wj +ha kZ:l 22 4 s Lrpr (5)
N—— —
Lrec Cweighm Liatent

Since we are working with time series, we want to ensure an accurate reconstruction not only of the
signal but also of its spectral composition. Hence, we introduce an additional Fourier-based loss
Lrrr that penalizes differences in the distribution of frequencies of the INR-encoded time series with
respect to the ground truth data:

Lrer = - 3 [FETLFO): — FETIS 0L ©)

In Section we show that Lrpr is crucial for the accurate reconstruction of some datasets that
show large variations of amplitudes in the frequency domain.

3.3 INTERPRETABLE HYPERTIME

In the previous section, we proposed a hypernetwork architecture (HyperTime) to learn a prior over a
dataset of time series, encoding each sample as a small embedding Z. Although the HT architecture
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uses interpretable SIRENs as HypoNetworks, the decomposition between trend and seasonality
signals is limited to the predicted INR, and is not explicitly reflected in the generated embeddings.

In Figure 2}bottom, we display our interpretable HyperTime (iHT) network, which builds over the
previous HyperTime architecture to incorporate interpretability into the latent representation. Here
the embedding Z is split in two parts Zp and Zg, corresponding to the encodings of the Trend and
Seasonality signals. Each of these two embeddings is decoded by a different HyperNetwork (Trend
HyperNet and Seasonality HyperNet) and affects the weights of a different block (Trend Block and
Seasonality Block) within the predicted iSIREN. Only at the output of the iSIREN both signals are
recomposed into a predicted time series, which is compared against the ground truth signal via the
reconstruction and spectral losses (L rec and Lppr).

The training of iHyperTime is performed in two stages, in order to improve stability, as explained
for iSIREN in Section[3.1.1] After training, the Set Encoder produces a decomposed encoding of
time series into interpretable embeddings Zr and Zg. As with the HyperTime architecture, these
embeddings can be interpolated to produce new unseen time series. However, as we will show in
Section[d.2] we can now interpolate only one of the embeddings while leaving the other fixed. This
way we can interpolate between time series with different trends while keeping the seasonality fixed
and vice-versa allowing us to introduce fixed temporal structures to the data generation which can be
used to inject domain expertise in cases where there is not sufficient data.

4 EXPERIMENTS

4.1 RECONSTRUCTION

We start by analyzing the reconstruction performance
of our model iSIREN over univariate and multivari-
ate time series datasets from the UCR archive (Bag-
nall et al.| |2017). We selected datasets with vary-
ing lengths and numbers of features, and sampled
100 time series from each of them, training a sin-
gle INR for each time series. We compare against w0ob
other INRs with different activations functions (Tanh, ] i 1
ReLU, Sine) and with ReLU positional encoding 0" 2000 4000 6000 5000 10000 12000
(PE.) (Mildenhall et al} 2020) using INRs with equal Epochs

size (3 hidden layer of 60 FC neurons). In addition, ‘ ‘ ‘
iSIREN presents 4 more trainable parameters per
time series feature, due to the Trend block.

o
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In Figure[3] we display two measures of reconstruc- 107 /

tion error averaged over 100 samples of a dataset \'\
(Forda). Figure B}top displays the MSE training loss 0°°f \
of each model in log space as a function of the train- | | | ‘
ing epoch. We observe that both models based on 000l U;Cqm&f 0405
sine activations converge to similarly low values of '

error. We can also see that iSIREN’s convergence  Figure 3: Comparison of iSIREN with other

is delayed during the first training iterations due to [NR encodings. Top: MSE loss. Bottom:
the sequential training of the Trend and Seasonality MAE of power spectral density.

blocks, detailed in Section[3.1.1]

In Figure [B}bottom, we focus on the accurate reconstruction of the GT spectral distribution. We
illustrate the MAE of the power spectrum density (log) vs the frequency. Here we observe too that
the lowest errors correspond to SIREN and iSIREN for all frequencies, with a slight advantage of our
method for low frequencies. The reconstruction across all datasets has been summarized in Table[T}
where we observe that iSIREN presents the best reconstruction performance, especially in terms of
the spectral distribution. Moreover, for multivariate data iSIREN shows the lowest errors over all
metrics and datasets, with a particularly large advantage in the case of PhonemeSpectra.

Finally in Figure[d] we illustrate the capacity of iSIREN to perform an interpretable decomposition
of time series. In column (a) we show the signal reconstruction, and in columns (b) and (c) the
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corresponding outputs of the Trend and Seasonality blocks. As it would be expected, the Trend
curve follows the overall shape of the signal, while the Seasonality prediction oscillates around zero.
For a qualitative comparison, in columns (d) and (e) we see good agreement with an analogous
decomposition performed by a traditional method (STL (Cleveland et al.l[1990)). In contrast with
iSIREN, STL requires prior knowledge of the frequency of the signal’s seasonality.

Table 1: Comparison using MSE on time space and MAE in frequency space (FFT) of implicit
networks using different activation functions and of iSIREN on univariate and multivariate datasets.

Dataset iSIREN (Ours) SIREN PE. ReLU Tanh

FFT MSE FFT MSE FFT MSE FFT MSE FFT MSE
Univariate
Crop 14e-3 5.6e-6 1.4e-3 1.6e-6 68e-4 7.3e-7 5S5de-1 2.1e-2 8.6e-1 6.0e-2
Energy 4.1e-3 53e-6 1.8e-2 1.2e-5 13e-l1 7.7e-4 15e+0 4.9e-2 19e+0 8.3e-2
FordA 1.7e-2 4.9e-6 1.9e-2 6.2e-6 3.le-1 2.1e-3 2.5e+0 1.3e-1 2.8e+0 1.4e-1
Nonlnv 3.6e-2 1.2e-5 4.0e2 13e-5 1l.le-l 1.3e4 1.0e+0 2.2e-2 13e+0 4.6e-2
Phalanges 1.4e-3 2.1e-6 3.8e-3 1.8e-6 7.6e-:3 1.2e-5 24e-1 3.8e3 7.5e-1 8de2
Stock 2.5e-3 5S.le-6 4.4e-3 1de-6 43e2 1.2e4 6.2e-1 12e2 89e-1 3.8e-2
Multivariate
Cricket 39e-1 4.de-4 45e-1 42e4 1.7e+0 3.7e-3 3.5e+0 1.7e-2 39e+0 3.le-2

Motorlmagery Sde+0 2.1e-3 7.2e+0 6.2e-3 1l.le+l 24e-2 1.0e+l 2.6e-2 1l.le+l 3.0e-2
PhonemeSpectra  2.9e-2  2.1e-6 4.2e-1 2.7e-4 1.8e+0 59e-3 3.0e+0 1.5¢-2 3.4e+0 2.0e-2
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Figure 4: Interpretable decomposition of iSIREN on two time series from the stock dataset. (a)
Ground truth and iSIREN reconstruction. (b) Trend Block output. (c) Seasonality Block output.
Columns (d) and (e) compare the output of iSIREN blocks with classic STL decomposition.

4.2 TIME SERIES GENERATION

We leverage our proposed hypernetwork architectures for time series generation via the interpolation
of latent representations. We follow the experimental set up proposed by |Alaa et al.| (2021)) to
evaluate our model on multiple datasets in terms of two metrics: 1) Predictive score (MAE), which
measures how well the synthetic samples can be used to train a model and predict on real samples in
a forecasting task. 2) F1-score, measuring the quality of the generated data via precision and recall
metrics averaged over all time steps |Sajjadi et al.[(2018)).

In Figure [5] we show qualitative evaluations of the generation performance for iHyperTime, and
compare against multiple methods, including ReaNVP Dinh et al.|(2017) and current state-of-the-art
for time series generation (TimeGAN [Yoon et al.[(2019b) and Fourier Flows |Alaa et al.| (2021))).
We see a good agreement of iHyperTime for all datasets, while other methods fail to match the
original data in some cases. Performance results using the Predictive score and F1-score metrics are
summarized in Table[2] In addition to iHyperTime, we evaluate the following 3 other variations of
the architecture:
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Figure 5: t-SNE visualization of real (blue) and synthetic (orange) data for all univariate datasets (in
columns), using different time series generation methods (in rows).

HyperTime (no FFT): this architecture is directly based on one of the original hypernetwork archi-
tectures from SIREN (Sitzmann et al.).

HyperTime (w/FFT): same as previous, but including the FFT loss in the training.

HyperTime (iSIREN): same as previous, but using iSIREN as the predicted hyponetwork, thus
generating time-series representations with built-in interpretable TS decomposition.

Table 2: Top: Performance scores for data generation using baselines and iHyperTime. Bottom:
HyperTime ablations (in blue: values that improve over the baselines).

Crop Nonlnv Phalan. Energy Stock FordA

RealNVP

MAE 0.170 0.038 0.073 0.036 0.019 0.115
F1 Score 0.981 0.986 0.976 0.964 0.977 0.999
TimeGAN

MAE 0.048 - 0.108 0.056 0.173 -
F1 Score 0.831 - 0.960 0.479 0.938 -
Fourier Flows

MAE 0.040 0.018 0.056 0.030 0.010 0.024
F1 Score 0.991 0.990 0.992 0.936 0.990  0.998
iHT (Ours)

MAE 0.039 0.004 0.024 0.056 0.011 0.009
F1I Score 0.999 0.997 0.997 0.997 0995 0.996
Ablations

HT (no FFT)

MAE 0.040 0.005 0.023 0.058 0.012  0.170
F1 Score 0.999 0.996 0.996 0.998 0.995 0.084
HT (w/ FFT)

MAE 0.040 0.005 0.023 0.057 0.013 0.007
F1 Score 0.999 0.997 0.999 0.997 0.994  0.998
HT (iSiren)

MAE 0.039 0.004 0.024 0.057 0.013 0.008
F1 Score 0.999 0.997 0.999 0.997 0.995  0.997

All hypernetwork architectures consistently generate high-quality synthetic time series, outperforming
the baselines across most datasets and metrics. This indicates that the data generated by the HT and
iHT architectures presents a high predictive utility for model training (Predictive score) and a large
overlap with the distribution of the real data (F1 score).

An interesting failure case is presented with the generation of Forda samples by the HT (no FFT)
model (in red). Here both evaluation metrics indicate a low performance. As shown in the supplemen-
tal material, the unusual diversity of spectral distributions present in the Forda dataset suggests that
HT is unable to learn an effective reduced representation due to the complexity of the data. However,
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the issue is solved by the introduction of the spectral loss £ g g, as observed on the metrics for the
HT (w/FFT) model. Moreover, the inclusion of this loss does not result in a loss of performance over
other datasets.

Finally, in Figure [6] we illustrate the interpolation of interpretable embeddings from iHT. This model
produces independent encodings Zr and Zg for the trend and seasonality signals, enabling additional
control over the synthesis process by interpolating them separately. Figure[6a shows an interpolation
of Zg from source to target, leaving Z7 unchanged. By the end of the process, the interpolated time
series has acquired the seasonality of the target signal, but maintains its original trend. Conversely, in
Figure[6b we show an interpolation of the trend Z7 while fixing the seasonality Zg. In both cases,
we observe a smooth transition of the signal corresponding to the interpolated embedding, indicating
a good generalization of the iHT architecture.
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Figure 6: (a) Interpolation of seasonality, with fixed trend. (b) Interpolation in trend, with fixed
seasonality. In red: original TS (1st column) and target seasonality/trend (last column).

5 CONCLUSIONS

In this work, we explored the use of INRs for the encoding and analysis of both univariate and
multivariate time series data. We proposed a novel INR architecture (iSIREN) that enables learning
an interpretable (seasonality-trend) continuous representation of time series data. We showed that
our model outperforms other INRs in terms of the accurate reconstruction of the signal and its
spectral distribution, with particular high performance for multivariate time series. Following this,
we presented HyperTime, a hypernetwork architecture that leverages iSIRENS to learn a prior over a
time series dataset. We demonstrated that by interpolating between embeddings learned by HT, we
can generate new synthetic time series. To guide the training of HT, we introduced a Fourier-based
loss that enforces the accurate reconstruction of the spectral distribution of the ground truth signals.

Finally we introduced iHyperTime, a hypernetwork model that incorporates interpretability into its
latent representation of time series. We compared both HT and iHT against state-of-the-art methods
for time series generation, showing improved results across most datasets and generative evaluation
metrics. Furthermore, we showed that the disentangled seasonal-trend embeddings learned by iHT
can be leveraged to introduce constraints into the generation, with potential applications for the
incorporation of expert knowledge in the synthesis of new time series.
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