
Published as a conference paper at ICLR 2023

ON THE USEFULNESS OF EMBEDDINGS, CLUSTERS
AND STRINGS FOR TEXT GENERATOR EVALUATION

Tiago Pimentel∗,1, Clara Meister∗,2, Ryan Cotterell2
1 University of Cambridge, 2 ETH Zürich
tp472@cam.ac.uk, {clara.meister, ryan.cotterell}@inf.ethz.ch

ABSTRACT

A good automatic evaluation metric for language generation ideally correlates
highly with human judgements of text quality. Yet, there is a dearth of such metrics,
which inhibits the rapid and efficient progress of language generators. One excep-
tion is the recently proposed MAUVE. In theory, MAUVE measures an information-
theoretic divergence between two probability distributions over strings: one rep-
resenting the language generator under evaluation and the other representing the
true natural language distribution. MAUVE’s authors argue that its success comes
from the qualitative properties of their proposed divergence. Yet in practice, as this
divergence is uncomputable, MAUVE approximates it by measuring the divergence
between multinomial distributions over clusters instead, where cluster assignments
are attained by grouping strings based on a pre-trained language model’s embed-
dings. As we show, however, this is not a tight approximation—in either theory
or practice. This begs the question: why does MAUVE work so well? In this work,
we show that MAUVE was right for the wrong reasons, and that its newly proposed
divergence is not necessary for its high performance. In fact, classical divergences
paired with its proposed cluster-based approximation may actually serve as better
evaluation metrics. We finish the paper with a probing analysis; this analysis leads
us to conclude that—by encoding syntactic- and coherence-level features of text,
while ignoring surface-level features—such cluster-based substitutes to string dis-
tributions may simply be better for evaluating state-of-the-art language generators.1

1 INTRODUCTION

Probabilistic text generators have improved greatly over the last years, with models producing increas-
ingly human-like text (Yang et al., 2019; Brown et al., 2020; Raffel et al., 2020; Rae et al., 2021; Hoff-
mann et al., 2022). As the gap between human and model-generated text closes, the quality of our eval-
uation metrics becomes ever more important for determining generator quality, especially given the
increasing number of user-facing systems employing these generators. While human evaluations serve
as the gold standard, they are costly (in both time and money), leading researchers to rely on automatic
metrics—i.e., metrics that can be measured by a computer—for the bulk of their development process.

Many automatic language generator evaluation metrics share the same underlying mechanism: the
quantitative comparison of two probability distributions. Specifically, most metrics measure a
difference between the distributions over strings defined by: (1) a language generation model2 and (2)
the natural language itself. This includes some of the most widely used language evaluation metrics:3
cross-entropy (Shannon, 1948), perplexity (Jelinek et al., 1977), and (more recently) MAUVE (Pillutla
et al., 2021). As typically applied to evaluate language generators, however, these metrics have a
number of computational and qualitative issues (discussed in §3). Such issues manifest empirically:
the most commonly used automatic metrics are known to correlate poorly with human judgements
(Wiseman et al., 2017; Reiter, 2018; Sellam et al., 2020; Gehrmann et al., 2021).

∗Equal contribution.
1Code available at https://github.com/rycolab/clusters-in-language-evaluation.
2We define a language generator as a probability distribution qw over strings w. Specifically, we consider

this distribution as used during generation. E.g., if decoding is performed with nucleus sampling, we consider
the final distribution where every sentence with tokens not in the nucleus is assigned a probability of 0.

3 Most measures we consider are not metrics in a strict sense; we use the term “metric” out of convention.

1

https://github.com/rycolab/clusters-in-language-evaluation

Published as a conference paper at ICLR 2023

A newly proposed metric stands apart: MAUVE (Pillutla et al., 2021). In theory, MAUVE measures
the area under the curve formed by the divergence between two probability distributions, qualitatively
mimicking a precision–recall quantification (Djolonga et al., 2020; Kynkäänniemi et al., 2019).
The authors attribute the success of their metric to the qualitative properties of this new class of
divergences. Yet, due to this divergence being in practice uncomputable, Pillutla et al. propose an
approximation to it. Specifically, rather than directly comparing the original two distributions over
strings, MAUVE first clusters samples taken from these distributions based on the embeddings of a
pre-trained language model; it then estimates the proposed divergence using the samples’ empirically-
observed multinomial distributions over cluster assignments. As we will show, this approximation
is bad in both theory §4 and practice §5.1—to the point that the term “approximation” is arguably
a misnomer. Thus, the reasons why MAUVE works well—knowledge which is important for the
continued progress of language generator evaluation metrics—are still unknown.

In this work, we aim to uncover these reasons. To this end, we consider the axes on which MAUVE
differs from other evaluation metrics: is MAUVE’s success due to the new divergence metric, to its
“approximation”, or both? Empirically, we identify MAUVE’s substitution of probability distributions
over strings with probability distributions over embedding-based clusters as the main factor for its
success. We show that mathematically, this substitution leads to a quite biased estimator of the original
string-based divergences. Yet it also leads to metrics with lower variance and stronger correlations
with human judgements. In fact, all divergence measures analysed here correlate more strongly with
human judgements when cluster-based distributions are used in place of string-based ones.

Finally, in order to understand the root of the effectiveness of these cluster-based metrics, we probe
the clusters themselves. We find that sentence-level permutations within texts noticeably affect cluster
assignments, suggesting that cluster-based metrics are susceptible to attributes such as coherence.
On the other hand, basic manipulations that render text unhuman-like, such as removing all articles
from the input text, do not seem to affect these metrics significantly. Together, these results lead
us to conjecture that embedding-based metrics may be favourable when estimating the quality of
state-of-the-art (SOTA) language generators, as SOTA models are known to (at least typically)
produce grammatical text. That is, by ignoring surface-level features of text—while emphasising
discourse- and coherence-level ones—clustered embeddings may simply be better suited for the
evaluation of the top language generation systems. Yet these findings also suggest routes through
which such metrics can be gamed, bringing into question their robustness. We believe these findings,
along with the theoretical framework we provide for evaluation metrics’ comparison, are important
for the further development of language generator evaluation metrics.

2 DIVERGENCE METRICS FOR LANGUAGE GENERATOR EVALUATION

When evaluating language generation systems, we will first assume the existence of an unknown
ground-truth distribution pw. This distribution is defined over strings w and its domain spans
W ≡ Σ∗, where Σ is an alphabet of words and Σ∗ is its Kleene closure. Second, we are given
a probabilistic text generator qw, which is also a distribution overW . An evaluation metric for a
language generator qw can now be defined as a measure of its “distance” from pw: ∆(pw, qw). In
short, ∆(·, ·) should return high values if qw is a bad approximation to pw, and it should return low
values if it is a good one.

Notably, it is not clear whether qw being a good approximation to pw in terms of an arbitrary ∆(·, ·)
guarantees that it will be a good language generator. Indeed, models that perform well in terms of
standard metrics, such as perplexity, often still produce poor-quality text (Holtzman et al., 2020).
Thus, we are interested specifically in ∆(·, ·) that correlate highly with human quality judgements.

More formally, we define human quality judgements as a (potentially noisy) mapping α(qw) from a
language generator to a real-valued score. For fixed pw, a useful metric ∆(pw, ·) for evaluating the
quality of a language generator qw is one whose scores correlate highly with humanscores(·). This
notion can be operationalised as follows. Assume we have N language generator models. Let us
define:

δhuman(q
(1)
w , . . . , q(N)

w) =
[
α
(
q(1)w

)
, . . . ,α

(
q(N)
w

)]
(1)

δmetric(q
(1)
w , . . . , q(N)

w) =
[
∆
(
pw, q

(1)
w

)
, . . . ,∆

(
pw, q

(N)
w

)]
(2)

2

Published as a conference paper at ICLR 2023

We then quantify a metric’s usefulness on a specific natural language task (and its distribution pw) as:

quality(∆, pw) = |corr (δhuman, δmetric) | (3)

We now review common choices for ∆(·, ·). Given the probabilistic nature of most language
generators, a number of divergence measures are among these choices, which quantify the difference
between two probability distributions.4 The rest of this work focuses primarily on this class of metrics.

Forward Divergence. Cross-entropy, ∆H(pw, qw)
def
= H(pw, qw), which is equivalent (up to an

additive constant) to the forward Kullback–Leibler (KL) divergence, is one such choice:

∆→(pw, qw)
def
= KL(pw || qw) = H(pw, qw)−H(pw)

(1)
/ H(pw, qw) = ∆H(pw, qw) (4)

where we use / to signify additive or multiplicative equivalence. (1) is true since H(pw) is constant
with respect to qw. Since Pearson and Spearman correlations—the metrics we use to evaluate ∆’s
quality—are invariant to translational shifts, the cross-entropy and forward KL are equivalent as
language generator metrics. We will refer to them interchangeably during subsequent comparisons.

Backward Divergence. Albeit much less common, another potential evaluation metric would be
the backward (exclusive) KL divergence:

∆←(pw, qw)
def
= KL(qw || pw) (5)

As opposed to the forward KL, when use as an evaluation metric, Eq. (5) is not effectively equivalent
to the cross-entropy between qw and pw, as H(qw) is not constant across language generators qw.

Exponentiated Divergence. By far, the most common choice of ∆ to evaluate language models is
the perplexity: ∆perp(pw, qw)

def
= eH(pw,qw). Notably, perplexity is equivalent (up to a multiplicative

constant) to an exponentiated Kullback–Leibler divergence between pw and qw, which follows from
the same relationship as in Eq. (4). Given the property that both Pearson and Spearman correlations
are invariant to a change in scale, the perplexity and exponentiated KL will thus be equivalent as
language generator metrics. For consistency, we will use solely the exponentiated KL in our analyses:

∆exp(pw, qw)
def
= eKL(pw||qw) (6)

Jensen–Shannon Divergence. Note that the KL divergence is non-symmetric and unbounded.
On the other hand, the Jensen–Shannon (JS) divergence—defined as the average of two KLs—is
symmetric with respect to its inputs and is guaranteed to produce bounded values:

∆JS(pw, qw)
def
=

1

2

(
KL(pw || r.5w) + KL(qw || r.5w)

)
, rλw = λ pw + (1− λ) qw (7)

Area Under the Curve (AUC) Divergence. Finally, information divergence frontiers are a
recently proposed class of metrics for generative models (Sajjadi et al., 2018; Kynkäänniemi et al.,
2019). The variant proposed by Pillutla et al. (2021) computes the area under the curve formed by
a series of Kullback-Leibler divergences as we change a mixing parameter λ:

∆AUC(pw, qw) = 1−AUC
(
e−sKL(pw||rλw), e−sKL(qw||rλw)

)
, rλw = λ pw + (1− λ) qw (8)

where λ is varied across the interval [0, 1], and s ∈ R>0 is a strictly positive real-valued scaling
constant. Note that we define the AUC divergence as 1−AUC(·, ·) so that a larger value indicates
a greater discrepancy with the reference corpus pw.

3 INFELICITIES AND APPROXIMATIONS

There are several issues, both computational and qualitative, with using the divergences presented
in §2 to evaluate language generators. We now review these issues, along with both commonly-used
and newly-proposed methods to address them via approximations.

4Here we make use of shifted divergences: a divergence measure that potentially has an additive constant,
i.e., there exists a constant c ∈ R such that ∆(·, ·) + c is a divergence. For our purposes, an additive constant
should not affect the quality of our metrics, as the correlation in Eq. (3) is translation-invariant.

3

Published as a conference paper at ICLR 2023

3.1 NECESSITY OF FULL SUPPORT

A well-known property of the (forward) KL divergence between two distributions pw and qw is that
it is infinite for any qw that assigns 0 probability to an event in the support of pw (i.e., for which
pw(w) > 0). The above is often not an issue for ∆exp and ∆→: most neural language generators
cannot assign 0 probability to any string due to the final softmax operation typically used to project
their outputs onto the probability simplex. However, these same models are often used with decoding
strategies that prune the spaceW: e.g., both top-k and nucleus sampling modify qw such that strings
which do not meet a certain criterion are reassigned 0 probability. While top-k and nucleus sampling
typically lead to systems with qualitatively better text, they will likely be given an infinitely bad score
by both ∆exp and ∆→, which is perhaps too harsh a penalty for an otherwise good language generator.

3.2 pw IS UNKNOWN

In practice, we do not have access to the true distribution pw. Rather, we are typically given a corpus
{wpw

n }
N
n=1, whose instances we assume to be sampled i.i.d. from pw. The common approach to

address this issue is thus to derive a statistical estimator ∆̂ that uses this corpus to approximate ∆.
There are two common strategies for building such estimators: Monte Carlo and plug-in estimation.

Monte Carlo Estimation. Our i.i.d. assumption w.r.t. samples in {wpw
n }

N
n=1 allows us to derive a

Monte Carlo estimator for certain divergences. We start with the forward KL divergence:

K̂L(pw || qw)
def
=

1

N

N∑
n=1

log
pw(wpw

n)

qw(wpw
n)

= − 1

N

N∑
n=1

log qw(wpw
n) + const (9)

where const ∈ R is constant with respect to qw. Eq. (9) is an unbiased estimator of KL divergence,
which in turn allows us to build estimators ∆̂→ and ∆̂exp. Unfortunately, unbiased estimates of ∆←,
∆JS and ∆AUC are not as straightforward to compute, as they require explicit knowledge of pw rather
than just samples (see App. A). This issue motivates the use of our next set of estimation techniques.

Plug-in Estimation. Here we consider estimation via building an approximation of pw itself to
use in the formulas given in §2. Specifically, we construct a density estimator for pw (which we
denote as p̂w) and “plug it into” a given ∆.5 However, this is a bit circular: the task of building
a language generator qw itself is often framed as density estimation of pw. Thus, if we think qw
is the “best” estimator for pw, we should logically use it in our plug-in estimator. Yet, using qw
would be nonsensical; by the definition of a (shifted) divergence, it would always lead to the lowest
possible value of ∆, e.g., ∆→(qw, qw) = 0. To use plug-in estimation in this setting, we should
therefore choose a different estimator for pw, e.g., from a family of density estimators that differs
from those used to create qw. More formally, we consider a function π which takes a corpus as
input and produces a (queryable) distribution p̂w

def
= π({wpw

n }
N
n=1). This function typically induces a

secondary model, e.g., an n-gram model or neural network, trained on the corpus {wpw
n }

N
n=1.

Our chosen π may introduce biases (e.g., from the inductive biases of the architecture parameterising
π) into our metrics’ estimation. To balance out such biases, we may consider using the same method
to create an approximation q̂w for use in our plug-in estimators, rather than directly querying qw:

∆̂←({wpw
n }

N
n=1 , qw)

def
= K̂L(q̂w || p̂w) (10)

Plug-in estimators for ∆JS and ∆AUC are defined similarly. Further, if q̂w is a smoothed
approximation to the original qw, using it may also mitigate the issues discussed in §3.1. We thus
also compute estimators for the forward/exponentiated divergences using plug-in estimators, e.g.,:

∆̂→({wpw
n }

N
n=1 , qw)

def
= − 1

N

N∑
n=1

log q̂w(wpw
n) (11)

5Often, plug-in and Monte Carlo estimators must be used together. Even if we are measuring the divergence
between two queryable distributions, the sum overW is infinite and non-decomposable, thus uncomputable.

4

Published as a conference paper at ICLR 2023

Unfortunately, most functions π cannot produce a good estimate of pw using only a small corpus,
which is the case we consider since we rely on evaluation sets for {wpw

n }
N
n=1. While the best available

language models are a class of π typically trained on millions (if not billions) of sentences, a standard
evaluation set is quite small—on the order of one to ten thousand sentences—and we cannot expect π
to provide a good p̂w when fit using only such a small dataset. Accordingly, depending on our choice
of π, this class of metrics may be either high variance or high bias, both of which are problematic.

3.3 CLUSTERING-BASED APPROXIMATIONS

For the ∆̂ above that require density estimators for pw and/or qw, our choice of π will have a large
effect on its value. We may thus wish to rethink our approximation technique altogether, and instead
work with different distributions for which we can create lower variance density estimators. This is the
approach used by Pillutla et al. (2021) when approximating ∆AUC. Specifically, instead of computing
the above metrics on the original distributions pw and qw, they use the cluster-based distributions pc
and qc. Given a pre-trained language model, these cluster-based distributions are defined as:

pc(c) =
∑
w∈W

pw(w)1
{
c = φ(PLM(w))

}
(12)

where PLM(·) takes as input an utterance w and outputs an embedding r, and φ(·) is a pretrained
clustering function. Note that the function φ(·) is trained jointly on samples from the two distributions
under consideration as we will detail later; we defer the reader to Pillutla et al. (2021) for a more de-
tailed explanation of the procedure. Given these distributions, we can evaluate cluster-based versions
of all the divergences above, simply by substituting the original pw and qw with the new pc and qc.

4 ANALYSING CLUSTER-BASED APPROXIMATIONS

We now take a closer look at the biases introduced by the substitution of cluster-based distributions
suggested in §3.3. For simplicity, we focus on the bias introduced to KL(pw || qw)—a computation
involved in MAUVE’s ∆AUC. This divergence can be decomposed as:

KL(pw || qw)︸ ︷︷ ︸
string−based KL

(1)
= KL(p(c) || q(c)) + KL(p(w | c) || q(w | c))︸ ︷︷ ︸

≥0

≥ KL(pc || qc)︸ ︷︷ ︸
cluster−based KL

(13)

where (1) follows from the fact that p(c,w) = p(w), which is true because the cluster assignment is
deterministic, i.e.: p(c | w) = 1{c = φ(PLM(w))}. See the full decomposition of this equation in
App. B. Notably, as KL divergences are always non-negative, the cluster-based version is negatively
biased, lower-bounding the string-based one. Further, the actual measurement is done on the
distribution over cluster assignments p(c); the distribution p(w |c) is completely ignored.

Assuming a reasonable number of clusters is used when defining pc, however, it should be easier to
create good approximations of distributions over clusters than distributions over strings due to the
sheer difference in the size of the supports alone. Consequently, the variance of cluster-based metrics
should be lower, at the cost of the bias introduced by this substitution. Further, it is not clear whether
this bias is inherently bad when evaluating the quality of language generators: the answer to this
question must be determined empirically (by measuring the correlation in Eq. (3)). To this end, we now
provide an empirical comparison between string- and cluster-based language generation evaluation.

5 EXPERIMENTS

Setup. We follow the setup of Pillutla et al. throughout our experiments. We compare systems
for open-ended text generation qw with human-generated text pw. As human-generated samples,
we use 5k strings taken from WebText’s test set. As model-generated text, we sample 5k strings from
each of our evaluated systems, conditioning our models on the first 10 words of human-generated
strings before sampling (i.e., a text-completion task). For our language generators, we compare 4
model architectures (all variants of GPT-2), each under two decoding strategies, giving us a total of 8
systems. Explicitly, we compare the small, medium, large, and XL versions of GPT-2, decoding
strings using either ancestral or nucleus sampling. Following Pillutla et al. (2021), we use a nucleus

5

Published as a conference paper at ICLR 2023

probability of 0.9 for small and medium, while 0.95 for large and XL GPT-2’s. Importantly,
we run our experiments only on English text, which is a notable limitation of our work; future work
should verify that findings hold across languages.

String-based Approximations p̂w. To compute our string-based divergences, we require a sec-
ondary language model p̂w to estimate pw. Further, following the issues highlighted in §3, we will
also rely on a secondary language model q̂w to estimate qw. We will use n-gram models for these
approximations. Specifically, we use Kneser-Essen-Ney smoothed 5-gram models, as implemented in
KenLM (Ney et al., 1994; Heafield, 2011). We choose n-gram models explicitly because—while they
are by no means SOTA language models—they should have inductive biases which are different from
the models we are trying to evaluate. We present results using LSTM-based estimators in App. E.
When computing ∆AUC, we use a scaling constant s of 0.2.

Cluster-based Approximations p̂c. Cluster-based distributions, as presented in Eq. (12), are
defined by a choice of PLM(·) and pre-trained clustering function φ(·). We rely on GPT-2 XL as our
PLM, and use K-means as our clustering function; results using other pre-trained language models
are in App. E. Specifically, we first extract embeddings from the last word in each sentence using
GPT-2 XL and then use PCA to reduce their dimensionality (keeping 90% of the original variance
explained); results using mean of word embeddings can be found in App. E. We then train K-means
(with K = 500) on a joint set of GPT-2 embeddings extracted from: the 5k human-generated
strings, and 5k model-generated sentences. Finally, we approximate p̂c and q̂c by computing the
frequency with which strings (among these 5k used ones) are assigned to each cluster. To avoid
infinite divergence measures, we estimate distributions using Laplace smoothing with α = 1 (which
is equivalent to imposing a Dirichlet distributed prior with α = 1 over the cluster allocation). When
computing ∆AUC, we use a scaling constant s of 5.67

5.1 DOES pc APPROXIMATE pw?

small medium large xl
Model

50

25

0

25

50

75

C
or

re
la

tio
n

(%
)

qc qw

Figure 1: Correlations between the true qw
and the estimated q̂c and q̂w.

Our first experiment tries to identify whether pc and qc
provide faithful approximations of pw and qw. To this
end, we compare both q̂w and q̂c to the true qw, i.e., the
language generator under evaluation. Explicitly, we com-
pute the Spearman correlations between the probabilities
assigned by each model to the strings in {wqw

n }
N
n=1.

Fig. 1 presents these correlations. We see that—despite
being estimated on very little data—probability esti-
mates from our n-gram models correlate strongly with
the ground-truth probabilities of qw; this result holds
for all four GPT-2 architectures. On the other hand, our
cluster-based probabilities consistently present negative correlations with qw. This result has an
important implication: if cluster distributions do not correlate with qw, then KL(p̂c || q̂c) is likely
a poor estimate of KL(pw || qw). This further implies that the approximation used by Pillutla et al. is
not an accurate estimate of ∆AUC(pw, qw), which brings into question whether this new divergence
is really responsible for MAUVE’s success.

5.2 ∆ AS TEXT EVALUATION METRICS

We now compare how various string- and cluster-based divergence measures correlate with human
judgement scores.8 In short, Fig. 2 shows that all divergences do better when estimated with
cluster distributions. These results evince that MAUVE’s (Pillutla et al., 2021) high correlations
with human judgements (represented here as ∆̂AUC(pc, qc)) are mainly due to their use of cluster-
based approximations (pc, qc), rather than to their proposed divergence ∆AUC. In fact, we see

6We ran our entire pipeline (from sampling strings {wqw
n }Nn=1 from qw to evaluating the KLs) with 5

different seeds. The variance across seeds is depicted as error bars in Figs. 1 and 2.
7We follow Pillutla et al.’s (2021) experimental setup here. Note that Pillutla et al. provide an in-depth

analysis of experimental design choices and show MAUVE is robust to various hyperparameter choices.
8We use the human judgement scores collected by Pillutla et al. (2021).

6

Published as a conference paper at ICLR 2023

(pc, qc) (pw, qw)
0

25

50

75

100

C
or

re
la

tio
n

(%
)

(a) Interestingness

(pc, qc) (pw, qw)
0

25

50

75

100

C
or

re
la

tio
n

(%
)

(b) Sensibility

(pc, qc) (pw, qw)
0

25

50

75

100

C
or

re
la

tio
n

(%
)

(c) Human likeness

Figure 2: Correlations between string- and cluster-based divergences with human judgement scores.
Legend: ∆exp in dark green; ∆→ in orange; ∆← in blue; ∆JS in pink; ∆AUC in lime green.

slight improvements over ∆̂AUC when using the divergences ∆̂← and ∆̂JS instead. Furthermore,
cluster-based divergences appear to be more stable, exhibiting smaller variances across random seeds.
Collectively, our results suggest that cluster-based divergences may produce better metrics of text
quality than string-based divergences. This motivates the question: Which components of natural
language are captured by cluster-based distributions pc, and which are overlooked by ignoring p(w | c)
when computing the cluster-based divergences? Our next set of experiments aim to answer this.

6 PROBING CLUSTERS

To better understand the aspects of natural language that our cluster distributions encode, we must first
understand how φ(PLM(·)) partitions the string spaceW . In other words, we must understand what
components of natural language—e.g., semantics, syntactic attributes, or surface features—lead to
strings being assigned to similar or different clusters. Such an analysis should provide a deeper insight
into the actual similarity being measured by cluster-based divergences (while also revealing how such
a metric might be gamed). To this end, we probe (Alain & Bengio, 2016) the clusters learned by the
MAUVE algorithm for a number of linguistic attributes—including subject matter, sentiment, prose
style, word order, basic grammaticality and document length—looking at how they affect both cluster
assignment and the divergence scores between texts that differ in these characteristics. Notably, we
probe cluster assignments directly—without relying on any diagnostic classifiers (Adi et al., 2017).
Our probing analyses are thus exempt from most recent criticism against probing methodologies
(Hewitt & Liang, 2019; Pimentel et al., 2020a;b; Ravichander et al., 2021; Elazar et al., 2021).

6.1 FINDING FEATURES pc ENCODES

Setup. We look at texts annotated with different attribute categories in order to explore correlations
between the presence of these attributes and cluster membership. Specifically, we analyse texts’:
sentiment, authorship, and topic (using the Yelp Polarity, News Category, and 20 NewsGroup datasets,
respectively). Further details on datasets are provided in App. D. For each of these classification
datasets, we compute the cluster–category distributions that result from the MAUVE algorithm using
the standard training split for the respective datasets; all evaluations are then performed on test splits.
Explicitly, we first learn a partitioning φ(·) of the embedding space (w.r.t a language model PLM(·)).
Each cluster is then labelled with the majority category represented in that cluster by training
examples; text categories in the test set are then predicted using this labelling, depending on which of
the clusters the example falls into. For comparison’s sake, we use four language models as PLM(·):
GPT-2 with small, medium, large, and XL architectures. Results using embeddings from BERT
(Devlin et al., 2019) can be found in App. E. Further, we use two methods for learning clusters:

• φ(·) Learned on WebText. Using the same procedure as in §5.2, we train PCA and K-means
functions to partition the embedding space (again relying on WebText’s test set for our data). This
mimics the setting under which our partitions would be learned in practice.9

• φ(·) Learned on Training Set. We instead train the PCA and K-means clustering functions on
the analysed dataset’s training set. This setting studies the partitioning that our clustering functions
have the capacity to learn in an ideal setting, i.e., where the attribute in question is one of the main
differentiating factors between texts.

9If no strings in the training set are assigned to a cluster, we label it with the overall majority category.

7

Published as a conference paper at ICLR 2023

(a) Sentiment (b) Authorship (c) Topic

Figure 3: Accuracy when predicting different attributes of text from their cluster assignments. Assign-
ments (i.e. φ(·)) are learned using text from either WebText, or the training set of the respective classi-
fication datasets. Dashed lines represent baseline accuracies, i.e., always guessing the majority class.

Results. In Fig. 3a, we see that, at least for large numbers of clusters, cluster assignment is indeed
indicative of a text’s sentiment. Interestingly, this is the case even when clusters are trained on data
that is not particularly polar in sentiment (i.e., on WebText). On the other hand, we are only able
to predict author and topic (with reasonable accuracy) when clusters are learned on text data with
authorship and topic as distinguishing factors. These results indicate that, while writing style and
subject matter are captured by the text embeddings, they likely were not being used as distinguishing
features between corpora in our cluster-based divergences. We further see that, in all classification
settings, the capacity to encode these analysed attributes appears to increase with model size, perhaps
suggesting that the embedding spaces of larger models decompose along higher-level features of text.

6.2 HOW TEXT FEATURES IMPACT ∆

We next assess how changing different features of our evaluated text impacts divergence scores.
Specifically, we look at the impact of: text truncation; article removal; stopword removal; sentence-
level permutations; and word-level permutations.

Setup. We follow a similar setup to §5. In order to create a more controlled setting, though, we
primarily consider human-generated text in these experiments (i.e., the 5k human-written articles in
WebText’s test set). We take the first 2500 articles of this dataset as our reference corpus {wpw

n }
N
n=1.

We then use the remaining 2500 reference strings as the comparison corpus, i.e., in place of the
model-generated text that we would typically evaluate {wqw

n }
N
n=1. In order to explore how changing

specific features of text affects ∆ w.r.t. the reference corpus, we then compute scores when making
the following modifications to the comparison corpus:

• No modification (p). This is a baseline experiment where we keep the original strings unchanged.
• Text Truncation (pshort). We truncate texts to 1/3 of their original length. This allows us to

understand whether the divergence metrics pick up on differences in dataset length statistics.
• Article Removal (pno art). We remove all articles (‘a’, ‘an’ and ‘the’) in the text. This allows

us to understand whether the divergence metrics can distinguish between texts with or without
basic levels of fluency and grammaticality.

• Stopwords Removal (pno stop). We remove all stopwords (e.g., ‘that’ or ‘so’) in the text. This
allows us to understand whether the divergence metrics can detect differing levels of syntactic
coherence, rather than just focusing on content words.10

• Sentence-level Permutation (pswap). We permute the first halves of texts (as delineated by
sentences) across the entire corpus (i.e. randomly reassigning the strings’ first halves). This
allows us to understand whether the divergence metrics detect coherence.

• Word-level Permutation (prand). We randomly permute all words in a text. This allows us to un-
derstand whether the divergence metrics can only distinguish between bag-of-word level features.

• GPT-2 Baseline (q). As an extra baseline, we also use the first 2500 generations from GPT-2
XL on the WebText text-completion task, as in §5.

10Stopwords are defined as common words, such as “that” or “so”, that primarily serve a syntactic function.
We use the set of English stopwords defined by NLTK (Bird et al., 2009).

8

Published as a conference paper at ICLR 2023

Figure 4: Divergence measures between two corpora: the reference text is unmodified while the
comparison text undergoes perturbation. Higher values indicate a greater discrepancy according to ∆.

Results. Fig. 4 shows that certain alterations to the evaluated text—such as completely removing
articles—have almost no impact on its divergences from the reference corpora for various ∆. In fact,
text without any articles is judged as better than GPT-2 XL’s by all of the cluster-based divergences
(see Fig. 10 for a zoomed-in version). Further, while this perturbation undoubtedly affects the text’s
fluency, it has less of an effect on ∆ than, e.g., truncating texts. This is arguably undesirable: A
metric of text quality should place more emphasis on fluency than surface statistics, such as length.

On the other hand, our metrics deem text with stopwords removed as utterly different from the
reference. Permuting words within texts has a similar effect, demonstrating that, at least to some
extent, the embedding space captures notions of syntax and grammaticality, rather than pure unigram
statistics. The increase in ∆ shown when performing sentence-level permutations likewise suggests
that the clusters delineate different levels of coherence to some extent. In Fig. 13 (in App. E), we
perform an additional experiment where we again probe the clusters (as in §6.1), but for surface
features of text this time, such as the percentage of stopwords and punctuation symbols in a text.
There we see evidence that such features of text are not strongly encoded in the clustering scheme.

Perhaps surprisingly, when applied to cluster-based distributions, all of the studied ∆ metrics rank the
distance of the perturbed texts from the reference texts in the exact same order (this is clear in Fig. 10,
a zoomed-in version of Fig. 4). For these perturbations, the ∆ differ only in the magnitude of their
outputs, further suggesting that the ∆AUC metric itself is likely not critical for the effectiveness of
MAUVE. One potential avenue for future research would be investigating whether different algorithms
for discretisation of the embedding space create clusters that align with specific linguistic attributes;
this could be a useful diagnostic for language generators’ improvement.

This section’s results—along with those of §6.1—suggest that divergences based on PLM embeddings
are more sensitive to syntax- and coherence-related properties of the target text than to its superficial
features. The opposite, however, might be said of our string-based distributions. These findings
offer a potential explanation for the effectiveness of metrics that make use of PLM embeddings, such
as MAUVE or BERTSCORE (Zhang et al., 2020). As current SOTA language generators already
typically produce grammatical text, being invariant to surface statistics may perhaps be a feature—as
opposed to a bug—when trying to assess the quality of the text they produce. Yet, this may also reveal
potential ways in which such metrics can be gamed, bringing this paradigm’s robustness into question.

7 CONCLUSION

In this paper, we analyse MAUVE, a recently-proposed automatic metric for language generator
evaluation. While MAUVE correlates quite well with human quality judgements, it is unclear which
of the metric’s design choices are in fact responsible for its success—a shortcoming that impedes the
further development of language generator evaluation metrics. We attempt to rectify this shortcoming.
We first provide a general theoretical framework for the comparison of language generator evaluation
metrics. Then through a series of empirical studies, we identify MAUVE’s substitution of probability
distributions over embedding-based clusters—in place of the traditional distributions over strings—as
the attribute largely responsible for the metric’s success. In order to better understand the nature of
this improvement, we probe the clusters used by the density estimators, analysing what they ignore
and what they emphasise about the input text. We find that, while distributions over clusters are
sensitive to syntax- or coherence-level perturbations to the text, this is not the case for several surface-
level perturbations. We thus conjecture that, by focusing on higher-level text features, cluster-based
evaluation metrics may simply be better suited to rank high-performing models, and that this is a
general paradigm worth further exploration.

9

Published as a conference paper at ICLR 2023

8 ACKNOWLEDGEMENTS

We would like to thank the authors of MAUVE for sharing their human evaluation data with us. We
would also like to thank Gábor Melis for his insightful feedback on an initial version of this paper,
our anonymous reviewers for their help in improving our final draft, and Luca Malagutti for detailed
feedback on clarity and presentation.

REFERENCES

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, and Yoav Goldberg. Fine-grained analysis
of sentence embeddings using auxiliary prediction tasks. In International Conference on Learning
Representations, 2017. URL https://openreview.net/forum?id=BJh6Ztuxl.

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes.
arXiv preprint arXiv:1610.01644, 2016. URL https://arxiv.org/abs/1610.01644.

Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for MT evaluation with
improved correlation with human judgments. In Proceedings of the ACL Workshop on Intrinsic
and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pp. 65–72,
Ann Arbor, Michigan, June 2005. Association for Computational Linguistics. URL https:
//aclanthology.org/W05-0909.

Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with Python. O’Reilly
Media, Inc., 1st edition, 2009. ISBN 0596516495. URL https://www.nltk.org/book/.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//www.aclweb.org/anthology/N19-1423.

Josip Djolonga, Mario Lucic, Marco Cuturi, Olivier Bachem, Olivier Bousquet, and Sylvain
Gelly. Precision-recall curves using information divergence frontiers. In Silvia Chiappa and
Roberto Calandra (eds.), Proceedings of the Twenty Third International Conference on Artifi-
cial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning Research, pp.
2550–2559. PMLR, 26–28 Aug 2020. URL https://proceedings.mlr.press/v108/
djolonga20a.html.

Yanai Elazar, Shauli Ravfogel, Alon Jacovi, and Yoav Goldberg. Amnesic probing: Behavioral
explanation with amnesic counterfactuals. Transactions of the Association for Computational
Linguistics, 9:160–175, 2021. doi: 10.1162/tacl_a_00359. URL https://aclanthology.
org/2021.tacl-1.10.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical Neural Story Generation. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 889–898, Melbourne, Australia, July 2018. Association for Computational Linguistics.
doi: 10.18653/v1/P18-1082. URL https://www.aclweb.org/anthology/P18-1082.

Sebastian Gehrmann, Tosin P. Adewumi, Karmanya Aggarwal, Pawan Sasanka Ammanamanchi,
Aremu Anuoluwapo, Antoine Bosselut, Khyathi Raghavi Chandu, Miruna Clinciu, Dipanjan

10

https://openreview.net/forum?id=BJh6Ztuxl
https://arxiv.org/abs/1610.01644
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://www.nltk.org/book/
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://proceedings.mlr.press/v108/djolonga20a.html
https://proceedings.mlr.press/v108/djolonga20a.html
https://aclanthology.org/2021.tacl-1.10
https://aclanthology.org/2021.tacl-1.10
https://www.aclweb.org/anthology/P18-1082

Published as a conference paper at ICLR 2023

Das, Kaustubh D. Dhole, Wanyu Du, Esin Durmus, Ondrej Dusek, Chris C. Emezue, Varun
Gangal, Cristina Garbacea, Tatsunori B. Hashimoto, Yufang Hou, Yacine Jernite, Harsh Jhamtani,
Yangfeng Ji, Shailza Jolly, Mihir Kale, Dhruv Kumar, Faisal Ladhak, Aman Madaan, Mounica
Maddela, Khyati Mahajan, Saad Mahamood, Bodhisattwa Prasad Majumder, Pedro Henrique
Martins, Angelina McMillan-Major, Simon Mille, Emiel van Miltenburg, Moin Nadeem, Shashi
Narayan, Vitaly Nikolaev, Rubungo Andre Niyongabo, Salomey Osei, Ankur P. Parikh, Laura
Perez-Beltrachini, Niranjan Rao, Vikas Raunak, Juan Diego Rodríguez, Sashank Santhanam, João
Sedoc, Thibault Sellam, Samira Shaikh, Anastasia Shimorina, Marco Antonio Sobrevilla Cabezudo,
Hendrik Strobelt, Nishant Subramani, Wei Xu, Diyi Yang, Akhila Yerukola, and Jiawei Zhou. The
GEM benchmark: Natural language generation, its evaluation and metrics. CoRR, abs/2102.01672,
2021. URL http://arxiv.org/abs/2102.01672.

Kenneth Heafield. KenLM: Faster and smaller language model queries. In Proceedings of the
Sixth Workshop on Statistical Machine Translation, pp. 187–197, Edinburgh, Scotland, July
2011. Association for Computational Linguistics. URL https://aclanthology.org/
W11-2123.

John Hewitt and Percy Liang. Designing and interpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2733–
2743, Hong Kong, China, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1275. URL https://aclanthology.org/D19-1275.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022. URL
https://arxiv.org/abs/2203.15556.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rygGQyrFvH.

F. Jelinek, R. L. Mercer, L. R. Bahl, and J. K. Baker. Perplexity—a measure of the difficulty of
speech recognition tasks. The Journal of the Acoustical Society of America, 62(S1):S63–S63, 1977.
doi: 10.1121/1.2016299. URL https://doi.org/10.1121/1.2016299.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved pre-
cision and recall metric for assessing generative models. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.
cc/paper/2019/file/0234c510bc6d908b28c70ff313743079-Paper.pdf.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics.
URL https://aclanthology.org/W04-1013.

Clara Meister and Ryan Cotterell. Language model evaluation beyond perplexity. In Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 5328–5339,
Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.
414. URL https://aclanthology.org/2021.acl-long.414.

Rishabh Misra. News category dataset. CoRR, abs/2209.11429, 2022. doi: 10.13140/RG.2.2.20331.
18729. URL https://arxiv.org/abs/2209.11429.

Rishabh Misra and Jigyasa Grover. Sculpting Data for ML: The first act of Machine Learning.
January 2021. ISBN 9798585463570.

Hermann Ney, Ute Essen, and Reinhard Kneser. On structuring probabilistic dependences in
stochastic language modelling. Computer Speech & Language, 8(1):1–38, 1994. ISSN 0885-2308.

11

http://arxiv.org/abs/2102.01672
https://aclanthology.org/W11-2123
https://aclanthology.org/W11-2123
https://aclanthology.org/D19-1275
https://arxiv.org/abs/2203.15556
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.1121/1.2016299
https://proceedings.neurips.cc/paper/2019/file/0234c510bc6d908b28c70ff313743079-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/0234c510bc6d908b28c70ff313743079-Paper.pdf
https://aclanthology.org/W04-1013
https://aclanthology.org/2021.acl-long.414
https://arxiv.org/abs/2209.11429

Published as a conference paper at ICLR 2023

doi: https://doi.org/10.1006/csla.1994.1001. URL https://www.sciencedirect.com/
science/article/pii/S0885230884710011.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for auto-
matic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pp. 311–318, Philadelphia, Pennsylvania, USA,
July 2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL
https://aclanthology.org/P02-1040.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin
Choi, and Zaid Harchaoui. Mauve: Measuring the gap between neural text and hu-
man text using divergence frontiers. Advances in Neural Information Processing Sys-
tems, 34, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
260c2432a0eecc28ce03c10dadc078a4-Abstract.html.

Tiago Pimentel, Naomi Saphra, Adina Williams, and Ryan Cotterell. Pareto probing: Trad-
ing off accuracy for complexity. In Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pp. 3138–3153, Online, November 2020a.
Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.254. URL
https://aclanthology.org/2020.emnlp-main.254.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay, Ran Zmigrod, Adina Williams, and Ryan
Cotterell. Information-theoretic probing for linguistic structure. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 4609–4622, Online, July
2020b. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.420. URL
https://aclanthology.org/2020.acl-main.420.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
guage models are unsupervised multitask learners, 2019. URL https://d4mucfpksywv.
cloudfront.net/better-language-models/language-models.pdf.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan,
Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks,
Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron
Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu,
Erich Elsen, Siddhant Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen
Simonyan, Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro,
Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou, Arthur Mensch,
Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug Fritz, Thibault Sottiaux,
Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d’Autume,
Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas,
Aurelia Guy, Chris Jones, James Bradbury, Matthew Johnson, Blake Hechtman, Laura Weidinger,
Iason Gabriel, William Isaac, Ed Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol
Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu,
and Geoffrey Irving. Scaling language models: Methods, analysis & insights from training gopher.
arXiv preprint arXiv:2112.11446, 2021. URL https://arxiv.org/abs/2112.11446.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

Abhilasha Ravichander, Yonatan Belinkov, and Eduard Hovy. Probing the probing paradigm: Does
probing accuracy entail task relevance? In Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: Main Volume, pp. 3363–3377, Online,
April 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.295.
URL https://aclanthology.org/2021.eacl-main.295.

Ehud Reiter. A structured review of the validity of BLEU. Computational Linguistics, 44(3):393–
401, September 2018. doi: 10.1162/coli_a_00322. URL https://aclanthology.org/
J18-3002.

12

https://www.sciencedirect.com/science/article/pii/S0885230884710011
https://www.sciencedirect.com/science/article/pii/S0885230884710011
https://aclanthology.org/P02-1040
https://proceedings.neurips.cc/paper/2021/hash/260c2432a0eecc28ce03c10dadc078a4-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/260c2432a0eecc28ce03c10dadc078a4-Abstract.html
https://aclanthology.org/2020.emnlp-main.254
https://aclanthology.org/2020.acl-main.420
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/abs/2112.11446
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/2021.eacl-main.295
https://aclanthology.org/J18-3002
https://aclanthology.org/J18-3002

Published as a conference paper at ICLR 2023

Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. Assessing
generative models via precision and recall. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, NIPS’18, pp. 5234–5243, Red Hook, NY, USA,
2018. Curran Associates Inc. URL https://proceedings.neurips.cc/paper/2018/
file/f7696a9b362ac5a51c3dc8f098b73923-Paper.pdf.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. BLEURT: Learning robust metrics for text
generation. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 7881–7892, Online, July 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.acl-main.704. URL https://aclanthology.org/2020.acl-main.
704.

Claude E. Shannon. A mathematical theory of communication. The Bell System Technical Journal,
27(3):379–423, 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x. URL https://doi.org/
10.1002/j.1538-7305.1948.tb01338.x.

Miloš Stanojević and Khalil Sima’an. BEER: BEtter evaluation as ranking. In Proceedings of
the Ninth Workshop on Statistical Machine Translation, pp. 414–419, Baltimore, Maryland,
USA, June 2014. Association for Computational Linguistics. doi: 10.3115/v1/W14-3354. URL
https://aclanthology.org/W14-3354.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.
Neural text generation with unlikelihood training. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=SJeYe0NtvH.

Sam Wiseman, Stuart Shieber, and Alexander Rush. Challenges in data-to-document generation. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp.
2253–2263, Copenhagen, Denmark, September 2017. Association for Computational Linguistics.
doi: 10.18653/v1/D17-1239. URL https://aclanthology.org/D17-1239.

Jiannan Xiang, Yahui Liu, Deng Cai, Huayang Li, Defu Lian, and Lemao Liu. Assessing dialogue
systems with distribution distances. In Findings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pp. 2192–2198, Online, August 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.findings-acl.193. URL https://aclanthology.org/2021.
findings-acl.193.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and
Quoc V Le. XLNet: Generalized autoregressive pretraining for language understand-
ing. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. BERTScore:
Evaluating text generation with BERT. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=SkeHuCVFDr.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. In Advances in Neural Information Processing Systems, volume 28. Curran As-
sociates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Christian M. Meyer, and Steffen Eger. Mover-
Score: Text generation evaluating with contextualized embeddings and earth mover distance. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp.
563–578, Hong Kong, China, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1053. URL https://aclanthology.org/D19-1053.

13

https://proceedings.neurips.cc/paper/2018/file/f7696a9b362ac5a51c3dc8f098b73923-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/f7696a9b362ac5a51c3dc8f098b73923-Paper.pdf
https://aclanthology.org/2020.acl-main.704
https://aclanthology.org/2020.acl-main.704
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://aclanthology.org/W14-3354
https://openreview.net/forum?id=SJeYe0NtvH
https://aclanthology.org/D17-1239
https://aclanthology.org/2021.findings-acl.193
https://aclanthology.org/2021.findings-acl.193
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://openreview.net/forum?id=SkeHuCVFDr
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://aclanthology.org/D19-1053

Published as a conference paper at ICLR 2023

A A MONTE CARLO ESTIMATOR FOR BACKWARD, JS, AND AUC
DIVERGENCES

Consider a Monte Carlo estimator for ∆←:

∆←(pw, qw) ≈ K̂L(qw || pw) =
1

N

N∑
n=1

log
qw(wqw

n)

pw(wqw
n)

(14)

where wqw
n ∼ qw. We can easily sample from qw. However, computing Eq. (14) requires knowledge

of log pw, which we do not have. Thus we resort to other techniques for estimating these divergences,
as discussed in §3.

B STRING VS. CLUSTER-BASED KULLBACK–LEIBLER DECOMPOSITION

The decomposition in Eq. (13) can be shown as follows:

KL(pw || qw) =
∑
w∈W

p(w) log
p(w)

q(w)
(15)

(1)
=

K∑
c=1

∑
w∈W

p(c,w) log
p(c) p(w | c)
q(c) q(w | c)

=

K∑
c=1

∑
w∈W

p(c,w)

(
log

p(c)

q(c)
+ log

p(w | c)
q(w | c)

)

=

K∑
c=1

p(c) log
p(c)

q(c)︸ ︷︷ ︸
Marginalise over all w

+

K∑
c=1

∑
w∈W

p(w | c)p(c)︸ ︷︷ ︸
=p(c,w)

log
p(w | c)
q(w | c)

=

K∑
c=1

p(c) log
p(c)

q(c)
+ Epc

[∑
w∈W

p(w | c) log
p(w | c)
q(w | c)

]
= KL(p(c) || q(c)) + KL(p(w | c) || q(w | c))︸ ︷︷ ︸

≥0

≥ KL(pc || qc)
where again (1) follows from the fact that p(c,w) = p(w), which is true because the cluster
assignment is deterministic, i.e.:

p(c | w) = 1

{
c = φ(PLM(w))

}
(16)

Thus, KL(p(c) || q(c)) provides a biased estimate of KL(pw || qw).

C RELATED WORK

Over the years, a number of evaluation metrics have been proposed for language generation tasks
(such as translation and summarization); the most well-established and commonly-used include BLEU
(Papineni et al., 2002), ROUGE (Lin, 2004) and METEOR (Banerjee & Lavie, 2005). However,
these metrics—which rely on n-gram statistics—have been shown to correlate poorly with human
judgement (Reiter, 2018). Recent metrics have improved upon these correlations with more advanced
techniques, e.g., BEER (Stanojević & Sima’an, 2014), MoverScore (Zhao et al., 2019) and BLEURT
(Sellam et al., 2020). These metrics, though, are intended for language generation tasks with a strict
set of reference texts. While reasonably effective for directed generation tasks, they do not transfer
well to the open-ended domain.

For tasks in which there is not a clear reference, e.g., story generation, basic statistics are typically
employed to provide a preliminary evaluation of generated text. Such statistics include n-gram

14

Published as a conference paper at ICLR 2023

repetitions (Welleck et al., 2020), Zipfian coefficient (Holtzman et al., 2020), or the perplexity of
generated text (Fan et al., 2018). Final assessments of language generation systems are still often
performed using human evaluations, as automatic metrics on their own have not proven sufficient for
differentiation between top-end language generation systems.

Automatic evaluation metrics for language models based on statistical divergences have been proposed
by a number of different authors. For instance, Meister & Cotterell (2021) assessed the quality of
language models while using a number of divergences between distributions over surface statistics
in text corpora. Xiang et al. (2021) propose the approximation of distributions over strings with
distributions in the embedding space in standard divergence metrics. Pillutla et al. (2021) present
MAUVE—the object of study of this work—which is based on a new divergence metric inspired by
the information frontier divergences Djolonga et al. (2020).11 Besides proposing this AUC divergence
metric, Pillutla et al. (2021) also propose a new way to approximate it using clusters over word
embeddings. We provide an analysis of this paradigm, showing that in practice, we should expect
this method to provide a poor estimation of the intended quantity. We go on to perform empirical
experiments to identify the proposed use of distributions over clusters itself is likely responsible
for the metric’s success, rather than characteristics of the new divergence. We see this work as
complementary to Pillutla et al. (2021), providing deeper and more comprehensive insights into the
metric’s inner workings.

D EXPERIMENTAL SETUP

Embedding Models. To obtain text embeddings for our input strings, we use several different PLM.
Namely, we use the four sizes of GPT-2 (Radford et al., 2019), as well as BERT-base and BERT-large
(both cased; Devlin et al., 2019). For the former, we use the embedding of the final token. For the
latter, we use the embedding associated with the special CLS token. In both cases, we additionally
present results using the average across token embeddings in App. E. All texts are truncated to 512
tokens (for experiments in §6.2, this truncation is performed before any manipulations of the text), in
order to ensure that all models can process the input text in their context.

For our probing analysis in §6, we employ the following datasets:

• Sentiment. To analyse sentiment, we use Yelp Polarity (Zhang et al., 2015), a dataset extracted
from the Yelp Dataset Challenge 2015, which contains binary sentiment classifications for highly
polar Yelp reviews. We use 10k examples randomly sampled from the training set and 5k
examples randomly sampled from the test set.

• Authorship. To analyse authorship, we use News Category (Misra & Grover, 2021; Misra, 2022),
a dataset consisting of 200k news headlines from the years 2012–2018 obtained from HuffPost.
We scrape entire articles from the URLs provided by the dataset. We only use the subset of
articles for which the article’s author has ≥ 400 articles within the dataset, giving us a training
set of 32k and a test set of 6k with 46 unique authors.

• Topic. To analyse topic, we use the 20 NewsGroup dataset, which contains 18k newsgroups posts
(partitioned into train and test sets using the original splits) on 20 topics, such as subcategories of
science, politics and religion. The distribution over text topics is relatively uniform.

11Specifically, Djolonga et al. proposed a framework that measures the trade-off between precision and recall
using Rényi divergences.

15

http://qwone.com/~jason/20Newsgroups/

Published as a conference paper at ICLR 2023

E ADDITIONAL EXPERIMENTS

(pc, qc)
GPT-2 small

(pc, qc)
GPT-2 medium

(pc, qc)
GPT-2 large

(pc, qc)
GPT-2 xl

(pc, qc)
BERT base

(pc, qc)
BERT large

(pw, qw)
n-gram

(pw, qw)
LSTM

0

25

50

75

100

C
or

re
la

tio
n

(%
)

(a) Interestingness

(pc, qc)
GPT-2 small

(pc, qc)
GPT-2 medium

(pc, qc)
GPT-2 large

(pc, qc)
GPT-2 xl

(pc, qc)
BERT base

(pc, qc)
BERT large

(pw, qw)
n-gram

(pw, qw)
LSTM

0

25

50

75

100

C
or

re
la

tio
n

(%
)

(b) Sensibility

(pc, qc)
GPT-2 small

(pc, qc)
GPT-2 medium

(pc, qc)
GPT-2 large

(pc, qc)
GPT-2 xl

(pc, qc)
BERT base

(pc, qc)
BERT large

(pw, qw)
n-gram

(pw, qw)
LSTM

0

25

50

75

100

C
or

re
la

tio
n

(%
)

(c) Human likeness

Figure 5: Correlations between string- and cluster-based divergences and human judgement scores
using a number of estimators (with different PLM(·) when defining pc, or language models for pw).
Legend: ∆exp in dark green; ∆→ in orange; ∆← in blue; ∆JS in pink; ∆AUC in lime green.

(pc, qc)
GPT-2 small

(pc, qc)
GPT-2 medium

(pc, qc)
GPT-2 large

(pc, qc)
GPT-2 xl

(pc, qc)
BERT base

(pc, qc)
BERT large

0

25

50

75

100

C
or

re
la

tio
n

(%
)

(a) Interestingness

(pc, qc)
GPT-2 small

(pc, qc)
GPT-2 medium

(pc, qc)
GPT-2 large

(pc, qc)
GPT-2 xl

(pc, qc)
BERT base

(pc, qc)
BERT large

0

25

50

75

100

C
or

re
la

tio
n

(%
)

(b) Sensibility

(pc, qc)
GPT-2 small

(pc, qc)
GPT-2 medium

(pc, qc)
GPT-2 large

(pc, qc)
GPT-2 xl

(pc, qc)
BERT base

(pc, qc)
BERT large

0

25

50

75

100

C
or

re
la

tio
n

(%
)

(c) Human likeness

Figure 6: Correlations between cluster-based divergences and human judgement scores using a
number of PLM(·) to define pc. In this figure, we use the average embedding per sentence produced
by a PLM(·) to compute pc, as opposed to the final embedding. Legend: ∆exp in dark green; ∆→
in orange; ∆← in blue; ∆JS in pink; ∆AUC in lime green.

16

Published as a conference paper at ICLR 2023

(a) Sentiment (b) Authorship (c) Topic

Figure 7: Accuracy when predicting different attributes of text from their cluster assignments. Same
plot as Fig. 3 albeit using embeddings from BERT.

Figure 8: ∆AUC scores between reference text and alternate text distributions as a function of
number of clusters used to estimate p̂c and q̂c. Importantly, in this figure, we compare the first
2500 sentences (p(1)) in the human-generated WebText test set to these same strings, but under the
proposed interventions. I.e., for all points corresponding to an (altered) distribution p(1), we estimate
our cluster distributions on the same set of human-generated sentences, but where the strings in one
group have been intervened on. The baseline distribution p(2) still represents the final 2500 sentences
in WebText (as in the original plot); and baseline distribution q is text sampled from GPT-2 XL.

17

Published as a conference paper at ICLR 2023

Figure 9: ∆ scores between reference text and alternate text distributions as a function of number of
clusters used to estimate p̂c and q̂c. Results shown for embeddings produced using multiple LMs

18

Published as a conference paper at ICLR 2023

Figure 10: Zoomed in version of Fig. 4 to give a closer look at different scores assigned to texts
manipulated in different ways.

Figure 11: Version of Fig. 9 that uses the mean of the contextual embeddings from a text to form
clusters.

Figure 12: Version of Fig. 10 that uses the mean of the contextual embeddings from a text to form
clusters.

19

Published as a conference paper at ICLR 2023

Figure 13: R2 when using cluster assignments to predict % of tokens in a text that are either
punctuation or stopwords. Setup follows that of §6.1, albeit using solely the WebText dataset to
train our clustering functions in this setting. We compute the average percentage of stopwords or
punctuation per cluster in half of our strings and use these pre-computed averages when predicting
the percentages in the other half, computing this prediction’s R2 (i.e. the percentage of explained
variance). We see that larger PLMs—which are often claimed to provide better representations of
language—do encode more information about such surface features than smaller models. This could
simply be due to the fact that the embeddings from larger PLMs are typically of a larger dimension
and, thus, have the capacity to encode additional (perhaps “less critical”) attributes of text. While
these attributes do not appear to be differentiating factors when partitioning the embedding space into
a small number of clusters, they become relevant when partitioning into a larger number of clusters.
Even with several clusters and large PLMs, though, the R2 values we find are still quite small, at
around 0.20.

20

	Introduction
	Divergence Metrics for Language Generator Evaluation
	Infelicities and Approximations
	Necessity of Full Support
	The Natural Language Distribution is Unknown
	Clustering-based Approximations

	Analysing Cluster-Based Approximations
	Experiments
	Does the Cluster Distribution Approximate the Text Distribution?
	Divergences as Text Evaluation Metrics

	Probing Clusters
	Finding Features the Cluster Distribution Encodes
	How Text Features Impact the Divergences

	Conclusion
	Acknowledgements
	A Monte Carlo Estimator for Backward, JS, and AUC Divergences
	String vs. Cluster-based Kullback–Leibler Decomposition
	Related Work
	Experimental Setup
	Additional Experiments

