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Abstract
Pre-trained Vision-Language Models (VLMs) are
becoming increasingly popular across various vi-
sual tasks, and several open-sourced VLM vari-
ants have been released. However, selecting the
best-performing pre-trained VLM for a specific
downstream task is challenging since no single
VLM can achieve promising performance on all
downstream tasks, and evaluating all available
VLMs is impossible due to time and data lim-
itations. To address this problem, this paper
proposes a novel paradigm to select and reuse
VLM for downstream tasks, called Model Label
Learning (MLL). The proposal contains three key
modules: model labeling, which assigns labels to
each VLM to describe their specialty and utility;
model selection, which matches the requirements
of the target task with model labels; and model
reuse, which applies selected VLMs to the tar-
get task in an ensemble manner. The proposal
is highly computationally efficient and growable
since the model labeling process is completed tar-
get task independent and the ability could grow
with the number of candidate VLMs. We also in-
troduce a new benchmark for evaluating VLM se-
lection methods, including 49 VLMs and 17 target
task datasets. Experimental results clearly demon-
strate the effectiveness of the proposed method
for selecting and reusing VLMs.

1. Introduction
Vision-Language Models (VLMs), such as CLIP (Radford
et al., 2021), ALIGN (Jia et al., 2021), which are pre-trained
on large-scale image-text datasets, have recently attracted
significant attention due to their remarkable zero-shot pre-
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diction capabilities on visual tasks. However, though VLM
shows impressive general ability, as highlighted in Radford
et al. (2021), VLMs often fall short of supervised expert
models in many downstream tasks. To address this limita-
tion, numerous studies (Dosovitskiy et al., 2021; Yu et al.,
2022; Fang et al., 2023) enhanced the zero-shot performance
of VLMs by studying model architectures, pre-training
datasets, and training/fine-tuning methods. This effort has
led to the development of many open-source pre-trained
VLMs with diverse structures and parameters, contributing
to VLM model hubs like open-clip (Ilharco et al., 2021),
which currently hosts more than 100 pre-trained VLMs.

With the increasing availability of open-source VLMs, se-
lecting and reusing a pre-trained model has become a practi-
cal alternative to training one from scratch, which demands
extensive training data and computing resources (Li et al.,
2021), struggling with catastrophic forgetting during the
incremental refinement of the trained model in open en-
vironments (Guo et al., 2025). Consequently, a critical
problem naturally arises: how to select a VLM to reuse
for specific downstream tasks. Although we can directly
utilize the best-performing model on a universal dataset
such as ImageNet, previous work (Fang et al., 2022) has
shown that the performance of VLMs can vary greatly de-
pending on dataset domain. For example, we evaluate the
performance of various pre-trained VLMs in the open-clip
library across several downstream tasks (1(a)) and within
different classes of a specific task (1(b)). Figure 1(a) reveals
that each VLM demonstrates distinct strengths in zero-shot
visual tasks, with no single model outperforming all others
across every task. Interestingly, models that perform worse
on general tasks can sometimes surpass stronger models in
specific downstream tasks. Furthermore, even in the same
task, different VLMs exhibit varying levels of performance
across specific classes, as illustrated in Figure 1(b).

Therefore, it is important to design VLM selection methods,
and it would be better if we could achieve more fine-grained
selection, i.e., select different VLMs to handle different
classes. The direct way to select a model is to evaluate all
candidate models’ performance on the target task. How-
ever, it is unrealistic due to time and computational resource
limitations. Additionally, previous works on model selec-
tion (Tran et al., 2019; You et al., 2021) primarily focus
on single-modal models, making them unsuitable for VLM
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(a) Accuracy of VLMs on 7 specific
downstream tasks.

(b) F1 score of VLMs per class in
FER2013.

Figure 1. The spider charts measure 49 models’ capabilities across 7 downstream tasks and classes within a task, showing that the
best-performing models vary across downstream tasks and classes, highlighting the importance of model selection for VLM. The evaluated
49 models align with those in the model hub, as discussed in Section 5.1.

selection since they only handle either image or text output
and cannot incorporate data from the other modality. Zohar
et al. (2023) is the first study to focus on VLM selection,
proposing to evaluate VLM performance using textual in-
formation. However, the selection strategy heavily depends
on the models’ ground-truth performance on large-scale
datasets, such as ImageNet. When models excel on large-
scale datasets but under-perform on specific tasks, selection
strategy effectiveness drops, as shown in our experiments.

To this end, we introduce a novel paradigm to select and
reuse VLMs called Model Label Learning (MLL). The core
idea is to organize candidate pre-trained VLMs into a model
hub and describe the specialty and utility of each VLM as
the model’s label in some manner. When faced with a new
downstream task, we can match the task requirements with
the model labels to select and reuse models. Specifically, the
proposal contains three key interconnected modules: model
labeling, model selection, and model reuse. In the model
labeling process, we construct a semantic graph with com-
monly occurring visual concepts and representative samples,
and each model undergoes pre-testing on the semantic graph
to generate its model label, which describes its capability
on these semantic classes. In the model selection process,
we generate caption descriptions for both the nodes in the
semantic graph and the categories to be classified in the
target task to compare their similarity. This enables us to
evaluate the model’s performance on the target classes by
aligning the matched semantic nodes with the model labels.
In the model reuse process, we apply an ensemble strategy
that combines the predictions of the selected models in a
single class and chooses the highest confidence in all classes
as the final prediction on the target task.

The model labeling process is completed immediately when
the candidate VLM is added to the model hub, therefore, it
is target task independent, which means the proposal is both

data and computationally efficient in the model selection
process. Moreover, the proposal is highly growable since
the capability could grow with the number of candidate mod-
els in the model hub and the model labels are also scalable
since more semantic nodes can be added continually. To
facilitate related research, we further introduce a compre-
hensive benchmark for evaluating VLM selection methods.
The benchmark includes 49 pre-trained VLMs and 17 tar-
get datasets as downstream tasks. The ground-truth model
ranking for each target task is provided for evaluation. We
construct a semantic graph that contains more than 9000
commonly used visual concepts to pre-test VLMs. The ex-
periments demonstrate the effectiveness of our approach in
both selecting and reusing VLMs, while also validating the
scalability of the model hub based on our proposal.

In summary, our contributions are as follows:

• Problem: We highlight that the performance of pre-
trained VLM varies across different downstream tasks,
even among classes within the same task. To address
this, we first propose an important yet rarely studied
problem called VLM selection and reuse, which will
promote the deployment of VLM in more real tasks.

• Method: We propose a novel paradigm called Model
Label Learning, which includes the processes of model
labeling, selection, and reuse. This paradigm is both
time- and data-efficient, and highly scalable. It can give
birth to new VLM model hubs, which can simplifying
user selection and reuse of VLMs for their tasks.

• Evaluation: We introduce a new benchmark for eval-
uating pre-trained VLM selection and reuse methods,
advancing research in this field. Experimental results
validate the effectiveness and scalability of our pro-
posal for selecting and reusing VLMs.
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2. Related Work
Vision-Language Model. In recent years, there have been
significant advances in the field of Vision-Language Models
(VLMs), including notable models such as CLIP (Radford
et al., 2021), BLIP (Li et al., 2022), etc. These models
leverage large-scale datasets containing image-text pairs,
such as WIT (Srinivasan et al., 2021), to align visual and
text features within a shared embedding space, which has led
to impressive capabilities in feature extraction, particularly
in the realm of zero-shot visual tasks. Tremendous works
(Dosovitskiy et al., 2021; Yu et al., 2022; Fang et al., 2023)
attempted to improve the zero-shot capabilities of VLMs by
focusing on model architecture, pre-training datasets, and
training/fine-tuning methods, which lead to the emergence
of numerous open-source pre-trained VLMs. As a result,
several VLM model hubs are constructed, such as open-clip
(Ilharco et al., 2021) and HuggingFace (Wolf et al., 2020),
which provide access to numerous VLMs. However, these
model hubs lack effective model selection mechanisms;
users cannot directly select suitable models for their tasks,
they can only select models based on some quantitative
indicators, such as download volume, popularity, etc.

Model Selection. As pre-trained models become increas-
ingly diverse, how to select appropriate pre-trained models
to tackle specific tasks has become a significant challenge.
Many researchers have started to focus on this aspect. For
example, Negative Conditional Entropy (NCE) (Tran et al.,
2019) proposes an information-theoretic quantity to learn
the transferability and hardness between classification tasks;
LEEP (Nguyen et al., 2020) utilizes source prediction prob-
abilities instead of hard labels compared with NCE; LogME
(You et al., 2021) estimates the correlation between source
model features and the target outputs by maximum evidence;
MetaGL (Park et al., 2023) solves the model selection prob-
lem on graph data by introducing a meta-learning method;
EMMS (Meng et al., 2023) uses weighted linear regression
to estimate the transferability of candidate models; Model
Spider (Zhang et al., 2024) uses a re-ranking mechanism
to enhance the task-model co-embedding. Although these
methods achieve well-performing in different settings, most
of them focus on single-modal which cannot be directly used
for VLM selection. Moreover, the training data for VLM
is inaccessible, which introduces more challenges. Model
selection for VLM is still a relatively new topic. LOVM (Zo-
har et al., 2023) uses a text dataset to describe the prediction
task to train a linear model to predict the performance of the
VLM. However, this method can only exploit text informa-
tion and becomes less effective when there is a domain shift
between downstream tasks and training tasks.

Learnware. Learnware (Zhou & Tan, 2022) is a novel
paradigm that explores more effective model selection by

constructing specifications to describe the capabilities of
the model, closely aligning with our idea of model labeling.
Compared with previous selection methods, learnware en-
ables scalable and efficient model selection across diverse
architectures and input types within a unified framework,
improving as the system expands. Model specification is
central to the learnware paradigm, describing the function-
ality of each model. Recent works (Tan et al., 2024) on
learnware paradigm are built on Reduced Kernel Mean Em-
bedding (RKME) (Wu et al., 2021), which maps training
data distributions to points in Reproducing Kernel Hilbert
Space (RKHS) and identifies models by calculating the
RKHS distance between RKME specifications. Further-
more, Guo et al. (2023) enhanced RKME for heterogeneous
label spaces, while Tan et al. (2023) addressed challenges in
heterogeneous feature spaces. Besides, Zhou et al. (2023)
extended the learnware paradigm to the domain of the diffu-
sion models selection. However, learnware requires training
data to construct specifications. Considering the scale of
VLM pre-trained datasets, it is unrealistic to construct spec-
ifications for learnware to select models due to limited time
and computational resources.

3. Preliminaries
3.1. Zero-Shot Vision Task of VLM

Pre-trained VLMs for zero-shot visual tasks are built using
two encoders: image encoder and text encoder. The image
encoder is used to transform an image into a vector embed-
ding, which presents its feature. The text encoder tokenizes
the text input and generates a embedding representation by
the text token. Let I : X → Rn denotes the image encoder
and T : Y → Rn denotes the text encoder, where X ∈ X
is the image input, Y ∈ Y is the text input, and n is the
dimension of the shared multi-modal embedding space of
text embeddings and image embeddings.

In a particular downstream task T , there are CT classes
YT = {yi}CT

i=1. For a image x ∈ X , we obtain the image
embeddings I(x) given by the image encoder I and the text
embeddings T (y) of class y produced by the text encoder
T . Then, the prediction ŷ of image x can be obtained as

ŷ = argmax
y∈YT

exp (sim (I(x), T (y)) /τ)∑
y′∈YT

exp (sim (I(x), T (y′)) /τ)
(1)

where sim (·, ·) denotes cosine similarity, τ represents the
temperature determined by VLMs.

3.2. Problem Setup

Assume the model hub has M pre-trained VLMs
{fm = {Im, Tm}}Mm=1, where Im denotes the image en-
coder of the VLM fm and Tm denotes the text encoder of
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Figure 2. The framework of MLL paradigm. Models added to the hub first undergo a pre-testing phase, during which they are assigned
labels that describe their specific functionalities in the labeling module. When a downstream task is presented, the system selects relevant
models in the selection module and ensembles them to address the task.

the VLM fm. There are two stages in our setting: sub-
mission stage for model developers to upload models to
the model hub and identification stage for users to select
suitable models for their tasks from the model hub.

In submission stage, model developers submit a VLM fm to
the model hub, and the model hub assigns a label Sm to the
model to describe its specialty and utility. It is particularly
emphasized that uploaded models are anonymous, meaning
we do not have access to their training data.

In identification stage, user attempts to select VLMs from
the model hub for the zero-shot downstream task T , by up-
loading general information about the task, such as classes,
domain type, and task type, to describe their requirements.
We subsequently utilize this information to select and reuse
suitable VLMs, based on the model labels which have been
established in the submission stage.

Two main problems in our settings are:

1) In submission stage, how can we design a label to fully
characterize the capabilities of the submitted VLM?

2) In identification stage, how can we select and reuse

appropriate VLMs from the model hub to address users’
downstream tasks based on their requirements and the
model labels generated in the submission stage?

4. Our Approach
As illustrated in Figure 2, the MLL paradigm consists of
three key modules: model labeling, model selection, and
model reuse. In the model labeling process, MLL constructs
a semantic graph G with commonly occurring visual con-
cepts and representative samples as the evaluation datasets.
When models are submitted to the model hub, they are pre-
tested on the semantic graph and assigned labels Sm, which
describe their capability on these semantic classes. In the
model selection process, we generate caption descriptions
for both the nodes in the semantic graph and the categories
in the target task to compare their similarity. This enables us
to evaluate the model’s performance on the target classes by
aligning the matched semantic nodes with the model labels.
In the model reuse process, we apply an ensemble strategy
that combines the selected models’ predictions on a single
class and chooses the highest confidence across all classes
as the final prediction.
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4.1. Model Labeling

To thoroughly characterize the capabilities of the model,
we initiate the process by constructing a Semantic Graph G
as evaluation datasets utilizing the WordNet (Miller, 1995)
synsets. Firstly, we represent each synset in WordNet as
a corresponding node v within the semantic graph and es-
tablish links between nodes based on their relationships of
hypernyms and hyponyms. Subsequently, to capture the
real-world image distribution associated with each node, we
randomly select images Xv from sample datasets (detailed
in Section 5.1) to serve as representations for each node
v. Due to the limited information in synset name, we also
need obtain the caption dataset DG = {dv|v ∈ VG} for
label generalization where VG denotes the set of nodes in
Semantic Graph G, dv denotes the caption of node v. We
use “{synset name} which is {synset definition}” as the
caption for each node, where “{synset name}” and “{synset
definition}” correspond to the synset name and definition
of a synset. Utilizing the constructed semantic graph, we
generate a label Sm for each VLM fm in the model hub that
accurately reflects its capabilities.

svm,x = sim(Im(x), Tm(dv)), x ∈ Xv (2)

svm = {svm,x| x ∈ Xv} (3)

Sm = {svm| v ∈ VG} (4)

where Im(·), Tm(·) denotes the image encoder and the text
encoder of model fm .

Specifically, the constructed semantic graph allows for the
seamless addition of new nodes and the incremental updat-
ing of model labels based on existing foundations. As the
nodes in the semantic graph are expanded, its ability to re-
flect the performance capabilities of the models is enhanced.
Once we have obtained labels for each model, we can utilize
them for effective model selection.

4.2. Model Selection

In the model selection module, given a downstream task
T with CT classes YT = {yi}CT

i=1, in order to utilize the
obtained model labels Sm, we need to match the down-
stream task classes YT with the semantic graph nodes VG .
However, it can not match well using original class names.
Inspired by previous work (Zohar et al., 2023), we construct
expanded captions for both the downstream task classes and
the semantic graph nodes. Large Language Models (Ope-
nAI, 2023) have made significant advancements, facilitating
the generation of text data. Assuming general information
about the downstream tasks, such as task types and target
domain, is accessible, we use GPT-4 with specific prompts
to generate descriptions for each class as shown below, cre-
ating the caption dataset DT for downstream task T . The

following is an example of a prompt used to generate a
caption of the class cat.

Generate long detailed caption for the natural
picture of cat in the image classification.
e.g., “The natural picture of cat, which is ... ”.
Generate long caption for cat within 50 words.

where natural picture and image classification can be re-
placed with the domain and task descriptions, while cat can
be substituted with the specific class name for target task.

Then, we can use a language model to generate embeddings
of graph captions DG and target task captions DT . By com-
paring the cosine similarity between the embeddings, we can
select the top k nodes for each class based on similarity and
construct a transfer matrix Z = (zvy) ∈ R|V Selected|×|Y T

,
where V Selected represents all selected nodes. Additionally,
zvy represents the similarity of captions between graph node
v and task class y if v is among the top k nodes that exhibit
the highest similarity with task class y. Otherwise, it will be
set to 0. Subsequently, the precision pm,v for each model
fm at the graph nodes v is defined as follows.

pm,v =
1

|Xv|
∑
x∈Xv

I
(
v = argmax

v∈V Selected

svm,x

)
(5)

By leveraging the transfer matrix Z, we can further derive
the precision prediction pm,y for each class y within the
downstream task T as described below.

pm,y =
∑

v∈V Selected

pm,v · zvy (6)

When a model excels in a specific class, it may incorrectly
handle data not belonging to that class. Consequently, we
need to select models that perform well on specific classes
while also maintaining good overall performance. Thus,
we introduce a weight parameter α to balance class perfor-
mance with overall performance. Then, the reuse metric r
for model fm in class y is defined as:

rm,y = α · pm,y +
1− α

|YT |
∑

y′∈YT

pm,y′ (7)

4.3. Model Reuse

To better utilize the selection and harness the capabilities
of models in the model hub, we introduce a specific count
k of models to reuse for each class y, we select up to k
highest-score model to form the ensemble predictor Fk

y ={
fm | fm ∈ top - k

(
{rm,y}M

)}
. During testing, for the
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Algorithm 1 Model Selection & Reuse
Input: Model hub M, model labels {Sm}, semantic graph

G, semantic graph caption dataset DG , count k of reused
models pre-class, target task T = (X,Y )

Output: Task prediction {ŷ}
1: Construct caption dataset DT for target task T .
2: Match similar nodes V Selected in VG with Y by captions

DG and DT .
3: Construct transfer matrix Z ∈ RV Selected×CT

based on
caption similarity of V Selected and Y .

4: for fm ∈ FM do
5: Calculate reuse metric rm,y for each class y in Y by

Eq.(5, 6, 7).
6: end for
7: for y ∈ Y do
8: Select k models to ensemble predictor Fk

y ={
fm | fm ∈ top - k

(
{rm,y}M

)}
.

9: Calculate prediction ŷ for x by Eq.(8, 9, 10).
10: end for
11: Return Task prediction {ŷ}.

data x ∈ X of the downstream task, ensemble predictor Fk
y

infers the confidence pky(x) of class y:

pky(x) =
∑

fm∈Fk
y

wm,y ·
exp (sim (Im(x), Tm(y)))∑

y′∈YT

exp (sim (Im(x), Tm(y′)))

(8)
where wm,y denotes the ensemble weight obtained from
the output probability entropy H of each model within Fk

y .
wm,y is defined as:

wm,y =
H ({sim(Im(x), Tm(y)| ∀ y ∈ YT })∑

fm′∈Fk
y

H ({sim(Im′(x), Tm′(y)| ∀ y ∈ YT })

(9)
Vishniakov et al. (2024) has shown VLMs predictions fre-
quently exhibit overconfidence, which can degrade the per-
formance of ensemble predictions, especially when the
model makes incorrect predictions. To address this, we
introduce wm,y based on the probability entropy H as a
measure of uncertainty and assign lower weights to models
with high confidence when they are overconfident, which
reduces the impact of overconfidence, potentially erroneous
predictions on the final ensemble output, thereby enhancing
the robustness and accuracy of model’s overall predictions.

Then, the class with the highest confidence is selected as the
prediction ŷ for x:

ŷ(x) = argmax
y∈YT

pky(x) (10)

Flow of model selection and reuse of MLL Paradigm are
summarized in Algorithm 1.

4.4. Discussion

Our proposal achieves higher accuracy, efficiency, and scal-
ability. In terms of accuracy, the proposal elucidates the
functionalities of VLMs by labeling models with a semantic
graph that covers the most common visual concepts and rep-
resentative samples to describe different data distributions,
enabling more accurate identification of suitable models for
users’ target tasks. For efficiency, the proposal generates
model labels when the pre-trained model is uploaded to the
model hub, thus, it is highly efficient in the model selection
process, without the need to run the candidate models on
the target dataset. Regarding scalability, the concepts in the
semantic graph can be continually added, thus, the model
labels are scalable flexibility. Moreover, as the number of
VLMs in the model hub increases, our proposal identifies
higher-quality models, leading to improved performance on
zero-shot downstream visual tasks.

5. Experiments
5.1. MLL Benchmark

To evaluate the capabilities of the MLL paradigm in zero-
shot visual tasks with VLMs, we need to obtain a set of
sampling datasets for constructing semantic graph G, along
with another set dedicated to downstream target tasks. For
this study, we select 49 VLMs, 5 Sample Datasets, and
17 Target Datasets. Additionally, we collect general infor-
mation about task types and domains associated with each
dataset to provide a task description. For testing selected
models on target tasks, we utilized same prompting strategy
outlined in Radford et al. (2021), ensuring consistency in
our evaluation methodology.

Model Hub. We leverage the open-clip library (Ilharco
et al., 2021), which encompasses a diverse set of pre-trained
VLMs across multiple architectural frameworks, such as
ViT(Dosovitskiy et al., 2021) and ConvNet(Liu et al., 2022).
These models have been pre-trained on a variety of large-
scale datasets, such as WIT (Srinivasan et al., 2021) and
LAION-2B (Schuhmann et al., 2022). We select 49 models
from this library to form our model hub for the purpose of
our experiments. All models used in the experiments are
directed downloaded from the library.

Datasets. We utilized 5 datasets, ImageNet (Deng et al.,
2009), ImageNet-V2 (Recht et al., 2019), ImageNet-Sketch
(Wang et al., 2019), ImageNet-A (Hendrycks et al., 2021b)
and ImageNet-R (Hendrycks et al., 2021a), as Sample
Datasets for semantic graph construction. Additionally, we
used 17 commonly used datasets and their task general in-
formation as Target Datasets to evaluate VLM selection
and reuse methods in zero-shot visual tasks (as shown in
Table 5). These datasets demonstrate diversity in terms of
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Table 1. Comparison of the zero-shot performance on 17 downstream tasks by reusing a single model (k = 1). The best performance is
highlighted in bold.

Methods CIFAR100 Country211 CLEVR-D DTD DMLab Flowers102 MNIST OxfordPet PCam

INB 0.8599 0.3121 0.1262 0.6787 0.1940 0.8761 0.7956 0.9401 0.5332
ModelGPT 0.8599 0.3121 0.1262 0.6787 0.1940 0.8761 0.5648 0.9401 0.4990

Proposal 0.8773 0.3159 0.1361 0.6910 0.2111 0.8914 0.8101 0.9428 0.5003

Methods FER2013 Food101 GTSRB RESISC45 Rendered-SST2 StanfordCars STL10 UCF101 Avg.

INB 0.2859 0.9553 0.5391 0.6139 0.5199 0.9487 0.9889 0.7702 0.6434
ModelGPT 0.4014 0.9553 0.5391 0.6139 0.5800 0.9487 0.9639 0.7702 0.6367

Proposal 0.4933 0.9566 0.5636 0.6437 0.5206 0.9568 0.9878 0.7961 0.6620

Table 2. Comparison of the zero-shot performance on 17 downstream tasks by ensemble 3 models per class (k = 3). The best performance
is highlighted in bold.

Methods CIFAR100 Country211 CLEVR-D DTD DMLab Flowers102 MNIST OxfordPet PCam

INB 0.8977 0.3228 0.1048 0.6968 0.1296 0.8873 0.7847 0.9433 0.5002
ModelGPT 0.8949 0.3243 0.0907 0.6957 0.1338 0.8876 0.7888 0.9490 0.5002

Proposal 0.8923 0.3238 0.1171 0.7053 0.1573 0.8720 0.8101 0.9428 0.5003

Methods FER2013 Food101 GTSRB RESISC45 Rendered-SST2 StanfordCars STL10 UCF101 Avg.

INB 0.2636 0.9606 0.5938 0.6615 0.5332 0.9540 0.9949 0.7966 0.6498
ModelGPT 0.2653 0.9611 0.5980 0.6555 0.5299 0.9533 0.9957 0.7933 0.6480

Proposal 0.4933 0.9566 0.5636 0.6800 0.5233 0.9541 0.9854 0.8092 0.6639

domain, number of classes, and task types. They encompass
various domains, including animals, food, text, landscapes,
remote sensing, medical, and transportation. Additionally,
they cover a range of tasks such as image classification, geo-
localization, optical character recognition, facial expression
recognition, land cover classification, and object distance
estimation. To eliminate interference of predication from ad-
ditional modules during evaluation, all tasks can be assessed
using the same VLM architecture.

Evaluation Metrics. In our benchmark, methods are ex-
pected to select models from a hub of 49 pre-trained VLMs
and reuse them across 17 target datasets as downstream
tasks to achieve better performance. Notably, all models
selected for use are without additional fine-tuning, as all
downstream tasks are zero-shot. We use Acc. to evaluate
methods’ performance on both downstream target tasks and
the average performance across all tasks.

5.2. Experiment Setup

Semantic Graph Construction. In order to build a rich
semantic graph G, we used WordNet synsets to carefully
select 9055 nodes, covering many fields such as animals,
tools, clothing, vehicles, plants, ensuring the representative-

ness of the semantic graph. We randomly selected up to
75 pictures for each node, which are all from the sample
datasets and reflected the distribution of the node’s concepts.
In addition, we used the OpenAI text-embedding-3-large
model to obtain their caption embeddings. By calculating
the cosine similarity between these embeddings, we can
accurately match the correspondence between the semantic
graph nodes and the downstream task classes.

Compared Methods. Initially, we compare our proposal
with ImageNet Baseline (INB), which simply select the
model which has best performance on the ImageNet in the
model hub to reuse. Additionally, we compare it with a
VLM selection method called ModelGPT (Zohar et al.,
2023). ModelGPT employs generated captions and syn-
onyms for target task classes as substitutes for images of
those classes, then evaluates the performance of VLMs by
measuring their ability to correctly classify the captions and
synonyms into their corresponding classes, which serves as
the reuse metric in combination with INB. A linear model
is then learned between the reuse metric and ground-truth
performance on training downstream tasks. Finally, the
zero-shot ability of VLMs on the target task is predicted
using this linear model and the reuse metric.
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Figure 3. Average performance on 17 downstream tasks with the
scaling of the model hub.

Implementation Details. We adopt the official code to im-
plement ModelGPT. For a fair comparison, the experiment
utilizes the ground-truth performance of VLMs on Sample
Datasets for ModelGPT to train its linear model, and then
evaluate it on the benchmark. For both INB and ModelGPT,
the experiment selects the model with the highest predictive
performance given by the method for reuse in the target
task. Specifically, we employ the same prompting strategy
outlined in Radford et al. (2021), which uses the prompt “a
photo of {class}”, where “{class}” is replaced by the task
class. All selected models are utilized without any further
fine-tuning, given that all downstream tasks are conducted
in a zero-shot manner. Additionally, the weight α for model
selection in our setting is set to 0.7. All experiments are
conducted on NVIDIA A800 GPUs.

5.3. Experiment Results

Zero-shot Performance. In our setup, the goal is to opti-
mize the performance of VLMs on downstream zero-shot
visual tasks. Therefore, in Table 1 and Table 2, we com-
pare the performance of different model selection methods
across 17 target datasets. We set two values for the count
k of reused models, specifically 1 and 3, to test the ef-
fects of using a single model versus an ensemble of three
models per class. In the ensemble setup, we first selected
the top-k models from each method and then applied the
same reuse strategies discussed in Section 4.4. The results
show that our method achieves high performance on most
downstream tasks. ModelGPT largely aligns with INB,
indicating a strong correlation in their selection strate-
gies. When INB fails to select a well-performing model,
ModelGPT also struggles with selection. By comparing
different counts k of reused models, MLL demonstrates
that reusing the model with the best performance per class
is often sufficient to outperform baseline methods in most
downstream tasks, highlighting the practicality of the MLL
paradigm. We also find that in datasets with a limited num-
ber of classes, such as PCam, employing a single model for

Table 3. Average performance of our proposal on 17 downstream
tasks compared with different α by reusing single model (k = 1)

α 0.5 0.6 0.7 0.8 0.9

Avg. 0.6569 0.6571 0.6620 0.6600 0.6590

Table 4. Average Performance and Interface Time Cost of our pro-
posal on 17 downstream tasks by different reusing model count k.

k Average Accuracy Interface Time Cost
Compared with k = 1

1 0.6620 1.000
2 0.6637 1.927
3 0.6639 2.233
4 0.6571 2.467
5 0.6556 2.700
6 0.6594 2.900

each class tends to yield better results. Additionally, when
the models available in the model hub are generally weak,
as seen in several datasets, such as CLEVR-D, relying on
ensemble methods may introduce more noise than benefit.
In these cases, a single model per class often provides the
ultimate balance between simplicity and effectiveness.

Scalability of Model Hub. We design a scenario where
the model hub starts from scratch and gradually expands
until it contains all available VLMs. Figure 3 provides a
detailed illustration of the average performance of 17 down-
stream tasks throughout 30 randomly generated expansion
schemes. The results show that as the model hub grows,
our method can more efficiently reuse the well-performing
VLM models for various tasks, reducing the limitations in
model selection and boosting system performance across a
range of visual tasks. This shows that our method is not only
highly effective in the present but also holds the potential
for continued improvement as the model hub grows.

Ablation Study. To analyze the influence of key hyperpa-
rameters in our proposal, we conducted an ablation study
focusing on the effects of the parameter α (as defined in
Equation 7) and the reuse model count k. The impact of
α is presented in Table 3. The results demonstrate that
our proposal consistently outperforms the compared meth-
ods across a range of α values, highlighting the robustness
of the model to this parameter. Additionally, the effect
of k is shown in Table 4, where the results show that us-
ing a smaller number of models strikes an optimal balance
between performance and computational efficiency, with
minimal performance loss compared to larger ensembles.
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6. Conclusion
In this paper, we explore how to select and reuse pre-trained
VLMs for a specific downstream task. To the best of our
knowledge, this problem has rarely been studied. To ad-
dress this, we propose a novel paradigm called Model
Label Learning (MLL) that assigns each VLM a label to
describe its utility on representative visual concepts. The
MLL paradigm contains three key modules: model labeling,
model selection, and model reuse. The proposal is highly
efficient, scalable, and convenient for both model devel-
opers and users. Moreover, we introduced a benchmark
for evaluating pre-trained VLM selection and reuse meth-
ods that contain 49 pre-trained VLMs and 17 target datasets.
Experiments demonstrate that the proposal can achieve state-
of-the-art VLM selection performance, and the ability to
deal with downstream tasks could grow with the scale of the
model hub, showing the potential of building large model
hubs with advanced model selection mechanisms.

In future work, we will endeavor to develop a novel model
hub based on the MLL paradigm presented in this paper,
allowing valid VLM developers from all over the world
to submit their models. When users work on visual tasks,
they will be able to select and reuse models from the hub.
The limitation of this paper is that the current implementa-
tion focuses solely on VLMs and visual classification tasks.
We will further attempt to extend our paradigm to more
model types that have significant architectural differences
compared with VLMs, and more complex tasks.

Code Availability Statement
The implementation code of benchmark and our proposal
for the MLL paradigm is available at https://github.
com/LAMDASZ-ML/MLL.
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A. Details of Benchmark
In this section, we provide detailed insights into our benchmark utilized for evaluating VLM selection and reuse methods.
Table 5 outlines the datasets used in the benchmark, highlighting the type of domain and task for each dataset. This
breakdown is essential for understanding the context and effectiveness of the models assessed in our study. Table 6 presents
general information on the model hub, including model architecture, pre-trained datasets, parameters, FLOPs, and accuracy
on ImageNet.

Table 5. Details on the datasets used in the benchmark, which contain the type of domain and task.

Dataset Domain Task

ImageNet (Deng et al., 2009) natural picture image classification
ImageNet-V2 (Recht et al., 2019) natural picture image classification

ImageNet-Sketch (Wang et al., 2019) Sketch picture image classification
ImageNet-A (Hendrycks et al., 2021b) natural picture image classification
ImageNet-R (Hendrycks et al., 2021a) 15 domain picture

(e.g., art, cartoon)
image classification

CIFAR100 (Alex, 2009) natural picture image classification
Country211 (Radford et al., 2021) natural picture geo-localization
CLEVR-D (Johnson et al., 2017) natural picture object distance estimation

DTD (Cimpoi et al., 2014) texture picture image classification
DMLab (Zhai et al., 2019) natural picture object distance estimation

Flowers102 (Nilsback & Zisserman, 2008) flower picture image classification
FER2013 (Goodfellow et al., 2013) facial picture facial expression classification

Food101 (Bossard et al., 2014) food picture image classification
GTSRB (Stallkamp et al., 2012) traffic picture image classification

MNIST (LeCun et al., 1998) digit picture image classification
OxfordIIITPet (Parkhi et al., 2012) pet photograph image classification

PCam (Veeling et al., 2018) medical picture image classification
Rendered SST2 (Radford et al., 2021) text picture optical character recognition

RESISC45 (Cheng et al., 2017) satellite picture land cover classification
StanfordCars (Krause et al., 2013) car picture image classification

STL10 (Coates et al., 2011) natural picture image classification
UCF101 (Soomro et al., 2012) video frame action recognition
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Table 6. Details on model hub used in the benchmark, which contain the model architecture, pre-trained datasets, parameters, FLOPs, and
Accuracy on ImageNet

ID Model Architecture Pretrained Dataset Params (M) FLOPs (B) ImageNet Acc.

1 RN50 openai 102.01 18.18 0.5982
2 RN50 cc12m 102.01 18.18 0.3591
3 RN101 openai 119.69 25.5 0.6228
4 RN101 yfcc15m 119.69 25.5 0.3407
5 RN101-quickgelu openai 119.69 25.5 0.6228
6 RN101-quickgelu yfcc15m 119.69 25.5 0.3487
7 RN50x4 openai 178.3 51.82 0.6627
8 RN50x64 openai 623.26 552.65 0.7391
9 ViT-B-32 openai 151.28 14.78 0.6332

10 ViT-B-32 laion2b e16 151.28 14.78 0.6565
11 ViT-B-32 datacomp xl s13b b90k 151.28 14.78 0.6917
12 ViT-B-32 commonpool m clip s128m b4k 151.28 14.78 0.2725
13 ViT-B-32-256 datacomp s34b b86k 151.29 17.46 0.7281
14 ViT-B-32-quickgelu laion400m e31 151.28 14.78 0.6294
15 ViT-B-32-quickgelu metaclip fullcc 151.28 14.78 0.6766
16 ViT-B-16 openai 149.62 41.09 0.6834
17 ViT-B-16 laion2b s34b b88k 149.62 41.09 0.7023
18 ViT-B-16 datacomp l s1b b8k 149.62 41.09 0.6310
19 ViT-B-16 commonpool l laion s1b b8k 149.62 41.09 0.5526
20 ViT-B-16 dfn2b 149.62 41.09 0.7624
21 ViT-B-16-quickgelu metaclip fullcc 149.62 41.09 0.7212
22 ViT-B-16-plus-240 laion400m e31 208.38 64.03 0.6904
23 ViT-L-14 openai 427.62 175.33 0.7554
24 ViT-L-14 laion400m e31 427.62 175.33 0.7271
25 ViT-L-14 datacomp xl s13b b90k 427.62 175.33 0.7921
26 ViT-L-14 commonpool xl clip s13b b90k 427.62 175.33 0.7637
27 ViT-L-14-quickgelu metaclip fullcc 427.62 175.33 0.7917
28 ViT-L-14-quickgelu dfn2b 427.62 175.33 0.8141
29 ViT-L-14-336 openai 427.94 395.22 0.7656
30 ViT-H-14 laion2b s32b b79k 986.11 381.68 0.7796
31 ViT-H-14-quickgelu metaclip fullcc 986.11 381.68 0.8051
32 ViT-H-14-378-quickgelu dfn5b 986.71 1054.05 0.8437
33 ViT-g-14 laion2b s12b b42k 1366.68 581.15 0.7663
34 ViT-bigG-14 laion2b s39b b160k 2539.57 1065.36 0.8009
35 roberta-ViT-B-32 laion2b s12b b32k 212.72 105.87 0.6171
36 xlm-roberta-base-ViT-B-32 laion5b s13b b90k 366.12 105.87 0.6236
37 convnext base w laion2b s13b b82k 179.39 49.38 0.7078
38 convnext base w 320 laion aesthetic s13b b82k 179.39 71.94 0.7167
39 convnext large d laion2b s26b b102k augreg 351.77 107.5 0.7591
40 convnext large d 320 laion2b s29b b131k ft 351.77 157.98 0.7660
41 convnext xxlarge laion2b s34b b82k augreg soup 1200.58 443.03 0.7947
42 coca ViT-B-32 laion2b s13b b90k 253.56 33.34 0.6331
43 coca ViT-L-14 laion2b s13b b90k 638.45 214.52 0.7561
44 EVA01-g-14 laion400m s11b b41k 1136.44 547.36 0.7852
45 EVA02-B-16 merged2b s8b b131k 149.69 41.09 0.7472
46 EVA02-L-14-336 merged2b s6b b61k 428.08 395.16 0.8039
47 EVA02-E-14 laion2b s4b b115k 4704.59 2311.42 0.8196
48 nllb-clip-base v1 501.89 369.6 0.2432
49 nllb-clip-base-siglip v1 507.47 472.91 0.3909
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