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Fig. 1: The first row shows photographs of the Hungarian National Theater over a
long period (left), reconstructed mesh with color (middle), shaded mesh, and normal
map (right). The second row displays the aligned mesh alongside historical images. Our
method to restore historical monuments has meaningful applications.

Abstract. Historical monuments are a treasure and milestone of cul-
tural heritage. Reconstructing the 3D models of these buildings holds
significant value. The rapid development of neural rendering methods
makes it possible to recover the original 3D shape exclusively based on
archival photographs. However, this task presents considerable challenges
due to the properties of available color images. Historical pictures are of-
ten limited in number and the scenes in these photos might have altered
over time. The radiometric quality of these images is often sub-optimal
for using automatic methods. To address these challenges, we introduce
an approach to reconstruct the geometry of historical buildings from lim-
ited input images. We leverage dense point clouds as a geometric prior
and introduce a color appearance embedding loss in volumetric render-
ing to recover the color of the building. We aim for our work to spark
increased interest and focus on preserving historic buildings. Together
with the proposed method, we introduce a new historical dataset of the
Hungarian National Theater, providing a new benchmark for 3D recon-
struction.
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1 Introduction

Historical monuments are unique cultural heritage features and are seen as land-
marks connecting people across time and countries. They make history tangible
and provide insight into the past. However, they are vulnerable to temporal
and man-made changes. It is one of the main goals of UNESCO5 to protect
and preserve our cultural heritage which becomes possible because of the rapid
development of 3D technologies [12] such as 3D reconstruction from 2D im-
ages [13,16,18]. However, these methods depend on the availability of numerous
high-quality color images with precise calibration information from the cameras
used to capture them. On the contrary, historical images have their own char-
acteristics that hinder the previous 3D reconstruction techniques. For example,
images of historical monuments, especially those of buildings that no longer ex-
ist, are limited and often exclusively available in gray-scale. Many historical sites
are documented solely through antiquated photographs, captured with obsolete
equipment that took images with difficult radiometric properties such as blurri-
ness, lack of color, or absence of accurate camera parameters [2, 8, 10]. Further-
more, the appearance of historical monuments may change over time, making it
difficult to find correspondences across multi-temporal images. Identifying cor-
respondences is crucial for most 3D reconstruction techniques, as camera poses
and 3D geometry features depend on them.

In this paper, we propose a method for 3D reconstruction and color view
synthesis of historical buildings using sparse and low-quality input images. We
employ a dense point cloud recovered with the Structure from Motion (SfM) and
Multi-view Stereo (MVS) algorithms as a geometric prior and introduce color
appearance embedding to utilize the minority of available color images for re-
covering the 3D model’s color. As shown in Fig. 1, our method can reconstruct a
colored 3D mesh of a building from a historical image collection predominantly
composed of gray-scale images taken over different periods. We aim to spark in-
terest in historic monument reconstruction and the use of historical photographs
within the 3D reconstruction community.

In summary, our contributions are as follows:

– We propose a method that can reconstruct satisfactory 3D geometry of his-
torical buildings by leveraging sparse and low-quality images.

– We propose a color appearance embedding loss to obtain a color synthetic
view when the majority of photos are gray-scale.

– We introduce a historical dataset that showcases a wide range of properties
typically present in historical datasets.

5 State of the Ocean Report: understand, educate, protect (https://www.unesco.
org/)
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2 New Historical Dataset

Reconstructing historical buildings based on archival photography provides sig-
nificant value, not only in the research area but also in the protection and preser-
vation of cultural heritage. However, historical images of the same building are
often scattered in multiple archives with often unresolved copyrights and only a
few historical datasets are available for research purposes. Here, we introduce a
new historical image dataset: the Hungarian National Theater dataset.

This dataset includes 229 images of the Hungarian National Theater directly
released by us and another 136 images for which the access link is provided. Ad-
ditionally, we provide a dense point cloud and camera poses which are estimated
using Structure from Motion (SfM). All photos were taken between 1875-1965.
During this period, the availability of color photography was limited. Thus, dif-
ferent from the modern building image datasets, the vast majority of photos are
gray-scale (over 90%) and only a small portion is available in color ( Fig. 2b). An-
other significant difference is, that the building can slightly change over decades.
We provide the capture dates of the images to allow selections according to the
years. Besides its cultural significance to the Hungarian people, this historical
dataset is a rare case of having a complete photo collection covering the whole
area around an old building that is no longer present. All four sides appear in
different numbers of images in the dataset.

This makes the dataset suitable as a benchmark to evaluate the algorithms’
performance regarding the number and quality of the input images. Fig. 2a shows
the reconstructed point cloud and estimated camera locations using SfM [11]
from the National Theater dataset. Fig. 3 shows example images of the facade
across time. Fig. 2b summarizes all released historical datasets so far from [9]
and our new released dataset (first row). The first column shows the total num-
ber of images in each dataset, the second column indicates the number of color
images, and the third column lists the number of images with sufficient qual-
ity for training (for the proposed method). From Fig. 2b, it is evident that our
dataset includes a greater number of images and a higher proportion of color im-
ages. We hope this newly released dataset enriches the historical reconstruction
benchmark and encourages further research in this area.

(a)

Dataset name Total Color Train
National Theater (Ours) 229 16 153
Hotel International [9] 19 1 18
Observatory [9] 37 3 33

(b)

Fig. 2: (a) down view of a reconstructed point cloud of the National Theater dataset.
blue cameras stand for validation views, orange cameras are training images, gray
cameras are images that can be obtained via request6. (b) statistics of the National
Theater dataset, three historical datasets from Jena dataset [9]
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1875 1959 1964
Fig. 3: Example images7from the Hungarian National Theater dataset.

3 Method

The whole pipeline of our method is as follows. Given a set of images {Ii}, for
i ∈ {0, 1, . . . , n}, we first preprocess the input images, i.e., resize the images to
the same size, since the historical datasets typically contain images with vary-
ing resolution. Then, the corresponding extrinsic (poses) and intrinsic camera
parameters are estimated using SfM [11]. We run a segmentation method, simi-
lar to [13] to mask out irrelevant objects such as people and cars. We generate
two kinds of point clouds, a sparse point cloud, directly using SfM [11] and a
dense point cloud P = {x1,x2, . . . ,xn} using the estimated camera parame-
ters by multiview stereo fusion [11]. We use the dense point cloud as geometry
prior together with images to train an SDF-based differential rendering network
with color appearance embedding loss to estimate the geometry. The dense point
cloud prior helps to recover a better quality mesh when the input image number
is limited and enable rendering views from unseen camera poses.

3.1 Backbones and Geometry Loss

We build our method on top of NeusW [13] and our network architecture consists
of two parts, an SDF net and a color prediction net. The SDF net estimates the
signed distance value d ∈ R and a geometric feature f ∈ Rfn , for fn is the
dimension of the feature vector. Given point x ∈ R3, the color prediction net
outputs the rendered color c. In detail, given points x, viewing direction v ∈ S2,
we compute normal n = ∇MLPSDF(x), and a feature vector f ∈ Rfn with
dimension fn.

(d, f) = MLPSDF(x) , (1)
ci = MLPCOLOR(x,v,n, ei, f) . (2)

where ei are appearance embeddings corresponding to each input photo, op-
timized alongside the parameters of MLPs, see [13] for more details. We first
6 These images can be accessed upon purchase. We will provide the link to these images.
7 Fortepan by UVATERV/FÖMTERV/Zsolt Pálinkás/Pál Breuer/Lajos Miklós and Budapest City

Archives: HU.BFL.XV.19.d.1.05.103/HU.BFL.XV.19.d.1.07.020 under CC-BY-SA-3.0
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initialize a voxel grid by the sparse point cloud similar to [13]. For image Ii with
camera center o, we shoot a ray from its pixels. The ray r with direction v is
{r(s) = o+ vs|s ≥ 0}. We pass the points along the ray to the SDF net to get
the geometry feature f and then pass these points to the color net to get the
color estimation. We reuse the SDF net for geometry loss as well. For image Ii
where we sampled ray from, we find all points from the dense point cloud P,
which are visible from this image, denoted as Pi. The geometry loss [4] is

lg(x) = λ
1

|Pi|
∑
x∈Pi

|MLPSDF(x)| , (3)

where |Pi| is the number of points in the point cloud and λ is a learnable param-
eter. During training, we sample rays across multiple images for one batch and
randomly choose one image to compute the geometry loss for the point cloud
visible from that image. The geometry loss ensures that the SDF net is guided
by the dense point cloud.

We use a dense point cloud instead of the sparse point cloud because we
believe the dense point cloud provides complementary information, see Fig. 4.
Directly sampling at the dense point cloud points to optimize the SDF net
allows us to bypass the ray marching procedure. In NeusW [13] and our case,
the sampling is directly dependent on the SDF values. Good geometry prior, i.e.
dense point cloud will benefit SDF estimation first, and the improved SDF will
improve sampling again.

3.2 Color Appearance Embedding

To deal with the situation that most of the input images are available as gray-
scale, and only a small portion provides color channels, we propose a color ap-
pearance embedding loss to recover color output. Previous methods treat gray-
scale images as color by setting the three channels to equal values. This results in
a less-than-ideal appearance embedding and a gray-scale output. The rendered
color for a ray r is

C ′(r) =

∫ +∞

0

w(t)c(r(t),v, f)dt , (4)

Fig. 4: Comparison of sparse (left) and dense (right) point cloud generated by stereo
fusion [11].
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where w(t) is an unbiased and occlusion-aware weight function used in [15]. The
color net outputs a three-channel color vector, to supervise it using gray-scale
images, we use perceptual weights [17] to convert the output color to gray-scale
value, i.e., for C ′(r) = (cr, cg, cb), we propose the function g : R3 → R and

g(C ′(r)) = wrcr + wgcg + wbcb , (5)

where Wr = 0.2126, Wg = 0.7152 and Wb = 0.0722. The loss for ray color C ′(r)
in image with true color C(r) is

lc(r) =

{
1
2 |C(r)− g(C ′(r))|2, if r is gray-scale ,
1
2 |C(r)−C ′(r)|2, otherwise .

(6)

With the color appearance embedding loss, we weakly supervise on gray-scale
images and strongly on color images.

4 Experiments

In this section, we present the experimental results of the proposed method on
3 historical scenes, including the proposed theater dataset, listed in Fig. 2b.
Implementation details For our method and its comparison to other methods
we build upon the implementation of SDFStudio [19]. We use 8 layers with
512 hidden units for the geometry MLP and 4 layers with 256 hidden units
for the color MLP. For dense point cloud generation and to obtain the camera
poses, we use COLMAP [11] and feature matches obtained by a combination
of state-of-the-art keypoint detector and feature matching algorithms [3, 6, 14].
For Metashape [1], we import the feature matches using the bundler format and
apply the segmentation masks.
Training details We select a sampling radius Vsfm roughly 2 times the ra-
dius of the encapsulating sphere of the main object or building of interest. For
the geometry loss Eq. (3) we set λ = 0.1. The voxel grid used for accelerated
sampling is updated every 5k iterations. We sample the color network Eq. (2)
at the vertices and save it as vertex color. During inference, we use the average
appearance embedding vector for the color network. We run all experiments on
4 NVIDIA A100 GPUs for 100.000 iterations with a batch size of 2048 per GPU.
For the final output mesh, we only extract a mesh within the Vsfm radius using
Marching Cubes [7] algorithm with a grid resolution of 1024.

4.1 Mesh Reconstruction

In this section, we show our results on historical datasets and compare to other
state-of-the-art methods. We choose one classical method, Metashape [1] and
learning-based algorithms NeusW [19] and Neus-factor [13]. Fig. 1 shows the
aligned 3D mesh with images that have been taken from that angle. The fig-
ure demonstrated how our work can bring the historical monuments alive and
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Fig. 5: Reconstructed mesh results compared to other methods. Metashape [1] can
get clean geometry reconstruction but fails to get the details. Our method is able to
provide comparable mesh reconstructions while additionally recovering the color of the
mesh.

positively influence future study. Fig. 5 shows our reconstructed meshes for four
historical datasets. In general, all the methods achieve the best results on the
National Theater dataset, especially for the facade. Qualitatively, our method
recovers comparable meshes to other methods. For the Observatory dataset,
despite the limited data and challenging setting, learning-based methods can
successfully recover the main building with varying degrees of artifacts. Our
method gives the most complete and round dome. However, the normal meshes
(4th-row in Fig. 5) indicate that we are able to recover the pillars correctly while
NeusW [13] fails on this part. A similar situation happens in the Hotel dataset,
ours can recover thin structures such as columns and chimneys. We attribute
this to the dense point cloud supervision.

5 Colorization Accuracy

We compare the rendered results of the baseline, an unconditional colorization
method [5], and our color appearance loss with the ground truth color image
which was converted to gray-scale during training. For the unconditional col-
orization case we colorize all images before training. Fig. 6 shows the differ-
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ent results of colorization. While the unconditional colorization results in a

GT Baseline Unconditional
Colorization [5]

Color Appearance
loss (Ours)

Fig. 6: Colorization comparison: The baseline is gray-scale and therefore unnatural,
the unconditional colorization results in plausible but historically inaccurate colors.
The Color Appearance loss results in the closest color scheme to the ground truth.

plausible-looking colorization, it’s not historically accurate, since it doesn’t re-
tain any colors from the available color images. Our method with the color ap-
pearance loss achieves the best performance in terms of PSNR and SSIM values
but falls short in LPIPS as shown in Tab. 1.

PSNR SSIM LPIPS

Baseline 18.01 0.7299 0.2871
Unconditional Colorization 17.30 0.7408 0.2992
Appearance Embedding Loss (Ours) 19.02 0.7528 0.2654

Table 1: Quantitative evaluation of colorization performance compared to the baseline,
unconditional colorization and our proposed color embedding loss

6 Conclusion

Summary We present a novel historical dataset with a substantially larger
image count compared to prior datasets. Additionally, we provide its point cloud
data along with camera information, generated through Structure from Motion
(SfM). Our method addresses challenges inherent in reconstructing 3D shapes
from sparse and low-quality inputs found in archival historical datasets. We
demonstrate that incorporating pre-existing data, such as dense point clouds,
significantly enhances geometry reconstruction. This supervision of dense point
clouds improves reconstruction outcomes, particularly in scenes with limited
image coverage. It facilitates the reconstruction of thin structures, texture-less
wall segments, and temporally changing structures. Furthermore, we propose
a color appearance embedding loss to restore the color of generated meshes
representing historical buildings to some extent.
Limitations The color appearance embedding loss has been observed to nega-
tively impact mesh accuracy in quantitative terms. Moreover, there is a need for
enhanced capabilities in handling sparse input images to enable the recovery of
detailed 3D meshes, especially under more challenging conditions.

Acknowledgement. The research upon which this paper is based has received
funding from the European Union’s Horizon 2020 research and innovation pro-
gram under grant agreement No 101135556 (INDUX-R).
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