

A REVISIT OF TOTAL CORRELATION IN DISENTANGLED VARIATIONAL AUTO-ENCODER WITH PARTIAL DISENTANGLEMENT

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 A fully disentangled variational auto-encoder (VAE) aims to identify disentangled
 014 latent components from observations unsupervisedly. However, enforcing full
 015 independence between all latent components may be too strict for certain datasets.
 016 In some cases, multiple factors may be entangled together in a non-separable
 017 manner, or a single independent semantic meaning could be represented by multiple
 018 latent components within a higher-dimensional manifold. To address such scenarios
 019 with greater flexibility, we develop the Partially Disentangled VAE (PDisVAE),
 020 which generalizes the total correlation (TC) term in fully disentangled VAEs to a
 021 partial correlation (PC) term. This framework can handle group-wise independence
 022 and can naturally reduce to either the standard VAE or the fully disentangled VAE.
 023 Validation through three synthetic experiments demonstrates the correctness and
 024 practicality of PDisVAE. When applied to real-world datasets, PDisVAE discovers
 025 valuable information that is difficult to uncover with fully disentangled VAEs,
 026 implying its versatility and effectiveness.

1 INTRODUCTION

030 Disentangling independent latent components from observations is a desirable goal in representational
 031 learning (Bengio et al., 2013; Alemi et al., 2016; Schmidhuber, 1992; Achille & Soatto, 2017), with
 032 numerous applications in fields such as computer vision and image processing (Lake et al., 2017),
 033 signal analysis (Hyvärinen & Oja, 2000; Hyvärinen & Morioka, 2017), and neuroscience (Zhou
 034 & Wei, 2020; Yang et al., 2021; Wang et al., 2024; Calhoun et al., 2009). To disentangle latent
 035 components in an unsupervised manner, most models employ techniques that combine optimizing
 036 a variational auto-encoder (VAE) (Kingma, 2013) with an additional penalty term known as total
 037 correlation (mutual information) (Kraskov et al., 2004), classified as fully disentangled VAEs (Higgins
 038 et al., 2017; Kim & Mnih, 2018; Chen et al., 2018).

039 However, enforcing full independence among all latent components can be an overly strong assumption
 040 for certain datasets. For instance, consider the location coordinates (x, y) of a set of points in a
 041 2D plane. If the points are uniformly distributed within a square $[-1, 1] \times [-1, 1]$, the location distribution
 042 can be expressed as $p(x, y) = p(x)p(y)$, indicating that x and y are independent components.
 043 However, if the points are distributed in an irregular shape, such as a butterfly, the (x, y) coordinates
 044 become entangled, resulting in $p(x, y) \neq p(x)p(y)$. In this case, the location information cannot be
 045 decomposed into two independent components but must be jointly represented by (x, y) together. If
 046 the points also have attributes independent of their location, such as RGB color represented by a 3D
 047 vector, we then encounter the **group-wise independence**, where a rank-2 entangled group (location)
 048 is independent of a rank-3 entangled group (color).

049 Table 1: Comparison of methods. More details regarding these related methods are in Appendix A.1.

	full disentanglement	partial disentanglement
By prior (not flexible)	ICA	ISA-VAE
By extra penalty (flexible)	FactorVAE, β -TCVAE	Our PDisVAE
Others	citations and explanations listed in Appendix A.1	

To deal with such group-wise independence, one might consider a straightforward approach of using a fully disentangled method such as prior-based ICA (Hyvärinen & Oja, 2000) or penalty-based FactorVAE and β -TCVAE (Kim & Mnih, 2018; Chen et al., 2018) to impose marginal independence on between-group components (see Tab. 1). However, this is an insufficient condition for group-wise independence (see Sec. 3.1 and Appendix A.2 for details). Other approaches (row “others” in Tab. 1) either include semi-supervised learning to align the latent with the ground truth labels (e.g., Ahuja et al. (2022)) or do not exclusively penalize the term that is specifically for promoting independence. For example, β -VAE (Higgins et al., 2017; Burgess et al., 2018) penalizes the entire reverse KL term of the VAE target function, which is significantly less effective than FactorVAE and β -TCVAE that directly add a penalization, the total correlation (TC), for independence (Dubois et al., 2019). Hierarchical factorized VAE (Esmaeili et al., 2019) penalizes between-block latent independence, within-block latent independence, and their KL divergences w.r.t. their corresponding factorized priors. None of these methods directly deals with group-wise independence, where latent components within a group may be highly entangled. Among all these methods, ISA-VAE (Stühmer et al., 2020) is the first work that uses group-wise independent prior to achieve independence between latent groups, which can be viewed as an extension of nonlinear ICA, from full disentanglement to partial disentanglement. However, a predefined group-wise independent prior is sometimes inflexible to encompass various complicated latent distributions. Moreover, none of these methods rigorously validates or analyzes their effectiveness on a partially disentangled synthetic dataset.

To address these, we develop the **Partially Disentangled VAE (PDisVAE)**.

- First, it achieves group-wise independence by generalizing the total correlation (TC) penalty term in the target function of fully disentangled VAEs (Kim & Mnih, 2018; Chen et al., 2018) to partial correlation (PC), instead of using a rigidly defined group-wise independent prior used in ISA-VAE (Stühmer et al., 2020). PC explicitly penalizes group-wise independence while permitting within-group entanglement flexibly. This unified formulation of PC is flexible, and it encompasses both the standard VAE and fully disentangled VAEs.
- Second, we revisit the batch approximation method used for computing PC and TC from Chen et al. (2018) and Esmaeili et al. (2019). We theoretically prove that the importance sampling (IS) batch approximation from Esmaeili et al. (2019) is the optimal that is unbiased and has the lowest variance.
- Third, we are the first to conduct thorough experiments with proper metrics on three well-designed synthetic datasets with truth labels that are truly partially disentangled into groups. In particular, we create our **pSprites** dataset, an extension of dSprites specifically designed to exhibit partially group-disentangled ground truth labels. Validation and analysis of these datasets demonstrate the superiority of our proposed PDisVAE in capturing group-wise independent latent factors.

In the following, we first introduce the background of fully disentangled VAEs. Then, we develop our PDisVAE and detail its techniques and properties. Lastly, we run experiments on three synthetic datasets and two real-world datasets to show that PDisVAE is effective in partially disentangling the latent components by groups.

2 BACKGROUNDS: FULLY DISENTANGLED VAEs

2.1 BY TOTAL CORRELATION (TC)

Given a dataset of observations $\{\mathbf{x}^{(n)}\}_{n=1}^N$ consisting of N samples, fully disentangled VAEs identify K statistically independent (disentangled) latent components, $z_1 \perp \dots \perp z_K$, within the latent variable $\mathbf{z} \in \mathbb{R}^K$ that generate the observation $\mathbf{x} \in \mathbb{R}^D$, by optimizing

$$\mathcal{L} = \frac{1}{N} \sum_{n=1}^N \text{ELBO}(\mathbf{x}^{(n)}) - \beta \cdot \text{KL}\left(q(\mathbf{z}) \middle\| \prod_{k=1}^K q(z_k)\right), \quad (1)$$

where $\text{ELBO}(\mathbf{x}^{(n)}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}^{(n)})} [\ln p(\mathbf{x}^{(n)}|\mathbf{z})] - \text{KL}(q(\mathbf{z}|\mathbf{x}^{(n)})\|p(\mathbf{z}))$ (Blei et al., 2017) is the standard VAE loss. In these formulae, $p(\mathbf{x}|\mathbf{z}; \theta)$ is a decoder : $\mathbb{R}^K \rightarrow \mathbb{R}^D$ and $q(\mathbf{z}|\mathbf{x}; \phi)$ is an encoder : $\mathbb{R}^D \rightarrow \mathbb{R}^K$. In Eq. (1) and the following, we omit θ in p and ϕ in q for simplification. The prior $p(\mathbf{z})$ is often chosen to be a standard normal prior. The second term in Eq. (1) is the total correlation (TC), where $q(\mathbf{z}) = \sum_{n=1}^N q(\mathbf{z}|\mathbf{x}^{(n)}) q(\mathbf{x}^{(n)})$ is the aggregated posterior, followed by Makhzani et al. (2015). Since all data points are equally contributed, $q(\mathbf{x}^{(n)}) = \frac{1}{N}$, and hence $q(\mathbf{z})$ can be viewed as a Gaussian kernel density estimation from $\{\mathbf{z}^{(n)}\}_{n=1}^N$ in latent space. The TC term is designed to achieve the full latent disentanglement $q(\mathbf{z}) = \prod_{k=1}^K q(z_k) \iff z_1 \perp \dots \perp z_K$.

108 2.2 BY A NON-GAUSSIAN PRIOR (ICA)
109

110 Another approach to achieving full disentanglement is the independent component analysis (ICA).
 111 Its core idea is “non-Gaussian is independent” (Hyvärinen & Oja, 2000; Hyvärinen et al., 2009).
 112 Therefore, the normally used standard Gaussian prior, although it can be factored into a product
 113 of marginals, does not enforce any independence. Hence, ICA replaces the standard normal prior
 114 with (a commonly used) logcosh prior: $p(\mathbf{z}) = \prod_{k=1}^K p(z_k) = \prod_{k=1}^K \frac{\pi(\operatorname{sech} \frac{\pi z_k}{2\sqrt{3}})^2}{4\sqrt{3}}$. In traditional
 115 linear ICA, $\mathbf{x} = \mathbf{f}(\mathbf{z})$ where $\mathbf{f} : \mathbb{R}^K \rightarrow \mathbb{R}^D$ is a full-rank ($D = K$) linear deterministic mapping,
 116 and $p(\mathbf{x}|\mathbf{z}; \mathbf{f}) = \delta(\mathbf{x} - \mathbf{f}(\mathbf{z}))$ (δ is the Dirac delta function), then we can use maximum likelihood
 117 estimate (MLE) to learn \mathbf{f} via the “change of variable” formula, $p(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{z}; \mathbf{f})p(\mathbf{z}) d\mathbf{z} =$
 118 $\left| \det \frac{d\mathbf{f}^{-1}}{d\mathbf{z}} \right| \cdot p(\mathbf{f}^{-1}(\mathbf{x}))$, and recover $\mathbf{z} = \mathbf{f}^{-1}(\mathbf{x})$. For non-invertible non-linear \mathbf{f} , we can use a
 119 VAE with such a logcosh prior $p(\mathbf{z})$. We recognize this logcosh-priored VAE as the nonlinear ICA.
 120

121 3 PARTIALLY DISENTANGLLED VAE (PDISVAE)
122

123 3.1 PROBLEM DEFINITION

124 Although several approaches have been introduced in Sec. 2, a common issue among them is that
 125 they are all trying to find “fully disentangled (independent)” latent space. However, if the true
 126 latent variables are partially disentangled by groups, applying a fully disentangled method is hard to
 127 successfully recover the underlying latent structure accurately.

128 We first formally define partial disentanglement. Still, assume latent $\mathbf{z} \in \mathbb{R}^K$, but now the latent
 129 dimensions are disentangled by G groups, while each group g has its internal within-group rank H_g ,
 130 satisfying $K = H_1 + \dots + H_G$. For simplicity, we denote the g -th group as $\mathbf{z}_g = (z_{g,1}, \dots, z_{g,H_g}) \in$
 131 \mathbb{R}^{H_g} , so that $\mathbf{z} = (z_1, \dots, z_G)$. Then, the **partially disentangled** latent can be formulated as

$$132 \quad \bigwedge_{g=1}^G \mathbf{z}_g \iff p(\mathbf{z}) = \prod_{g=1}^G p(\mathbf{z}_g), \quad p(\mathbf{z}_g) \neq p(z_{g,1}) \cdots p(z_{g,H_g}), \quad \forall g \in \{1, \dots, G\}. \quad (2)$$

133 This equation expresses that latent groups are independent of each other, but within each group,
 134 latent components may exhibit dependencies and may not be further disentangled. We refer to this as
 135 **group-wise independence** and present an example in Fig. 1.

136 To identify partially disentangled component groups, one might consider a straightforward approach:
 137 using existing methods to impose marginal independence on inter-group components. For instance, if
 138 we have $(z_1, z_2) \perp z_3$, one might attempt to apply existing algorithms to require $z_1 \perp z_3$ and $z_2 \perp z_3$.
 139 However, this is generally NOT correct since the former is a sufficient but not necessary condition
 140 (\implies) for the latter. A simple counterexample is $p(z_1, z_2, z_3)$ with $p(0, 0, 1) = p(0, 1, 0) =$
 141 $p(1, 0, 0) = p(1, 1, 1) = 0.25$. It can be verified that $(z_1, z_2) \not\perp z_3$, while $z_1 \perp z_3$ and $z_2 \perp z_3$.
 142 More detailed explanations are in Appendix A.2. Therefore, we must explicitly enforce $(z_1, z_2) \perp z_3$.
 143

144 To explicitly require group-wise independence, there are still two ways—by a group-wise independent
 145 prior or by an extra penalty term to the loss function (see Tab. 1). Stühmer et al. (2020) developed
 146 ISA-VAE, extending from ICA, that utilizes the L^p -nested distribution (Fernández et al., 1995; Sinz
 147 & Bethge, 2010) as a group-wise independent prior to achieve the partial disentanglement. However,
 148 this approach still needs further experimental investigation (as it was not conducted in the ISA-VAE
 149 paper). Moreover, relying on a predefined prior to achieve group-wise independence might be overly
 150 rigid in some cases, similar to the logcosh prior in fully disentangled nonlinear ICA.
 151

152 3.2 PARTIAL CORRELATION (PC)

153 Instead of using a prior, we develop the **Partially Disentangled VAE (PDisVAE)** that achieves the
 154 group-wise independence by an extra penalty term to the loss. Its target function

$$155 \quad \mathcal{L} = \frac{1}{N} \sum_{n=1}^N \text{ELBO}(\mathbf{x}^{(n)}) - \beta \cdot \text{KL}\left(q(\mathbf{z}) \middle\| \prod_{g=1}^G q(\mathbf{z}_g)\right) \quad (3)$$

156 replaces the TC term in Eq. (1) with a partial correlation (PC) term. PC is responsible for disentangling
 157 independent groups. When $q(\mathbf{z}) = \prod_{g=1}^G q(\mathbf{z}_g)$, $\text{PC} = \text{KL}\left(q(\mathbf{z}) \middle\| \prod_{g=1}^G q(\mathbf{z}_g)\right) = 0$. Otherwise,
 158 $\text{PC} > 0$ and is penalized by the hyperparameter $\beta > 0$.

Figure 1: A synthetic dataset showing group-wise independent latent $(z_1, z_2) \perp (z_3, z_4) \perp (z_5, z_6)$, but within-groups are highly entangled. Marginal distributions are on the diagonal, and other off-diagonal positions represent the relationship between two latent components.

It is worth noting that when $G = 1$, $\text{PC} \equiv 0$ and Eq. (3) becomes the standard VAE objective function; when $G = K$, PC is just the total correlation (TC) and Eq. (3) becomes Eq. (1), the fully disentangled VAE loss. Compared with ISA-VAE (Stühmer et al., 2020), which relies on a predefined group-wise independent prior, utilizing PC to achieve group-wise independence offers greater flexibility by allowing the within-group disentanglement rank to vary, rather than being fixed to a specific rank H in ISA-VAE. Specifically, when we don't know the true rank H_{true} for a group, we can set a large enough group rank H in the PDisVAE, and it will automatically detect the true effective group rank with the remaining $H - H_{\text{true}}$ dimensions as dummy variables. This flexibility and effectiveness will be validated through experiments.

3.3 BATCH APPROXIMATION

During training, strictly computing the aggregated marginal/group posterior of the form $q(z) = \sum_{n=1}^N q(z|x^{(n)})q(x^{(n)}) = \frac{1}{N} \sum_{n=1}^N q(z|x^{(n)})$ might be unfeasible, since we only have a batch, denoted as $\mathcal{B}_M := \{n_1, n_2, \dots, n_M\}$ without replacement. Although Chen et al. (2018) proposed minibatch weighted sampling (MWS) and minibatch stratified sampling (MSS), we argue that the **importance sampling (IS)** (first proposed by Esmaeili et al. (2019)) is theoretically more effective.

Specifically, when we only have a batch $\mathcal{B}_M \subsetneq \{1, \dots, N\}$ and a sampled $z \sim q(z|n_*)$, where n_* is a specific example point in \mathcal{B}_M , $q(z|n_*)$ is more likely to be greater than $q(z|n \neq n_*)$ since z is sampled from $q(z|n_*)$. Therefore, we want the remaining $M - 1$ points in $\mathcal{B}_M \setminus \{n_*\}$ to represent the entire dataset excluding n_* , i.e., $\{1, 2, \dots, N\} \setminus \{n_*\}$. Hence, an approximation of $q(z)$ at $z \sim q(z|n_*)$ could be

$$\hat{q}(z) = \frac{1}{N} q(z|n_*) + \sum_{n \in (\mathcal{B}_M \setminus \{n_*\})} \frac{N-1}{M-1} \frac{1}{N} q(z|n). \quad (4)$$

Notably, IS is theoretically more stable than MSS due to the following theorem.

Theorem 3.1. *The effectiveness of the IS estimator is higher than that of the MSS estimator, measured by the variance of the estimator, satisfies $\text{Var}[\text{IS}] < \text{Var}[\text{MSS}]$, $\forall M > 2$.*

Appendix A.3 includes the complete derivation, the proof of its optimality, and an empirical evaluation of the three estimators, which constitute one of the core contributions of this work.

216

4 EXPERIMENTS

217

Methods for comparison.

218

- 219 • **Standard VAE** (Kingma, 2013): Theoretically, standard VAE does not have disentanglement ability.
- 220 • **ICA**: The logcosh-priored VAE for doing non-linear ICA inspired by Hyvärinen & Oja (2000).
- 221 • **ISA-VAE** (Stühmer et al., 2020): This is the VAE that using the L^p -nested prior to achieve group-
222 wise independence.
- 223 • **β -TCVAE** (Chen et al., 2018): This method penalizes an extra TC term to achieve full disentangle-
224 ment. It is theoretically equivalent to FactorVAE (Kim & Mnih, 2018).
- 225 • **PDisVAE**: Our method penalizes the PC term to achieve partial disentanglement, providing a
226 flexible approach to group-wise independent latent. It reduces to the standard VAE when the number
227 of groups $G = 1$; and reduces to the fully disentangled VAE when $G = K$ (i.e., the number of groups
228 equals the latent dimensionality). Additionally, it inherently supports within-group rank deficiency.

241 Figure 2: The latent alignment procedure illustrated by the R2 alignment matrix. The best match is
242 marked by the red squared linear least-squares R^2 score.

243

4.1 SYNTHETIC VALIDATION: GROUP-WISE INDEPENDENT

244 **Dataset.** To validate that only PDisVAE is capable of dealing with group-wise independent datasets,
245 we use our created dataset in Fig. 1 consisting of $N = 2000$ points in $K = 6$ latent space $\mathbf{z}^{(n)} \in \mathbb{R}^6$,
246 where three groups are independent of each other $(z_1, z_2) \perp (z_3, z_4) \perp (z_5, z_6)$, but components
247 within each group are highly entangled. The observations \mathbf{x} are linearly mapped from the latents \mathbf{z} to
248 a $D = 20$ dimensional space $\mathbf{x}^{(n)} \in \mathbb{R}^{20}$, and then Gaussian noise $\epsilon_d^{(n)} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 0.5^2)$ is added.

249 **Experimental setup.** For each method, we use Adam (Kingma, 2014) to train a linear encoder and
250 a linear decoder (since the true generative process is linear) for 5,000 epochs. The learning rate is
251 5×10^{-4} and the batch size is 128. For β -TCVAE and PDisVAE, the TC/PC penalty is set as $\beta = 4$.
252 This is supported by Dubois et al. (2019), the β selection in β -TCVAE (Chen et al., 2018), and our
253 cross-validation result (Fig. 7 in Appendix A.4.1) in the ablation study. Each method is run 10 times
254 with different random seeds.

255 **Partial disentanglement evaluation.** When there is no ground truth latent groups, we can
256 use the **PC on the test set** as a metric to evaluate whether the latent space has group-wise in-
257 dependent structure. When the ground truth exists, we can match the estimated latent groups
258 $\{\mathbf{z}_1^{(n)}\}_{n=1}^N, \dots, \{\mathbf{z}_G^{(n)}\}_{n=1}^N$ to the true groups $\{\mathbf{z}'_1^{(n)}\}_{n=1}^N, \dots, \{\mathbf{z}'_G^{(n)}\}_{n=1}^N$ correspondingly. Exam-
259 ples of this aligning procedure are illustrated in Fig. 2. Specifically, we form an $\mathbf{R2} \in (-\infty, 1]^{G \times G}$
260 matrix whose entry (g_1, g_2) is the R^2 score by aligning the estimated latent group $\mathbf{z}_{g_2}^{(n)}$ to the true
261 $\mathbf{z}'_{g_1}^{(n)}$ via a linear least-squares fit. We then solve a linear-sum assignment problem (Crouse, 2016)
262 to find a one-to-one correspondence matching between true groups g' and estimated groups g that
263 maximizes the total R^2 , and report the mean \bar{R}^2 over these matched pairs.

264 For VAE, there is no disentanglement assumption, and hence the estimated latent does not contain any
265 type of disentangled structure. For ICA and β -TCVAE, they assume dimension-wise independence
266 rather than the desired group-wise independence. None of these methods has a group-wise structure
267 and hence cannot provide estimated latent groups theoretically. Therefore, we grid search all possible
268 groupings and pick the one that has the best alignment in a post-hoc way. In this experiment, we need

Figure 3: (a): The PC of the estimated latent and the latent R^2 after alignment to the true latent (Fig. 1, with pair-wise t -test showing the significance level. (b): The estimated latent of PDisVAE before aligning to the true latent. In each pair, the TC shows the minimum TC under all possible linear transformations. (c): Estimated latent after aligning to the true latent for various methods. Left three columns: the three independent groups; right one column: a between-group component pair.

to assign $K = 6$ estimated latent dimensions into $G = 3$ groups, and each of them contains $H = 2$ dimensions (with $K = G \times H$). Therefore, the number of all possible grouping combinations is $\frac{\prod_{g=1}^G \binom{(G+1-g)H}{H}}{G!} = \frac{K!}{G!(H)^G} = 15$ for this example. Such a high complexity explicitly demonstrates the theoretical defect of methods without a flexible or proper group-wise independence assumption. Compared with them, PDisVAE completely eliminates the need for post-hoc analyses.

Results. The PC box plot in Fig. 3(a) shows that PDisVAE achieves the lowest PC, implying that PDisVAE disentangles latent in groups the best, while others do not provide proper group-wise structures in latent space. Since the PC on the test set is also evaluated numerically, we compute the PC of the true latent as a sanity check, obtaining 0.332 ± 0.006 . The magnitude of this value confirms that the PC achieved by PDisVAE indeed reflects a substantially better latent group structure compared to other methods. This magnitude.

The VAE reconstruction R^2 between the true and the VAE reconstructed observation of all methods is approximately 0.97, indicating that all methods can reconstruct the observation perfectly. However, their learned latent representations are different. Since this is a synthetic dataset and a model match experiment, we can align the estimated latent groups to their corresponding true latent groups to further validate the correctness of the latent estimation. The alignment procedure visualized in Fig. 2 indicates that no matter how we partition the estimated latent dimensions into three groups, each estimated group contains some information from all three true groups. However, each estimated latent group from PDisVAE exclusively contains nearly complete information from one particular true group, which forms the corresponding alignment result.

The latent R^2 boxplot in Fig. 3(a) and latent plots in Fig. 3(c) summarize that PDisVAE recovers the latent more accurately than others. Among the alternatives, β -TCVAE is better than ISA-VAE, ICA, and VAE. Although ISA-VAE is designed to find group-wise independent latent, its performance is not ideal when facing data generated from group-wise independent ground truth latent in practice, due to the predefined group-wise independent prior in ISA-VAE differing substantially from the true underlying latent groups. In contrast, PDisVAE does not impose a rigid prior, allowing greater flexibility to accommodate diverse latent structures. Another important message from these results reminds us that, even if a fully disentangled method such as ICA and β -TCVAE finishes, it cannot provide a reliable latent structure if the fully disentangled assumption itself is wrong.

An immediate question that arises is, how to check within-group latent estimated by PDisVAE is truly highly entangled and cannot be further decomposed, especially when there is no true latent. The minimum within-group TCs in Fig. 3(b) are all significantly greater than zero, indicating highly

324 entangled groups that cannot be further decomposed. In contrast, the near-zero pairwise TCs between
 325 groups suggest independence across groups.
 326

327 **Flexibly reduce to the fully independent case.** To validate that PDisVAE can flexibly get the same
 328 results as from a fully disentangled VAE when the latent is fully independent, we create a dataset that
 329 is generated from fully independent latent (Fig. 8(a) and Fig. 9) and apply different methods to it.
 330 The PC box plot and latent R^2 plot in Fig. 8(b) show that both β -TCVAE and PDisVAE achieve the
 331 lowest partial correlation and the highest latent R^2 on this fully disentangled dataset, which implies
 332 that PDisVAE automatically reduces to a fully independent result if the group rank is deficient. In
 333 general, the actual group rank can be detected by PDisVAE and if the true group rank is less than the
 334 specified group dimensionality, dummy estimated latents will be complemented in the corresponding
 335 group. More details are in Appendix A.4.2.

362 Figure 4: (a): Latent and observation generating process. Locations (z_1, z_2) are entangled and
 363 uniformly distributed in a restricted region. Color encodes location, with the upper and lower gray
 364 triangular areas being empty. The size z_3 is evenly distributed across five scales, represented by
 365 different markers, and is independent of the location. (b): The reconstructed images by varying one
 366 of the latent groups $((\hat{z}_1, \hat{z}_2)$ or (\hat{z}_3, \hat{z}_4)). (c): The latent plot and their corresponding PC and latent
 367 R^2 . The color-location and marker-size correspondences are identical to (a).

368 4.2 SYNTHETIC APPLICATION: PARTIAL DSPRITES

369 **Dataset.** To understand the application scenario of PDisVAE, we created a synthetic dataset called
 370 partial dsprites (pdsprites), inspired by Matthey et al. (2017). Unlike the original dsprites, which
 371 features six fully independent latent dimensions, we only keep three latent components: x -location
 372 (z_1), y -location (z_2), and size (z_3), where x and y locations are entangled (not independent) with
 373 each other while this group is independent to the size, i.e., $(z_1, z_2) \perp z_3$. The generating process is
 374 depicted in Fig. 4(a), resulting in 805 gray-scaled images of shape 32×32 .
 375

376 **Experimental setup.** For each method, we use Adam to train a deep CNN VAE (Burgess et al.,
 377 2018) for 5,000 epochs with a learning rate of 1×10^{-3} . For β -TCVAE and PDisVAE, the TC/PC
 378 coefficient is set as $\beta = 4$. Given the true latent is $(z_1, z_2) \perp z_3$, learning two rank-2 groups

($K = 4 = G \times H = 2 \times 2$) should be able to find one group representing the location of the square and another rank-deficient group (contains a dummy latent component) representing the size of the square. Note that this setup is a model mismatch case, as we do not know the exact observation generating function f ; we only know the semantic relationship between z and x .

Results. Fig. 4(c) shows the estimated latent from all methods after alignment. PDisVAE has the highest latent R^2 and the second lowest PC. Notably, PDisVAE successfully discovers two empty areas in the upper and lower gray triangular regions in group 1, reflecting the true latent distribution depicted in Fig. 4(a). Additionally, although we specify two rank-2 groups, PDisVAE automatically finds the group for “size” contains one effective component that reflects the “size” and one dummy component. Specifically, it captures leveled size scales in z_3 , showing smaller sizes for smaller z_3 and larger sizes for larger z_3 , making it the closest representation of the true z_3 compared to other methods. This further demonstrates the flexibility of PDisVAE in scenarios where the true group specifications are unknown, as in real-world datasets. By setting a sufficiently large group rank for each group, PDisVAE can automatically infer the effective rank within each group. Appendix A.4.3 contains more plots and quantitative comparisons.

Fig. 4(b) shows the reconstructed images by varying each of the two groups found by β -BTCVAE and PDisVAE, respectively. Group 1 from PDisVAE represents the location, with an empty center due to fewer observation samples in that area (see the region around $(z_1, z_2) = (0, 0)$ in Fig. 4(a)). Besides, the square is expected not to appear in the top middle or bottom middle of the image, since no observation in the dataset appears in those regions. The size is embedded in group 2, roughly along the \hat{z}_4 direction. In contrast, β -TCVAE mixes size and location in both groups because it enforces independence across all four components, which is incompatible with the fact that two location components are entangled together and independent of the third size component.

4.3 REAL-WORLD APPLICATIONS

We evaluate the performance and flexibility of PDisVAE on two real-world applications. For real-world datasets, the true latent structure is unknown. While PDisVAE can theoretically tolerate over-specified group ranks, excessively large settings degrade training efficiency and model quality. To systematically examine the impact of group specification, we fix the total latent dimensionality K and vary (G, H) . This design allows us to study how different group assumptions affect performance while enabling fair comparisons with the standard VAE ($G = 1$) and the fully disentangled VAE ($G = K$) under the same latent capacity K .

Figure 5: Brain maps $\{z_g^n\}_{n=1}^{50 \times 50}$ and the corresponding time series $A_{:,g}$ from the learned groups by different PDisVAE configurations (K, G), i.e., K components, G groups, and the group rank is $H = K/G$. Some groups contain dummy dimensions, so the effective group rank is lower than the specified group rank, and hence we only show those effective components.

Mouse dorsal cortex voltage imaging. The dataset used in this study is a trial-averaged voltage imaging (method by Lu et al. (2023)) sequence from a mouse collected by us. It comprises 150 frames of 50×50 dorsal cortex voltage images, recorded while the mouse was subjected to a left-side air puff stimulus lasting 0.75 seconds. Each pixel is treated as a sample, and a linear model $x \sim \mathcal{N}(Az, \sigma^2 I)$ is learned. We investigate different numbers of groups $G \in \{1, 2, 3, 4, 6, 12\}$ while keeping the

432 number of components constant at $K = 12$. Additionally, we explore fully disentangled models
 433 by varying $K \in \{1, 2, 3, 4, 6, 12\}$ with $G = K$. The training procedures are similar to the previous
 434 experiments (see code for details).

435 Figure 5 shows the brain maps and corresponding time series learned from various PDisVAE
 436 configurations (K, G) . Learning $K = 12$ components with different G groups (Fig. 5(a,b,c)) yields
 437 similar reconstruction RMSEs (≈ 0.047), but results in different latent representations. Assuming
 438 $G = 12$ as a fully disentangled model (Fig. 5(c)) is overly restrictive, as both group 3 and group
 439 12 contain oscillations in the right primary somatosensory cortex-barrel field (S1-bf) and secondary
 440 motor cortex-medial (M2-m), demonstrating a lack of independence between these components.
 441 This configuration implies that there are not 12 independent components within this neural data.
 442 Conversely, assuming $G = 4$ groups (Fig. 5(a)) is insufficient, as group 2 mixes not only the oscillatory
 443 signals right S1-bf and M2-m but also signals from other regions like the right primary motor cortex
 444 (M1). This implies a failure to capture the complete scope of independence in the data. A $G = 6$
 445 grouping (Fig. 5(b)) presents a more balanced approach. This model consists of six independent
 446 groups, each expressed by two latent components. Specifically, group 3's S1-bf and M2-m remain
 447 active, indicating these areas are stimulated during the air puff; group 6 is primarily responsible for
 448 the oscillations in S1-bf and M2-m, with minimal interference from the M1 signal. Moreover, the
 449 brain maps in group 2 from the 4-group configuration are effectively delineated into groups 5 and 6
 450 in the 6-group configuration, further affirming the relative independence of M1 from S1-bf and M2-m
 451 during stimulus exposure. The fully independent model with $(K, G) = (6, 6)$ (Fig. 5(d)) indicates
 452 that two components per group are necessary for accurate reconstruction. Specifically, having only
 453 one component per group is insufficient to reconstruct the raw video, as the RMSE for $(6, 6)$ is 0.059,
 454 which is significantly higher than the 0.049 RMSE for $(12, 6)$. The group reconstruction videos in
 455 the supplementary materials offer a more intuitive illustration of the full contribution of each group.

456 **CelebA.** The dataset contains 202,599 face images (Liu et al., 2015), cropped and rescaled to
 457 $(3, 64, 64)$. The encoder and decoder are deep CNN-based image-nets (Burgess et al., 2018). We fix
 458 the latent dimensionality $K = 12$ and vary the number of groups $G \in \{1, 2, 3, 4, 6, 12\}$. Training
 459 settings are similar to the previous experiments. Figures for this experiment are in Appendix A.4.

460 Fig. 11(a) shows the reconstructed images by varying each of the $K = 12$ components while fixing
 461 others as zero, for $G \in \{4, 6, 12\}$. The group meanings are annotated on the left. Particularly, with
 462 4 or 6 groups, some attributes are represented by a group of higher rank rather than a single latent
 463 component, such as background color. Certain attributes are dependent on each other represented
 464 by a group, like the face color & hair color in the $G = 4$ setting. These important interpretations
 465 are harder to find by the fully disentangled $G = 12$ setting. Besides, a fully disentangled VAE may
 466 fail to ensure perfect independence if the component setting and the true latent factor are largely
 467 mismatched (which is also hard to determine), like gender 1 and gender 2 in the $G = 12$ setting.

468 To understand how one semantic attribute is represented by multiple components within a group,
 469 we use background color as an example. The $G = 12$ groups setting in Fig. 11(a) shows that the
 470 background color is represented by a single component, which restricts the expression to a 1D color
 471 manifold as shown in $G = 12$ HSV cylinder in Fig. 11(b), which is not reasonable. With multiple
 472 latent components in a group representing background color, the background color can be expressed
 473 in 2D or 3D color manifolds as shown in $G = 6$ and $G = 4$ HSV cylinders, offering a more expressive
 474 and realistic representation. Results from all group settings are displayed in Fig. 12 in Appendix A.4.

475 5 CONCLUSION

476 In this work, we develop PDisVAE, a flexible approach to modeling group-wise independence, which
 477 is often more realistic than full independence. PDisVAE generalizes to standard or fully disentangled
 478 VAEs by setting the number of groups to 1 or to the latent dimensionality, and it permits dummy
 479 components when learned latents are fewer than the specified group rank.

480 A potential limitation of PDisVAE is the need for an adequate number of groups and internal group
 481 rank to accurately express the disentangled latent space, especially when the data demands it, yet
 482 such guidance is often unavailable. While setting a large enough number is theoretically feasible, it
 483 hampers the training efficiency and the model quality in practice. Addressing this may require either
 484 trying different configurations or developing techniques for automatic group specification adjustment
 485 during training in future works. More discussions are in Appendix A.5.

486 REFERENCES
487

488 Alessandro Achille and Stefano Soatto. On the emergence of invariance and disentangling in deep
489 representations. *CoRR*, 2017.

490 Kartik Ahuja, Jason S Hartford, and Yoshua Bengio. Weakly supervised representation learning with
491 sparse perturbations. *Advances in Neural Information Processing Systems*, 35:15516–15528, 2022.

492

493 Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information
494 bottleneck. *arXiv preprint arXiv:1612.00410*, 2016.

495

496 Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
497 perspectives. *IEEE transactions on pattern analysis and machine intelligence*, 35(8):1798–1828,
498 2013.

499

500 Pratik Bhowal, Achint Soni, and Sirisha Rambhatla. Why do variational autoencoders really promote
501 disentanglement? In *Forty-first International Conference on Machine Learning*, 2024.

502

503 David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.
504 *Journal of the American statistical Association*, 112(518):859–877, 2017.

505

506 Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Desjardins,
507 and Alexander Lerchner. Understanding disentangling in β -vae. *arXiv preprint arXiv:1804.03599*,
508 2018.

509

510 Vince D Calhoun, Jingyu Liu, and Tülay Adalı. A review of group ica for fmri data and ica for joint
511 inference of imaging, genetic, and erp data. *Neuroimage*, 45(1):S163–S172, 2009.

512

513 Ricky TQ Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of
514 disentanglement in variational autoencoders. *Advances in neural information processing systems*,
515 31, 2018.

516

517 David F Crouse. On implementing 2d rectangular assignment algorithms. *IEEE Transactions on
Aerospace and Electronic Systems*, 52(4):1679–1696, 2016.

518

519 Yann Dubois, Alexandros Kastanos, Dave Lines, and Bart Melman. Disentangling vae. <http://github.com/YannDubs/disentangling-vae/>, march 2019.

520

521 Babak Esmaeili, Hao Wu, Sarthak Jain, Alican Bozkurt, Narayanaswamy Siddharth, Brooks Paige,
522 Dana H Brooks, Jennifer Dy, and Jan-Willem Meent. Structured disentangled representations. In
523 *The 22nd International Conference on Artificial Intelligence and Statistics*, pp. 2525–2534. PMLR,
524 2019.

525

526 Carmen Fernández, Jacek Osiewalski, and Mark FJ Steel. Modeling and inference with v -spherical
527 distributions. *Journal of the American Statistical Association*, 90(432):1331–1340, 1995.

528

529 Irina Higgins, Loic Matthey, Arka Pal, Christopher P Burgess, Xavier Glorot, Matthew M Botvinick,
530 Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
531 constrained variational framework. *ICLR (Poster)*, 3, 2017.

532

533 Kyle Hsu, William Dorrell, James Whittington, Jiajun Wu, and Chelsea Finn. Disentanglement via
534 latent quantization. *Advances in Neural Information Processing Systems*, 36, 2024.

535

536 Aapo Hyvärinen and Hiroshi Morioka. Nonlinear ica of temporally dependent stationary sources. In
537 *Artificial Intelligence and Statistics*, pp. 460–469. PMLR, 2017.

538

539 Aapo Hyvärinen and Erkki Oja. Independent component analysis: algorithms and applications.
540 *Neural networks*, 13(4-5):411–430, 2000.

541

542 Aapo Hyvärinen, Jarmo Hurri, Patrik O Hoyer, Aapo Hyvärinen, Jarmo Hurri, and Patrik O Hoyer.
543 *Independent component analysis*. Springer, 2009.

544

545 Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In *International conference on machine
546 learning*, pp. 2649–2658. PMLR, 2018.

540 Diederik P Kingma. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*, 2013.
 541

542 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 543 2014.
 544

545 Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information.
 546 *Physical Review E—Statistical, Nonlinear, and Soft Matter Physics*, 69(6):066138, 2004.
 547

548 Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
 549 machines that learn and think like people. *Behavioral and brain sciences*, 40:e253, 2017.
 550

551 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
 552 *Proceedings of International Conference on Computer Vision (ICCV)*, December 2015.
 553

554 Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard Schölkopf,
 555 and Olivier Bachem. Challenging common assumptions in the unsupervised learning of disentan-
 556 gled representations. In *international conference on machine learning*, pp. 4114–4124. PMLR,
 557 2019.
 558

559 Romain Lopez, Jeffrey Regier, Michael I Jordan, and Nir Yosef. Information constraints on auto-
 560 encoding variational bayes. *Advances in neural information processing systems*, 31, 2018.
 561

562 Xiaoyu Lu, Yunmiao Wang, Zhuohe Liu, Yueyang Gou, Dieter Jaeger, and François St-Pierre.
 563 Widefield imaging of rapid pan-cortical voltage dynamics with an indicator evolved for one-photon
 564 microscopy. *Nature Communications*, 14(1):6423, 2023.
 565

566 Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adversarial
 567 autoencoders. *arXiv preprint arXiv:1511.05644*, 2015.
 568

569 Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Disentanglement
 570 testing sprites dataset. <https://github.com/deepmind/dsprites-dataset/>, 2017.
 571

572 Cristian Meo, Louis Mahon, Anirudh Goyal, and Justin Dauwels. \alpha tc-vae: On the relationship
 573 between disentanglement and diversity. In *The Twelfth International Conference on Learning
 574 Representations*, 2024.
 575

576 Jürgen Schmidhuber. Learning factorial codes by predictability minimization. *Neural computation*, 4
 577 (6):863–879, 1992.
 578

579 Fabian Sinz and Matthias Bethge. Lp-nested symmetric distributions. *The Journal of Machine
 580 Learning Research*, 11:3409–3451, 2010.
 581

582 Jan Stühmer, Richard Turner, and Sebastian Nowozin. Independent subspace analysis for unsupervised
 583 learning of disentangled representations. In *International Conference on Artificial Intelligence and
 584 Statistics*, pp. 1200–1210. PMLR, 2020.
 585

586 Yule Wang, Chengrui Li, Weihan Li, and Anqi Wu. Exploring behavior-relevant and disentangled
 587 neural dynamics with generative diffusion models. *Advances in Neural Information Processing
 588 Systems*, 37, 2024.
 589

590 Mengyue Yang, Furui Liu, Zhitang Chen, Xinwei Shen, Jianye Hao, and Jun Wang. Causalvae:
 591 Disentangled representation learning via neural structural causal models. In *Proceedings of the
 592 IEEE/CVF conference on computer vision and pattern recognition*, pp. 9593–9602, 2021.
 593

594 Ding Zhou and Xue-Xin Wei. Learning identifiable and interpretable latent models of high-
 595 dimensional neural activity using pi-vae. *Advances in Neural Information Processing Systems*, 33:
 596 7234–7247, 2020.

594 **A APPENDIX**595 **A.1 RELATED WORKS**596 Realizing there are a lot of methods related to latent disentanglement, we go through the methods
597 listed in Tab. 1, summarize their contributions and differences as follows.

600 • ICA (Hyvärinen & Oja, 2000): Traditional ICA uses a non-Gaussian prior to achieve full disentanglement
601 since independence is non-Gaussian from the statistical perspective. However, the choice of
602 the non-Gaussian prior is critical and might be too rigid, hurting the flexibility of the method.
603 • FactorVAE (Kim & Mnih, 2018) [3] β -TCVAE Chen et al. (2018): These two papers start from the
604 statistical definition of full independence to add an extra total correlation to achieve full independence
605 rigorously. The only difference between these two papers is their implementations of minimizing TC.
606 • ISA-VAE (Stühmer et al., 2020): ISA-VAE realized the commonly existing group-wise independence
607 (partial disentanglement) in the real-world data. It utilizes a group-wise independent prior
608 called L^p -nested distribution to achieve the partial disentanglement. However, they did not validate
609 their approach on partially disentangled synthetic datasets, but merely evaluated their approach using
610 fully disentangled assumptions for dSprites and CelebA datasets.
611 • β -VAE (Burgess et al., 2018): Directly penalize the KL divergence of the VAE ELBO loss, in
612 which total correlation (TC) is implicitly penalized. This approach has been proven to be worse than
613 β -VAE and FactorVAE.
614 • Locatello et al. (2019): This research presented common challenges in finding disentangled latent
615 through an unsupervised approach, implying supervision with semantic latent labels might be
616 necessary under the assumption of full latent disentanglement. This also gives us a hint that full
617 disentanglement might be a strong and inappropriate assumption and could result in poor latent
618 interpretation.
619 • Ahuja et al. (2022): This paper uses weak supervision from observations generated by sparse
620 perturbations of the latent variables, which requires auxiliary information about the latent variables.
621 • α -VAE (Meo et al., 2024): This paper replace the traditional TC term with a novel TC lower bound
622 to achieve not only disentanglement but generalized observation diversity.
623 • Bhowal et al. (2024): This paper claims that VAE with orthogonal structure could also achieve
624 latent full disentanglement.
625 • Hsu et al. (2024): The full disentanglement is achieved by a technique called latent quantization.
626 The approach is quantizing the latent space into discrete code vectors with a separate learnable scalar
627 codebook per dimension. Besides, weight decay is also applied to the model regularization for better
628 full disentanglement.
629 • Hierarchical factorized VAE (Esmaeili et al., 2019): This paper has a structured decomposition of
630 the ELBO target function, and penalizes different terms to achieve independence between blocked
631 factors.
632 • HSIC (Lopez et al., 2018): This paper deals with independence between a group pair, rather than
633 independence between all groups.

648
649 A.2 MARGINAL INDEPENDENCE650 This part explains the sufficient but not necessary relationship between “group-wise independence”
651 and “marginal independence”. Consider a latent variable $\mathbf{z} \in \mathbb{R}^M$ that contains M components that
652 are independent between G groups. The formal expression is

653
654
$$\bigwedge_{g=1}^G (z_{g,1}, \dots, z_{g,H_g}) \implies \bigwedge_{i \in g_1, j \in g_2, g_1 \neq g_2} z_i \perp z_j, \quad (5)$$

655

656 but not vice versa. We start from the simple counterexample mentioned in Sec. 3.1 to explain why
657 group-wise independence is a sufficient but not necessary condition of marginal independence.
658659 Consider three random variables z_1, z_2, z_3 that follow the joint distribution shown in Tab. 2. Notice
660 that z_3 is actually the exclusive or of the two others, i.e., $z_3 = \text{XOR}(z_1, z_2)$. It is obvious that
661 $z_3 \not\perp (z_1, z_2)$ since when z_1 and z_2 are different, $p(z_3|z_1, z_2)$ is a discrete Dirac delta function at
662 $z_3 = 0$; but when z_1 and z_2 are the same, $p(z_3|z_1, z_2)$ is a discrete Dirac delta function at $z_3 = 1$.
663 Marginally, however, $z_1 \perp z_3$ and $z_2 \perp z_3$, since $p(z_3|z_1)$ is always a $p = 0.5$ Bernoulli distribution
664 regardless of the value of z_1 . The same arguments are also applicable to $z_2 \perp z_3$. Therefore,
665 this counterexample shows that $z_1 \perp z_3, z_2 \perp z_3 \not\implies (z_1, z_2) \perp z_3$. In other words, marginal
666 independence does not imply group-wise independence.
667

Another way of checking this example is by the following theorem.

668 **Theorem A.1.** $(x_1, \dots, x_I) \perp (y_1, \dots, y_J) \iff (f(x_1, \dots, x_I) \perp g(y_1, \dots, y_J) \forall \text{measurable}$
669 *functions f and g .*670
671 *Proof.* The \implies is obvious. To prove \iff , simply taking f and g to be identity function, i.e.,
672 $f(x_1, \dots, x_I) = (x_1, \dots, x_I)$, $g(y_1, \dots, y_J) = (y_1, \dots, y_J)$. \square
673674 To check the example, consider the distribution of $(z_1 + z_2)$. $p(z_3|(z_1 + z_2) = 0)$ is a discrete Dirac
675 delta function at $z_3 = 1$, which is different from $p(z_3|(z_1 + z_2) = 1)$ is a discrete Dirac delta function
676 at $z_3 = 0$. Therefore, $(z_1, z_2) \not\perp z_3$.677 To rigorously diagnose where \iff breaks, we can write
678

679
$$p(z_1, z_2, z_3) = p(z_1|z_2, z_3)p(z_2, z_3) = p(z_1|z_2, z_3)p(z_2)p(z_3). \quad (6)$$

680 Note that in the last term, $p(z_1|z_2, z_3) \neq p(z_1|z_2)$. Specifically, z_3 cannot be removed just because
681 of $z_1 \perp z_3$.
682683
684 Table 2: The distribution table of $p(z_1, z_2, z_3)$.685
686

z_1	z_2	z_3	$p(z_1, z_2, z_3)$
0	0	1	0.25
0	1	0	0.25
1	0	0	0.25
1	1	1	0.25

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 A.3 BATCH APPROXIMATION
703704
705 Table 3: Comparison of three batch approximation approaches.
706

	mean	variance
MWS	biased	
MSS	unbiased	$\text{Var}[\text{MSS}] = \text{Var}[\text{IS}] + \frac{M-2}{M(M-1)}$
IS	unbiased	$\text{Var}[\text{IS}] = \frac{(N-M)^2}{M^2(M-1)}$

712
713 A.3.1 IMPORTANCE SAMPLING

714 Although Eq. (4) in the main text intuitively gives the batch approximation, we still need a rigorous
715 derivation to prove that this is exactly the importance sampling (IS) we want. First, we have the
716 aggregated posterior that can be expressed in different ways:

$$717 \quad q(z) = \sum_{n=1}^N q(z, n) = \sum_{n=1}^N q(z|n)q(n) = \frac{1}{N} \sum_{n=1}^N q(z|n) = \mathbb{E}_{q(n)}[q(z|n)]. \quad (7)$$

718 However, to not confuse readers, we will keep the form $q(z) = \sum_{n=1}^N q(z, n)$ until the last step.

719 When we have a batch of size M : $\mathcal{B}_M := \{n_1, n_2, \dots, n_M\}$ (without replacement) and a particular
720 sampled $z \sim q(z|n_*)$, where $n_* \in \mathcal{B}_M$, we want the importance sampling approximation of $q(z)$.
721 According to Monte Carlo estimation,

$$722 \quad \hat{q}(z) = \frac{1}{M} \sum_{m=1}^M \frac{q(z, n_m)}{r(n_m)}, \quad (8)$$

723 where r is the proposal distribution. Note that $r(n_m) \neq \frac{1}{N}$, $\forall n_m \in \mathcal{B}$, since we must have $n_* \in \mathcal{B}_M$.
724 Therefore, we need to understand the distribution of $r(n_m)$.

725 First, since we must have $n_* \in \mathcal{B}_M$, and the Monte Carlo estimation is the average on \mathcal{B}_M ,

$$726 \quad r(n_*) = \underbrace{\frac{1}{n_* \text{ must be in } \mathcal{B}_M}}_{n_* \text{ is a Monte Carlo sample from } \mathcal{B}_M} \times \underbrace{\frac{1}{|\mathcal{B}_M|}}_{n_* \text{ is a Monte Carlo sample from } \mathcal{B}_M} = \frac{1}{M}. \quad (9)$$

727 Second, for other $n_m \notin \mathcal{B}_M$,

$$728 \quad r(n_m) = \underbrace{\frac{\binom{N-2}{M-2}}{\binom{N-1}{M-1}}}_{n_m \text{ is selected in batch } \mathcal{B}_M} \times \underbrace{\frac{1}{|\mathcal{B}_M|}}_{n_m \text{ is a Monte Carlo sample from } \mathcal{B}_M} = \frac{M-1}{N-1} \frac{1}{M}. \quad (10)$$

729 $\binom{N-1}{M-1} = \frac{(N-1)!}{(M-1)!((N-1)-(M-1))!}$ is the number of all possible combinations of \mathcal{B}_M that already
730 contains n_* (so we choose $M-1$ from the remaining $N-1$). $\binom{N-2}{M-2} = \frac{(N-2)!}{(M-2)!((N-2)-(M-2))!}$ is
731 the number of all possible combinations of \mathcal{B}_M that already contains n_* and also contains n_m (so we
732 choose $M-2$ from the remaining $N-2$). Finally, we have

$$733 \quad \begin{aligned} \hat{q}(z) &= \frac{1}{M} \sum_{m=1}^M \frac{q(z, n_m)}{r(n_m)} \\ &= \frac{1}{M} \frac{q(z|n_*)q(n_*)}{r(n_*)} + \sum_{n_m \in (\mathcal{B}_M \setminus \{n_*\})} \frac{1}{M} \frac{q(z|n_m)q(n_m)}{r(n_m)} \\ &= \frac{1}{M} \frac{q(z|n_*) \frac{1}{N}}{\frac{1}{M}} + \sum_{n_m \in (\mathcal{B}_M \setminus \{n_*\})} \frac{1}{M} \frac{q(z|n_m) \frac{1}{N}}{\frac{M-1}{N-1} \frac{1}{M}} \\ &= \frac{1}{N} q(z|n_*) + \sum_{n_m \in (\mathcal{B}_M \setminus \{n_*\})} \frac{N-1}{M-1} \frac{1}{N} q(z|n_m). \end{aligned} \quad (11)$$

756 A.3.2 VARIANCE
757758 From Chen et al. (2018), without loss of generality, assume $n_* = n_1$ and

759
760
$$\text{MSS} = \frac{1}{N} q(z|n_*) + \sum_{m=2}^{M-1} \frac{1}{M-1} q(z|n_m) + \frac{N-M+1}{N(M-1)} q(z|n_M) \quad (12)$$

761
762
763
764
765

766 A sketch to compute the variances of the two methods is to think of them as sampled datasets
767 of size M . Specifically, for IS, the inverse importance weights are a dataset of $\text{IS}_0 :=$
768
769
$$\left\{ 1, \underbrace{\frac{N-1}{M-1}, \dots, \frac{N-1}{M-1}}_{M-1} \right\}$$
. For, MSS, the inverse importance weights are a dataset of $\text{MSS}_0 :=$
770
771
772
773
774
775
776

$$\left\{ 1, \underbrace{\frac{N}{M-1}, \dots, \frac{N}{M-1}}_{M-2}, \frac{N-M+1}{M-1} \right\}.$$

777 There means are all $\frac{N}{M}$, since

778
779
$$\begin{cases} \overline{\text{MSS}_0} = \frac{1}{M} \left(1 + (M-2) \frac{N}{M-1} + \frac{N-M+1}{M-1} \right) = \frac{N}{M} \\ \overline{\text{IS}_0} = \frac{1}{M} \left(1 + (M-1) \frac{N-1}{M-1} \right) = \frac{N}{M} \end{cases} \quad (13)$$

780
781

782 Now we compute their variances.
783

784
$$\begin{aligned} \text{Var}[\text{MSS}] &\propto \text{Var}[\text{MSS}_0] \\ &= \frac{1}{M} \left[\left(1 - \frac{N}{M} \right)^2 + (M-2) \left(\frac{N}{M-1} - \frac{N}{M} \right)^2 + \left(\frac{N-M+1}{M-1} - \frac{N}{M} \right)^2 \right] \\ &= \frac{2M^2 - (2N+2)M + N^2}{M^2(M-1)}. \end{aligned} \quad (14)$$

785
786
787
788
789
790

791
$$\begin{aligned} \text{Var}[\text{IS}] &\propto \text{Var}[\text{IS}_0] \\ &= \frac{1}{M} \left[\left(1 - \frac{N}{M} \right)^2 + (M-1) \left(\frac{N-1}{M-1} - \frac{N}{M} \right)^2 \right] \\ &= \frac{(N-M)^2}{M^2(M-1)}. \end{aligned} \quad (15)$$

792
793
794
795
796

797 Since

798
$$\text{Var}[\text{IS}_0] - \text{Var}[\text{MSS}_0] = \frac{2-M}{M(M-1)} \leq 0, \forall M \geq 2, \quad (16)$$

799

800 the effectiveness of IS is higher, and hence IS is a more stable approximation than MSS.
801802 A.3.3 EMPIRICAL EVALUATION
803804 To validate the aforementioned superiority of our IS batch estimation method, we simulate a dataset
805 consisting of 10 data points shown in Fig. 6(left). Each time, we run the three batch approximation
806 methods on a batch of three randomly sampled points. We repeat this 1000 times and show their
807 empirical evaluations in Fig. 6(right). Compared with the unbiased MWS estimator, MMS and IS are
808 unbiased. Compared with MMS, the IS estimator has low empirical variance across 1000 repeats,
809 which implies a more stable estimation.

842 Figure 6: **Left:** Predicted mean of the latent $z = (z_1, z_2)$ and its kernel density estimation. **Right:**
843 1000 repeats of batch approximations by the three methods, their empirical variance across the 1000
844 repeats.

845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 A.4 SUPPLEMENTARY RESULTS
865866 A.4.1 ABLATION
867

868 To analyze the choice of the penalty coefficient β of PC term in Eq. (3), we vary β in PDisVAE
869 from 0.1 to 100 and plot the cross-validation results in Fig. 7. The PC and latent R^2 plots indicate
870 that $\beta > 1$ is necessary for an accurate recovery and effective minimization of the PC. However,
871 excessively large β might negatively impact reconstruction, as shown in the reconstruction R^2 plot.
872 Hence, we recommend $\beta \in (2, 10)$, which supports our choice of $\beta = 4$ in our experiments.
873

880 Figure 7: Three metrics w.r.t. the PC coefficient β in PDisVAE.
881882 A.4.2 FLEXIBLY REDUCE TO THE FULLY INDEPENDENT CASE
883

884 **Dataset and experimental setup.** To validate that PDisVAE can get the same results as from a fully
885 disentangled VAE when the latent is fully independent, we create a dataset consisting of $N = 2000$
886 points in $K = 3$ latent space $z^{(n)} \in \mathbb{R}^3$, where the three latent components are independent with
887 each other $z_1 \perp z_2 \perp z_3$. Their distributions are shown in Fig. 8(a) and Fig. 9. The observation x is
888 linearly mapped from the latent z to a $D = 20$ dimensional space $x^{(n)} \in \mathbb{R}^{20}$, and then Gaussian
889 noise $\epsilon_d^{(n)} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 0.5^2)$ are added. Although we only have $K = 3$ true latent components, we
890 still learn $K = 6$ components to compare their flexibility when the true number of latent components
891 is unknown. The experimental setup is the same as the previous one.
892

904 Figure 8: (a): The true latent $z \in \mathbb{R}^3$ coded by RGB = $z_1 z_2 z_3$, where three components are
905 $z_1 \perp z_2 \perp z_3$. (b): The PC of the estimated latent and the latent R^2 after alignment to the true
906 latent in (a). The t -test between PDisVAE and others shows that PDisVAE is similar to ISA-VAE
907 and β -TCVAE (ns: $p > 0.5$, *: $p \leq 0.05$, ****: $p \leq 0.0001$). (c): The estimated latent of PDisVAE
908 before aligning to the true latent shown in (a). The arrow in each plot shows the embedded true latent
909 direction.
910

911 **Results.** The PC box plot and latent R^2 plot in Fig. 8(b) show that ISA-VAE, β -TCVAE, and
912 PDisVAE achieve the lowest partial correlation and the highest latent R^2 on this fully disentangled
913 dataset, which implies that PDisVAE automatically reduces to fully independent result if the group
914 rank is deficient. In general, the actual group rank can be detected by PDisVAE and if the true group
915 rank is less than the specified group dimensionality, dummy estimated latents will be complemented in
916 the corresponding group. Due to the strong requirement in ICA that tries to find logcosh-independent
917 components, but only three exist, ICA is not able to correctly identify three and find three dummy
918 dimensions. This means logcosh might be too strong to allow the existence of dummy variables, which

918 could be harmful when we do not know the true number of latent components. Fig. 9 also visually
 919 shows that ISA-VAE, β -TCVAE, and PDisVAE accurately estimate the three latent distributions the
 920 best, which is consistent with the latent R^2 plot in Fig. 8(b).

921 To identify the three dummy latent dimensions complementing the three groups respectively through
 922 an unsupervised approach, we plot the PDisVAE result before alignment in Fig. 8(c). First, within-
 923 group TCs are all very small. Since “independence is non-Gaussian”, we can find a direction within
 924 each group that yields $p > 0.05$, which accepts the null hypothesis of the normal test that a Gaussian
 925 noise dummy dimension exists. The arrows in Fig. 8(c) also visually indicate the embedded true
 926 latent direction.

927
 928 Figure 9: Estimated and true latent distribution after alignment to the true latent shown in Fig. 8(a).
 929
 930
 931
 932
 933

934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972 A.4.3 SYNTHETIC APPLICATION: PARTIAL DSPRITES
973

989 Figure 10: The latent plot after alignment in latent space (z_1, z_3) and (z_2, z_3) for different methods.
990 The color representation for location is the same as the color representation in Fig. 4(a), and the
991 marker of the point in the latent plots represents the size of the square in the observation images.

994 Table 4: The PC, latent R^2 , latent MSS, and adapted mutual information gap (MIG) evaluated for
995 different methods on the dsprites dataset.

	PC ↓	$R^2 \uparrow$	MSE ↓	MIG ↑
VAE	1.01 (0.02)	0.22 (0.04)	0.29 (0.02)	0.15 (0.01)
ICA	1.76 (0.07)	0.22 (0.06)	0.28 (0.03)	0.14 (0.09)
ISA-VAE	0.70 (0.01)	0.23 (0.02)	0.33 (0.01)	0.24 (0.08)
β -TCVAE	0.91 (0.10)	0.33 (0.06)	0.24 (0.04)	0.36 (0.13)
PDisVAE	0.68 (0.04)	0.54 (0.08)	0.23 (0.04)	0.49 (0.07)

1026
1027

A.4.4 REAL-WORLD APPLICATIONS

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
10411042
1043
1044
1045

Figure 11: (a): Reconstructed images are shown by varying one of the $K = 12$ latent dimensions from PDisVAE applied to the CelebA dataset, with different numbers of groups $G \in \{4, 6, 12\}$. Each row corresponds to varying one latent component (dimension) while fixing all others to 0s. (b) The spanned color space by the red-annotated color group in the $\{4, 6, 12\}$ -group PDisVAE.

1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1122 Figure 12; The reconstructed images by varying one of the $K = 12$ disentangled latent from applying
1123 PDisVAE to the CelebA dataset with the different number of groups $G \in \{1, 2, 3, 4, 6, 12\}$. When
1124 $G = 1$, PDisVAE becomes the standard VAE; when $G = K = 12$, PDisVAE becomes the fully
1125 entangled VAE (e.g., β -TCVAE or FactorVAE). In each plot, each row is by varying one latent
1126 component (latent dimension) while fixing all others to 0s.

1127
1128
1129
1130
1131
1132
1133

1134 A.5 MORE DISCUSSIONS ABOUT INTERPRETING SEMANTIC VS. STATISTICAL INDEPENDENCE
 1135 IN PRACTICAL APPLICATIONS
 1136

1137 In a lot of practical applications, we need to differentiate two concepts: semantic meaning vs.
 1138 statistically independent group. It is possible that an independent group contains more than one
 1139 semantic meaning. In the CelabA dataset, for example, it is likely that females have more warm
 1140 backgrounds and males have more cold backgrounds. In this case, the background warm/cold is
 1141 entangled with gender. In this case, we cannot separate these two semantic meanings since they are
 1142 statistically dependent/entangled.

1143 In our example of background color, especially Fig. 11(b), we interpret a group as background color
 1144 based on our human understanding. However, we cannot rigorously prove that the background color
 1145 is totally independent of the tiny facial feature changes. This is actually an important point we want
 1146 to stress in this paper, like in Sec. 1 paragraph 2, Fig. 4(a), and Fig. 11(b). We can summarize the
 1147 following four possibilities:

- one semantic meaning corresponds to one latent component (fully independent);
- one semantic meaning corresponds to several entangled latent components (a latent group);
- several semantic meanings correspond to one latent component (semantic meanings are entangled and encoded by one latent component);
- several semantic meanings correspond to several latent components (semantic meanings are entangled and encoded by several latent components).

1153 This is the key reason we generalize fully disentangled VAE to partially disentangled VAE (PDisVAE)
 1154 since PDisVAE considers all these possibilities that exist in nearly all real-world datasets (maybe
 1155 with the probability of 1). We view this as our paper’s key take-home message that we really need to
 1156 jump out of the stereotype that one latent component should correspond to one semantic meaning.

1157 For example, in the partial dsprites (pdsprites) dataset shown in Fig. 4(a), although we humans
 1158 think x location and y location are two separable semantic meanings, they are statistically depen-
 1159 dent/entangled with each other, so we cannot separate them but put them in one group, and that is
 1160 why fully disentangled VAEs (e.g., β -TCVAE) fails with this dataset (Fig. 4(b)). We can think x and
 1161 y as two semantic meanings or say (x, y) “location” is one semantic meaning, but the ground truth is
 1162 that x location and y location are entangled, not statistically separable, and hence should be encoded
 1163 by a latent group of at least rank-2.

1164 A similar reason also holds for the color distribution we plot in Fig. 11(b). If we use a fully
 1165 disentangled VAE, we can only interpret that the background color (from red to blue, a curve in
 1166 HSV space) is encoded by one latent component, but that might not be the fact. We do show in Fig.
 1167 9(b) that with more latent components entangled with each other as a group, the background color
 1168 semantic meaning can be expressed more fully (a 2D manifold or a restricted 3D region that is not
 1169 evenly distributed).

1170 Therefore, no one can promise an absolutely perfect correspondence between semantic meaning(s)
 1171 and a latent component/group. All researchers can do is validate the correctness of their method
 1172 on synthetic datasets, as we do in Sec. 4.1, and get more interpretable (but cannot promise perfect
 1173 correspondence) disentanglement results on real-world datasets. Generally speaking, it is nearly
 1174 impossible for all kinds of disentangling methods to find pure correspondence between a latent
 1175 component/group and one semantic meaning on real-world datasets. At least there are some noises,
 1176 including other semantic meanings of tiny magnitude. This kind of result should be acceptable in the
 1177 field of representational learning (disentanglement), especially on real-world datasets where there is
 1178 no true latent. Otherwise, any interpretation from any method could have small flaws (that can even
 1179 come from random seeds or the floating point precision of the training device).

1180 A.6 USE OF LARGE LANGUAGE MODELS
 1181

1182 We used large language models (LLMs) solely to aid in writing polish and minor language improve-
 1183 ments (e.g., fixing grammar issues, rewriting sentences in a more formal style. They were not used
 1184 for scientific exploration, conceptualization, experimental design, analysis, or conclusions.