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ABSTRACT

Learning diverse and qualified behaviors for utilization and adaptation without
supervision is a key ability of intelligent creatures. Ideal unsupervised skill dis-
covery methods are able to produce diverse and qualified skills in the absence
of extrinsic reward, while the discovered skill set can efficiently adapt to down-
stream tasks in various ways. Maximizing the Mutual Information (MI) between
skills and visited states can achieve ideal skill-conditioned behavior distillation in
theory. However, it’s difficult for recent advanced methods to well balance behav-
ioral quality (exploration) and diversity (exploitation) in practice, which may be
attributed to the unreasonable MI estimation by their rigid intrinsic reward design.
In this paper, we propose Contrastive multi-objectives Skill Discovery (ComSD)
which tries to mitigate the quality-versus-diversity conflict of discovered behav-
iors through a more reasonable MI estimation and a dynamically weighted intrin-
sic reward. ComSD proposes to employ contrastive learning for a more reason-
able estimation of skill-conditioned entropy in MI decomposition. In addition, a
novel weighting mechanism is proposed to dynamically balance different entropy
(in MI decomposition) estimations into a novel multi-objective intrinsic reward, to
improve both skill diversity and quality. For challenging robot behavior discovery,
ComSD can produce a qualified skill set consisting of diverse behaviors at differ-
ent activity levels, which recent advanced methods cannot. On numerical evalua-
tions, ComSD exhibits state-of-the-art adaptation performance, significantly out-
performing recent advanced skill discovery methods across all skill combination
tasks and most skill finetuning tasks. Our code is available at ***.

1 INTRODUCTION&RESEARCH BACKGROUND

Reinforcement Learning (RL) has proven its effectiveness in learning useful task-specific skills in
the presence of extrinsic rewards (Mnih et al., 2015; Levine et al., 2016; Ding et al., 2021; Narvekar
et al., 2017; Li et al., 2019). The success of unsupervised learning in computer vision (Chen et al.,
2020; Caron et al., 2020) and natural language processing (Brown et al., 2020; Devlin et al., 2018)
further benefits task-specific RL with complex input (Laskin et al., 2020; Kostrikov et al., 2020;
Yarats et al., 2021a; Stooke et al., 2021) by improving representation learning. However, the agents
trained with lots of efforts are always hard to generalize their knowledge to novel tasks due to the
task-specific supervision of extrinsic reward (Stooke et al., 2021). In addition to the generalization,
intelligent agents should also be able to explore environments and learn different useful behaviors
without any extrinsic supervision, like human beings. For the reasons above, unsupervised skill
discovery is proposed and becomes a novel research hotspot (Gregor et al., 2016; Eysenbach et al.,
2018). As a branch of unsupervised RL (Pathak et al., 2017; 2019; Burda et al., 2018), unsupervised
skill discovery (Park et al., 2021; 2023; Strouse et al., 2021) also designs task-agnostic rewards and
achieves unsupervised pre-training with these rewards, which guarantees the task-agnostic down-
stream generalization. The main difference is that skill discovery requires extra input as conditions,
named skill vectors. They aim to discover useful task-agnostic policies that are distinguishable
by skill vectors. The discovered skills can be implemented for downstream tasks in various ways,
including skill finetuning, skill combination, skill imitation, and so on.

Currently, one of the most popular and effective classes of skill discovery is based on Mutual In-
formation (MI) maximization (Eysenbach et al., 2018; Sharma et al., 2019; Liu & Abbeel, 2021a;
Yang et al., 2023). Most of them try to design intrinsic rewards to estimate and optimize the MI
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Figure 1: ComSD discovers different useful unsupervised skills through a novel multi-objective
intrinsic reward. Skill combination and skill finetuning together provide comprehensive skill evalu-
ation, considering both behavioral quality and diversity. Our ComSD exhibits state-of-the-art adap-
tation performance on both kinds of downstream tasks, which recent advanced methods cannot.

between skill vectors and visited states. With RL maximizing intrinsic reward expectation, cor-
relations between skills and states are distilled, i.e., different useful skills are discovered. Recent
MI-based methods exhibit considerable results in different fields, including map exploration (Cam-
pos et al., 2020), robotic manipulation (Plappert et al., 2018) and video games (Bellemare et al.,
2013). However, when facing challenging robot locomotion where the space of state and action
are continuous, complex, and non-linear, existing advanced methods can’t balance the behavioral
quality (exploration) and diversity (exploitation) well. Specifically, they can either only learn dif-
ferent static postures of lazy exploration (Eysenbach et al., 2018; Liu & Abbeel, 2021a) or only
produce highly dynamic behaviors that are homogeneous and indistinguishable (i.e., insufficient ex-
ploitation) (Laskin et al., 2022b), while an ideal robot behavior set should contain diverse behaviors
at different activity levels, enabling efficient downstream adaptation in various ways. Some recent
works have also noticed this issue (Yang et al., 2023), as we have. However, they only address it on
2D exploration problems but remain powerless for the difficult multi-joint robot behavior discovery.

We attribute the above quality-versus-diversity conflict to their unreasonable MI estimation and their
rigid intrinsic reward design. In this paper, we propose ComSD, which tries to mitigate this conflict
by a more reasonable MI estimator and a dynamic weighting algorithm for intrinsic reward design.
Concretely, ComSD decomposes the MI between state transitions and skill vectors into the negative
skill-conditioned entropy and state entropy, designing a novel intrinsic reward for MI estimation and
optimization (with RL). For conditioned entropy, ComSD proposes to employ the contrastive learn-
ing result between skills and corresponding state transitions as a better estimation. For state entropy,
ComSD follows recent works (Liu & Abbeel, 2021a; Yarats et al., 2021b; Laskin et al., 2022b),
choosing a popular particle-based estimation (Liu & Abbeel, 2021b). Moreover, a novel Skill-based
Multi-objective Weighting (SMW) mechanism is proposed to dynamically balance the above two
entropy estimations into a novel multi-objective intrinsic reward, to encourage both exploration and
exploitation. ComSD can produce a qualified skill set consisting of diverse behaviors at different
activity levels for challenging multi-joint robots, which recent advanced methods cannot.

For comprehensive numerical evaluation, two different downstream adaptation tasks are employed:
skill combination and skill finetuning. Skill finetuning is widely used recently (Laskin et al., 2022b;
Yuan et al., 2022; Yang et al., 2023) on URLB (Laskin et al., 2021), where a target skill is chosen
from the skill set and further finetuned with extrinsic reward. However, it’s one-sided to judge the
whole skill set with only one skill, and the process of finetuning also introduces much uncertainty.
In addition, behavioral diversity is also ignored in skill finetuning. To this end, we further employ
another skill combination (Eysenbach et al., 2018) to evaluate both behavioral quality and diversity,
where the learned skills are frozen and a meta-controller is trained to combine the learned skills for
downstream task achievement. ComSD outperforms all baselines on skill combination significantly
and is competitive with state-of-the-art methods on skill finetuning, as shown in Figure 1.

Our contributions can be summarized as follows: (i) We propose ComSD, a novel unsupervised
skill discovery algorithm that discovers different useful behaviors by maximizing the MI objective
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between skill vectors and state transitions. (ii) ComSD proposes to employ the contrastive learning
result between skills and states as a more reasonable conditioned entropy estimation in MI decom-
position. (iii) A novel weighting algorithm, SMW, is presented to produce a novel multi-objective
intrinsic reward that improves skill diversity and quality simultaneously. (iv) Comprehensive numer-
ical evaluation and detailed analysis show that ComSD outperforms all recent advanced methods,
exhibiting state-of-the-art downstream adaptation ability. It can produce a qualified skill set consist-
ing of diverse behaviors for challenging multi-joint robots, which recent advanced methods cannot.

2 PRELIMINARIES

2.1 PROBLEM DEFINITION

Unsupervised skill discovery algorithms aim at discovering a useful and diverse set of agent be-
haviors in the absence of extrinsic reward, i.e., training a skill-conditioned policy in a task-agnostic
environment. Concretely, a reward-free Markov Decision Process (MDP) (Bellman, 1957) is con-
sidered and defined as Mfree = (S,A,P, γ, d0), where S is the state space, A is the action space,
P is the distribution of the next state given the current state and action, γ is the discount factor, and
d0 is the distribution of the initial state. What skill discovery algorithms do is to define an intrinsic
reward rintr and augment Mfree to a intrinsic-reward MDP Mintr = (S,A,P, rintr, γ, d0). With
z ∼ p(z) given by discovery algorithms, the skill-conditioned policy π(a|s, z) can be obtained by
RL over the Mintr. As an example, we provide the pseudo-code of our ComSD in Appendix A.

To evaluate the adaption ability of discovered skills (i.e., the skill-conditioned agent π(a|s, z)), two
adaptation evaluations: skill combination and skill finetuning are employed on each task-specific
downstream task. A downstream task can be described as an extrinsic-reward MDP Mextr =
(S,A,P, rextr, γ, d0), where rextr denotes the task-specific extrinsic reward. In skill combination,
the learned π(a|s, z) is frozen, and an meta-controller π′(z|s) is required to choose and combine skill
vectors for π(a|s, z) automatically on downstream tasks. Concretely, over the original task Mextr,
skill combination can be defined as Mextr′ = (S,Z,P ′, rextr

′
, γ, d0), which regards different skill

vectors z ∼ Z as its actions and correspondingly changes its transition model and reward function.
The meta-controller π′(z|s) is trained over Mextr′ by RL and then used for evaluation of the learned
π(a|s, z). In skill finetuning, a target skill vector zi is chosen. The corresponding policy π(a|s, zi)
is further finetuned on the Mintr for a few steps and serves as the evaluation of the discovered
π(a|s, z). The pseudo-codes of two adaptation tasks are provided in Appendix A.

2.2 MUTUAL INFORMATION OBJECTIVE

As most skill discovery algorithms do, our ComSD also tries to maximize the Mutual Information
(MI) objective between states τ(s) and skills z. In general, τ(s) can be (i) maintaining the original
state τ(s) = s, (ii) concatenating the neighboring state pairs τ(s) = concat(st−1, st), or (iii) using
the whole trajectory τ(s) = concat(s1, ..., st). Following the recent advanced method (Laskin et al.,
2022b), we define τ as state pairs τ(s) = concat(st−1, st) throughout this paper. The MI objective
I(τ ; z) can be decomposed into the form of Shannon entropy in two ways:

I(τ ; z) = −H(z|τ) +H(z) (1)
I(τ ; z) = −H(τ |z) +H(τ) (2)

where the I(·; ·) denotes the MI function and H(·) denotes the Shannon entropy throughout the
paper. Most classical MI-based algorithms (Gregor et al., 2016; Achiam et al., 2018; Eysenbach
et al., 2018; Lee et al., 2019)are based on the first decomposition Eq. 1. A uniform random policy
can guarantee the maximum of the skill entropy H(z) while the trainable discriminators estimat-
ing the conditioned entropy H(z|τ) are employed to calculate the intrinsic reward for unsupervised
RL. However, Laskin et al. (2021; 2022b) have found it hard for these methods to guarantee robot
behavioral activity and exploration without external balancing signals. To this end, some recent
works (Sharma et al., 2019; Liu & Abbeel, 2021a; Laskin et al., 2022b) focus on the second decom-
position Eq. 2. They explicitly optimize the state entropy H(τ) by exploratory intrinsic rewards,
achieving considerable performance on several tasks, including robotic manipulation, video games,
and robot locomotion. Following these, we choose Eq. 2 as our optimization target.
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Figure 2: Left: The multi-objective intrinsic reward design of ComSD. Right: In SMW, β is linear
related to flag(z ) with different slopes in different region.

3 UNSUPERVISED SKILL DISCOVERY BY COMSD

In this section, we detail how ComSD designs a novel multi-objective intrinsic reward based on
Eq. 2. In Section 3.1, we propose and describe how to employ contrastive learning to design an
exploitation reward for the negative conditioned entropy estimation. In Section 3.2, we illustrate the
way to estimate the state entropy by a particle-based exploration reward, which follows the recent
advanced methods. In Section 3.3, we describe why and how to balance the above two sub-intrinsic
rewards into a multi-objective intrinsic reward with proposed SMW. The overall intrinsic reward
design of ComSD is visualized in Figure 2.

3.1 CONDITIONED ENTROPY ESTIMATION VIA CONTRASTIVE LEARNING

In decomposition Eq. 2, increasing the negative conditioned entropy −H(τ |z) intuitively encour-
ages the agent to access familiar and visited state pairs according to the corresponding skills. This
helps the agent exploit skill-specific information, i.e., increase the diversity of learned skills. Due to
the unavailable conditioned distribution, we can’t directly maximize the −H(τ |z) but try to maxi-
mize its lower bound. First, −H(τ |z) can be decomposed as:

−H(τ |z) =
∑
τ,z

p(τ, z) log p(τ |z) =
∑
τ,z

p(τ, z) log
p(τ, z)

p(z)

=
∑
τ,z

p(τ, z)(log p(τ, z)− log p(z)),
(3)

where p(·) denotes probability throughout the paper. In practice, we use a uniform distribution to
generate the skill vectors. Therefore, the term logp(z ) becomes a constant, and we denote it as c:

−H(τ |z) =
∑
τ,z

p(τ, z)(logp(τ, z )− c) =
∑
τ,z

p(τ, z )logp(τ, z )−
∑
τ,z

p(τ, z ) · c

=
∑
τ,z

p(τ, z)logp(τ, z)− c ∝
∑
τ,z

p(τ, z) log p(τ, z).
(4)

Then we can obtain the variational lower bound:

−H(τ |z) ∝
∑
τ,z

p(τ, z) log p(τ, z)

=
∑
τ,z

p(τ, z) log p(τ, z) +
∑
τ,z

p(τ, z) log q(τ, z)−
∑
τ,z

p(τ, z) log q(τ, z)

=
∑
τ,z

p(τ, z) log q(τ, z) +DKL(p(τ, z)||q(τ, z))

= Eτ,z[log q(τ, z)] +DKL(p(τ, z)||q(τ, z)) ≥ Eτ,z[log q(τ, z)],

(5)
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where q(τ, z) is employed to estimate the unavailable p(τ, z). To optimize −H(τ |z), we need to
minimize the KL divergence DKL(p(τ, z)||q(τ, z)) and maximize the expectation Eτ,z[log q(τ, z)].

For KL divergence minimization, the distribution q should be as positively correlated with the prob-
ability function p as possible. We define q as the exponential inner product between the state em-
beddings and skill embeddings:

q(τ, z) = exp
fθ1(τ)

T · fθ2(z)
||fθ1(τ)T || · ||fθ2(z)||T

, (6)

where fθ1(·) is the state encoder, fθ2(·) is the skill encoder, T is the temperature, and exp(·) makes
q non-negative like p. The above two encoders are updated by gradient descent after computing the
NCE loss (Gutmann & Hyvärinen, 2010) in contrastive learning (Chen et al., 2020):

LNCE = log q(τi, zi)− log
1

N

N∑
j=1

q(τj , zi), (7)

where τi is sampled by skill zi and τj is sampled by other skills. In most circumstances, the proba-
bility p(τi, zi) is much larger than p(τj , zi). Maximizing LNCE increases the value of q(τi, zi) and
decreases the value of q(τj , zi), which actually shrinks the difference between p and q.

For expectation maximization, we regard the optimization objective as a part of our unsupervised
intrinsic reward, employing RL to optimize it:

rintrexploitation ∝ q(τi, zi). (8)

3.2 PARTICLE-BASED STATE ENTROPY ESTIMATION

In decomposition Eq. 2, increasing the state entropy H(τ) encourages the agent to explore more
widely and visit more state transitions. Following Liu & Abbeel (2021a); Yarats et al. (2021b);
Laskin et al. (2022b), we employ a particle-based entropy estimation proposed by Liu & Abbeel
(2021b). Concretely, H(τ) can be estimated by the Euclidean distance between each particle (τ in
our paper) and its all k-nearest neighbor (Singh et al., 2003) in the latent space:

H(τ) ≈ Hparticle(τ) ∝
1

k

∑
hnn
i ∈Nk−nn

buffer(hi)

log ||hi − hnn
i ||, (9)

where hi can be any forms of encoded τi and Nk−nn
buffer(hi) denotes neighbor set. Following Laskin

et al. (2022b), we choose the state encoder in contrastive representation learning and calculate this
entropy over sampled RL training batch. The exploration reward is defined as the following:

rintrexploration ∝ 1

k

∑
hnn
i ∈Nk−nn

batch (hi)

log ||hi − hnn
i ||, where hi = fθ1(τi). (10)

3.3 SKILL-BASED MULTI-OBJECTIVES WEIGHTING

With the negative conditioned entropy −H(τ |z) estimated by rintrexploitation and the state entropy
estimated by rintrexploration, a naive way for intrinsic reward design is to employ a fixed coefficient
α to scale the two terms (rintrnaive = rintrexploration + αrintrexploitation). However, we find it impossible
to choose a proper fixed coefficient to balance them well especially in challenging multi-joint robot
behavior discovery, which is because of a severe quality-versus-diversity conflict between the above
two sub-intrinsic rewards. Specifically, when employing rintrexploration alone, the agents can only learn
dynamic behaviors of high activity but not easing movements or static postures, and the learned skills
are highly homogeneous and indistinguishable by skill vectors (i.e., unsatisfactory exploitation).
The naive intervention of rintrexploitation can significantly improve the behavioral diversity, but it will
simultaneously cause the lazy exploration, making the robots unable to discover active behaviors.
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We propose Skill-based Multi-objectives Weighting (SMW), a simple but effective dynamic weight-
ing mechanism for the issue above. SMW aims to take advantage of the two sub-rewards by setting
different optimization objectives for different skill vectors. Concretely, it designs another change-
able coefficient β which is dynamically adjusted according to skill vectors. β(z) is defined as:

β(z) = clamp(β′, (whigh ,wlow )),

where β′ = (
whigh − wlow

fhigh − flow
)(flag(z )− fhigh) + whigh .

(11)

The flag(·) can be any function to map the high-dimensional skill vectors into 1-dimensional flag
variables. We find that simply employing the first dimension of skill vectors (i.e., flag(z ) = IT1 ·
z , where I1 = (1 , 0 , ..., 0 )) can perform well. The fixed hyper-parameters whigh, wlow, fhigh, flow
and the clamp function clamp(·) make the dynamic coefficient β linearly related to flag variables
flag(z ) with different slopes in different regions. We clearly visualize the relation between β and
flag(z ) in Figure 2. With SMW, the multi-objective intrinsic reward of ComSD is defined as:

rintrComSD = rintrexploration + α · β(z) · rintrexploitation. (12)

Over the intrinsic-reward MDP Mintr, the skill-conditioned policy π(a|s, z) can be trained by RL
with z ∼ p(z). Algorithm 1 in Appendix A provides the full pseudo-code of ComSD.

4 SKILL EVALUATION AND ANALYSIS

4.1 EXPERIMENTAL SETUP

Environments. On the importance of environments: OpenAI Gym (Brockman et al., 2016) and
DMControl (Tassa et al., 2018) are two most popular continuous robot locomotion benchmarks. In
Gym, the episode is ended when agents lose their balance, while the episode length in DMControl
is fixed. Laskin et al. (2022b) found this difference makes DMControl much harder for reward-free
exploration since agents have to learn balance by themselves without any external signals.

Following recent advanced methods (Laskin et al., 2022b; Yarats et al., 2021b; Liu & Abbeel,
2021a;b; Liu et al., 2023), we employ 16 downstream tasks of 4 domains from URLB (Laskin et al.,
2021) and DMControl (Tassa et al., 2018) for skill evaluation. The domains Walker, Quadruped,
Cheetah and Hopper are recognized as the most representative and challenging multi-joint robot en-
vironments, each of which contains 4 totally diverse and challenging downstream locomotion tasks.

Evaluations. In each domain, all the methods, including ComSD pre-train their agents for 2M envi-
ronment steps with their respective intrinsic rewards. After unsupervised pre-training, the behavioral
diversity and quality will be fully and reasonably evaluated on two adaptation tasks: skill combi-
nation (Eysenbach et al., 2018) and skill combination in URLB (Laskin et al., 2021) respectively,
across all 16 downstream tasks with extrinsic reward. It means a total of 32 numerical results are
employed for one method’s evaluation. DDPG (Lillicrap et al., 2015) is chosen as the backbone RL
algorithm for all methods throughout the paper. The detailed settings of the skill combination and
skill finetuning are provided along with the experimental results in Section 4.2.

Baselines. We compare our ComSD with five recent advanced skill discovery algorithms that are
popular for robot behavior discovery. They are BeCL (Yang et al., 2023), CIC (Laskin et al., 2022b),
APS (Liu & Abbeel, 2021a), SMM (Lee et al., 2019), and DIAYN (Eysenbach et al., 2018). All the
methods try to optimize their MI target by designing intrinsic rewards for unsupervised RL. In addi-
tion to BeCL, they all try to maximize I(τ, z), where DIAYN and SMM choose the decomposition
Eq. 1 while APS, CIC, and our ComSD choose decomposition Eq. 2. BeCL proposes a novel MI
objective I(s1, s2), where s1 and s2 denote different states generated by the same skill. We provide
a detailed description of these baselines in Appendix B.

The close baselines to our ComSD are CIC and APS. Apart from SMW, a novel weighting mech-
anism, ComSD still differs significantly from these methods. For CIC, ComSD follows it in state
entropy estimation but first proposes to employ contrastive results for explicit state entropy max-
imization. APS and ComSD both explicitly optimize the state entropy and conditioned entropy,
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Figure 3: The training curve of all 6 methods on 16 downstream skill combination tasks. ComSD
outperforms all baselines significantly across all 16 tasks, demonstrating that ComSD discovers
much more diverse and qualified behaviors than other methods for challenging multi-joint robots.

while ComSD utilizes contrastive learning for a more reasonable estimation. In addition, BeCL also
employs contrastive learning like ComSD, but their contrastive components are different.

4.2 MAIN RESULTS

Skill Combination. In skill combination, we train another meta-controller π′(z|s) which selects
the discovered skills automatically to achieve downstream tasks. The discovered skill-conditioned
agent π(a|s, z) is frozen, and π′(z|s) is trained by RL with extrinsic reward (see Section 2.1 and
Appendix A.2 for a detailed problem definition). This adaptation task can effectively evaluate both
the diversity and quality of the discovered skill set. For each method, 2M environment steps RL are
allowed to train their meta-controllers. All the hyper-parameters of meta-controller and RL settings
are shared across all the methods for a fair comparison, which we detail in Appendix C. The results
of ComSD are obtained over 6 different random seeds.

The training curves are shown in Figure 3, which demonstrates that ComSD significantly outper-
forms all five baselines across all 16 downstream tasks. In skill combination, the better adaptation
performance means that the behaviors discovered by ComSD are of higher diversity and quality than
other methods. CIC and APS are the two most competitive baselines. Both of them and our ComSD
employ the decomposition Eq. 2, which indicates the importance of explicitly maximizing state en-
tropy for discovering robot behaviors. An interesting phenomenon is that CIC always gets a higher
initial score than APS and ComSD but has no upward trend, which coincides with the fact that CIC
can only find homogeneous behaviors at a high activity level. By contrast, APS and ComSD explic-
itly maximize the conditioned entropy through intrinsic rewards, greatly improving the diversity of
learned skill sets and achieving higher final scores than CIC. Compared with APS, ComSD performs
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Table 1: The numerical results of all 6 methods on 16 skill finetuning downstream tasks. ComSD ex-
hibits competitive adaptation performance compared with state-of-the-art methods (CIC and BeCL).
In skill finetuning, only one skill is used for evaluation. The behavioral diversity is also ignored. It
is one-sided to employ skill finetuning alone for evaluation, like recent works.

Domain Task DIAYN SMM APS CIC BeCL ComSD(ours)

Walker

run 242±11 430±26 257±27 450±19 387±22 447±64
stand 860±26 877±34 835±54 959±2 952±2 962±9
flip 381±17 505±26 461±24 631±34 611±18 630±41

walk 661±26 821±36 711±68 885±28 883±34 918±32

Quadruped

run 415±28 220±37 465±37 445±36 482±105 500±103
stand 706±48 367±42 714±50 700±55 789±142 824±86
walk 406±64 184±26 602±86 621±69 707±197 735±140
jump 578±46 298±39 538±42 565±44 610±134 686±66

Hopper

hop 3±4 5±7 1±1 59±60 5±7 40±35
flip 7±8 29±16 3±4 96±64 13±15 61±47

hop backward 9±28 29±57 2±0 172±64 40±72 92±105
flip backward 2±1 19±34 10±23 154±70 22±36 59±63

Cheetah

run 151±72 506±35 381±41 483±32 380±35 432±37
flip 615±78 711±6 648±82 730±13 701±30 660±52

run backward 368±15 473±19 392±41 452±11 400±20 458±9
flip backward 477±108 679±7 518±103 678±93 643±102 685±55

better due to the following two reasons: First, ComSD employs contrastive learning for a better esti-
mation of both state entropy and conditioned entropy. Second, the proposed SMW enables ComSD
to learn qualified behaviors at different activity levels, thus gaining better adaptation ability.

Skill Finetuning. In skill finetuning, a skill vector zi is chosen, and the corresponding skill π(·|s, zi)
is finetuned with the extrinsic reward (see Section 2.1 and Appendix A.3 for a detailed problem def-
inition). 100k environment steps with extrinsic reward are allowed for each method, where a proper
skill vector is selected in the first 4k steps and the chosen skill is finetuned in another 96k steps. For
skill selection, previous works employ random sampling (Yang et al., 2023), fixed choice (Laskin
et al., 2022b;a), or reward-based choice (Liu & Abbeel, 2021a). We follow the official implemen-
tation of Laskin et al. (2022b), employing a fixed mean skill with the first dimension set to 0. All
the hyper-parameters of neural architecture and RL are shared across different methods for a fair
comparison. We show the detailed experimental settings in Appendix C. The results of ComSD are
obtained over 10 different random seeds.

The numerical results on 16 downstream tasks are shown in Table 1. CIC and BeCL are the state-of-
the-art methods for skill finetuning. ComSD performs comparable or better on 10/16 tasks than CIC
and outperforms BeCL across 15/16 tasks, also achieving state-of-the-art adaptation performance.
Actually, the score of the initial few steps has little to do with the final score in state-based locomo-
tion RL, which means it’s hard to find a proper skill from a large skill set within only 4k steps. This
explains why CIC and BeCL use random or fixed choices. Furthermore, higher behavioral diversity
causes higher choice difficulty in ComSD. ComSD discovers the most diverse behaviors (state-of-
the-art adaptation on skill combination) while simultaneously achieving competitive performance
on skill finetuning with a fixed skill, which further shows its superior behavioral quality.

4.3 NUMERICAL ABLATION STUDY

In this section, we conduct numerical ablation experiments to show the effectiveness of both
contrastive conditioned entropy estimation and SMW. The results are shown in Figure 4, where
CIC is actually ComSD w/o explicit conditioned entropy estimation&SMW, and APS is actually
ComSD w/o contrastive conditioned entropy estimation&SMW. Compared with implicit maximiza-
tion (CIC), explicitly maximizing the skill-conditioned entropy (APS and ComSD w/o SMW) im-
proves the training curve slope on skill combination, which means better exploitation, i.e., behavioral
diversity. Moreover, the contrastive result is a better conditioned entropy estimation, improving APS
on both kinds of adaptation tasks. However, simply maximizing the conditioned entropy explicitly
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Figure 4: Numerical ablation experiments on (left) two skill combination tasks and (right) two
skill finetuning tasks. Contrastive estimation of negative conditioned entropy and SMW are both
necessary for ComSD to achieve the most competitive results on both kinds of adaptation tasks.
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Figure 5: Skill activity analysis of our ComSD, ComSD w/o SMW, and all baselines. We estimate
the skill activity by visited state entropy (KTD and AKD) and report the activity variance and range
of uniformly selected walker skills for each method. ComSD exhibits much higher entropy variance
and range, demonstrating that ComSD indeed discovers skills at different activity levels.

leads to a trivial solution in practice, where the agent gives up continuous movement and exploration.
They can only learn static postures but not dynamic behaviors, exhibiting performance drops on skill
finetuning compared with CIC. This phenomenon is also observed by Laskin et al. (2022b). SMW
effectively alleviates this exploration hurt by setting multiple optimization objectives. It improves
behavioral exploitation while maintaining the tendency toward exploration, making ComSD exhibit
state-of-the-art performance on both kinds of adaptation tasks. In summary, SMW and contrastive
conditioned entropy estimation are both necessary for ComSD.

4.4 QUALITY ANALYSIS OF LEARNED SKILLS

Numerical results on 32 downstream tasks have demonstrated the effectiveness and superiority of
ComSD. In this section, we directly analyze the learned skills to show that our method indeed dis-
covers behaviors at different activity levels, which previous advanced methods cannot. For each
method, we uniformly select eleven walker skills and use the entropy of visited states to repre-
sent the skill activity. K-Th-nearest-neighbor Distance (KTD) and All-K-nearest-neighbor Distance
(AKD) (Liu & Abbeel, 2021b), are employed as state entropy estimations. KTD computes the k-th-
nearest-neighbor Euclidean distance of each state and takes the mean, while AKD considers all the
k-nearest neighbors of each state and takes the mean distance. For each method, we report the en-
tropy variance and entropy range of the selected skills in Figure 5. ComSD discovers a skill set with
the biggest activity range and variance, demonstrating it indeed produces skills at diverse activity
levels, where mainly attributes to multiple optimization targets brought by multi-objective intrinsic
reward. We strongly refer readers to Appendix D for additional visualization and analysis.

5 CONCLUSION

In this paper, we propose a novel unsupervised skill discovery method named ComSD. It improves
both behavioral quality and diversity through contrastive learning from a multi-objective perspec-
tive. For numerical evaluation, we conduct comprehensive comparisons on different kinds of down-
stream adaptation tasks, considering behavioral diversity ignored by recent works. The superiority
of ComSD over all other baselines is well verified by our employed evaluation. We hope (i) our
ComSD can inspire more attention to intrinsic reward weighting algorithms, and (ii) our experimen-
tal settings can make a difference for unsupervised skill evaluation in future works.
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Appendix

A FULL PSEUDO-CODE

A.1 COMSD

We provide the ComSD’s full pseudo-code. It also serves as an example to demonstrate the process
of general unsupervised skill discovery.

Algorithm 1 Pseudo-code of ComSD.
###UNSUPERVISED SKILL DISCOVERY BY COMSD
Require: Reward-free environment Ef , the uniform skill distribution p(z), unsupervised pre-
training environment steps Ip, and the RL batch size Ib.
Initialize: The state encoder fθ1(·), the skill encoder fθ2(·), the skill-conditioned policy (actor)
π(a|s, z), the critic Q(a, concat(s, z)), and the replay buffer D.

1: for t = 1, ..., Ip do
2: Sample a skill vector from uniform distribution zt ∼ p(z).
3: Obtain current action at ∼ π(·|st, zt) based on current observation st.
4: Interact with reward-free environment Ef with at to get next observation st+1.
5: Add the transition (st, zt, at, st+1) into replay buffer D.
6: Sample Ib transitions from D (after enough data collection).
7: Compute contrastive learning loss LNCE shown in Eq. 7 with fθ1(·) and fθ2(·).
8: Use backpropogation to update fθ1(·) and fθ2(·).
9: Compute exploitation reward rintrexploitation with Eq. 8.

10: Compute exploration reward rintrexploration with Eq. 10.
11: Compute the final intrinsic reward rintrComSD with Eq. 12.
12: Augment sampled transition batch by the rintrComSD.
13: Use DDPG to update π(a|s, z) and Q(a, concat(s, z)) over Ib intrinsic-reward transitions.
14: end for
Output: the discovered skills (trained skill-conditioned policy) π(a|s, z).
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A.2 SKILL COMBINATION EVALUATION

Algorithm 2 Pseudo-code of skill combination evaluation.
###ADAPTION EVALUATION OF PRE-TRAINED SKILLS BY SKILL COMBINATION

Require: Reward-specific environment Es, the pre-trained skill-conditioned policy π(a|s, z), envi-
ronment adaption steps Ia, and the RL batch size Ib.
Initialize: The meta-controller (actor) π′(z|s), the critic Q(z, s), and the replay buffer D.

1: Freeze the learned skills π(a|s, z).
2: for t = 1, ..., Ia do
3: Obtain current skill vector zt ∼ π(·|st) based on current observation st.
4: Obtain current action at ∼ π(·|st, zt) based on st and zt.
5: Interact with reward-specific environment Es with at to get next observation st+1 and the

extrinsic reward rextr.
6: Add the transition (st, zt, rextr, st+1) into replay buffer D.
7: Sample Ib transition batch from D.
8: Use DDPG to update π′(z|s) and Q(z, s) over Ib transitions.
9: end for

Output: The performance of π′(z|s) serves as the skill combination evaluation result.

A.3 SKILL FINETUNING EVALUATION

Algorithm 3 Pseudo-code of skill finetuning evaluation.
###ADAPTION EVALUATION OF PRE-TRAINED SKILLS BY SKILL FINETUNING

Require: Reward-specific environment Es, the pre-trained skill-conditioned policy π(a|s, z), envi-
ronment adaption steps Ia, skill choice steps Ic, and the RL batch size Ib.
Initialize: The critic Q(a, concat(s, z)), and the replay buffer D.

1: Choose a skill vector zi in Ic steps by your algorithm (e.g., a fixed choice in CIC and ComSD)
and save the corresponding Ic extrinsic-reward transitions into D.

2: Freeze the chosen skill vector zi.
3: for t = 1, ..., Ia − Ic do
4: Obtain current action at ∼ π(·|st, zi) based on st and zi.
5: Interact with reward-specific environment Es with at to get next observation st+1 and the

extrinsic reward rextr.
6: Add the transition (st, zi, at, rextr, st+1) into replay buffer D.
7: Sample Ib transition batch from D.
8: Use DDPG to update π(a|st, zi) and Q(a, concat(s, z)) over Ib transitions.
9: end for

Output: The performance of π(a|s, zi) serves as the skill finetuning evaluation result.
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B BASELINE DETAILS

DIAYN (Eysenbach et al., 2018) is one of the most classical and original unsupervised skill
discovery algorithms, trying to maximize the MI between skills and states. It employs the first MI
decomposition, Eq. 1. It uses a discrete uniform prior distribution to guarantee the maximization
of skill entropy H(z). The negative state-conditioned entropy −H(z|s) is estimated by a trainable
discriminator logp(z|s) which computes the intrinsic reward. As a foundational work, it provides
several reasonable evaluations of skill adaptation, of which skill finetuning and skill combination
are employed in our experiments.

SMM (Lee et al., 2019) aims to learn a policy for which the state marginal distribution matches
a given target state distribution. It optimizes the objective by reducing it to a two-player, zero-sum
game between a state density model and a parametric policy. Like DIAYN, it is also based on the
first decomposition (Eq. 1) of MI and employs discriminator training. The difference is that SMM
explicitly maximizes the state entropy with intrinsic reward, which inspires lots of recent advanced
works and our ComSD.

APS (Liu & Abbeel, 2021a) first employs the second MI decomposition Eq. 2 for a better MI
estimation. For state entropy estimation, it employs a popular particle-based entropy estimation
proposed by APT (Liu & Abbeel, 2021b), which is proven effective and supports many advanced
works (Laskin et al., 2022b; Yarats et al., 2021b) and our ComSD. For skill-conditioned entropy, it
chooses the successor feature (Hansen et al., 2019), introducing it into the final intrinsic reward for
an explicit maximization. The weight between different entropy estimations is fixed in APS. APS
can’t guarantee the behavioral quality (exploration) well. Different from APS, our ComSD employs
contrastive learning for better conditioned entropy estimation and designs a novel dynamic weight-
ing algorithm (SMW) to overcome the exploration drop brought by explicit conditioned entropy
maximization.

CIC (Laskin et al., 2022b) is a state-of-the-art robot behavior discovery method. It first intro-
duces contrastive learning (Chen et al., 2020) into unsupervised skill discovery. It chooses the
second MI decomposition, Eq. 2 with APT particle-based estimation for state entropy, like APS.
The contrastive learning between state transitions and skill vectors is conducted for implicit skill-
conditioned entropy maximization. The encoder learned by contrastive learning is further used for
APT reward improvement. The behaviors produced by CIC are of high activity but not distinguish-
able. Different from CIC, we employ the contrastive results as diversity intrinsic rewards for explicit
conditioned entropy maximization to improve behavioral diversity, with SMW to balance two en-
tropy estimations for exploratory ability maintenance.

BeCL (Yang et al., 2023) is another state-of-the-art method on URLB (Laskin et al., 2021) and 2D
exploration (Campos et al., 2020). It tries to mitigate the exploitation problem in CIC by a novel MI
objective, I(s1, s2), where s1 and s2 denote different states generated by the same skill. It provides
theoretical proof to show that their novel MI objective serves as the upper bound of the previous
MI objective. However, BeCL can’t generate enough dynamic robot behaviors, and their intrinsic
reward computational consumption is also much larger than other approaches.
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C DETAILED EXPERIMENTAL SETTINGS

C.1 COMSD HYPER-PARAMETERS

Table 2: Hyper-parameter settings of ComSD in unsupervised skill discovery.

Hyper-parameter Setting
Skill vector dimensions 64
Skill vector space [0, 1] continuous
Skill update frequency 50
State embedding MLP in fθ1(·) dim(s) → 1024 → 1024 → 64
Predictor (MLP) in fθ1(·) 64× 2 → 1024 → 1024 → 64
State encoder activation ReLU
Skill encoder (MLP) fθ2(·) 64 → 1024 → 1024 → 64
Skill encoder activation ReLU
β upper bound whigh 2
β lower bound wlow 0
fhigh for walker & quadruped 1
flow for walker & quadruped 0
Fixed coefficient α for walker 0.25
Fixed coefficient α for quadruped 1e− 3
fhigh for hopper & cheetah 2/3
flow for hopper & cheetah 1/3
Fixed coefficient α for hopper 1.25
Fixed coefficient α for cheetah 1
RL backbone algorithm DDPG
Number of pre-training frames 2000000
RL replay buffer size 1000000
Action repeat 1
Seed (random) frames 4000
Return discount 0.99
Number of discounted steps for return 3
Batch size 1024
Optimizer Adam
Learning rate 1e− 4
Actor network (MLP) dim(s) + 64 → 1024 → 1024 → dim(a)
Actor activation layernorm(Tanh) → ReLU → Tanh
Critic network (MLP) dim(s) + 64 + dim(a) → 1024 → 1024 → 1
Actor activation layernorm(Tanh) → ReLU
Agent update frequency 2
Target critic network EMA 0.01
Exploration stddev clip 0.3
Exploration stddev value 0.2
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C.2 SKILL COMBINATION EXPERIMENTAL SETTINGS

Table 3: Hyper-parameter settings of skill combination adaptation task.

Hyper-parameter Setting
RL backbone algorithm DDPG
Meta-controller training frames 2000000
RL replay buffer size 1000000
Action repeat 1
Seed (random) frames 4000
Return discount 0.99
Number of discounted steps for return 3
Batch size 1024
Optimizer Adam
Learning rate 1e− 4
Actor network (MLP) dim(s) → 1024 → 1024 → 64
Actor activation layernorm(Tanh) → ReLU → Tanh
Critic network (MLP) dim(s) + 64 → 1024 → 1024 → 1
Actor activation layernorm(Tanh) → ReLU
Agent update frequency 2
Target critic network EMA 0.01
Training stddev clip for meta-controller 0.3
Training stddev value for meta-controller 0.2
Eval frequency 10000
Number of Eval episodes 10
Eval stddev value for meta-controller 0.2
Eval stddev value for pre-trained agent (cheetah) 0.2
Eval stddev value for pre-trained agent (others) 0

C.3 SKILL FINETUNING EXPERIMENTAL SETTINGS

Table 4: Hyper-parameter settings of skill finetuning adaptation task.

Hyper-parameter Setting
Fixed target skill for ComSD (0, 0.5, 0.5, ..., 0.5)
RL backbone algorithm DDPG
Number of finetuning frames 100000
RL replay buffer size 1000000
Action repeat 1
Seed (random) frames 4000
Return discount 0.99
Number of discounted steps for return 3
Batch size 1024
Optimizer Adam
Learning rate for walker&quadruped 1e− 4
Learning rate for hopper&cheetah 2e− 5
Actor network (MLP) dim(s) + 64 → 1024 → 1024 → dim(a)
Actor activation layernorm(Tanh) → ReLU → Tanh
Critic network (MLP) dim(s) + 64 + dim(a) → 1024 → 1024 → 1
Actor activation layernorm(Tanh) → ReLU
Agent update frequency 2
Target critic network EMA 0.01
Training stddev clip 0.3
Training stddev value 0.2
Eval frequency 10000
Number of Eval episodes 10
Eval stddev value 0
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D ADDITIONAL ANALYSIS

D.1 WHAT SKILLS DO COMSD AND COMPETITIVE BASELINES DISCOVER? & WHY DOES
COMSD EXHIBIT BETTER ADAPTATION PERFORMANCE THAN OTHERS?

Flip (AKD:8.88) 

Flip (fail) (AKD:9.69) 

Flip (AKD:9.03) 

Only behaviors of high activity 

homogeneous and indistinguishable
CIC

Yoga posture 1 (AKD:0.25) 

Move leg slowly (AKD:1.31) 

Only behaviors of lazy exploration 

Distinguishable
APS

Yoga posture 2 (AKD:0.12) 

Figure 6: Visualization for representative behaviors discovered by CIC and APS. AKD is a particle-
based state entropy estimator used to evaluate skill activity, which we define in Section 4.4. Skill
AKD ranges from 7 to 10 for CIC and 0 to 2 for APS, which means they can’t discover qualified
behaviors at different activity levels.

We provide the skill visualization and corresponding skill AKD of the two most competitive base-
lines, APS (Liu & Abbeel, 2021a) and CIC (Laskin et al., 2022b), in Figure 6. The visualization and
skill AKD of our ComSD are shown in Figure 7. AKD is a particle-based state entropy estimator
used to evaluate skill activity, which we define in Section 4.4.

CIC is able to produce continuous movements of high activity, but it can’t generate behaviors at
other activity levels (AKD range of CIC’s skills is 7-10). In addition, CIC suffers from insufficient
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Try to stand up (AKD:7.68)

Lie down and struggle slightly (AKD:5.51)
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Figure 7: Visualization for representative behaviors discovered by ComSD. AKD is a particle-based
state entropy estimator used to evaluate skill activity, which we define in Section 4.4. Skill AKD
ranges from 0 to 10 for ComSD. The results demonstrate that our ComSD can produce a qualified
skill set consisting of diverse behaviors at different activity levels, which recent advanced methods
cannot.

exploitation, i.e., the generated skills are indistinguishable and homogeneous. CIC’s skills all tend
to achieve dynamic flipping, which is consistent with the good initial score on walker flip in skill
combination (see Section 4.2). However, the behavioral indistinguishability makes it difficult for
meta-controllers to learn ideal combinations for a competitive final score. APS can generate diverse
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behaviors, but it suffers from lazy exploration and also can’t generate behaviors at different activity
levels (AKD range of APS’s skills is 0-2). In general, poor exploration causes poor performance
in skill finetuning evaluation. In skill combination, the diversity allows the meta-controller to com-
plete downstream tasks through the combination of unqualified learned skills, which coincides with
the upward trend of APS training curves (see Section 4.2). In summary, previous advanced meth-
ods can’t provide a good balance between behavioral quality and diversity, thus failing to exhibit
competitive results across different downstream adaptation evaluations.

By contrast, our ComSD can produce diverse behaviors at different activity levels (AKD range of
ComSD’s skills is 0-10), including flipping, lying down, struggling at different speeds, various pos-
tures, and so on. This explains why our ComSD can achieve state-of-the-art adaptation performance
across both kinds of downstream tasks while other methods cannot.

D.2 BEHAVIORAL DIVERSITY ANALYSIS

In this section, we try to analyze the behavioral diversity of each method. For a skill, we use it to
sample 1k states and calculate the Mean State (MS) over all sampled states. MS can partially repre-
sent the skill to some extent. For each method, we uniformly sample 41 different walker skills. Over
41 skills, we compute the K-Th-nearest-neighbor MS Distance (KTMSD) and the All-K-nearset-
neighbor MS Distance (AKMSD) for skill entropy estimation. KTMSD computes the k-th-nearest-
neighbor MS Euclidean distance of each skill and takes the mean, while AKMSD considers all the
k-nearest neighbors of each skill and takes the mean distance of MS. (Note that in Section 4.4&Ap-
pendix D.1, KTD and AKD are employed for state entropy estimation of one skill, while KTMSD
and AKMSD are used for skill entropy estimation of one method in this section.) KTMSD and
AKMSD can partially evaluate the skill coverage of one method. In addition, we also calculate the
MS Range (MSR) for each method. These metrics are all related to behavioral diversity.

The comparison between all 6 methods on behavioral diversity is shown in Figure 8, demonstrat-
ing that ComSD has huge advantages on skill entropy (KTMSD and AKMSD). ComSD is also the
most competitive method on MSR. In fact, it’s hard to represent an exploratory skill by only MS
(exploratory behaviors have much more visited states than static postures), which puts highly ex-
ploratory methods (ComSD and CIC) at a disadvantage on these 3 metrics. In this case, ComSD
still obtains state-of-the-art evaluation results, which demonstrates that the behavior set discovered
by ComSD is of much higher diversity and coverage than other baselines.
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Figure 8: The comparison between all 6 methods on behavioral diversity. ComSD discovers a much
more diverse skill set than other baselines.

20


	Introduction&Research Background
	Preliminaries
	Problem Definition
	Mutual Information Objective

	Unsupervised Skill Discovery by ComSD
	Conditioned Entropy Estimation via Contrastive Learning
	Particle-based State Entropy Estimation
	Skill-based Multi-objectives weighting

	Skill Evaluation and Analysis
	Experimental Setup
	Main Results
	Numerical Ablation Study
	Quality Analysis of Learned Skills

	Conclusion
	Full pseudo-code
	ComSD
	Skill Combination Evaluation
	Skill Finetuning Evaluation

	Baseline Details
	Detailed Experimental Settings
	ComSD Hyper-parameters
	Skill Combination Experimental Settings
	Skill Finetuning Experimental Settings

	Additional Analysis
	What Skills Do ComSD and Competitive Baselines Discover? & Why does ComSD exhibit better adaptation performance than others?
	Behavioral Diversity Analysis


