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Abstract

Fine granularity is an essential requirement for001
controllable text generation, which has seen002
rapid growth with the ability of LLMs. How-003
ever, existing methods focus mainly on a small004
set of attributes like 3 to 5, and their perfor-005
mance degrades significantly when the num-006
ber of attributes increases to the next order007
of magnitude. To address this challenge, we008
propose a novel zero-shot approach for ex-009
tremely fine-grained controllable generation010
(EFCG), proposing auto-reconstruction (AR)011
and global preference optimization (GPO). In012
the AR phase, we leverage LLMs to extract013
soft attributes (e.g., Emphasis on simplicity and014
minimalism in design) from raw texts, and com-015
bine them with programmatically derived hard016
attributes (e.g., The text should be between 300017
and 400 words) to construct massive (around018
45) multi-attribute requirements, which guide019
the fine-grained text reconstruction process un-020
der weak supervision. In the GPO phase, we ap-021
ply direct preference optimization (DPO) to re-022
fine text generation under diverse attribute com-023
binations, enabling efficient exploration of the024
global combination space. Additionally, we in-025
troduce an efficient attribute sampling strategy026
to identify and correct potentially erroneous027
attributes, further improving global optimiza-028
tion. Our framework significantly improves the029
constraint satisfaction rate (CSR) and text qual-030
ity for EFCG by mitigating position bias and031
alleviating attention dilution.032

1 Introduction033

While large language models (LLMs) have shown034

promising performance in various tasks, process-035

ing massive input information remains a challeng-036

ing setup (Liu et al., 2024). For controlled text037

generation (CTG) (Wang et al., 2023; Song et al.,038

2024), models are often required to satisfy a certain039

number of constraints simultaneously. In previous040

works, the typical number of constraints ranges041

Figure 1: Constraint Satisfaction Rate (CSR) across
different numbers of attributes for GPT-4o and LLaMA-
3.1-8B-Instruct.

from 3 to 5. However, when the number of con- 042

straints scales to the extreme (e.g. 30 or more), 043

performance degrades significantly (Figure 1). 044

One representative challenge arises in travel 045

itinerary planning (Appendix F). Consider a prompt 046

requiring a detailed 5-day travel plan that satisfies 047

over 30 constraints, covering timing, budget, trans- 048

portation, meal preferences, and specific landmark 049

visits. Despite LLMs’ impressive fluency, they fre- 050

quently violate crucial attributes like each activity 051

must be under 2 hours or avoid scheduling during 052

1 PM to 2 PM due to lunch break. Why do LLMs 053

perform well in general text generation but struggle 054

under EFCG? We hypothesize that this limitation 055

stems from two fundamental issues. 056

First, When the number of constraints increases, 057

later-specified conditions are more likely to be 058

neglected, as the model’s performance exhibits 059

position-dependent degradation (Liu et al., 2024), 060

meaning that attributes appearing later in the 061

prompt are less likely to be satisfied (Figure 3). 062

Second, the pretraining and instruction-tuning cor- 063

pus of LLMs involve simple prompts with a few 064

loosely defined requirements. Models rarely en- 065

counter instances with 30+ precise constraints in 066

a single prompt. As a result, when faced with ex- 067
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Decompose

Do you Hate Drinking Plain Water? 

The new Cirkul water bottle with 

flavor sips is a great way to make 

water taste good so you will drink 

more of it! ...

FineWeb (A high-quality raw text corpus) Decompose raw texts into around 45 hard or soft attributes 

1. Conversational Style: Question

2. Genre: Advertisement 

78. Length: Less than 1000 words

...Prompt LLMs for

soft attributes

Run scripts for

hard attributes

UltraGen learns to reconstruct the raw text based on massive attributes from extreme decomposition. 

1. Ambiguity: High

2. Affectivity: Positive

632,501. Zero-Pronoun Frequency

3. Assertiveness: Strong

632,500. Zealous Emotion

...

Global Attributes 

(Decomposed from multiple sources)

1. Conversational Style: Casual

2. Expresses personal gratitude

63. Keyword: “mini break”

...

As I said in Monday’s post 

I really didn’t do a lot on 

my mini break! ...

Mary is glad that she got a 

free coffee at the Starbucks 

in her third …

Score: 82.15

Score: 33.48

Stage 1: Select a group of correlated attributes 

Correlation
Representation Space

Semantic
Representation Space

Stage 2: Iteratively select most semantically different attributesGPO (One Step) UltraGen learns to generate better text aligns with the arbitrary attribute combinations.

Auto-

reconstruction 

Global Preference 

Optimization

Base Model AR Model

RL Model

Auto-reconstruct equips the model with a foundational capability to 

handle extreme attributes. 

Reinforcement Learning extends this capability to global text.

Attribute Combinations

(plausible and coherent combination 
guaranteed by selection strategy)

Figure 2: The whole pipeline of our two-stage UltraGen framework. The auto-reconstruction stage constructs a
large-scale dataset by extracting soft and hard attributes from web corpora and then reconstructing the raw text.
The global preference optimization stage applies DPO with attribute correlation modeling and diversity selection to
enhance multi-attribute generalization over a global corpus.

treme constraint setups, models fail to maintain068

attention across all conditions, leading to attention069

dilution (Figure 6) during generation.070

To tackle the challenges, we propose a frame-071

work designed to enhance LLMs’ ability to handle072

a massive number of constraints effectively. We073

hypothesize that position bias arises partly due to074

the lack of exposure to diverse attribute positions075

during training. To mitigate this, we construct076

a large-scale automated dataset pipeline that ex-077

tracts soft attributes (e.g., style, content) and hard078

attributes (e.g., keywords, structure) from natural079

texts without human annotation. A quality check080

is conducted to ensure that the attributes align with081

the raw texts (Section 3.3.1). By training LLMs082

on these realistic multi-attribute inputs, we expose083

the model to variable attributes across different084

positions, enabling it to better internalize the rela-085

tionship between attributes and the text regardless086

of position.087

Besides, as the number of constraints increases,088

the prompt space shifts towards an underrepre-089

sented distribution in the pre-training corpus, ex-090

acerbating attention dilution. To address this, we091

introduce a global preference optimization strat-092

egy in the second stage. First, we fine-tune an093

embedding model via contrastive learning to cap-094

ture attribute correlations, encouraging the model095

to prioritize plausible and coherent attribute com-096

binations. This helps steer generation away from097

implausible combinations rarely seen during pre-098

training. For example, consider an attribute set 099

that requires the inclusion of an international poli- 100

tics term such as impose 25% tariffs, alongside a 101

medical term like myocardial infarction. Such a 102

combination is highly unlikely to appear together 103

in real-world cases. Second, we promote diver- 104

sity by selecting the least similar candidate from a 105

pool of generations. This prevents the model from 106

collapsing to a small set of frequent patterns and 107

encourages exploration of less common yet valid 108

combinations. Together, correlation modeling nar- 109

rows the search space towards possible regions, 110

while diversity selection expands coverage within 111

that space, enabling the model to retain and balance 112

a large set of attributes during generation. 113

Our contributions are threefold. First, we design 114

an automated pipeline for dataset construction tai- 115

lored to extreme constraints, enabling high-quality 116

training and evaluation. Second, we develop a train- 117

ing strategy that integrates reconstruction and RL 118

(Rafailov et al., 2024) to address the fundamental 119

challenges in EFCG. Finally, we conduct extensive 120

experiments to validate the proposed framework, 121

providing insights into its efficacy and limitations. 122

2 Related Work 123

Controllable Text Generation CTG tasks in- 124

volve hard constraints (e.g., text length, keyword 125

inclusion)(Takase and Okazaki, 2019; Carlsson 126

et al., 2022) and soft constraints (e.g., sentiment, 127
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topic)(Gu et al., 2022; Lu et al., 2022). Fine-128

tuning LLMs with instructional data improves their129

constraint-following ability (Weller et al., 2020;130

Sanh et al., 2021; Mishra et al., 2022; Jiang et al.,131

2024), but evaluations show LLMs often fail to132

meet all constraints (Jiang et al., 2023; Qin et al.,133

2024; Ren et al., 2025). Despite this, these works134

primarily focus on a relatively small number of at-135

tributes or conditions, typically from 3 to 5, leaving136

a gap in understanding LLM’s performance under137

more extreme requirements.138

Evaluation of CTG Evaluating LLM’s adher-139

ence to constraints is challenging and typically in-140

volves automatic and programmatic assessments141

using various metrics (Yao et al., 2023; Zhou et al.,142

2023b; Chen et al., 2022). Zhou et al. (2023a)143

centers on assessing 25 verifiable instructions.144

Jiang et al. (2023) progressively integrates fine-145

grained constraints to develop multi-level instruc-146

tions, thereby enhancing complexity across six dis-147

tinct types. Wen et al. (2024) constructs a novel148

benchmark by synthesizing and refining data from149

the aforementioned benchmarks, with an emphasis150

on the combinatorial types of constraints. Zhang151

et al. (2024) proposes a comprehensive constraint-152

following benchmark over 50 NLP tasks. However,153

none of them investigate the effects of extreme154

fine-grained attributes.155

Multi-objective Alignment Recent work (Mud-156

gal et al., 2023) focuses on balancing multiple ob-157

jectives in text generation while maintaining lin-158

guistic quality. MORLHF (Zhou et al., 2023c;159

Rame et al., 2024) optimizes human preferences160

via reinforcement learning but is costly and unsta-161

ble. RiC (Yang et al., 2024) reduces complexity162

by using supervised fine-tuning with multi-reward163

control and dynamic inference adjustment. DeAL164

(Huang et al., 2024) introduces a decoding-time165

alignment framework for large language models,166

enabling flexible customization of alignment ob-167

jectives, such as keyword constraints and abstract168

goals like harmlessness, without requiring retrain-169

ing.170

3 Method171

3.1 Preliminaries172

EFCG: An Overview Our extremely EFCG is
an extension to controllable text generation CTG,
whose goal is to generate an output Y based on
a given input X and a set of control conditions c.

Figure 3: Score degradation as the position of hard
attributes shifts in Llama-3.1-8B-Instruct and Qwen2-
7B-Instruct, showing a consistent performance drop.

Formally, this can be expressed as:

P (Y | X, c) =
n∏

i=1

Pθ (Yi | Y<i, X, c)

where n denotes the length of Y , and θ represents 173

the parameters of a language model, and Y<i refers 174

to generated tokens before the i-th one. In con- 175

ventional CTG models, X typically serves as a 176

prompt, representing an incomplete text, while Y 177

constitutes its continuation. 178

Despite advancements made in CTG, existing 179

models often struggle to effectively handle fine- 180

grained control conditions, particularly when the 181

position of attributes within the input context varies. 182

As illustrated in Figure 3, this limitation manifests 183

as a significant performance degradation when at- 184

tributes are positioned away from the beginning of 185

the input context. Such trends highlight that mod- 186

ern language models may not robustly utilize infor- 187

mation across the entire input sequence, with biases 188

toward primacy regions of the context window. Ad- 189

dressing this challenge is crucial for improving the 190

robustness and accuracy of EFCG task. 191

Semantic Similarity E5-large (Wang et al.,
2022) is a powerful pre-trained encoder optimized
for embedding sentences. In EFCG, we utilize E5-
large to encode document-grounded attributes and
measure their relationships using cosine similarity.
Cosine similarity is a widely used metric to quan-
tify the similarity between two high-dimensional
vectors, defined as:

Sim(u,v) =
u · v

∥u∥∥v∥

where u and v represent the vector embeddings 192

of two attributes. The cosine similarity yields val- 193
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ues between -1 (completely dissimilar) and 1 (iden-194

tical). Using cosine similarity, we identify semanti-195

cally related attributes and filter out redundant or196

weakly correlated pairs.197

3.2 UltraGen198

As shown in Figure 2, our approach, UltraGen, ad-199

dresses the challenge of EFCG through a two-stage200

framework. First, we introduce auto-reconstruction201

training to align text with a rich set of soft and hard202

attributes. Second, we apply global preference op-203

timization to enhance the model’s adaptability to204

diverse, globally complex attribute compositions.205

3.2.1 Auto-reconstruction Stage206

The auto-reconstruction stage trains on naturally207

aligned attribute-text pairs, where attributes are208

directly extracted from real texts of FineWeb209

(Penedo et al., 2024), a high-quality web corpus,210

to ensure intrinsic constraint compatibility (i.e., no211

conflicting attributes exist by construction). Then212

we train the model to re-generate the text based213

on the decomposed attributes. Formally, given a214

training example (Y, c) ∈ DUltraBench , the model215

learns to reconstruct Y by minimizing the negative216

log-likelihood.217

LSFT = −E(Y,c) logPθ(Y | c)

This process achieves dual objectives: con-218

straint grounding, which forces the model to inter-219

nalize the relationships between atomic attributes220

and their textual realizations, and fluency preser-221

vation, which maintains the base model’s gener-222

ative quality by leveraging the natural language223

distribution of the original corpus. The resulting re-224

construct model serves as a coherent and constraint-225

aware initial policy for RL, providing essential226

prior knowledge for subsequent exploration of com-227

plicated constraint combinations.228

3.2.2 Global Preference Optimization Stage229

To extend the foundation capability to global text230

generation, we first collect a massive pool of at-231

tributes from multiple sources. The attributes pool232

integrates diverse sources spanning multiple do-233

mains, styles, and formats. Unlike reconstruction,234

which applies mainly web data, our RL phase lever-235

ages data from (1) Books, (2) Academic Papers236

(arXiv), (3) Social Media (Reddit), (4) Technical237

Forums (StackExchange), (5) News (CC-News),238

and (6) Encyclopedic Sources (Wikipedia). This239

ensures broad coverage of textual variations, en- 240

abling the model to generalize across different con- 241

texts and constraint types. In each iteration, a valid 242

subset of attributes is selected from this pool. Us- 243

ing the auto-reconstruction model, we generate K 244

candidate responses conditioned on the selected at- 245

tributes. We then apply the CSR metric to identify 246

the preferred and less favorable responses, which 247

are subsequently used for DPO training. 248

A key challenge in selecting a valid subset of 249

attributes lies in balancing topic coherence and 250

anti-redundancy. Topic coherence requires a high 251

correlation among attributes to ensure interdepen- 252

dent constraints are holistically satisfied. For ex- 253

ample, keywords chain of thought and use formal 254

tone jointly imply technical writing. In contrast, 255

diversity prevents overfitting to frequent patterns 256

and enhances fluency. For example, phrases like 257

the dreariest place, a dreary day are redundant 258

and make the text uninformative. Therefore, our 259

pipeline comprises three key steps: 260

Attribute Correlation Modeling We fine-tune 261

the E5-large encoder using triplet contrastive learn- 262

ing (Gao et al., 2021) on document-grounded at- 263

tributes. For each anchor attribute Ai, a positive 264

pair Aj shares context from the same document, 265

while a negative pair Ak is sampled from unrelated 266

contexts. The encoder minimizes the triplet loss, 267

yielding 81.6% validation accuracy in distinguish- 268

ing correlated attributes. 269

Attribute Set Expansion The process begins by 270

randomly sampling 2000 seed soft attributes from 271

the attributes pool as the initial attribute set. For 272

each seed attribute Ai, we retrieve its top 1024 most 273

correlated candidates using the fine-tuned E5 en- 274

coder, where correlation is quantified by the cosine 275

similarity in the correlation representation space 276

using the fine-tuned model. To enforce diversity 277

and minimize semantic redundancy, candidates are 278

iteratively added to the set based on a redundancy 279

score Sim (Acandidate , Ai), which is defined as the 280

cosine similarity in their original E5 semantic rep- 281

resentation space. Expansion terminates when each 282

set contains a randomly determined number from 283

10 to 110. 284

DPO Pair Generation For each attribute set, 285

DPO training pairs are constructed by generating 286

K responses using the auto-reconstruction model. 287

The soft and hard attribute scores are obtained 288

by using the Python scripts and GPT-4o (Section 289

3.3.3), respectively. The total score is computed by 290
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averaging the two scores.291

Responses are ranked from highest to lowest292

based on their scores. The highest-scoring response293

is chosen, while the lowest-scoring response is re-294

jected. This automated scoring and ranking ensure295

the selection of thematically coherent and high-296

quality responses, refining the model’s ability to297

distinguish and generate optimal outputs.298

3.3 UltraBench299

3.3.1 Dataset Construction300

To support our training framework, we construct301

two specialized dataset splits named UltraBench,302

derived from FineWeb (Penedo et al., 2024) and303

multiple sources. The UltraBench dataset is de-304

signed to evaluate and train models on extremely305

fine-grained controllable text generation. Its con-306

struction involves Two stages, as detailed below.307

Attribute Extraction Attributes were catego-308

rized into two types:309

1. Soft attributes: (e.g., style, tone, content)310

were inferred using GPT-4o (Achiam et al.,311

2023) to capture semantic properties. For ex-312

ample, a soft attribute might describe a pas-313

sage as a vivid personal narrative focused on314

childbirth experience.315

2. Hard attributes: consist of programmatically316

verifiable constraints extracted directly from317

the text. These included keyword require-318

ments (e.g., include sustainability), structural319

rules (e.g., generate exactly three paragraphs),320

and syntactic directives (e.g., use all lower-321

case letters).322

For the FineWeb split, we use each attribute set323

along with its corresponding raw text to perform324

the auto-reconstruction stage. For the multi-sources325

split, we aggregate and de-duplicate all decom-326

posed attributes to form a global attribute pool.327

Consistency Verification To ensure the reliabil-328

ity of soft attribute extraction, we conducted a hu-329

man evaluation on a randomly selected subset of330

100 documents. Human experts assessed whether331

the extracted attributes accurately reflected the un-332

derlying text. We computed the Agreement Rate333

(AR), defined as the proportion of samples where334

automated extractions matched the original raw335

text. This process achieved an AR of 96.5%, indi-336

cating a strong alignment between attributes and337

original text.338

Figure 4: Comparison of average attributes across
datasets.

3.3.2 Dataset Statistics 339

Overall Statistics In Appendix C, we summa- 340

rize the dataset details. Table 4 details the compo- 341

sition of UltraBench, with separate configurations 342

for reconstruction and multi-sources subsets. Table 343

6 further analyzes the multi-sources subset’s do- 344

main distribution, while Table 7 quantifies quality 345

control metrics. 346

Compared with Other Benchmarks Table 5 347

provides a detailed comparison of our dataset with 348

other relevant works. While IFeval and Follow- 349

Bench include synthesized data (Synt.), they fall 350

short in capturing the diversity and complexity re- 351

quired for evaluating real-world applications. An- 352

other key strength of our dataset lies in the average 353

number of attributes per sample, where we achieve 354

a remarkable value of 45.9 and 29.9 on two splits, 355

far exceeding the benchmarks’ maximum of 4.5. 356

This demonstrates the ability of our dataset for 357

evaluating tasks requiring fine-grained attribute un- 358

derstanding. 359

3.3.3 Evaluation Protocol 360

To rigorously evaluate EFCG capabilities, we use 361

two evaluation metrics: 362

Constraint Satisfaction Rate (CSR) For a given 363

instruction with both soft and hard constraints, we 364

compute the CSR as follows: 365

CSR =
1

m

m∑
i=1

1

n(i)

n(i)∑
j=1

s
(i)
j

where s
(i)
j = 1 if the j-th constraint for the i- 366

th instruction is satisfied, and 0 otherwise. Here, 367

n(i) is the number of constraints (hard or soft) for 368

instruction i, and m is the total number of evaluated 369

instructions. 370

1. Hard Constraint Verification: For program- 371

matically verifiable constraints, we perform 372

5



deterministic checks via Python scripts. Due373

to the significant imbalance in hard attributes,374

we adopt macro accuracy to ensure fair eval-375

uation. Macro accuracy computes the aver-376

age CSR across different types, giving equal377

weight to each type regardless of its frequency.378

2. Soft Constraint Evaluation: For semantic379

constraints, we employ an LLM-based judge380

(GPT-4o), assigning a binary score (0 or 1)381

to each constraint. We validate the quality382

of the LLM-based judges on a randomly se-383

lected set of 100 samples. By calculating the384

Cohen’s Kappa coefficient between the scores385

of LLM-based judge and human experts, we386

found a strong agreement (84.55%) between387

the automatic evaluation and human experts’388

assessment.389

BERTScore In the auto-reconstruction phase,390

we also use BERTScore (Zhang et al., 2020)391

to measure the quality of the reconstructed text.392

BERTScore leverages the contextual embeddings393

from pre-trained language models to capture se-394

mantic similarity. BERTScore is widely used in395

text generation tasks, as it aligns better with hu-396

man judgments of semantic quality compared to397

traditional n-gram overlap-based metrics.398

4 Experiments399

4.1 Experiment Setup400

Models. Our experiments evaluate the EFCG401

task using one mainstream instruction-tuned base402

model: Llama-3.2-3B-Instruct (Dubey et al.,403

2024), chosen for its demonstrated proficiency in404

instruction-following tasks within the 3B param-405

eter range. To systematically assess the impact406

of our methodology, we compare three training407

paradigms: (1) BASE, which directly employs408

the unmodified base models to establish a perfor-409

mance baseline; (2) AR, where models undergo410

the auto-reconstruction stage on our meticulously411

constructed FineWeb dataset (§3.2), enriched with412

fine-grained attributes to enhance multi-constraint413

adherence; and (3) AR+GPO, a hybrid optimiza-414

tion approach combining direct preference opti-415

mization with global embedding space adaption.416

4.2 Evaluation Results on UltraBench417

Our experimental findings, summarized in Table 1,418

demonstrate the substantial advancements achieved419

by applying the UltraGen paradigm to EFCG. The420

evaluation leverages the validation set of FineWeb 421

and Global splits to assess model performance un- 422

der both local and global constraints. 423

The application of AR yielded significant im- 424

provements over the base model. On the FineWeb 425

split, the AR model attained an overall score 426

of 56.05, representing a relative improvement of 427

11.4%. The soft score rose to 81.44, indicating 428

enhanced adherence to semantic and stylistic at- 429

tributes, while the hard score increased to 30.65, 430

reflecting better performance on programmatically 431

verifiable constraints. On the Global split, the 432

AR model demonstrated its ability to generalize, 433

achieving an overall score of 50.15. 434

Further optimization through GPO demonstrated 435

remarkable performance on the Global split, where 436

the model achieved an overall score of 57.23 and 437

an impressive hard score of 45.44. This highlights 438

the model’s robust generalization and optimization 439

capabilities when dealing with diverse and chal- 440

lenging global constraints. Notably, despite being 441

trained on the Global split, the AR+GPO model 442

exhibited strong performance on the FineWeb split 443

as well, achieving an overall score of 59.61, a soft 444

score of 84.33, and a hard score of 34.89. This 445

result underscores the model’s ability to transfer 446

its learned capabilities from the broader and more 447

diverse Global split to the more localized FineWeb 448

split. 449

Ablation To evaluate the contribution of key 450

components in our UltraGen framework, we con- 451

ducted ablation studies by systematically modify- 452

ing the training process. We tested the impact of 453

reducing the number of attributes during AR, re- 454

moving the AR stage, replacing curated attributes 455

with random sampling, and eliminating the high- 456

correlation or low-redundancy selection steps. The 457

results demonstrate that both AR and GPO stages 458

are crucial for achieving strong performance, as 459

reducing constraints, removing correlation model- 460

ing, or neglecting redundancy minimization leads 461

to performance degradation. 462

4.3 Data Synthesis Improvement 463

To demonstrate the improvement in the usage of 464

texts synthesized by UltraGen, we utilize several 465

diverse well-established text classification bench- 466

marks to test the data synthesis capability, such 467

as sentiment analysis (1) Emotion (Saravia et al., 468

2018), attitude classification towards a particular 469

public figure (2) Hillary (Barbieri et al., 2020), 470
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Model
FineWeb Split Multi-source Split

Overall Score Soft Score Hard Score BERTScore F1 Overall Score Soft Score Hard Score

M
ai

n Base Model 50.30 67.08 33.51 59.92 37.45 36.10 38.79
UltraGen (AR) 56.05 81.44 30.65 62.00 50.15 62.41 37.89
UltraGen (AR+GPO) 59.61 84.33 34.89 61.22 57.23 69.01 45.44

A
bl

at
io

n AR (Few Constraints) 48.25 74.09 22.41 60.10 38.38 46.00 30.76
GPO 55.57 74.50 36.63 60.59 42.44 51.00 33.86
AR+GPO (Random Sampling) 59.77 85.42 34.11 60.56 55.24 68.01 42.47
AR+GPO (High Similarity) 59.44 83.22 35.65 60.85 55.45 66.05 44.85
AR+GPO (Low Correlation) 58.91 83.59 34.23 60.00 54.47 65.22 43.71

Table 1: Performance scores for Llama-3.2-3B-Instruct models on the validation set under different evaluation
conditions across FineWeb and Global splits.

Dataset (Domain) Base AR AR+GPO

Emotion (Tweet Emotion) 28.25 42.30 38.65
Hillary (Tweet Stance) 55.93 45.76 58.31
AG-News (News Topic) 80.03 79.96 83.28
TREC (Question Type) 38.00 51.20 51.40

Average 50.55 54.81 57.91

Table 2: Performance comparison for data synthesis.

topic classification (3) AG News (Zhang et al.,471

2015), question type classification (4) TREC (Li472

and Roth, 2002).473

For each dataset, we analyze the unique prop-474

erties and paraphrase these properties as hard and475

soft attributes. Then using a uniform prompt tai-476

lored for each dataset, we generate 2,000 synthetic477

samples per dataset. These generated samples are478

then used to train a classifier, which is subsequently479

evaluated on the original test set of the dataset. This480

procedure allows for a fair comparison of model481

performance on synthetic data.482

The results, summarized in Table 2, demon-483

strate the superior generalization ability of the484

AR+GPO model trained on the Global split. No-485

tably, the AR+GPO model achieved the highest av-486

erage score of 57.91 across the benchmarks, signif-487

icantly outperforming both the base model and the488

AR models. While the AR model’s performance489

stagnated (45.76, lower than the original one) on490

the Hillary benchmark, reflecting a focus on local-491

ized attributes, the AR+GPO model excelled with492

a score of 58.31, indicating its generalization and493

adaptability beyond localized training objectives.494

4.4 Trade-Offs in EFCG495

Figure 5 illustrates the interplay between496

BERTScore and CSR across different numbers of497

attributes from 10 to 50 for each model. As the498

figure shows, increasing the number of attributes499

presents a clear double-edged effect: while more500

Figure 5: The Trade-off between F1 score and CSR.
While BERTScore tends to improve with more at-
tributes, CSR declines

attributes can enhance fine-grained control (e.g., 501

higher F1 score) over the generated text, the added 502

complexity makes it more difficult for the model to 503

maintain high constraint adherence. 504

Better Multi-Objective Alignment Under EFCG. 505

When looking at the 30, 40, and 50 attribute con- 506

ditions: AR+GPO consistently attains CSR values 507

5–10 points higher than the other two models with- 508

out sacrificing F1. For example, at 50 attributes, 509

AR+GPO’s CSR (44.76%) is considerably above 510

AR’s (35.86%) and Original’s (37.40%), while also 511

delivering the highest F1 (0.6348 vs. 0.6310 for 512

AR and 0.6076 for Original). 513

This pattern illustrates a more favorable trade- 514

off for AR+GPO: it does not simply chase high 515

BERTScore by ignoring constraints, nor does it 516

force all constraints at the expense of overall text 517

quality. Instead, AR+GPO’s global optimization 518

helps coordinate multiple constraints while retain- 519

ing strong semantic alignment. In contrast, AR 520

appears effective at moderate attribute counts but 521

loses ground on CSR once the load goes beyond 522

30 attributes, and the Original model experiences 523

an even steeper decline. 524
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Objective: Generate a 5-day family travel itinerantry that satisfies all specified requirements

Profile: Travelers: 2 adults + 1 child (age 8) ... 

[Constraints]

- Each activity must be less than a 2-hour window unless otherwise specified.

- Daily break period: 13:00-14:30 (no scheduled activities during this time)

- Must-visit location: ...

[Adaptive Adjustments]

- Weather sensitivity: If the rain forecast exceeds 60%, ...

Morning Activity 
(9:00-11:30 AM)

Start the day at the shopping 
district, ...
Break/Lunch Period 
(12:00-1:30 PM)

Original
Day 1: Wildlife Exploration
- 9:30 AM – 11:30 AM: City Zoo
Break Period
- 13:00 – 14:30: Break/lunch
- 14:30 – 16:30: Children’s Museum

AR+GPO

AR+GPO

CSR(C)=1

Origin

CSR(C)=0

Prompt Attention Flow

Figure 6: In a case study on travel itinerary generation, the attention flow illustrates improved constraint awareness
in AR+GPO.

5 Analysis525

5.1 UltraBench Mitigates Performance526

Degradation Across Different Positions527

Figure 7: Hard score across different positions, show-
ing that our approach (AR+GPO) effectively mitigates
performance degradation.

Our method effectively mitigates the sensitivity528

to positional changes in hard attributes. As shown529

in Figure 3, baseline models such as Llama-3.1-8B-530

Instruct and Qwen2-7B-Instruct exhibit a signifi-531

cant drop in hard scores as the position increases,532

indicating a degradation in performance when hard533

attributes appear later in the input. In contrast,534

our approach significantly stabilizes performance535

across all positions (Figure 7). The introduction536

of AR already improves robustness compared to537

the original model, and the addition of GPO fur-538

ther enhances consistency, maintaining high hard539

scores even at later positions. This demonstrates540

that our approach effectively addresses the posi-541

tion sensitivity issue, ensuring more reliable model542

performance regardless of attribute placement. 543

5.2 A Real-world Travel Case 544

To further evaluate our approach, we analyze a real- 545

world travel planning scenario where the itinerary 546

must satisfy over thirty attributes. One crucial con- 547

straint is that each activity should be less than two 548

hours long. The authors examined the response 549

generated by three models. We observe that only 550

the AR+GPO model consistently generates activ- 551

ities that adhere to this constraint, whereas the 552

original model and AR model occasionally vio- 553

late it. To gain deeper insights, we provide the user 554

prompt along with a partially generated response 555

(e.g., ”14:00 PM - 1”) and examine the attention 556

flow distribution at this intermediate step. As il- 557

lustrated in Figure 6, the AR+GPO model exhibits 558

significantly higher attention weights on constraint- 559

related tokens (e.g., ”2”), suggesting that it effec- 560

tively retains and incorporates constraint-relevant 561

information during generation. In contrast, the orig- 562

inal model’s attention weights are relatively weak, 563

indicating a lower degree of constraint awareness. 564

6 Conclusion 565

We proposed UltraGen, a two-stage framework 566

for extremely fine-grained controllable generation. 567

The Auto-Reconstruction stage trains LLMs to 568

align with both soft and hard attributes, while 569

Global Preference Optimization further enhances 570

constraint satisfaction under diverse attribute com- 571

binations. Experiments on UltraBench demon- 572

strate that UltraGen significantly improves both 573

constraint adherence and text quality. 574
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Limitations575

While UltraGen demonstrates strong performance576

in handling extremely fine-grained controllable577

generation, several limitations remain. First, the578

set of hard attributes used in this work, though579

diverse and practical, primarily focuses on struc-580

tural and keyword constraints; future work could581

explore more complex and domain-specific hard582

constraints to further stress-test model capabilities.583

Second, although our attribute correlation and di-584

versity strategies reduce implausible combinations,585

ensuring absolute coherence across a large number586

of constraints remains an open challenge.587
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A Hard Attributes781

The hard attributes employed in this study, as de-782

tailed in Table 3, comprise a set of verifiable in-783

structions designed to enforce precise, program-784

matically assessable constraints on text genera-785

tion. These attributes are categorized into four786

primary groups: (1) Keywords, which mandate the787

inclusion or frequency of specific terms (e.g., ”In-788

clude {keyword1}” or ”appear {N} times”); (2)789

Length Constraints, governing structural require-790

ments such as paragraph count, word limits, or791

sentence boundaries; (3) Change Cases, enforcing792

syntactic rules like all-uppercase or all-lowercase793

formatting; and (4) Positional Directives, such as794

starting responses with predefined phrases. Each795

attribute is selected for its objective verifiability796

through rule-based checks while also reflecting797

common real-world application scenarios, such798

as compliance with stylistic guidelines or techni-799

cal specifications. By anchoring the evaluation800

in these deterministic constraints, the framework801

guarantees rigorous assessment of model adher-802

ence to fine-grained requirements, aligning with803

the dataset’s emphasis on combinatorial complex-804

ity and practical utility.805

B Generalization to Unseen Attributes806

We evaluate the models’ ability to generalize to807

unseen, more challenging attributes, focusing on808

two types:809

1. Absolute Position of a Word: The k-th (k ≤810

5) word in the text must be A.811

2. Relative Position Between Two Words:812

Word A must appear before word B.813

We use text from the FineWeb validation set and ex-814

tract 50 attributes per document, focusing on these815

two types of harder attributes. We then evaluate816

the three models on this benchmark. The results817

show that the original model achieves a score of818

21.56, while auto-reconstruct slightly reduces per-819

formance to 20.79. However, incorporating GPO820

alongside AR improves generalization, yielding a821

score of 24.05, suggesting that GPO enhances the822

model’s ability to handle these harder constraints.823

C Dataset Statistics824

In this section, we present detailed statistics of825

our dataset, including a comparison with existing826

datasets, quality control evaluation, and the compo-827

sition of our multi-sources subset.828

Comparison with Existing Datasets. Table 5 829

provides a comparison between our dataset and 830

several representative constraint-based datasets, 831

including IFeval (Zhou et al., 2023a), Follow- 832

Bench (Jiang et al., 2023), CFBench (Zhang et al., 833

2024), and InFoBench (Qin et al., 2024). Our 834

dataset distinguishes itself with a significantly 835

larger number of samples (6,159) and a notably 836

higher average number of attributes per instance 837

(45.9). Unlike prior datasets, which primarily rely 838

on either human annotations or simple constraints, 839

our data features a rich combination of both hard 840

and soft constraints, offering a more challenging 841

and comprehensive benchmark. Importantly, our 842

data is not synthesized, ensuring its alignment with 843

real-world use cases. 844

Figure 8: Proportion of Attributes Across Different Data
Domains. The bar chart visualizes the relative contribu-
tion of each domain to the multi-sources subset, high-
lighting a balanced distribution across various sources
such as web data, forums, papers, books, and Wikipedia.

Domain Composition in Multi-sources Sub- 845

set Our multi-sources subset is constructed from 846

a diverse range of data sources, encompassing 847

web data, forums, academic papers, books, and 848

Wikipedia. Figure 8 illustrates the proportion of 849

attributes contributed by each domain, highlight- 850

ing a balanced distribution across these categories. 851

Table 6 further details the exact composition, show- 852

ing that no single source overwhelmingly domi- 853

nates, ensuring robustness and variety in down- 854

stream tasks. 855

Quality Control Metrics Maintaining data qual- 856

ity is critical for ensuring reliable evaluations. We 857

assess the agreement rate (AR) between human 858

annotators and the final dataset as a key metric. 859

As summarized in Table 7, the FineWeb subset 860

achieves an AR of 92.3%, while the multi-sources 861

subset attains 88.7%. These high agreement rates 862

reflect the robustness of our data curation process, 863

confirming that both subsets align closely with hu- 864
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Instruction Group Instruction Description

Keywords Include Keywords Include keywords {keyword1} in your response
Keywords Keyword Frequency In your response, the word word should appear {N} times.

Length Constraints Number Paragraphs Your response should contain {N} paragraphs. You separate paragraphs
using \n \n

Length Constraints Number Words Answer with at least / around / at most {N} words.
Length Constraints Number Sentences Answer with at least / around / at most {N} sentences.

Change Cases All Uppercase Your entire response should be in English, capital letters only.
Change Cases All Lowercase Your entire response should be in English, and in all lowercase letters.

No capital letters are allowed.

Start with Start With Finish your response with this exact phrase {end phrase}. No other
words should follow this phrase.

Table 3: The list of 8 verifiable instructions, with brief descriptions. We use these instructions because we think they
are either easy to verify or common in real-world applications.

Subset Train Size Val Size Avg Length Soft Attrs Hard Attrs Total Attrs
(words) (per sample) (per sample) (per sample)

FineWeb (Local) 6,159 200 361.6 7.80 38.10 45.90
Multi-sources (Global) 1600 400 - 5.1 24.8 29.9

Table 4: UltraBench Dataset Composition

Method
Data Quality

Nums. Cons. Avg Attr. Synt.

IFeval (Zhou et al., 2023a) 541 H 1.54 ✓

FollowBench (Jiang et al., 2023) 820 H/S 3.0 ✓

CFBench (Zhang et al., 2024) 1000 H/S 4.24 ✗

InFoBench (Qin et al., 2024) 500 H/S 4.5 ✗

UltraGen (FineWeb Split) 6159 H/S 45.9 ✗

UltraGen (Multi-source Split) 1600 H/S 29.9 ✗

Table 5: Detailed comparison of relevant works. Ours
represents our dataset construction approach. 'Nums.',
'Cons.', 'Avg Attr.', and 'Synt.' denote the number of
samples, constraint types, average number of attributes,
and whether the data is synthesized.

Category Domain Percentage

Web Data

CC News (Middle) 9.24%
Falcon RefinedWeb Filtered 9.59%

CC EN (Middle) 9.86%
C4 Filtered 10.03%

Forum
Reddit 9.75%

StackExchange (RedPajama) 10.42%

Papers
arXiv (RedPajama) 10.05%

Pile-Extracted Scientific Open (PES2O) 9.79%
Books Books 10.42%
Wikipedia Wikipedia 10.84%

Table 6: Distribution of data sources in the multi-sources
subset by category. The data sources are grouped into
major categories: Web Data, Forums, Papers, Books,
and Wikipedia. Percentages represent the proportion of
each domain within the subset.

man judgment.

Metric FineWeb Subset Multi-sources Subset

Agreement Rate (AR) 97% 96%

Table 7: Quality Control Metrics

865

D DPO data quality 866

High Correlation:
- Thought-provoking narrative with a call to action
- Author’s Name and Location Identifier: The text

begins with the name S. TEITELBAUM followed by a
location ST. JOHNS, FL.

- Engaging Headline: The title captures the reader’s
attention by listing 5 Reasons for a specific action.
Low Correlation:

- AI Leadership: The partnership aims to position
Singapore as a leader in AI within healthcare

- Focus on Competitive Standards: The passage
stresses the competitiveness of FAU’s admissions pro-
cess

Table 8: Correlation Examples

In this section, we showcase some examples sam- 867

pled by our global selection strategy. 868

High Correlation Our attribute correlation mod- 869

eling step aims to select semantically coherent and 870

mutually reinforcing attributes during GPO train- 871

ing. This process effectively groups attributes that 872

frequently co-occur in natural text, leading to the 873

selection of high-quality attribute combinations. 874

Low Similarity While high correlation ensures 875

that attributes are semantically aligned, it is equally 876

important to maintain attribute diversity to prevent 877

redundancy and overfitting. Our global selection 878

strategy aims to minimize the presence of highly 879
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Low Similarity:
- Focus on Natural Ingredients: Emphasizes the im-

portance of natural ingredients
- Protein-rich for Satiety and Muscle Growth: The

high protein content in buffalo milk helps increase satiety
High Similarity:

- Health focus: The text emphasizes overall health
benefits

- Detailed explanation for each benefit: Each health
benefit mentioned is followed by an explanation or rea-
soning

Table 9: Similarity Examples

similar attributes within the same prompt. For in-880

stance, attributes like “Engaging Headline” and881

“Attention-Grabbing Title” convey nearly identi-882

cal meanings and offer little additional training883

value when paired together. By prioritizing low-884

similarity combinations, we encourage the model885

to generalize across a broader range of attribute886

expressions, improving its adaptability to diverse887

prompts.888

Figure 9: Score distributions of chosen and rejected
data.

To further illustrate the effectiveness of our sam-889

pling strategy in the GPO stage, we present several890

representative cases selected by our attribute-based891

sampling approach. These examples demonstrate892

the diversity and coverage achieved through our893

strategy, highlighting both common and edge-case894

attribute combinations.895

E Prompts Used in This Study896

We employ three distinct prompts to support differ-897

ent stages of our EFCG pipeline: Decomposition,898

Judging, and Generation.899

Decomposition Instruction. This prompt is used900

to extract a set of soft attributes from a given text.901

The goal is to decompose the paragraph into its902

### Requirements
For the following paragraph, propose attributes that cap-
ture its overall characteristics. Focus on what makes this
text unique and distinctive, rather than using predefined
categories. Your analysis should:
- Identify the most prominent and defining features of
the text
- Use clear, specific descriptions rather than vague terms
- Base attributes solely on what is explicitly present in
the text
- Describe each attribute with enough detail to be mean-
ingful
Avoid:
- Overly broad or generic attributes
- Speculative interpretations
- Attributes not clearly supported by the text
- Complex or academic jargon
Output each attribute on a separate line, separated by a
single newline, with no line breaks within each attribute.
Now, analyze the following paragraph and summarize
its key attributes:
### Text
{text}
### Attributes

Table 10: Decompose Prompt

most defining characteristics, capturing both stylis- 903

tic and semantic elements. Models are instructed 904

to focus on identifying specific, explicit features of 905

the text rather than relying on generic descriptions 906

or subjective interpretations. Attributes must re- 907

flect the unique aspects of the text and be grounded 908

in the content. 909

You are a binary evaluator. Given a text and several
attributes, determine if the text fulfills each attribute.
Your task is simple:
- Score 0 if the text does NOT fulfill the attribute or the
attribute is not directly mentioned
- Score 1 if and only if the text directly fulfills the at-
tribute
Text to evaluate:
{text}
Attributes to evaluate:
{attributes}
Provide exactly {num attributes} scores, one per line,
using this format:
Score: 0 or 1
- Scores should correspond to attributes in order
- Only provide the scores, no additional explanation

Table 11: Judge Prompt

Judge Instruction. This prompt serves as a bi- 910

nary evaluation guideline to determine whether a 911

generated text satisfies a given set of attributes. 912

Evaluators are asked to assess each attribute inde- 913

pendently, assigning a score of 1 if the text explic- 914

itly fulfills the attribute and 0 otherwise. The eval- 915

uation is strict, requiring the text to directly align 916

with the specified attribute for a positive score. 917
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You are an expert at generating text that matches given
attributes. Your task is to generate a text that satisfies as
many of the provided attributes as possible.
### Hard Attributes:
{hard attributes}
### Soft Attributes:
{soft attributes}

Table 12: Generation Prompt

Generation Instruction. This prompt is used to918

instruct the language model to generate a piece of919

text that aligns with a provided set of hard con-920

straints and soft attributes. Hard attributes typically921

represent structural or factual constraints (e.g., bud-922

get, schedule), while soft attributes reflect stylistic923

or semantic preferences (e.g., tone, vividness). The924

model is guided to generate text that adheres to as925

many of these attributes as possible, balancing the926

satisfaction of both hard and soft constraints.927

F The Complete Case Study928

The travel planner case study exemplifies the practi-929

cal usefulness of EFCG in handling complex, multi-930

faceted requirements. As shown in Table 13, gen-931

erating a 5-day travel itinerary involves satisfying932

a diverse set of hard attributes (e.g., budget lim-933

its, time scheduling, location constraints) alongside934

soft attributes (e.g., tone, emotion, visual details),935

while also adapting to real-time factors like weather936

and physical endurance. Such a task necessitates937

precise control over both hard and soft constraints,938

making it a natural testbed for evaluating EFCG939

systems.940
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### Objective:
Generate a 5-day family travel itinerantry that satisfies all specified requirements while adhering to highly
fine-grained constraints. The generated itinerary should balance real-time adaptability, strict hard attributes, and
semantic soft attributes.
### User Profile:
- Travelers: 2 adults + 1 child (age 8)
- Budget: <= $300/day (total $1,500 for the trip)
- Activity Balance: 70% educational/cultural experiences, 20% relaxation, 10% family-friendly shopping.
### Hard Attributes:
- Activity Scheduling:

- Each activity must have a defined start and end time, ensuring there is no overlap between activities.
- A break period from 13:00-14:30 is mandatory daily.
- Each activity must fit within a 2-hour window unless otherwise specified.

- Budget Requirements:
- Each day’s total cost (including transportation, food, and activities) must not exceed $300.
- Transportation is limited to metro and walking only, with a maximum of 3 metro rides per day.

- Location Constraints:
- Must-visit locations: City Zoo (Day 1) and Science Museum (Day 3).
- Activities must occur in geographically adjacent areas to minimize walking distance.

- Keyword Requirements:
- Each day’s description must include specific keywords. For example:
- Day 1: “wildlife,” “exploration,” and “interactive learning.”
- Day 3: “science,” “innovation,” and “hands-on exhibits.”

- Structure Constraints:
- Each day’s itinerary must consist of 4 sections:

- Morning activity
- Break/lunch period
- Afternoon activity
- Evening summary (limited to 50 words)

### Soft Attributes
- Tone and Emotion:

- Day 1: Use a tone that conveys “excitement and discovery.”
- Day 3: Use a tone that conveys “curiosity and wonder.”

- Language Style:
- Use descriptive, vivid, and family-friendly language throughout.
- Include at least one metaphor or simile per day (e.g., ”The Science Museum felt like stepping into the

future!”).
- Visual Details:

- Each activity must include specific sensory details (e.g., ”the bright colors of the parrots at the zoo” or ”the
tinkling sound of water fountains at the park”).
- Adaptive Adjustments (Real-time Constraints):

- Weather Sensitivity:
- If the rain forecast exceeds 60%, replace outdoor activities with indoor alternatives while keeping the

overall tone and keywords intact.
- Physical Endurance:

- If a day’s total walking distance exceeds 10 kilometers, the next day’s activities must reduce walking by
30%.

- Health Responsiveness:
- If a health-related issue arises (e.g., fatigue or illness), adjust the itinerary dynamically to:
- Reduce activity duration to half.
- Substitute the activity with a more relaxing or passive option.

Table 13: The complete travel planner case study.
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