
Under review as a conference paper at ICLR 2023

MILAN: MASKED IMAGE PRETRAINING ON
LANGUAGE ASSISTED REPRESENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Self-attention based transformer models have been dominating many computer
vision tasks in the past few years. Their superb model qualities heavily depend
on the excessively large labeled image datasets. In order to reduce the reliance
on large labeled datasets, reconstruction based masked autoencoders are gaining
popularity, which learn high quality transferable representations from unlabeled
images. For the same purpose, recent weakly supervised image pretraining methods
explore language supervision from text captions accompanying the images. In this
work, we propose masked image pretraining on language assisted representation,
dubbed as MILAN. Instead of predicting raw pixels or low level features, our
pretraining objective is to reconstruct the image features with substantial semantic
signals that are obtained using caption supervision. Moreover, to accommodate our
reconstruction target, we propose a more efficient prompting decoder architecture
and a semantic aware mask sampling mechanism, which further advance the
transfer performance of the pretrained model. Experimental results demonstrate
that MILAN delivers higher accuracy than the previous works. When the masked
autoencoder is pretrained and finetuned on ImageNet-1K dataset with an input
resolution of 224×224, MILAN achieves a top-1 accuracy of 85.4% on ViT-
Base, surpassing previous state-of-the-arts by 1%. In the downstream semantic
segmentation task, MILAN achieves 52.7 mIoU using ViT-Base backbone on
ADE20K dataset, outperforming previous masked pretraining results by 4 points.

1 INTRODUCTION

In recent years, we have seen a wide adoption of applying natural language processing (NLP)
techniques in computer vision (CV) tasks. The vision transformer (ViT) model (Dosovitskiy et al.,
2020) applies the self-attention based transformer architecture to vision tasks and have achieved
remarkable performance. However, training ViT models requires much larger labeled datasets to avoid
overfitting, such as ImageNet-22K (Deng et al., 2009) and JFT-300M (Sun et al., 2017). Explicitly
labeling large image datasets is hardly affordable.

Reconstruction based self-supervised pretraining can extract semantic information from unlabeled
data, and has become a popular method to reduce the reliance on very large labeled datasets in both
NLP and CV. It is first exemplified by BERT (Devlin et al., 2018) in NLP. Acting like a masked
autoencoder (Vincent et al., 2010), BERT randomly masks some percentage of the input word tokens
and learns to reconstruct the vocabularies of those masked tokens. Works in (Bao et al., 2021;
He et al., 2021; Xie et al., 2021b; Wei et al., 2021) adopt similar techniques in CV to address the
data-hungry issue of ViT models. A large percentage of the input image patches are randomly masked
with the goal of reconstructing them.

The mask autoencoders can be extended in several directions. Unlike the masked word tokens in NLP,
which contain rich semantic information, the masked image patches only contain low-level pixel
data. Several works (Bao et al., 2021; Dong et al., 2021; Chen et al., 2022) explore more abstract
reconstruction targets, aiming to learn higher level visual concepts. However, those methods still
only retrieve semantic signals from raw image pixels, which by itself is a difficult task. In addition,
the selection of the reconstruction targets heavily influences the decoder design in autoencoders, as
the decoder serves to reconstruct the masked features with the guidance from the encoder’s output
representations. Full fledged transformer blocks are used in the decoder of MAE (He et al., 2021) to
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Figure 1: (a) The overall flow of MILAN. The masked autoencoder uses the outputs of the CLIP
model as the reconstruction target. An efficient prompting decoder freezes the features of the encoding
tokens and only updates the mask tokens. A semantic aware sampling is used to guide the selection
of the unmasked image patches. The reconstruction loss is computed on the representation features
of both masked and unmasked patches. (b) A detailed diagram of the prompting decoder. (c) The
attention computation in the prompting decoder.

reconstruct masked input patches pixel by pixel, whereas lightweight linear layer is adopted in the
decoder of MaskFeat (Wei et al., 2021) to reconstruct local features of the image. Thus, if we were
using more semantic preserving reconstruction targets, a task tailored decoder architecture would be
required. Furthermore, different sampling strategies (e.g., grid, block, random) of the input image
patches affect the final performance of masked image pretraining (He et al., 2021; Xie et al., 2021b).
Majority of prior arts (Bao et al., 2021; Dong et al., 2021; He et al., 2021; Xie et al., 2021b; Wei
et al., 2021; Baevski et al., 2022; Chen et al., 2022) sample the masked patches uniformly at random
since it is unbiased and can guarantee coverage. However, it is indifferent to more discriminative
image patches and unimportant ones, thus may suffer from slow training convergence (Kakogeorgiou
et al., 2022).

In this work, we analyze three highly correlated aspects in masked autoencoders: the reconstruction
target, the decoder design, and the mask sampling strategy. We propose a new approach called
MILAN, which performs masked image pretraining on language assisted representations. In specific:

(1) We recognize the limitation of extracting semantic signals from raw image pixels alone. But
such signals are readily available in the captions accompanying the images. Recent works such as
CLIP (Radford et al., 2021), SLIP (Mu et al., 2021), and COCA (Yu et al., 2022) explore the use
of caption supervision to learn image representations on abundant image-text pairs obtained from
the Internet. The output image features from those models implicitly contain semantic information
that facilitates the interpretation of the image contents. In this work, we take the image features
coming out of the CLIP image encoder (Radford et al., 2021) as the reconstruction targets for the
masked image pretraining, which benefits from natural language supervision and encourages the
model to learn high level visual concepts. More interestingly, we will show that the quality of the
representation improves on the targets after masked image pretraining.

(2) We realize the tight coupling between the decoder architecture and the reconstruction targets. We
design an efficient prompting decoder suitable for reconstruction targets that are latent representations
containing affluent semantic signals. It freezes the encoder’s output representations of the unmasked
patches and uses them as “fixed prompts” to reconstruct the features of the masked patches. Prompting
decoder achieves higher accuracy and reduces the decoding computational cost simultaneously.

(3) Different image patch sampling strategies impact pretraining efficiency. Since our reconstruction
targets provide global structure information of the images, we propose a semantic aware mask
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sampling mechanism to discriminate semantically important image patches from the insignificant
background patches, which improves representation quality and pretraining efficiency.

(4) Combining the three aspects leads to our MILAN framework (Figure 1). Experimentally, our
ViT-Base and ViT-Large models pretrained and finetuned on ImageNet-1K dataset achieve 86.4%
and 88.3% top-1 accuracy, respectively. Moreover, MILAN significantly boosts the linear probing
accuracy compared to reconstruction based and language-image based pretraining methods, and
achieves state-of-the-art performance on the downstream object detection, instance segmentation,
and semantic segmentation tasks.

2 METHODOLOGY

2.1 OVERVIEW

The overall flow of MILAN is illustrated in Figure 1(a). We use a masked autoencoder architecture
similar to MAE (He et al., 2021). The encoder transforms the unmasked patches into latent represen-
tations. The decoder reconstructs the representations of the masked patches assisted by the features
of the unmasked patches. We use the latent features that the CLIP image encoder produces from
the full image as the reconstruction targets, which are contextualized representations based on the
global structure of the image and caption information. The attention map is extracted from the last
self-attention layer of the CLIP image encoder and is used to construct a semantic aware sampling
distribution to sample unmasked patches. The sampled patches are sent into the encoder and mapped
to the latent feature space. We design a prompting decoder that freezes the encoder’s output when
hallucinating the features of the masked patches from mask tokens. As shown in Figure 1(b), the
query of the attention block in the prompting decoder only contains the features of mask tokens. The
key and value matrices comprise both the encoder’s outputs and the features of mask tokens. The
masked patches’ features from the prompting decoder and the unmasked patches’ features from the
encoder are combined at the end. We re-order the combined full set of features to align with the
targets, and compute the reconstruction loss.

MILAN differs from its closely related MAE in: 1) the targets we predict are latent representations
obtained with language guidance, whereas MAE reconstructs raw pixels; 2) mask sampling in
MILAN is more adapted to patches’ discriminativeness in contrast to MAE’s uniform sampling; 3)
our prompting decoder does not update the encoder’s output and thus is more efficient.

2.2 RECONSTRUCTION TARGET: LANGUAGE ASSISTED REPRESENTATION

The reconstruction target is a crucial component in masked image pretraining. It influences the
semantics of the learned latent representations. Language naturally contains rich semantics, while
such information is more difficult to extract from image pixels directly. Thus, an image-text pair
provides more meaningful learning signals than an image alone. In practice, texts accompanying
images can be easily obtained at scale in the form of image captions. Such large unlabeled image-text
datasets foster a series of weakly-supervised image pretraining methods (Radford et al., 2021; Mu
et al., 2021; Li et al., 2021a; Singh et al., 2022) with caption supervision. It is expected that the
visual representations learned with language guidance can provide affluent semantic information.
Therefore, we take the language assisted representations as the reconstruction target in our masked
image pretraining framework.

In this work, we primarily use the pretrained CLIP (Radford et al., 2021) model to generate the
reconstruction targets. CLIP is trained on a dataset containing images and free-form text captions
with InfoNCE loss (Van den Oord et al., 2018). The model has an image encoder and a text encoder,
both using the transformer architecture. The encoded image and text features are projected to the
same dimension and normalized. Given a batch of image-text pairs, CLIP trains the image encoder
and the text encoder by maximizing the feature cosine similarity for the matching image-text pairs in
the batch while minimizing the cosine similarity for all other non-matching pairs. Though without
labeling data, the image features are trained to be close to the paired text features and distill the rich
semantics embedded in the text features. This is illustrated in Figure 2, where the last layer features
produced by MAE’s pretrained model, CLIP’s image encoder, and our pretrained model are visualized
by t-SNE plots. As shown, the representations from CLIP’s image encoder for each category tend to
be grouped together while the pretrained model from MAE cannot distinguish the visual concepts in
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(a) MAE pretrained (b) CLIP image encoder (c) MILAN pretrained (d) MILAN finetuned
Figure 2: t-SNE visualization of the learned features from ViT-Base obtained by different pretraining
methods. We plot the features before the final linear head. We use images of randomly sampled 20
classes in ImageNet-1K validation split.

diffferent categories. MILAN adopts the image features from CLIP as the target and trains the model
with a more challenging masked prediction objective. The learned representations are better clustered
for different categories.

The pretraining objective of MILAN is formally described as follows. Let fθ denote the CLIP image
encoder, whose weights θ are frozen. The masked autoencoder under training comprises encoder gξ
with weights ξ and decoder hν with weights ν. From a given full image x, the CLIP image encoder
outputs the target features {tj}Nj=1 = fθ(x) where N is the number of image patches. We mask a
high portion of patches in x, and obtain a masked image x̃. The masked autoencoder outputs the
reconstructed representations {pj}Nj=1 = (hν ◦gξ)(x̃). We apply ℓ2-normalization to both the targets
and reconstructions: t̄j = tj/∥tj∥2, p̄j = pj/∥pj∥2 for j ∈ [N ]. Finally, we define the following
mean squared error between the normalized target features and reconstructed representations:

Lξ,ν = (1/N) ·
∑N

j=1
∥p̄j − t̄j∥22. (1)

MILAN learns the weights ξ, ν of the masked autoencoder by minimizing objective 1. Note that the
reconstruction loss is computed on the features of both masked and unmasked patches.

2.3 DECODER DESIGN: PROMPTING DECODER

Since the decoder is discarded after pretraining, the encoder needs to learn rich semantic information
in the latent representations of the unmasked patches from the reconstruction target. To achieve so, the
functional roles of the encoder and decoder need to be clearly segregated. All representation learning
for the unmasked patches is completed in the encoder, while the decoder is only for predicting the
target features of the masked patches. However, in some previous works (Xie et al., 2021b; Bao
et al., 2021), the decoder is as simple as one linear layer, which may be insufficient to reconstruct
the masked representations, and portions of the encoder may serve as the decoder. MAE (He et al.,
2021) uses a deep decoder that not only updates the mask tokens but also enhances the features of the
unmasked patches. Because our method reconstructs language guided latent representations instead
of raw pixels, the encoder’s outputs should only provide clues to the decoder to complete the missing
patches’ features without being updated in the decoder. Otherwise, the representation quality from
the encoder becomes sub-optimal.

In MILAN, we propose a prompting decoder shown in Figure 1(b), where the representations of the
unmasked patches from the encoder are frozen, serving as “fixed prompts”. They are appended to the
keys and values in each attention module of the prompting decoder’s transformer block while the
queries only contain the features of mask tokens. In specific, the multi-head attention (MHA) module
in Figure 1(b) performs the following operations:

MHA(X,Z) = Attn
(
XWq, concat(Z,XWk), concat(Z,XWv)

)
,

=

H∑
h=1

softmax(
XWh

q concat(Z,XWh
k )

T

√
dh

)concat(Z,XWh
v )W

h
o . (2)

In equation 2, X and Z are the features of mask tokens and the encoder’s outputs, respectively.
“Attn” is short for the softmax attention operation. “concat” means concatenating along the sequence
dimension. H is the number of heads. Wh

q ,W
h
k ,W

h
v ,W

h
o represent the query, key, value and

output projection weight matrices in each head. dh is the embedding dimension in each head. As
shown in Figure 1(c), our prompting decoder only computes the self-attention among the features of
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mask tokens and the cross-attention between the encoder’s output and the features of mask tokens.
Moreover, the FFN modules in the prompting decoder only compute on the features of mask tokens.

Using the default 75% masking ratio, our prompting decoder reduces the decoding computation cost
by 20% compared to MAE (He et al., 2021). More importantly, prompting decoder improves the
finetuning accuracy significantly, as will be analyzed in Section 3.1.

2.4 MASKING STRATEGY: SEMANTIC AWARE SAMPLING

To make the masked image pretraining a meaningful pretext task, previous works mask a very high
portion of input image patches uniformly at random. With this aggressive masking strategy, it is
possible that the remaining few visible patches only contain background information, which may
not provide the important clues needed to reconstruct the foreground objects buried in the piles of
masked patches, obstructing the model to learn transferable representations. This becomes a more
severe problem in our framework, because the latent representations from the encoder are frozen in
the decoding process. To ensure the representation quality of the pretrained model, previous methods
(He et al., 2021; Baevski et al., 2022; Wei et al., 2021) usually require very long pretraining epochs.

To improve the pretraining efficiency, we propose a semantic aware mask sampling strategy that
can make more rational decisions on which patches to mask when using a very high masking ratio.
The idea is that the few visible patches fed into the encoder cover important image regions with
high probabilities, so that the latent representations from the encoder provide sufficient clues to the
decoder to predict the representations of the masked patches.

To discriminate the semantically important patches from the unimportant ones, we use the attention
weights from the last self-attention layer in the CLIP image encoder, which takes the patches of the
entire image and an extra class token as input. Denote the input features to the last self-attention layer
of the CLIP image encoder by [zclass; z1; ...; zN ] ∈ R(N+1)×d, where N is the sequence length and d
is the embedding dimension. The interaction between the class token and other features is given by
the following attention mechanism:

sclass = softmax(qclassK
T /

√
d), (3)

where sclass ∈ R1×(1+N) is the attention vector of the class token. qclass = zclassWq is the query
vector of the class token, and K = [zclass; z1; ...; zN ]Wk is the key matrix, where the query and
key projection matrices have dimensions Wq,Wk ∈ Rd×d. For simplicity, we show a single-head
attention in equation 3. When multiple attention heads are present, sclass is obtained by averaging over
all the heads. Because the class token from the last layer of the CLIP image encoder is used to align
with the text embedding from the text encoder, sclass reflects how much information one image patch
contributes to the output features of the CLIP image encoder. The magnitude of the i-th element
in sclass, denoted by sclass(i), indicates whether the i-th patch is semantically important or not. The
attention vector sclass provides us the premise to design a non-uniform sampling distribution. Due to
the softmax operation, we can regard sclass(i) as the probability of leaving the i-th patch unmasked in
the input image. Let r represent the masking ratio. The indices of the unmasked patches are obtained
by sampling a Multinomial distribution according to the probabilities {sclass(0), ..., sclass(N)} for
⌈(1− r)N⌉ trials without replacement.

3 EXPERIMENTS

We pretrain the ViT-Base and ViT-Large models using MILAN method on ImageNet-1K dataset
for 400 epochs using PyTorch framework on A100 machines. The detailed training setup and
hyperparameters can be found in the appendix. We use the CLIP ViT-Base and the CLIP ViT-Large
image encoders obtained from OpenAI’s paper (Radford et al., 2021) to produce the reconstruction
targets when pretraining our ViT-Base and ViT-Large models, respectively.

3.1 CLASSIFICATION ON IMAGENET-1K
Finetuning results. Table 1 compares the finetuning accuracy on ImageNet-1K dataset using MILAN
and previous works on the ViT model architecture. We pretrain and finetune the ViT models using
ImageNet-1K dataset only. Since the CLIP model we use is pretrained on OpenAI’s in-house 400M
data, we also list it in the training data for MILAN. However, we only use its image encoder’s
output features as the reconstruction target for our masked autoencoder. Even though the supervised
ViT models are pretrained on the large JFT300M dataset with explicit human labels, MILAN still
outperforms them by a clear margin, e.g., improving ViT-Base by +2.2%.
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Method Training data Res. ViT-Base ViT-Large
Epochs Top-1 (%) Epochs Top-1 (%)

Supervised (Touvron et al., 2022) IN1K 224 - 83.8 (+1.6) - 84.9 (+2.9)

contrastive or clustering based
MoCov3 (Chen et al., 2021) IN1K 224 300 83.2 (+2.2) 300 84.1 (+3.7)
DINO (Caron et al., 2021) IN1K 224 400 82.8 (+2.6) - -
iBOT (Zhou et al., 2021) IN22K&1K 224 320 84.4 (+1.0) 200 86.3 (+1.5)

reconstruction based
BEiT (Bao et al., 2021) D250M+IN22K&1K 224 150 83.7 (+1.7) 150 86.0 (+1.8)
mc-BEiT (Li et al., 2022) OI9M+IN1K 224 800 84.1 (+1.3) 800 85.6 (+2.2)
PeCo (Dong et al., 2021) IN1K 224 800 84.5 (+0.9) 800 86.5 (+1.3)
SimMIM (Xie et al., 2021b) IN1K 224 800 83.8 (+1.6) - -
MaskFeat (Wei et al., 2021) IN1K 224 1600 84.0 (+1.4) 1600 85.7 (+2.1)
data2vec (Baevski et al., 2022) IN1K 224 800 84.2 (+1.2) 1600 86.6 (+1.2)
CAE (Chen et al., 2022) IN1K 224 800 83.6 (+1.8) - -
MAE (He et al., 2021) IN1K 224 1600 83.6 (+1.8) 1600 85.9 (+1.9)

language-image pretraining based
CLIP (Radford et al., 2021) OpenAI400M+IN1K 224 - 82.1 (+3.3) - 85.3 (+2.5)
MVP (Wei et al., 2022) OpenAI400M+IN1K 224 300 84.4 (+1.0) 300 86.3 (+1.5)

MILAN OpenAI400M+IN1K 224 400 85.4 400 87.8
Supervised (Dosovitskiy et al., 2020) JFT300M+IN1K 384 90 84.2 (+2.2) 90 87.1 (+1.2)
BEiT (Bao et al., 2021) D250M+IN1K 384 800 84.6 (+1.8) 800 86.3 (+2.0)
SWAG (Singh et al., 2022) IG3.6B+IN1K 384 2 85.3 (+1.1) - -

MILAN OpenAI400M+IN1K 384 400 86.4 400 88.3

Table 1: Comparison of the finetuning top-1 accuracy on ImageNet-1K dataset. All models are
pretrained with 224×224 input resolution. We compare finetuning with both 224×224 and 384×384
resolutions. “Epochs” refer to the pretraining epochs. “-”: not reported by the original paper.

The self-supervised pretraining methods are divided by using contrastive or reconstruction based
objectives. We also compare with large-scale weakly-supervised pretraining using hashtag supervi-
sion (Singh et al., 2022) from an external dataset of 3.6 billion training samples. MILAN produces
higher accuracy than all listed prior arts. Compared with MAE, MILAN improves the accuracy by
+1.8% for ViT-Base and +1.9% for ViT-Large.

The CLIP model learns visual representations with language supervision on a large image-text dataset.
Finetuning the CLIP image encoder does not lead to competitive accuracy. However, when using
the image features from the pretrained CLIP model as the reconstruction target to train a mask
autoencoder, MILAN improves the accuracy by 3.3% on ViT-Base.

Linear probing results. Instead of finetuning the entire model, we also perform linear probing by
appending a linear classifier after the final layer of the pretrained model, and only finetune the linear
classifier. Table 2 compares the top-1 accuracy on ImageNet-1K dataset using various pretraining
methods. As the results show, MILAN beats the accuracy of reconstruction based and language-image
pretraining based approaches by a large margin. It matches (on ViT-Base) and outperforms (on ViT-
Large) previous best contrastive based methods, which learn more linearly separable representations
by instance discrimination (Chen et al., 2021) or clustering (Caron et al., 2021), and are known to be
more effective in linear probing (Chen et al., 2020b; He et al., 2020; Chen & He, 2021; Grill et al.,
2020). More linear probing results by other variants of MILAN can be found in the appendix.

3.2 DOWNSTREAM TASKS

Object detection and instance segmentation on COCO. To verify the transferability of MILAN,
we evaluate it on COCO dataset (Lin et al., 2014) for object detection and instance segmentation.
Following MAE (He et al., 2021), the pretrained ViT backbones are adapted to FPN (Lin et al., 2017)
in the Mask R-CNN framework (He et al., 2017), which is finetuned end-to-end on COCO training
set to produce the bounding boxes (evaluated by box AP) and the instance masks (evaluated by mask
AP) simultaneously. The results are shown in Table 3. Compared to supervised pretraining, MILAN
performs better in both tasks, achieving 4.7 and 2.6 points improvements by APbox and APmask on
ViT-Base, respectively. Compared with the previous best result from MAE, which is obtained by
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Method ViT-Base ViT-Large
Epochs Top-1 (%) Epochs Top-1 (%)

contrastive or clustering based
MoCov3 (Chen et al., 2021) 300 76.7 (+3.2) 300 77.6 (+6.7)
DINO (Caron et al., 2021) 400 78.2 (+1.7) - -
iBoT (Zhou et al., 2021) 1600 79.5 (+0.4) 1000 81.0 (+3.3)

reconstruction based
BEiT (Bao et al., 2021) 800 56.7 (+23.2) 800 73.5 (+10.8)
SimMIM (Xie et al., 2021b) 800 56.7 (+23.2) - -
MaskFeat (Wei et al., 2021) - - 1600 67.7 (+16.6)
CAE (Chen et al., 2022) 800 68.3 (+11.6) - -
MAE (He et al., 2021) 1600 68.0 (+11.9) 1600 75.8 (+8.5)

language-image pretraining based
CLIP (Radford et al., 2021) - 66.5 (+13.4) - 70.5 (+13.8)
MVP (Wei et al., 2022) 300 75.4 (+4.5) - -

MILAN 400 79.9 400 84.3

Table 2: Comparison of the linear probing top-1 accuracy on ImageNet-1K dataset. “Epochs” refer
to the pretraining epochs of various methods. All methods adopt 224×224 input resolution in both
pretraining and linear classifier tuning.

Method Epochs Object detection Instance segmentation Semantic segmentation
ViT-B/-L APbox ViT-B/-L APmask ViT-B/-L mIoU

Supervised - 47.9 (+4.7) / 49.3 (+6.6) 42.9 (+2.6) / 43.9 (+4.3) 47.4 (+5.3) / 49.9 (+8.0)
MoCov3 300 47.9 (+4.7) / 49.3 (+6.6) 42.7 (+2.8) / 44.0 (+4.2) 47.3 (+5.4) / 49.1 (+8.8)
DINO 300 46.8 (+5.8) 41.5 (+4.0) 47.2 (+5.5)
BEiT 300 42.6 (+10.) / 53.3 (+2.6) 38.8 (+6.7) / 47.1 (+1.1) 45.7 (+7.0) / 53.3 (+4.6)
PeCo 300 43.9 (+8.7) 39.8 (+5.7) 46.7 (+6.0)
SplitMask 300 46.8 (+5.8) 42.1 (+3.4) 45.7 (+7.0)
CAE 800 49.2 (+3.4) 43.3 (+2.2) 48.8 (+3.9)
MAE 1600 50.3 (+2.3) / 53.3 (+2.6) 44.9 (+0.6) / 47.2 (+1.0) 48.1 (+4.6) / 53.6 (+4.3)

MILAN 400 52.6 / 55.9 45.5 / 48.2 52.7 / 57.9

Table 3: Results of object detection and instance segmentation are obtained by using Mask R-CNN on
COCO dataset with an input resolution of 1024×1024. Semantic segmentation results are obtained
by using UperNet on ADE20K with an input resolution of 512×512. All methods use ViT models
pretrained on ImageNet-1K dataset as the backbone. “Epochs” refer to the pretraining epochs.
Previous results from He et al. (2017); Xiao et al. (2018); Chen et al. (2021); Caron et al. (2021); Bao
et al. (2021); Dong et al. (2021); El-Nouby et al. (2021); Chen et al. (2022); He et al. (2021).

1600-epoch pretraining, MILAN advances APbox and APmask by 2.3 and 0.6 points on ViT-Base but
only pretrains for 400 epochs.

Semantic segmentation on ADE20K. We also transfer our pretrained models to semantic segmen-
tation task on the ADE20K dataset (Zhou et al., 2017). Following the training recipe provided by
MAE (He et al., 2021), the ViT models pretrained on ImageNet-1K dataset serve as the backbone of
UperNet (Xiao et al., 2018), and are finetuned together with the segmentation layers. In Table 3, we
report the mean intersection over union (mIoU) averaged over all semantic categories. Our method
significantly improves the transferring results of ViT-Base to 52.7, surpassing MAE by 4.6 points.

3.3 ROBUSTNESS EVALUATION

We evaluate the robustness of our models to adversarial examples on ImageNet-Adversarial
dataset (Hendrycks et al., 2021b) and distribution shifts on ImageNet-Rendition (Hendrycks et al.,
2021a) and ImageNet-Sketch (Wang et al., 2019) datasets. We only finetune our pretrained models
on the original ImageNet-1K training set and directly run inference on these different validation
sets, without any specialized finetuning. As shown in Table 4, MILAN significantly outperforms
previous state-of-the-art models. Compared with more advanced architecture RobustViT that is
specially designed for robustness and is pretrained on ImageNet-22K, MILAN with vanilla ViT-Base
architecture achieves accuracy gains of 7.9%∼19.9% on these three datasets. When using ViT-Base,
MILAN also surpasses MAE by 26.3%, 15.8% and 11.8% on these three datasets, respectively.
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Method Parameters ImageNet-Adversarial(%) ImageNet-Rendition(%) ImageNet-Sketch(%)

Supervised 86M / 307M 27.2 (+35.0) / 29.6 (+46.3) 49.4 (+14.7) / 50.9 (+25.7) 35.6 (+10.7) / 37.5 (+19.9)
Swin 88M 35.8 (+26.4) 46.6 (+17.5) 32.4 (+13.9)
RobustViT 92M 42.3 (+19.9) 52.6 (+11.5) 38.4 (+7.9)
MAE 86M / 307M 35.9 (+26.3) / 57.1 (+18.8) 48.3 (+15.8) / 59.9 (+16.7) 34.5 (+11.8) / 45.3 (+12.1)
MILAN 86M / 307M 62.2 / 75.9 64.1 / 76.6 46.3 / 57.4

Table 4: Comparison of robustness to adversarial examples and distribution shifts on ImageNet.
Previous results from Dosovitskiy et al. (2020); Liu et al. (2021); Mao et al. (2022); He et al. (2021).

CLIP target Prompting decoder Semantic aware sampling Epochs Top-1 (%)

#1 Baseline (MAE) 400 (1600) 83.0 (83.6)
#2 ✓ 400 83.9
#3 ✓ 400 83.0
#4 ✓ 400 83.3
#5 ✓ ✓ 400 83.3
#6 ✓ ✓ 400 84.1
#7 ✓ ✓ 400 85.1
#8 ✓ ✓ ✓ 400 (1600) 85.4 (85.6)

#9 SLIP target ✓ ✓ 400 84.4

Table 5: Ablation study of different components in MILAN. All results are obtained by pretraining
and finetuning ViT-Base model on ImageNet-1K dataset at 224×224 resolution.

3.4 ABLATION STUDY

We investigate the effectiveness of the different components in MILAN through an ablation study
in Table 5. More ablation studies on other tasks can be found in the appendix. Here, the results
are based on pretraining a ViT-Base model on ImageNet-1K dataset for 400 epochs, followed by a
100-epoch finetuning. We tune the optimal learning rate for each entry, including the MAE baseline.

(1) By changing the reconstruction target from raw pixels to language guided representations provided
by CLIP, the top-1 accuracy is improved by 0.9% (#2 vs. #1 in Table 5). We hypothesize that our
target provides more semantic learning signals for pretraining, and encourages the model to get a
good grasp of the visual contents instead of the low level statistics.

(2) With the CLIP target, replacing the original decoder in MAE by our prompting decoder in
Figure 1(b) further improves the accuracy by 1.2% (#7 vs. #2 in Table 5). However, prompting
decoder does not increase accuracy when the raw pixels are reconstructed, as the MAE model does
(#3 vs. #1 in Table 5). This big difference can be explained by the different pretraining objectives.
When the targets are in the latent space, the encoder’s output of the unmasked patches’ representations
should be able to align with the targets without requiring further updates in the decoder. Therefore,
in our case of using the CLIP target, the proposed efficient decoder brings in significant accuracy
improvements. While in MAE, the encoder’s output requires transformations in the decoder to map
from the latent space back to raw pixels. In short, the decoder design is heavily correlated with the
reconstruction target. We realize the critical coupling effect of these two components and propose
mutually beneficial design choices to boost the accuracy.

(3) The proposed semantic aware mask sampling strategy is generally beneficial regardless of the
reconstruction target. After applying the CLIP target and the prompting decoder, semantic aware
sampling further improves the uniformally random sampling by 0.3%, yielding the best 85.4%
accuracy among different model variants (#8 vs. #7 in Table 5). Semantic aware sampling slightly
reduces the pretraining difficulty and obtains lower training loss, because it favours more important
image regions. Although the task becomes easier, the learned representation enjoys better accuracy.

(4) To demonstrate that masked image pretraining generally benefits from the language supervised
reconstruction targets, we use a different language-image model, SLIP (Mu et al., 2021), to generate
the image features as the reconstruction target in MILAN. Reconstructing the image features from
SLIP still outperforms reconstructing raw pixels, surpassing MAE by 1.4% (#9 vs. #1 in Table 5).
SLIP incorporates contrastive image self-supervision into language-image pretraining, and finetuning
SLIP’s image encoder yields an accuracy of 82.6%. Similar to our observation on CLIP, one more step
of reconstruction based pretraining by MILAN further improves the representation quality, boosting
the accuracy by 1.8% compared to finetuning SLIP.
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Finally, we note that a very long pretraing schedule is no longer necessary for MILAN compared to
MAE. Our method enjoys much fewer epochs while achieving higher accuracy: MILAN achieves
85.4% after a 400-epoch pretraining, while MAE achieves 83.6% after a 1600-epoch pretraining.

4 RELATED WORKS

Masked image pretraining. Self-supervised pretraining aims to learn transferable representations
from unlabeled data by a pretext task (Caron et al., 2018; Doersch et al., 2015; Van den Oord
et al., 2018; Ermolov et al., 2021; Li et al., 2020; Goyal et al., 2021; Zbontar et al., 2021). Recent
pretraining methods revitalize the use of denoising autoencoders (Vincent et al., 2010; Pathak et al.,
2016; Chen et al., 2020a; Zhang et al., 2016; Noroozi & Favaro, 2016) to train the vision transformer
with masked prediction objectives. The model receives incomplete images with a large portion of
the patches removed and learns to reconstruct the missing contents pixel by pixel (He et al., 2021;
Xie et al., 2021b; Li et al., 2021b). To inject semantics into the representations, BEiT (Bao et al.,
2021), PeCo (Dong et al., 2021) and CAE (Chen et al., 2022) predict discrete visual vocabularies
produced from separately trained tokenizers (Rolfe, 2016; Van Den Oord et al., 2017; Ramesh
et al., 2021). MaskFeat (Wei et al., 2021) finds that the local gradient features produced by the
manually-crafted HOG descriptor surpasses more complex targets. Other works like iBOT (Zhou
et al., 2021), data2vec (Baevski et al., 2022), and (Kakogeorgiou et al., 2022) adopts self-distillation,
where the model reconstructs the masked patches’ representations produced by the exponential
moving average of the model. MILAN differs that it learns the masked autoencoder by reconstructing
the latent representations that embed rich semantic information stemming from language supervision.
Moreover, we find that freezing the encoder’s output features in the decoder is a critical factor when
the model learns to reconstruct the latent targets. Finally, we propose a semantic aware mask sampling
mechanism and alleviate the need for very long pretraining.

Language-Image pretraining. Learning visual representations from language supervision is not new.
Early work (Frome et al., 2013) embeds images and texts into a shared semantic space so that the
model is able to recognize classes even without explicit labels. Other methods leverage the caption
supervision to train the vision model by completing the image captioning task (Desai & Johnson,
2021) or the masked language modeling task (Sariyildiz et al., 2020). Recently, benefiting from
contrastive training (Yuan et al., 2021) and the scalability of modern backbones, CLIP (Radford et al.,
2021) and ALIGN (Jia et al., 2021) learn strong visual representations on large-scale image-text
datasets, advancing the transfer performance on the downstream vision tasks. Later works improve
CLIP by introducing more auxiliary loss functions to assist the image-text contrastive loss, such as
image self-supervision loss (Mu et al., 2021; Li et al., 2021a), self-distillation loss (Cheng et al.,
2021), and token-wise max similarity (Yao et al., 2021). In this work, MILAN further improves the
representation quality of language-image pretraining by incorporating masked image pretraining.

Contrastive learning. Contrastive methods (Caron et al., 2021; Chen et al., 2021; 2020b; He et al.,
2020; Tian et al., 2020; Chen & He, 2021; Grill et al., 2020; Caron et al., 2020; Wu et al., 2018;
Wang et al., 2021; Xie et al., 2021a; Alexey et al., 2016) learn augmentation invariance by enforcing
similarity between different views augmented from the same image while avoiding model collapse.
The learned representations show high linear separability and are commonly evaluated by linear
probing. However, contrastive learning heavily depends on strong data augmentations and effective
negative sampling. In contrast, MILAN uses a masked prediction objective with a reconstruction loss.
Our method learns powerful representations with much simpler data augmentations.

5 CONCLUSION

The masked autoencoders can extract visual concepts from the unlabeled raw image pixels, which
reduces the heavy reliance on large labeled datasets in computer vision tasks. However, such visual
concepts may still lag the rich semantic data the image captions contain. Understanding images
assisted by language captions has also been explored in the weakly supervised pretraining setting.
The learned features may easily be transferred to downstream tasks via zero shot learning. However,
finetuning those models directly may not reveal competitive results. In this paper, we combined these
two lines of work to use the outputs of language-image pretraining as the reconstruction target for
masked autoencoders, proposed a more effective decoder architecture and a semantic aware sampling
mechanism. We have shown that by combining the two methods in the self-supervised pretraining,
we can achieve better quality than applying each method individually.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Pretraining on ImageNet-1K. We follow the pretraining recipe of MAE (He et al., 2021), using a
publicly released codebase 1. We only pretrain ViT models for 400 epochs. We use AdamW optimizer
with a momentum of (β1 = 0.9, β2 = 0.95), a mini-batch size of 4096 and an initial learning rate of
2.4e − 3 (scaled based on lr = base_lr × batchsize/256 where base_lr = 1.5e − 4). The learning
rate is linearly warmed up for the first 40 epochs, and decayed to zero by a cosine learning rate
schedule. The weight decay is set to 0.05. For data augmentation, we only adopt random resized
crop to 224× 224 resolution, random horizontal flip, and normalization. The masking ratio is set to
75%. We use the image features generated from pretrained CLIP models with ViT image encoders as
the reconstruction targets. The wall-clock pretraining time of MILAN for ViT-Base and ViT-Large
models take about 2 days and 3 days on a machine with 8 A100 GPUs, respectively. For reference,
MAE requires 1600-epoch pretraining which takes 116 hours on ViT-Base model.

Finetuning on ImageNet-1K. We follow the finetuning recipe of MAE (He et al., 2021) but tune
the optimal learning rates for our models. We only finetune 100 epochs. We use AdamW optimizer
with a momentum of (β1 = 0.9, β2 = 0.999), a mini-batch size of 1024 and an initial learning
rate of 4e − 4 (scaled based on lr = base_lr × batchsize/256 where base_lr = 1e − 4). The
learning rate is linearly warmed up for the first 5 epochs, and decayed to zero by a cosine learning
rate schedule. The layer-wise learning rate decay factor is set to 0.65 for ViT-Base and 0.75 for
ViT-Large. The weight decay is set to 0.05. We adopt RandAugment (Cubuk et al., 2020), and set
label_smoothing = 0.1,mixup = 0.8, cutmix = 1.0, drop_path = 0.1(ViT-Base), 0.2(ViT-Large).

Linear probing on ImageNet-1K. We follow the linear probing recipe of MAE (He et al., 2021).
We train the linear classifier for 100 epochs. We use LARS (You et al., 2017) optimizer with a
momentum of 0.9, a mini-batch size of 16384, and an initial learning rate of 3.2 for ViT-Base and
1.28 for ViT-Large. The learning rate is linearly warmed up for the first 10 epochs, and decayed to
zero by a cosine learning rate schedule. We do not use mixup, cutmix, drop path, or color jittering,
and the weight decay is set to zero.

Objection detection and instance segmentation on COCO. Following (He et al., 2021), the
pretrained ViT models by MILAN are adapted to FPN (Lin et al., 2017) in the Mask R-CNN
framework (He et al., 2017), and we finetuned end-to-end on COCO training set (Lin et al., 2014).
We use AdamW optimizer with a momentum of (β1 = 0.9, β2 = 0.999), a mini-batch size of 16, and
an initial learning rate of 2e− 4. The layer-wise learning rate decay is set to 0.75 for ViT-Base and
0.85 for ViT-Large. The weight decay is set to 0.1 and the drop path rate is set to 0.1 for ViT-Base
and 0.2 for ViT-Large. We adopt the standard 1× schedule: 12 epochs with the learning rate decayed
by 10 at epochs 8 and 11. The input resolution is 1024× 1024. We do not use multi-scale testing.
We build upon a public codebase 2 that reproduces MAE’s detection results.

Semantic segmentation on ADE20K. Following (He et al., 2021), the ViT models pretrained on
ImageNet-1K dataset by MILAN serve as the backbone of UperNet framework(Xiao et al., 2018), and
are finetuned together with the segmentation layers on ADE20K dataset (Zhou et al., 2017) for 160K
iterations. We use AdamW optimizer with a momentum of (β1 = 0.9, β2 = 0.999), a mini-batch
size of 16 and an initial learning rate of 3e− 5. The learning rate is linearly warmed up for the first
1500 iterations, and decayed to zero by a poly learning rate schedule. The layer-wise learning rate
decay is set to 0.9. The weight decay is set to 0.05 and the drop path rate is set to 0.1. The input
resolution is 512× 512. We do not use multi-scale testing. We build upon a public codebase 3 that
reproduces MAE’s segmentation results.

A.2 MORE RESULTS

Ablation study on semantic segmentation task. We also conduct an ablation study the different
components of MILAN on the semantic segmentation task, as shown in Table 6. The results are based
on pretraining a ViT-Base model on ImageNet-1K for 400 epochs, followed by finetuning UperNet

1https://github.com/facebookresearch/mae
2https://github.com/hustvl/MIMDet
3https://github.com/implus/mae_segmentation

14

https://github.com/facebookresearch/mae
https://github.com/hustvl/MIMDet
https://github.com/implus/mae_segmentation


Under review as a conference paper at ICLR 2023

Method mIoU
#1 Baseline (MAE) 48.1
#2 + CLIP target 49.2
#3 + CLIP target + Semantic aware sampling 50.4
#4 + CLIP target + Prompting decoder 51.9
#5 + CLIP target + Prompting decoder + Semantic aware sampling 52.7

Table 6: Ablation study on different components of MILAN on the semantic segmentation task.
All results are based on ViT-Base models that are pretrained on ImageNet-1K and finetuned on the
ADE20K dataset using the UperNet segmentation framework.

Method Top-1 (%)
#1 Baseline (MAE) 62.0
#2 + CLIP target 67.1
#3 + CLIP target + Semantic aware sampling 68.1
#4 + CLIP target + Prompting decoder 79.9
#5 + CLIP target + Prompting decoder + Semantic aware sampling 78.9

#6 #5 + Semantic aware probing 80.0

Table 7: Ablation study on different components of MILAN on the linear probing task. All results
are based on ViT-Base models that are pretrained on ImageNet-1K dataset at 224×224 resolution.

on ADE20K by 160K iterations. We find that the overall trend is consistent with our findings in
finetuning results on ImageNet. By changing the reconstruction target from raw pixels to image
features produced from CLIP, the mIoU is improved by 1.1 points (#2 vs. #1 in Table 6). With the
CLIP target, replacing the random masking in MAE by our semantic aware sampling (#3 vs. #2 in
Table 6) or replacing the vanilla decoder in MAE by our prompting decoder (#4 vs. #2 in Table 6)
further improves the mIoU by 1.2 and 2.7 points, respectively. Finally, applying both the semantic
aware sampling and the prompting decoder leads to the best 52.7 mIoU, which is 3.5 points higher
than applying the CLIP target alone and 4.6 points higher than the MAE baseline.

Ablation study on linear probing task. We further conduct an ablation study on the different
components of MILAN on linear probing task, as shown in Table 7. The results are based on
pretraining a ViT-Base model on ImageNet-1K dataset for 400 epochs, followed by a 100-epoch
linear classifier training. Consistent with our findings on finetuning and semantic segmentation tasks,
using CLIP target brings in accuracy improvement. By changing the reconstruction target from
raw pixels to image features produced from CLIP with language supervision, the top-1 accuracy is
boosted by 5% (#2 vs. #1 in Table 7). With the CLIP target, replacing the random masking in MAE
by our semantic aware mask sampling (#3 vs. #2 in Table 7) or replacing the original decoder in
MAE by our prompting decoder (#4 vs. #2 in Table 7) improves the accuracy by 1% and 12.8%,
respectively. However, inconsistent with our findings on finetuning and semantic segmentation tasks,
applying both the prompting decoder and the semantic aware mask sampling simultaneously does not
lead to the best accuracy (#5 vs. #4 in Table 7). We hypothesize that the encoder model is overly
adapted to those unmasked important image patches when semantic aware sampling and prompting
decoder are applied together. In linear probing, the pretrained encoder model receives full patches,
and its weights are frozen, with only the linear classifier’s weights being updated. Thus, the model
may not be able to cope with the image patches that are less relevant or irrelevant to the objects that
need to be classified, and those features degrade the performance of the linear classifier.

To support our speculation that the pretrained encoder may be biased towards important patches, we
perform a semantic aware probing experiment, listed in #6 of Table 7. Specifically, the pretrained
model is obtained by MILAN with CLIP target, prompting decoder and semantic aware sampling.
When finetuning the linear classifier as well as performing inference on the validation dataset, we
select the top 50% important image patches. Only the selected patches are fed into the frozen encoder
model to obtain the features to train the linear classifier. Although the classifier is trained on features
from incomplete inputs, semantic aware probing improves the accuracy to 80% (#6 vs. #5 in Table 7),
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Method ViT-Base ViT-Large
Epochs Top-1 (%) Epochs Top-1 (%)

contrastive or clustering based
MoCov3 (Chen et al., 2021) 300 76.7 (+3.2) 300 77.6 (+6.7)
DINO (Caron et al., 2021) 400 78.2 (+1.7) - -
iBoT (Zhou et al., 2021) 1600 79.5 (+0.4) 1000 81.0 (+3.3)

reconstruction based
BEiT (Bao et al., 2021) 800 56.7 (+23.2) 800 73.5 (+10.8)
SimMIM (Xie et al., 2021b) 800 56.7 (+23.2) - -
MaskFeat (Wei et al., 2021) - - 1600 67.7 (+16.6)
CAE (Chen et al., 2022) 800 68.3 (+11.6) - -
MAE (He et al., 2021) 1600 68.0 (+11.9) 1600 75.8 (+8.5)

language-image pretraining based
CLIP (Radford et al., 2021) - 66.5 (+13.4) - 70.5 (+13.8)
MVP (Wei et al., 2022) 300 75.4 (+4.5) - -

MILAN w/ SAS 400 78.9 (+1.0) 400 84.1 (+0.2)
MILAN w/ RS 400 79.9 400 84.3

Table 8: Comparison of the linear probing top-1 accuracy on ImageNet-1K dataset. “SAS”: semantic
aware sampling. “RS”: random sampling. “Epochs” refer to the pretraining epochs of various
methods. All methods adopt 224×224 input resolution in pretraining and linear probing.

Method Epochs Top-1 (%)

KD 400 84.0
MILAN 400 85.4

Table 9: Compare MILAN with knowledge distillation (KD) on ImageNet-1K using ViT-B/16 model.
Both methods use the representations produced by the CLIP image encoder as the target features. We
report the finetuning top-1 accuracy. “Epoch” refers to the pretraining epochs.

indicating that the pretrained encoder model is more adept at extracting features from semantically
important patches.

From our ablation study on the linear probing task, we find that MILAN with random masking
gives better accuracy the ViT-Base model. In Table 8, we include linear probing results obtained by
applying MILAN with random masking on both ViT-Base and ViT-Large models. Compared with
MILAN with semantic aware sampling, the linear probing accuracies are further improved by 1%
and 0.2%, respectively. Compared with the state-of-the-art contrastive method (Zhou et al., 2021),
MILAN with random sampling achieves higher linear probing accuracy on both ViT-Base (+0.4%)
and ViT-Large (+3.3%) models.

MILAN vs. knowledge distillation. In MILAN, the decoder reconstructs the representations of
the masked patches with the assistance from the encoder’s output features of the unmasked patches.
The reconstruction loss is computed on both the encoder’s output features of the unmasked patches
and decoder’s output features of the masked patches. Here, we perform another ablation by removing
the decoder from MILAN. The pretraining objective becomes training the encoder only to predict
the target features on the unmasked patches, which can be regarded as a semantic aware knowledge
distillation (KD) method. For KD, we also use the image features from the pretrained CLIP image
encoder as the target, and the pretraining loss is the mean squared error between the normalized
target features and the encoder’s output features. After pretraining, the encoder model is finetuned
end-to-end with the same recipe a MILAN. The results are shown in Table 9. KD achieves 84.0%
top-1 accuracy, while direct finetuning of the CLIP image encoder only yields 82.1% accuracy. Due
to the possible data distribution gap between the pretraining data (OpenAI’s 400M) and the finetuning
data (ImageNet-1K), finetuning the CLIP image encoder may not lead to a strong performance. But
the gap can be overcome by pretraining the model with a KD objective on ImageNet-1K followed
by finetuning. Moreover, MILAN achieves 1.4% higher accuracy than KD. MILAN creates a more
challenging pretraining task, where the model not only needs to predict the latent features of the
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CLIP image encoder FT on IN1K LP on IN1K OD on COCO IS on COCO SS on ADE20K
top-1 (%) top-1 (%) APbox APmask mIoU

ViT-Base 86.7 81.6 55.0 47.5 55.3
ViT-Large 87.8 84.3 55.9 48.2 57.9

Table 10: Comparison of using different CLIP image encoders to produce the reconstruction targets
for pretraining ViT-Large. We compare the results of finetuning (FT) and linear probing (LP) on
ImageNet-1K (IN1K), object detection (OD) and instance segmentation (IS) on COCO, and semantic
segmentation (SS) on ADE20K.

visible unmasked patches but also learns to reconstruct the representations of the invisible masked
patches through the decoder. The masked image reconstruction task can better leverage the guidance
from the target features and improve the representation quality.

Impact of different CLIP image encoders. In Table 10, we compare the results of using ViT-Base
version and ViT-Large version of the CLIP image encoder to pretrain the ViT-Large model using our
MILAN method. The results are obtained by 400 epochs of pretraining on ImageNet-1K, followed by
finetuning, linear probing or transfer learning, using the same procedures as described in Appendix
A.1. Using image features produced from the ViT-L CLIP image encoder as the targets consistently
improves the performance on all tasks. For example, it achieves 1.1% higher accuracy than using the
ViT-Base CLIP image encoder on ImageNet finetuning. The number 87.8% improves our ViT-Base
result in Table 1 by 2.4% on ImageNet finetuning, showing that MILAN scales well with model size.

A.3 VISUALIZATIONS

In Figure 3, we provide visualizations of the learned representations from MAE, MAE with CLIP
reconstruction target, and our MILAN method. MILAN can better extract the important visual
contents inside the images compared to both MAE and MAE with CLIP target, indicating that
the proposed prompting decoder and semantic aware sampling contribute significantly to learning
higher quality visual representations on top of the CLIP target. Moreover, in Figure 4, we show
that the proposed semantic aware sampling indeed favours more important image regions. The 25%
unmasked patches cover the contents that are more related to the objects in the images. The semantic
aware sampling facilitates the model to learn better on more important foreground regions, leading to
accuracy improvements on finetuning, linear probing and semantic segmentation tasks as shown in
our ablation studies (see Tables 5,6,7).

A.4 LIMITATION

Similar to (Bao et al., 2021; Chen et al., 2022; Li et al., 2022; Wei et al., 2022) which rely on external
datasets to train their image tokenizers, the reconstruction target in MILAN is obtained from the CLIP
model which also requires an extra image-text dataset. Training the CLIP model, if it is not amortized
for many downstream tasks, is considered an extra training step. In practice, we use publicly available
pretrained CLIP models, so our method does not require a bespoke CLIP training step. Moreover, we
only perform inference on the CLIP image encoders to produce the reconstruction targets, which are
only used in the pretraining phase. CLIP is not used in finetuning or linear probing stages, regardless
of the classification, detection or segmentation tasks. The language-image (LM) models like CLIP are
becoming important and popular pretrained models to be applied to downstream tasks. Our method
can be regarded as a useful intermediate step, as our obtained models notably outperform these strong
LM models on various tasks.

A.5 SOCIETAL IMPACTS

The proposed MILAN method produces transferable representations based on the learned statistics
of the training dataset. Therefore, the trained model may also reflect the biases in the training data.
Moreover, since MILAN uses the image features generated from the CLIP model as the reconstruction
targets and the CLIP model itself is trained on an uncurated image-text dataset containing English-
only captions, performance on images collected from non-English speaking countries requires further
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(a) (b) (c) (d) (a) (b) (c) (d)

Figure 3: Visualizations of (a) original images, (b) the attention features extracted from the last
self-attention layer of the ViT-Base model pretrained by MAE, (c) MAE with CLIP reconstruction
target, and (d) our MILAN method. MILAN can better extract the important visual contents inside
the images compared to both MAE and MAE with CLIP target.

Figure 4: Visualization of the original images (left), masked images by the semantic aware sampling
strategy with 75% masking ratio (middle), and the reconstruction loss patch-by-patch (right). For
the plots of reconstruction loss, darker green colors indicate higher loss values. As shown, both
unmasked patches and masked foreground patches have lower losses.

research. In future works, one may apply the MILAN method by taking multi-lingual language
assisted representations as the reconstruction target. Extension to large-scale transformer model
pretraining on video datasets using the MILAN framework could also be a future direction.
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