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FIND: Fine-tuning Initial Noise Distribution with Policy
Optimization for Diffusion Models
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Figure 1: Our FIND framework optimizes the initial distribution of any diffusion-based model to enhance the consistency
between generated content and the prompts provided by users. Before optimization, the semantics of generated images and
videos could diverge from the prompt for complex scenes, as indicated by the red boxes. By optimizing the overall expected
reward of consistency, the content within the green box becomes consistent with the prompt.

ABSTRACT
In recent years, large-scale pre-trained diffusionmodels have demon-
strated their outstanding capabilities in image and video generation
tasks. However, existing models tend to produce visual objects com-
monly found in the training dataset, which diverges from user input
prompts. The underlying reason behind the inaccurate generated
results lies in the model’s difficulty in sampling from specific inter-
vals of the initial noise distribution corresponding to the prompt.
Moreover, it is challenging to directly optimize the initial distri-
bution, given that the diffusion process involves multiple denois-
ing steps. In this paper, we introduce a Fine-tuning Initial Noise
Distribution (FIND) framework with policy optimization, which
unleashes the powerful potential of pre-trained diffusion networks
by directly optimizing the initial distribution to align the generated
contents with user-input prompts. To this end, we first reformulate
the diffusion denoising procedure as a one-step Markov decision
process and employ policy optimization to directly optimize the ini-
tial distribution. In addition, a dynamic reward calibrationmodule is
proposed to ensure training stability during optimization. Further-
more, we introduce a ratio clipping algorithm to utilize historical
data for network training and prevent the optimized distribution
from deviating too far from the original policy to restrain excessive
optimization magnitudes. Extensive experiments demonstrate the
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effectiveness of our method in both text-to-image and text-to-video
tasks, surpassing SOTA methods in achieving consistency between
prompts and the generated content. Our method achieves 10 times
faster than the SOTA approach.
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1 INTRODUCTION
Nowadays, the generative capabilities of diffusion models [14, 28,
35] have gained widespread recognition in the domain of text-to-
images [27, 28, 30], text-to-videos [11, 38], and text-to-3D [22, 37].
Although diffusion-based generative models excel at creating high-
quality content, the semantics of the content generated frequently
fail to align closely with the input text prompts. The current model
tends to generate highly correlated objects and concepts even with
explicit and clear prompts. For example, as shown in Fig. 1, the
generated image is still about an astronaut on the Moon with the
prompt ’a dog on the moon’. It remains a significant challenge to
ensure consistency between the generated content and the prompt’s
description.

To address this problem, numerous works [24, 25, 49, 50] are pro-
posed to ensure consistency through the use of additional control
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signals, such as depth maps, edge maps, etc. Although achieving
promising results in alignment with users’ intentions, these meth-
ods require substantial computational resources for large-scale
training with auxiliary models. Besides, the provision of additional
control mediums is a burden for users. On the other hand, several
pioneer methods [3, 10] leverage reinforcement learning to align
the generated images with the prompt by fine-tuning network pa-
rameters iteratively. The advantage of these approaches is that the
output content is approaching to align with the input prompt with-
out needing additional training data. However, due to the sampling
nature of reinforcement learning and the extensive optimization of
LoRA-like [10] networks, these methods result in longer training
times for individual prompts.

Inspired by recent works [4, 8, 43], we observe the essential
capability of large-scale pre-trained models to generate diverse
and high-quality controllable visual content with a zero-shot fash-
ion. The initial noise distribution significantly impacts the final
generated outcomes, influencing aspects such as layout, color, and
semantics of the generated content [35]. The reason for the mis-
alignment of the baseline diffusion model partially comes from the
sampling bias between the standard normal distribution and the
unusual complex prompts provided by users. The training of diffu-
sion utilizes the standard normal distribution, making it easier for
the network to generate samples similar to those in the training set
when sampling from a normal distribution in testing, as illustrated
by the red boxes in the first row of Fig.1. Based on these findings,
our motivation is to directly adjust the initial noise to align the
generated content with user prompts without any training of the
baseline model and extra network structures. After adjusting the
initial noise, the baseline model can generate highly aligned images
and videos with unconventional prompts, as shown in the second
row of Fig.1. However, since diffusion processes require multiple
denoising steps, it is challenging to calculate the loss on the final
generated result to backpropagate gradients to the initial noise
distribution.

In this paper, we propose a novel framework Fine-tuning Initial
Noise Distribution (FIND) of diffusion model to align the content
generated more closely with the input text prompt by adjusting
the initial noise distribution with policy optimization. To this end,
we formulate the entire optimization process as a one-step Markov
decision process and employ policy gradients to optimize the ini-
tial distribution. The proposed approach allows the baseline model
to bypass the multiple intermediate denoising steps and directly
optimize the initial distribution based on the reward derived from
the final generated outcome. To ensure the accuracy of the opti-
mization direction for the parameters of the initial distribution,
we introduce a dynamic reward calibration module to predict the
expected reward of the current initial distribution. As shown on the
right side of Fig.1, we need to optimize our initial noise distribution
to increase the expected value of the reward without compromising
generative performance. The optimization process is then guided by
the difference between the reward of sampled data and the expected
reward. To further stabilize fine-tuning, a ratio clipping algorithm
is proposed to reuse the historical data to minimize the discrepancy
between new and old policies by directly constraining the difference
in output action probabilities. Extensive experiments demonstrate
the effectiveness and efficiency of our proposed framework in both

text-to-image and text-to-video tasks, surpassing SOTA methods
in consistency and speed.

Our main innovations are as follows:

• To the best of our knowledge, we are the first to propose an
initial distribution optimization framework based on policy
gradients. The proposed framework is a general approach
for diffusion-based generative models to produce content
that is semantically closer to its input prompt.
• We formulate the optimization as a one-step MDP to effi-
ciently adjust the initial distribution. Dynamic reward cali-
bration module and ratio clipping algorithm are proposed to
ensure the accuracy and stability of optimization.
• Extensive experiments demonstrate that our proposed work
can be applied to both image and video diffusion models.
Our proposed method is about an order of magnitude faster
compared with SOTA. The source code will be released.

2 RELATEDWORKS
2.1 Diffusion-based Generation Models
Diffusion model [14, 35] is a novel type of generative model that
progressively denoise a Gaussian noise into a sample conforming
to a learned data distribution by predicting the noise. Generating
samples at high resolutions leads to significant computational costs
for the denoising model. Latent Diffusion Model (LDM) [28] ad-
dresses this issue by utilizing a Variational Autoencoder (VAE) [16]
to shift the denoising process from the pixel level to the latent space,
significantly reducing computational overhead. Diffusion models
have been applied across various generative tasks in different do-
mains, achieving impressive results. These applications include
image generation [7, 27, 28, 30], audio generation [9, 12, 21, 31], 3D
object generation [6, 23, 29, 44], and robotics-related generation
[5, 36, 42, 51] tasks. Despite their ability to generate high-quality
content, these models exhibit limited control over the generated
outcomes, which affects their applicability in practical scenarios.

2.2 Controllable Generation
To address the issue of limited control, researchers have proposed a
variety of solutions. Some works leverage fine-tuning techniques to
enhance models with extra conditioning layers, building upon the
foundation of pretrained models. ReCo [47] and GLIGEN [20] use
bounding boxes as conditional controls. SceneComposer [48] and
SpaText [1] generate images by segmentation maps. ControlNet
[49] is a significant contribution to this field, introducing a parallel
network alongside the U-Net architecture. Beyond segmentation
maps, ControlNet [49] is capable of processing various types of
input, including depth maps, normal maps, canny maps, and so
on. Several other works, such as Uni-ControlNet [50], UniControl
[25], and T2I-Adapter [24], similarly integrate various conditional
inputs to control the generation. To save on computational costs,
some approaches [4, 8, 43] directly control the generation of objects
during the inference phase through attention maps. These control
methods modulate the generated content with additional inputs, but
they offer no assistance in enhancing the control of the generated
content through more precise prompts.
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Figure 2: The optimization iteration of our FIND. Firstly, we sample z𝑇 ∼ 𝜋𝜃 , then generate an image through a T-step denoising
process. Next, we optimize the reward prediction network 𝑔 by L∗𝑔 . Subsequently, we update the initial distribution 𝜋𝜃 using the
policy gradient by L∗𝑝 .

2.3 Fine-tuning Diffusion Models by Reward
Recent works [18, 41] also try to improve the alignment of text-
to-image models by a reward model. The reward model is trained
from a pre-trained vision-language model such as CLIP [26] or
BLIP [19] by asking annotators to compare generations (learn from
human feedback). Several studies [3, 10] frame fine-tuning as a
multi-step decision-making process, showing that RL fine-tuning
exceeds the performance of supervised fine-tuning with reward-
weighted loss in reward optimization. These approaches enhance
the alignment between generated content and prompts. However,
the need to optimize the entire network results in high training
costs and the significant fluctuations between new and old policies
lead to instability during the training process. Our method only
requires optimizing the initial noise distribution, significantly re-
ducing computational overhead and our dynamic ratio clipping
algorithm smoothens the policy updates, making the optimization
process more stable.

3 PRELIMINARIES
In this section, we briefly revisit the fundamental concepts of diffu-
sion models and the optimization objectives based on rewards.

3.1 Diffusion Model
Diffusion models are designed to produce high-quality, diverse
content controlled by text prompts. To reduce computational costs,
Rombach et al. [28] proposed a Latent Diffusion Model (LDM) that
conducts the denoising process in a latent space. Thismodel features
a Variational Autoencoder (VAE) with an encoder E to condense the
original image from pixel to latent space, and a decoderD to revert
from latent to pixel space. The U-Net, denoted as 𝜖𝜑 , is involved
and its structure comprises alternating down-sampling and up-
sampling blocks, connected by middle blocks, each equipped with
convolutional layers and spatial transformers to streamline image
creation. The training of the U-Net hinges on a noise prediction
loss function:

L = Ez0,𝑐,𝜖∼N(0,𝐼 ),𝑡 [| |𝜖 − 𝜖𝜑 (z𝑡 , 𝑡, c) | |
2
2], (1)

where 𝑧0 is the latent code of the training sample, c is the text
prompt condition, 𝜖 is the Gaussian noise, and 𝑡 is the time step.
The noised latent code z𝑡 is determined as:

z𝑡 =
√︁
𝑎𝑡 z0 +

√︁
1 − 𝑎𝑡𝜖, 𝑎𝑡 =

𝑡∏
𝑖=1

𝑎𝑡 , (2)

where𝑎𝑡 is a hyper-parameter used for controlling the noise strength
based on time 𝑡 .

Sampling from a diffusion model initiates by selecting a ran-
dom vector zT ∼ N(0, 𝐼 ), which then undergoes the reverse diffu-
sion process 𝑝𝜃 (z𝑡−1 |z𝑡 , c). This procedure generates a sequence
{z𝑇 , z𝑇−1, . . . , z0}, culminating in the final sample z0. When em-
ploying DDIM [35] as the sampling method, the reverse process is
described as follows:

𝑝𝜑 (z𝑡−1 |z𝑡 , c) = N(z𝑡−1 |𝜖𝜑 (z𝑡 , c, 𝑡), 𝜎2𝑡 I), (3)

where 𝜎2𝑡 is fixed timestep-dependent variance.

3.2 Optimization of Policy Gradient
The optimization problem of policy gradients [34] is framed within
the context of a Markov Decision Process (MDP), which is defined
by the tuple (𝑆,𝐴, 𝜌0, 𝑃, 𝑅), with 𝑆 as the state space, 𝐴 as the ac-
tion space, 𝜌0 indicating the distribution of initial states, 𝑃 as the
transition kernel, and 𝑅 representing the reward function. At each
timestep 𝑡 , an agent observes a state s𝑡 ∈ 𝑆 , chooses an action
a𝑡 ∈ 𝐴, earns a reward 𝑅(s𝑡 , a𝑡 ), and transitions to the next state
s𝑡+1 following 𝑃 (s𝑡+1 |s𝑡 , a𝑡 ). Actions are determined by adhering
to a policy 𝜋 (a|s).

In the context of MDP, the agent’s interactions generate trajecto-
ries, defined as sequences of states and actions𝜏 = (s0, a0, . . . , s𝑇 , a𝑇 ).
The objective of policy optimization is to maximize the agent’s ex-
pected cumulative reward over these trajectories, denoted as J𝜋 ,
which are sampled according to its policy:

J𝜋 = E𝜏∼𝑝 (𝜏 |𝜋 ) [
𝑇∑︁
𝑡=0

𝑅(s𝑡 , a𝑡 )] . (4)

2024-04-13 07:54. Page 3 of 1–10.
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4 METHODS
4.1 Overview
In this section, we provide a detailed presentation of the proposed
FIND framework. Firstly, we introduce FIND formulation which
is utilized along with policy gradients to optimize our initial dis-
tribution. To ensure the accuracy of our optimization direction,
we introduced DRCM. Moreover, RCA is proposed to leverage his-
torical data and enhance the stability of our training process. The
pipeline is shown in Fig.2.

4.2 FIND formulation
Based on the findings from DDIM [35], it becomes evident that the
initial noise plays a crucial role in our final generated content. Given
that the diffusion model requires a multi-step denoising process,
optimizing our initial distribution through direct value-based meth-
ods is not feasible. Instead, policy gradient techniques optimize the
distribution of initial noise directly based on the reward, which
is determined by the consistency between the generated content
and the prompt. We model the process of optimizing our initial
distribution using policy gradient as a one-step MDP as follows:

s ≜ c, a ≜ z𝑇 ,

𝑟 ≜ 𝑓𝑟 (c, z0), 𝜋𝜃 (a) ≜ 𝑝𝜃 (z𝑇 ),
(5)

in which s and a represent the state and action, respectively. The
value of s is a constant, specifically the input prompt c. a is the
initial noise z𝑡 . 𝑓𝑟 denotes the reward function, which is used to
calculate the similarity between the generated contents and the
input prompt. 𝑝𝜃 refers to the probability of sampling 𝑧𝑇 given 𝜃 .
We formulate the policy 𝜋𝜃 as follows:

𝜋𝜃 = N(𝜇, 𝜎2), (6)

where 𝜃 = {𝜇, 𝜎2}. 𝜇 and 𝜎2 are two tensors, and their sizes are
the same as that of z𝑇 . Each element in them represents the mean
and variance of an individual Gaussian distribution, correspond-
ing to the element in z𝑇 , respectively. We formulate it as z𝑇 ( 𝑗) ∼
N (𝜇 ( 𝑗), 𝜎 ( 𝑗)2), where 𝑗 is the index of the element in z𝑇 . We tar-
get 𝜋𝜃 as our optimization goal and employ the method of policy
gradients to refine it. The term 𝜋𝜃 (a) refers to the probability of
sampling action a under the policy 𝜋𝜃 . DDIM [35] is utilized as our
denoising strategy, ensuring that once the initial noise is specified,
the resultant denoised image remains constant. Consequently, the
entire T-step denoising process is treated as our environment. As
shown in the blue part of Fig.2, the U-Net is frozen and does not
participate in the backward process.

Specifically, the (i+1)-th optimization iteration unfolds as follows:
Firstly, action zt is sampled from the policy N(𝜇𝑖 , 𝜎2𝑖 ) which is
optimized i times. Then, z𝑡 is denoised to z0 by the environment.
The reward function 𝑓𝑟 assigns a reward based on the generated
content z0 and state c. We use this reward to optimize the policy
𝜋𝜃 via policy gradients [34]. This optimization process is repeated
multiple times until the reward is maximized. Our objective is to
maximize the expected reward:

argmax
𝜃

E𝜋𝜃 𝑓𝑟 (c, z0). (7)
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Figure 3: Left: The optimization of 𝑔. 𝑁 is the number of
iterations. Right: The motivation of DRCM. 𝑅 is the value of
reward.

To optimize this objective function, we express it in the form of
gradients:

∇𝜃E𝜋𝜃 [𝑓𝑟 (c, z0)] = E𝜋𝜃 [𝑓𝑟 (c, z0)∇𝜃 log𝜋𝜃 ] . (8)

We present the proof of Eq.8 in Appendix A.1.

4.3 Dynamic Reward Calibration Module
According to the theory of policy gradient [34], the optimization di-
rection is determined by the reward. Theoretically, if the generated
content matches the prompt, the reward should be positive; other-
wise, it should be negative. Since the 𝑓𝑟 is a pre-trained model, zero
is not the dividing line for the quality of the reward. As illustrated in
right part of Fig.3, we observe that although the reward value of our
sampled yellow point is greater than 0 (indicated by the red plane),
it is less than the expected reward of the current initial distribution
(indicated by the blue plane). Considering this sampling point as a
positive reward for optimizing the initial distribution is incorrect.
The distance to the expected reward 𝑟 of 𝜋𝜃 is what we required.

A straightforward approach is to estimate 𝑟 through a large
amount of samplings, which results in significant time consumption.
We propose a Dynamic Reward Calibration Module (DRCM) to
predict 𝑟 of 𝜋𝜃 by a simple 3-layer MLP network 𝑔 defined as 𝑟 =
𝑔(𝜃 ). The loss function of 𝑔 is formulated as:

L𝑔 = | |𝑟 − E𝜋𝜃 𝑟 | |22 . (9)

However, due to the lack of a ground truth dataset for the distri-
bution and the expected reward, it is difficult to pre-train 𝑔. Con-
sidering the 𝑁 times multiple optimization steps involved in the
entire process, we optimize 𝑔 using the rewards 𝑟 corresponding
to the sampled z𝑇 at each optimization step, as well as the initial
distribution, as shown in the left part of Fig.3. We reformulate the
loss function of 𝑔 as follows:

L∗𝑔 =
1
𝑚

𝑚∑︁
𝑘=1
| |𝑟 − 𝑟𝑘 | |22, (10)

where 𝑚 is the number of samples in the current optimization
iteration. Considering the efficiency of optimization, here𝑚 is set
to 1. We define the optimized reward for our current sample as
𝑟∗ = 𝑟 − 𝑟 , as the difference between the reward obtained from
sampling and the reward predicted by the network. As shown in
the right part of Fig.3, the yellow sampling point is treated as a
negative reward for optimization by DRCM. 𝑟∗ is then used in Eq.7
to optimize our initial distribution.
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Algorithm 1 Initial Noise Distribution Optimize Algorithm
1: Input: Reward model 𝑓𝑟 , text prompt c, batch size 𝑏
2: Initialize 𝜋𝜃 = N(0,I)
3: while 𝜃 not converge do
4: Obtain 𝑏 i.i.d. samples by first sampling z𝑇 ∼ 𝜋𝜃
5: z0 ← DDIM_Backward(z𝑇 , c)
6: 𝑟 ← 𝑓𝑟 (z0, c)
7: 𝑟 ← 𝑔(𝜃 )
8: optimize 𝑔 by Eq.10
9: 𝑟∗ ← 𝑟 − 𝑟
10: Optimize 𝜃 by Eq.13
11: end while
12: output: Optimized initial distribution 𝜋𝜃

4.4 Ratio Clipping Algorithm
When using Eq.7 to optimize the initial distribution, the update
process is limited to the data samples that are currently sampled.
The requirement for multiple denoising steps significantly slows
down the diffusion model’s inference time, resulting in suboptimal
optimization efficiency when repeated sampling is necessary. Fur-
ther, optimizing the initial distribution solely based on the feedback
from the reward function without any constraints compromises
the generative performance of the original diffusion model. This
issue arises because the diffusion model is trained with initial noise
sampled from a standard normal distribution. If our optimized dis-
tribution deviates too far from the initial distribution, it creates a
gap between the training and generation processes. We propose
the Ratio Clipping Algorithm (RCA) to limit the extent of each
optimization step by the historical data. Inspired by TRPO [34],
we employ importance sampling, which enables the network to
incorporate historical data into its updates, thereby enhancing the
overall efficiency of the optimization process. We reformulate Eq.7
to a loss function as follows:

L𝑝 = −E𝜋𝜃old [𝑟
∗ 𝜋𝜃

𝜋𝜃old
], (11)

where 𝜋𝜃old is the policy of the previous step. We formulate Eq.11
in a gradient form:

∇𝜃L𝑝 = E𝜋𝜃old

[
𝑟∗

𝜋𝜃

𝜋𝜃old
∇𝜃 log𝜋𝜃

]
. (12)

We present the proof of Eq.12 in Appendix A.2.
After establishing Eq.11, we optimize the diffusion network’s

initial noise distribution by leveraging historical data. Distinct from
DPOK [10], which utilizes the KL divergence from the initial model
to moderate the extent of parameter updates to avoid too much de-
viation from the original model. Our RCA, inspired by the findings
of sDPO [15], adopts 𝜋𝜃old as the reference model. This is based on
the insight that comparing parameters with those from the previous
step provides a more effective upper bound for updating parame-
ters. Specifically, we define the ratio of new policy and old policy as
𝜂 =

𝜋𝜃
𝜋𝜃old

. When the new policy is equal to the old policy, 𝜂 is equal
to 1. To limit the magnitude of updates to the new policy, we set
a margin 𝜆, ensuring that 𝜂 falls within the range of [1 − 𝜆, 1 + 𝜆].

We reformulate Equation 10 as follows:

L∗𝑝 =

{
L𝑝 , if 𝜂 ∈ [1 − 𝜆, 1 + 𝜆]
0. else

(13)

Our entire optimization process is outlined in Algo.1.

5 EXPERIMENTS
5.1 Experimental Setups
We utilize Stable Diffusion v1.5 [28] and ModelScpoe [38] as our
image and video generation base model, whose parameters remain
frozen throughout our optimization process. Our optimization tar-
gets are themean 𝜇 and variance𝜎2 of the initial distribution, whose
sizes are 4x64x64 for image generation and 4x16x64x64 for video
generation. Compared to optimizing the entire model, this approach
significantly reduces the computational cost of optimization. For
the reward model, we employ ImageReward[44] trained on a large
dataset with human judgments for image generation and ViCLIP
[39] for video generation. 𝜆 is set to 0.02. The number of total op-
timization steps 𝑁 is 150. The learning rate is set to 0.001 and the
optimizer is AdamW. All our experiments are conducted on a single
3090 GPU and the VRAM consumption is less than 10GB for image
generation and 15GB for video generation.

5.2 Comparison with Others
To verify the effectiveness of our method, we conduct both qual-
itative and quantitative experiments. We compare the proposed
method with the standard Stable Diffusion v1.5 [28]. Additionally,
we also compare our approach with state-of-the-art approaches
DPOK [10] that optimize the entire U-Net using Reinforcement
Learning to highlight the efficiency and effectiveness of optimizing
the initial noise.
Quality Results. Following the similar setting fromDPOK [10], we
select four prompts, A green dog is running on the grass, A dog and a
cat, Four pandas, A dog on the moon, for fair comparison. As shown
in Fig.4, in the color aspect, we can see that the baseline model
generates clear images of dogs but struggles with unusual colors.
DPOK generates green dogs, but in the first column, the appearance
of the dog is blurred, possibly due to finetuning the network, which
weakened its generative performance. In the second column, the
dog generated by DPOK is not entirely green. Ourmethod generates
not only green dogs but also dogs with a very complete appearance.
In terms of composition, the baseline struggles to generate multiple
subjects in one image. Using DPOK, the generated images of cats
and dogs exhibit some overlap, impacting the quality of the genera-
tion. Our method is capable of combinations of multiple subjects.
In the counting aspect, the baseline method and DPOK struggle
to generate multiple subjects of the same type in one image while
our method achieves higher completeness. In terms of location, for
unusual positions, the baseline method struggles and only gener-
ates common ones, such as an astronaut on the moon. The DPOK
method generates dogs on the moon, but the clarity is not high.
Our method is capable of generating dogs with brighter colors and
higher completeness.
QuantityResults. In this section, we validate our proposedmethod
from two perspectives: generative capability and computational
cost. For assessing the quality of generation, we employ twometrics:
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Figure 4: Quality comparison results on different methods. The input prompt of the first two columns: A green dog is running
on the grass. Third and fourth column: A dog and a cat. Fifth and sixth column: Four pandas. Seventh and eighth: A dog on the
moon.
ImageReward [45] and Aesthetic Score[32]. ImageReward evaluates
the alignment between the generated images and the prompts. The
Aesthetic Score assesses the aesthetic quality of the generated im-
ages. To validate our results, we conduct tests using prompts in four
different aspects as quality evaluation. For each prompt, we select
100 images for evaluation. As shown in Tab.1, we observe that our
method has advantages in terms of ImageReward, which assesses
text-image alignment, particularly in the aspects of Color, Compo-
sition, and Location. In terms of Count, our method demonstrates
only a slight discrepancy compared to DPOK. This highlights our
method’s significant advantage over both the baseline and previ-
ous SOTA methods in aligning text and images, demonstrating
that we unleash the potential of the pre-trained model. In terms
of Aesthetics, our method shows advantages in Composition and
Count, but overall, the difference between our method, the base-
line, and DPOK is minimal. This indicates that our approach, while
optimizing for control effects as dictated by the prompts, does not
negatively impact generative performance; instead, it may even
enhance it.
Versatility. Followed by the experiment setting of DPOK, we eval-
uate our method on prompts from Drawbench [30] (10 images per
each prompt). As shown in the bottom of Tab.1, our method out-
performs the baseline and DPOK as well in a larger set of prompts
evaluation settings. This demonstrates the comprehensive genera-
tive capability of our proposed method.
Time Consumption. As shown in Tab.2, our method achieves
approximately 13 times faster over DPOK, completing optimization
in around 14 minutes for a single prompt. This demonstrates the
practicality of our approach.

5.3 Ablation Study
We conduct ablation studies by utilizing two complex prompts:
A red book and a yellow vase. and oil portrait of Batman holding
a picture of Spiderman, intricate, elegant, highly detailed, lighting,

Table 1: Quantity results on baseline method and SOTA
method and ours. Both ImageReward and Aesthetic Score
are such that higher values indicate better performance.

ImageReward Aesthetic

Color
Baseline -1.64 5.30
DPOK 0.75 5.65
Ours 1.45 5.56

Composition
baseline 1.17 5.49
DPOK 1.16 5.47
Ours 1.43 5.63

Count
Baseline 0.61 5.70
DPOK 0.90 5.53
Ours 0.89 5.90

Location
Baseline -1.34 5.74
DPOK 0.74 5.21
Ours 1.21 5.61

Drawbench
Baseline 0.13 5.31
DPOK 0.38 5.35
Ours 0.39 5.38

Table 2: The total time of optimization and inference

Baseline DPOK Ours

Time(min) 0.09 183.3 13.8

Table 3: The quantity results of ablation study.

Baseline w/o DRCM w/o RCA Ours

ImageReward -0.38 1.53 1.48 1.64
Aesthetic 5.72 5.71 5.98 6.16

2024-04-13 07:54. Page 6 of 1–10.
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Figure 5: Quality results of ablation study. The prompt of left part: A red book and a yellow vase. Right part: oil portrait of
Batman holding a picture of Spiderman, intricate, elegant, highly detailed, lighting, painting, art station, smooth, illustration,
art by Greg Rutkowski and Alphonse Mucha.

painting, art station, smooth, illustration, art by Greg Rutkowski and
Alphonse Mucha. We generate 100 samples for each scenario to
serve as our test dataset.
Impact of DRCM. The DRCM primarily predicts the expected re-
ward value under the current initial distribution, aiming to prevent
the network from optimizing in incorrect directions. As illustrated
on the left side of the second row in Fig.5, removing the DRCM
leads to generated vases and books similar to the baseline, but
there’s a noticeable discrepancy between the colors of the vases
and books and the user-input prompts. The first column shows
multiple books, the vase in the second column is not yellow, the
third column produces multiple vases, and in the fourth column,
books turn into a table. On the right side of the second row, we
observe that the generated Batman has some features of Spiderman,
and the Spiderman image appears somewhat blurred. As shown in
Tab.5, removing the DRCM results in a decline in both ImageRe-
ward and Aesthetic Score metrics. This is attributed to the absence
of calculated expected rewards, relying solely on the sign of the re-
ward to determine the direction of optimization leads to suboptimal
solutions.
Impact of RCA. As demonstrated on the left side of the third row
in Fig.5, the first column transforms a red book into a red bowl,
the second column morphs the concept of a red book into a red
vase and a yellow book, the third column generates only a red
vase, and the fourth column changes the vase’s color to brown. On
the right half of the third row, although Batman is well generated,
the spider picture he holds is poorly generated, and in the third
column, although the content of the painting is well generated,
the shape of the painting has turned into a trapezoid. From Tab.3,
we observe a significant decrease in the ImageReward metric after

Table 4: The results of user study.

Baseline DPOK Ours

Quality 2.94 3.27 3.88
Alignment 1.58 4.15 4.70

removing the RCA. This decline may be attributed to the absence
of clipping operations, which means that anomalies during training
cause substantial variations in the initial settings, thereby affecting
the stability of the training process.

5.4 User Study
We recruited 33 voters from social media to assess the advantages
of our method. We compared the Baseline model, DPOK, and our
method. Each model generated two images from prompts in four
categories same as in Sec. 5.2, Color, Composition, Count, and
Location, resulting in a total of eight images. Voters were presented
with 24 images and their corresponding prompts. Each image was
evaluated on two dimensions: Appearance and Alignment, with
scores ranging from 1 to 5, from low to high. As indicated in Tab.4,
our method outperforms both the Baseline model and DPOK in all
aspects. Furthermore, it’s evident that users significantly prefer our
method for its text-image consistency. It’s also noteworthy that our
method is nearly 13 times faster than DPOK.

5.5 Generalization for Video Diffusion
Our approach is theoretically applicable to any diffusion-based
method, whether it be text-to-image, text-to-video, text-to-3D, and
so forth. To demonstrate the versatility of our method, we use
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Figure 6: Quality results on video diffusion models. The prompt of the top left corner: A green dog is running on the grass. Top
right corner: A dog is running on the moon. Bottom left corner: A panda is walking on the grass, from left to right. Bottom right
corner: A monkey is playing guitar.

text-to-video as a case study, analyzing its performance both qual-
itatively and quantitatively. Specifically, we employ ModelScope
[38] as our baseline model, which is a large-scale text-to-video dif-
fusion model trained on large-scale datasets [2, 33, 46]. ViCLIP [39]
is a pre-trained model used to evaluate the similarity between text
and video, which is utilized as our reward function.
Quality Results. To verify the effectiveness of our method, we
selected four sets of prompts that the baseline models struggle
to generate directly: A green dog is running on the grass., A dog
is running on the moon., A panda is walking on the grass, from
left to right. and A monkey is playing guitar. These cover unusual
colors, displacement control, anomalous positions, and abnormal
behaviors. As illustrated in the top left of Fig.6, generating dogs
with colors that do not exist in real life proves to be challenging
and the dogs generated remain yellow-brown. After optimization
with our method, the color of the generated dogs matches the
green specified in the prompt. As illustrated in the bottom left, it
is challenging for baseline models to control the objects’ motion
trajectories directly through prompts, leading to objects moving
randomly. The panda generated by the baseline model merely turns
to the right. In contrast, our method allows the panda to smoothly
move from the left to the right side of the screen as requested by
the prompt. In the top right corner, the quality of generated objects
in anomalous positions is compromised, making the dogs appear
blurry. After our optimization, the generated dogs are much clearer,
and their movement process becomes smoother. As depicted in the
bottom right corner, despite the ability to generate objects engaged
in abnormal motions, such as monkeys and guitars, there is no
interaction between them. Following our optimization, the model
accurately generates behaviors such as monkeys playing guitars.
Quantity Results. We select four prompts same as the quality
evaluation, producing 100 videos for each prompt to serve as our
test dataset. ViCLIP [39] is selected to evaluate the text-video con-
sistency of the generated videos. Following the methodology of the
LOVEU-TGVE competition [40], we employ the CLIP score [13]

Table 5: The quantity results on video diffusion.

ViCLIP Consistency PickScore

Baseline 0.21 0.83 20.08
Ours 0.28 0.88 21.29

to assess the consistency between frames. Additionally, PickScore
[17] is used to predict user preferences for our model. As shown in
Tab.5, our method surpasses the baseline across all three metrics,
demonstrating that the videos generated after optimization with
our approach have improved in terms of text-video consistency,
inter-frame consistency, and predicted user preferences.

6 CONCLUSION
In this paper, we introduced FIND, a novel Fine-tuning InitialNoise
Distribution with policy optimization framework, to align the con-
tent generated by diffusion models with user-input prompts. Unlike
previous methods that required extensive training or additional
controls, our approach was capable of optimizing for any prompt
within just 13 minutes. We observed that the initial noise signifi-
cantly influences the final output of diffusion models, leading us
to optimize the initial noise. However, optimizing the initial dis-
tribution from the generated images was challenging due to the
multi-step denoising required by diffusion models. We utilized pol-
icy gradients to circumvent the multi-step denoising, optimizing the
initial distribution directly through the reward function. To ensure
that the optimization direction was not solely determined by the
sign of the reward, we proposed the DRCM to predict the expected
value of the reward under the current distribution. Additionally, we
developed the RCA module to leverage past samples and ensured
optimization stability. Both quantitative experiments and qualita-
tive tests have proven the effectiveness of our proposed method.
Moreover, our approach can be applied to kinds of diffusion-based
generative models, demonstrating its high generalizability and ver-
satility.
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