DRR-RAG: Decompose and Refine Reasoning in Retrieval-Augmented
Generation for Multi-hop Question Answering

Anonymous ACL submission

Abstract

Retrieval-augmented generation systems are
effective in addressing hallucinations and
domain-specific challenges in vertical domains.
However, these systems often struggle to fully
utilize the language capabilities of large lan-
guage models (LLMs) in handling complex
questions that require matching relevant doc-
uments from different sources and managing
intricate dependencies. In this paper, we in-
troduce a novel framework, Decompose and
Refine Reasoning in Retrieval-Augmented Gen-
eration, that leverages the power of LLMs to de-
compose complex queries and efficiently man-
age the relationships between sub-questions,
enhancing document retrieval and addressing
multi-hop question challenges. We conduct ex-
periments using a local model, a closed-source
model with prompt, and fine-tuning. Through
extensive experimentation on diverse multi-hop
datasets, we demonstrate that our approach
not only outperforms existing methods in han-
dling complex queries and improving retrieval
performance but also proves effective, easy to
implement, and highly usable. These results
highlight the robustness and practicality of our
framework.

1 Introduction

Large language models (LLMs) have demon-
strated exceptional capabilities in understanding
and generating natural language across diverse
tasks (Achiam et al., 2023; Touvron et al., 2023;
Jiang et al., 2023). However, they often face limi-
tations such as domain-specific knowledge gaps
and hallucinations (Zhang et al., 2023; Huang
et al.,, 2023; Yang et al., 2023), especially for
queries requiring up-to-date or nuanced infor-
mation. Retrieval-augmented generation (RAG)
(Lewis et al., 2020) effectively mitigates these is-
sues by grounding LLLM responses in retrieved fac-
tual evidence, enhancing accuracy and reliability.
In the early stages of RAG research, scholars

focus on various ways to improve the basic RAG
framework. They explore different retrieval algo-
rithms and strategies to better match the input query
with the most relevant documents (Thorne et al.,
2018; Trischler et al., 2017; Rajpurkar et al., 2016).
In addition, efforts are made to optimize the genera-
tion process so that the LLM could more effectively
integrate the retrieved information into the final an-
SWer.

However, when it comes to handling complex
Multi-hop questions, these early methods faced
considerable difficulties. Multi-hop question an-
swering (MHQA) tasks (Mavi et al., 2024) neces-
sitate integrating diverse information sources and
logical reasoning to derive accurate answers. To
address these challenges, mainstream approaches
increase the number of iterations, continuously de-
composing the question and solving subquestions
in each iteration. These methods typically follow
the retrieve-and-read paradigm (Zhu et al., 2021),
which consists of two key components: a passage
retriever that filters irrelevant information and a
reader that iteratively refines the retrieved content
to extract the correct answer (Tu et al., 2020; Xiong
etal.,2021; Wu et al., 2021; Trivedi et al., 2022a; Li
et al., 2023). These approaches enhance the accu-
racy and efficiency of question-answering systems
by systematically improving retrieval and analysis
in each iteration.

Nevertheless, existing methods face several crit-
ical challenges: 1) During problem decomposi-
tion, current methodologies only derive and process
the first sub-question from the original Multi-hop
question, subsequently generating follow-up sub-
questions and sub-answers based on retrieval re-
sults. This process fails to account for complex in-
terdependencies between sub-questions adequately
and lacks a verification mechanism to assess the
validity and rationality of the decomposition. Er-
rors introduced during decomposition may lead to
retrieval errors at later stages; 2) In the retrieval

phase, excessively incorporating preceding multi-
turn dialogue content as input risks introducing
substantial irrelevant or misleading information,
which may prevent the retriever from effectively
capturing the necessary diverse evidence and the
LLM from summarizing the correct answer from
an overly long context.

Inspired by the impressive capabilities of cur-
rent reasoning models such as OpenAl ol (Jaech
et al., 2024) and Deepseek R1 (Guo et al., 2025),
as well as their principles for solving complex
questions, this paper introduces an innovative
framework—Decompose and Refine Reasoning in
Retrieval-Augmented Generation(DRR-RAG)—to
address the aforementioned challenges:

(1) Our Question Decompose module leverages
LLMs to decompose complex questions into sim-
pler sub-questions and manage dependencies be-
tween them. With dependency relationships estab-
lished, when supplementing information for the
current sub-question, it is only necessary to pro-
vide information from its preceding sub-question.
This effectively mitigates the impact of excessive
irrelevant information on retrieval and answer gen-
eration, as mentioned in 2) above.

(2) Regarding the rationality of question decom-
position raised in 1), we incorporate a Self-Refine
mechanism after each iterative retrieval and answer
generation cycle. By extracting relevant evidence
from paragraphs and sub-questions, this mecha-
nism not only verifies the correctness of each sub-
answer generated by the LLLMs but also assesses
the reasonableness of the question decomposition
during the evidence extraction process, allowing
for potential re-decomposition of the original multi-
hop question when necessary.

(3) Comparative experiments conducted on
multiple datasets demonstrate that our method
outperforms existing RAG approaches, achieving
state-of-the-art performance on MHQA tasks. Fur-
ther analytical experiments validate that the pro-
posed framework demonstrates strong adaptability
under resource constraints and supports flexible,
lightweight implementations through diverse ap-
proaches.

In summary, our key contributions include:

* A innovation framework that decomposes com-
plex questions into small ones, considers the
dependencies between sub-questions and solves
them sequentially.

* An adaptive Self-Refine strategy to mitigate the

impact of irrelevant or noisy documents and de-
termine the decomposition errors during the it-
erative retrieval process, ensuring factual con-
sistency and logical coherence in generated an-
SWers.

 Extensive experiments demonstrate the effective-
ness, ease of implementation, and robustness of
our approach in MHQA, thereby fully substanti-
ating the superiority of our method.

2 Related Work

2.1 Retrieval-augmented Generation

RAG augments the input space of LLMs with re-
trieved text documents (Lewis et al., 2020; Guu
et al., 2020), leading to significant improvements in
knowledge-intensive tasks. RAG typically consists
of several key components: vectorization of queries
and documents, relevant document retrieval, and
the generation of answers by LLMs. The central
challenge of RAG lies in effectively identifying
relevant documents to the query. In recent years,
several improvements have been proposed to en-
hance the recall accuracy in this process. Initial
methods include Chain-of-Thought (CoT) reason-
ing (Wei et al., 2022), keyword-based retrieval, and
relevance-based reranker model of the retrieved
documents to improve the similarity between the
retrieved passages and the query.

At the same time, some researchers have ob-
served the gap between Retriever (i.e. Embedding)
and LLM. For instance, R?AG (Ye et al., 2024)
addresses the semantic gap between Retriever and
LLM by introducing R?-Former, an intermediate
module that bridges this gap without necessitating
fine-tuning of either the Retriever or the LLM.

2.2 Multi-hop Question Answering

While these methods perform well for simple, non-
interdependent queries, they face challenges in han-
dling Multi-hop question answering(MHQA). In
such cases, researchers have proposed frameworks
with Iterative Retrieval such as ITER-RETGEN
(Shao et al., 2023), GenGround (Shi et al., 2024),
and EfficientRAG (Zhuang et al., 2024) to better
address these challenges.

ITER-RETGEN concatenates the input question
with the generated output from the previous itera-
tion to form a new query for the next. This method
addresses the issue of insufficient information re-
trieval when dealing with complex multi-hop ques-
tions. However, directly concatenating the answer

\
Question Decompose

Query
Decompose
Subg 1—
Nx
= = = = = —
Dependency relations A

=

k — i | Subq i depends on Subq k|

Re-decompose the query if Evidence i = @

Iterative Retrieval with Self-Refine

Suba i

] f
BB

Depi Retriever Doc i LLM

Integration

Subq 1

U

o \%/ Suba1—
Query ——— /

Figure 1: Decompose and Refine Reasoning in Retrieval-Augmented Generation framework diagram.

generated by the previous iteration with the query
will inherently contain some noise in the retrieval
process (Xu et al., 2023).

GenGround introduces a novel framework that
improves the accuracy of complex queries by iter-
atively decomposing the question and refining the
answer. This framework involves a cyclical process
of question decomposition and answer correction.
Despite its promising performance, the approach
has significant data requirements, as it necessitates
the availability of ground-truth data, which limits
its applicability across various domains due to the
dependence on high-quality labelled datasets.

Similarly, EfficientRAG targets multi-hop ques-
tions by fine-tuning the model on question decom-
position steps provided by the dataset. The model
is trained to generate the subsequent hop question
and judge the relevance of retrieved documents.
While this method enhances multi-hop reasoning,
it also has considerable data requirements, as it
needs the dataset to provide steps for both question
generation and answer evaluation.

Overall, existing iterative retrieval methods have
made innovative progress in question decomposi-
tion and answer verification. However, deficiencies
remain in understanding the internal structure of
complex questions and validating the decomposi-
tion process.

3 Method

In this section, we present a detailed explanation of
the DRR-RAG framework. As illustrated in Fig. 1,
the entire process consists of the following phases:
Question Decomposition, Iterative Retrieval with
Self-Refine and Integration. First, the multi-hop

question is decomposed into different types of sub-
questions. These sub-questions are then addressed
in an order determined by their dependency rela-
tionships, ensuring that they only obtain necessary
information from their dependencies. Throughout
the retrieval and resolution process, the system per-
forms self-refine to verify both the correctness of
sub-question answers and the validity of the ques-
tion decomposition, allowing for re-decomposition
if needed. Finally, after all sub-questions are re-
solved, their answers are integrated to solve the
original question.

3.1 Question Decompose

The Decompose module, serving as the most criti-
cal component of the process, represents a depar-
ture from previous approaches. As illustrated in
Fig. 2, our methodology generates all subquestions
during the initial phase, as well as their interdepen-
dent relationships.

This module consists of two steps: question
classification and decomposition. Prior to ques-
tion decomposition, we initially conduct question
classifying. As shown in Fig. 3, Multi-Hop ques-
tions can be categorized into three types: inference-
based, comparison-based, and hybrid types. In
the case of inference-based questions, the decom-
posed sub-problems exhibit a chain-like depen-
dency relationship. For instance, a set of de-
composed sub-questions {subg; }'_, from ques-
tion Q, where subg;_1 — subg;. Regarding a
comparison-based relationship, there is no depen-
dency between the sub-questions: subg; | subg;
for i # j. The hybrid type represents a combina-
tion of the above two fundamental types, including

Question example

[What role do play in the pro
\ connecting to a Wi-Fi network?)

Wi-Fi network)

(> e

| sub-question 1: What | Answer 1 Sub-question 2: How

| is a Wi-Fi network and does a smartphone detect
| how does it work? and connect to <answer
\ J 1>?

[What role \I
|
|

Sub-question 3: What | Sub-question 4: How
isan and does the assignment of
how does it work? | an in the
_m__ 2 ?___J’
—‘ Final answer

Figure 2: Question decompose example. <answer_i>
is a placeholder for the answer to the i-th subquestion,
which will be filled with the corresponding answer dur-
ing the subsequent Iterative Retrieval process.

nested inference, nested comparison, and inference-
comparison hybrid structures. Then, we input Q
into the LLM, denoted as M, to obtain {subg; }!_,
and the dependency relations {dep; }'_; among all
sub-questions:

{subgi}i_y, {depi}ioy = M(Pp(Q)) (1)

‘Pp represents the Decompose instruction prompt
shown in Appendix 9.

Inference Comparison
>
- —_—
Hybrid
>
> —
5 Comparison Inference

Inference Comparison

Figure 3: Different types of multi-hop questions.

3.2 Iterative Retrieval with Self-Refine

As can be seen from the Dependency relations in
the Question Decompose module of Fig. 1, the in-
terdependent sub-questions form a directed acyclic
graph. We solve them sequentially according to
the process outlined in Algorithm 1, which con-
sists of three components: Initialization, Retrieval,
and Self-Refine, where Queue represents the queue
data structure, pop refers to removing the element

from the front of the queue, push refers to adding
an element to the back of the queue, in_deg(7)
represents the in-degree and subg;.format(suba;)
denotes replacing the corresponding placeholder in
subg; with the content of suba;, Pr is the prompt
that guides M to generate responses.

Algorithm 1: Iterative Retrieval with Self-
Refine
Require : sub-questions {subg;}'_,
Dependency relations dep(i)
Return :sub-answers {suba;}!_,
Queue +)
fori:=1totdo
in_deg(i) + |dep(i)]
if in_deg(i) = 0 then
‘ Queue.push(z)
end

—

A i A W N

end

while Queue # () do

9 1 <— Queue.pop()

10 for each j € dep(i) do

11 ‘ subq; < subg; format(suba;)
12 end

13 D; + R(subgq;, D;, top-k)
| suba; < M(P;(subg;, D))
15 Self-Refine(subgq;, suba;, D;)

16 for each j in subq; — subq; do

e 2

17 — —in_deg[j]

18 if in_deg[j] = 0 then
19 ‘ Queue.push(j)

20 end

21 end

22 end

23 Function Self-Refine(subgq;, suba;, D;):

u E; « Extract(D;, subg;)
25 if E; = () then

26 ‘ goto re-Decompose

27 else

28 if —Verify(suba;, E;) then

29 ‘ suba; < Revise(suba;, E;)
30 end

31 end

Initialization: We create an empty queue Queue
and then iterate through each subg;. For the subg;,
we set in_deg(i) to the size of dep(i), and then
add subg; to the Queue if in_deg(i) = 0.

Retrieval: subg; is popped from the front of the
Queue per Iteration. We initially augment it with
contextual information suba,; from its dependency
set dep(i), where j € dep(i). The retriever R

selects the top-k most relevant documents D; from
the candidate documents D); for subg;:

bi = R(Squla Dia tOp-k) (2)

Then, the augmented subg; is concatenated with 151
as the input context for answer suba; generation,
using Prompt Py for instruction:

suba; = M(Py(subg;, D;)) (3)

Self-Refine: The entire module is guided by the
instruction shown in the Appendix 11 to enable
task execution through M. As shown in line 23 of
the Algorithm: First, extract supporting evidence
FE; from Di that substantiates subg;. Subsequently,
if no supporting E; can be retrieved from D;, This
indicates that there is no content related to subg; in
D;, and further suggests that the original multi-hop
question Q needs to be decomposed through an-
other approach. In this case, the module provides
structured Feedback to the decomposer to trigger
the re-decomposition of the original problem. Oth-
erwise, verify the correctness of the generated as-
sertion suba; against this F;. If suba; is identified
as erroneous, the module initiates the process to
revise suba; based on E;.

3.3 Integration

Once all {subg;}!_, have been addressed,
{suba;}:_, along with {suba;}'_, and original Q
are submitted to M to generate the final answer A:

A = M(Py(Q, {subg;, suba;}Yi_y)) (4)
Here, P; is the instruction for A generation.

4 Experiments

4.1 Datasets

To evaluate the system’s retrieval efficacy and infor-
mation extraction accuracy in handling multi-hop
questions, we employed four established MHQA
benchmarks—2WikiMultihopQA (2Wiki) (Ho
et al., 2020), MuSiQue (Trivedi et al., 2022b), Hot-
potQA (Hotpot) (Yang et al., 2018), and Concur-
rentQA (CQA) (Arora et al., 2023)—which are
widely adopted for multi-round retrieval evalua-
tion in RAG-related research. These datasets en-
compass multi-hop reasoning scenarios, including
comparative analysis and hybrid inference tasks.
We conduct experiments for each dataset us-
ing the validation set, as the validation questions

are more complex than those in the training set.
Among the fields the dataset provides, we only
utilize the question and candidate documents for
answer generation. Subsequently, the generated
answers are then evaluated for correctness using
the ground-truth answers. Additionally, we use the
evidence documents for recall rate calculation to
assess the retrieval effectiveness.

‘ #Training #Val. #Type #Candidate docs
2Wiki 167,454 8,757 2,4-hop 10
MuSiQue | 19,938 2417 2,3,4-hop 20
Hotpot 90,447 7405 2-hop 10
CQA 15239 1600 2-hop 2-22 (u=10.25)

Table 1: Statistic of the 4 datasets. “#candidate docs”
indicates the documents pools for each question. u =
10.25 indicates that the average number of Candidate
docs is 10.25.

4.2 Few-Shot Prompting

Our prompt engineering framework employs a few-
shot prompting methodology to enhance task de-
composition capabilities. The proposed prompt
template is structured into three main components:
the instruction, the JSON format, and the examples,
as detailed in Appendix C.

4.3 Fine-tuning Details

Data Construction: It is imperative to construct
a high-quality dataset that adheres to format spec-
ifications and ensures the correctness of decom-
position to ensure the effectiveness of fine-tuning.
Initially, we utilized the GLM-4-Flash to generate
corresponding decomposed sub-questions from the
original questions on the training sets of several
datasets rather than directly using the generated
sub-questions as labels for training data. After inte-
grating responses to all sub-questions and filtering
out the decomposed data that correctly answered
the original question, we employ this verified and
accurate data to fine-tune GLM-4-9B (GLM et al.,
2024).

Train Details: The detailed training settings are
provided in Appendix A.

4.4 Baselines

In the mainstream RAG enhancement directions,
we have selected a variety of representative meth-
ods to verify the effectiveness of our approach:

* Single-round retrieval: BaseRAG: standard
RAG process (Lewis et al., 2020) without any
optimization; CoT: a RAG variant incorporating
Chain-of-Thought reasoning; Self-RAG (Asai

2Wiki MuSiQue Hotpot CQA
Method/Dataset "\ ™51 pe3 EM FI R@3 EM FI R@3 EM Fl R@3
Single-round Retrieval
BaseRAG 44.05 44.19 70.52 2506 2745 50.86 46.18 4845 61.58 53.68 55.30 61.58
CoT 49.32 47.66 72.44 2693 29.33 5547 52.18 5530 66.82 62.18 58.30 67.32
R2AG 7444 63.51 81.69 35.06 3258 67.74 63.75 6530 73.80 64.38 60.33 73.80
SelfRAG 6428 66.73 83.42 34.03 3891 8043 52.89 61.87 8790 67.89 63.67 88.90
Graph Retrieval
GEAR 59.74 62.35 82.27 2894 3566 7883 554 654 8542 6754 6332 77.96
Multi-round Retrieval
Iter-RetGen 68.79 62.11 83.05 37.67 3725 8226 58.07 54.07 7429 6325 64.07 84.29
EfficientRAG 6990 60.93 81.84 3591 3194 8451 6282 6433 84.08 7090 6737 86.57
Auto-RAG 64.82 66.74 86.63 3341 3034 8351 6046 6237 80.25 68.52 6632 84.08
Ours
DRR-RAG 79.06 73.04 99.5 4843 47.07 93.21 6776 6845 9587 74.14 6857 92.22
DRR-RAG" 79.21 7314 99.37 48.60 47.21 93.12 67.81 6845 956 7274 6723 9193
DRR-RAG' 77.03 71.82 98.69 47.09 4629 92.68 68.12 68.69 95.12 75.13 68.90 92.52

Table 2: Results of various methods across four benchmarks. The highest values of each metric are highlighted in
bold. *:Use glm-4-flash model with few-shot prompting. f:Use glm-4-9b model with LoRA fine-tuning.

et al., 2023) which enhances the judgment of re-
trieved document; R?AG that narrows the gap
between Retriever and LLMs.

¢ Multi-round retrieval: ITER-RETGEN, Effi-
cientRAG, and Auto-RAG (Yu et al., 2024),
which also leverage multiple retrieval rounds to
solve the sub-question and refine the response
quality.

¢ Graph retrieval: GEAR (Shen et al., 2024) that
combines graph-processing techniques to model
complex relationships between entities.

4.5 Evaluation Metrics

Consistent with prior research, we respectively uti-
lize Recall@k (R@k), Exact Match (EM) and F1
scores to assess RAG’s retrieval and generation
capabilities. R@Xk represents the proportion of rel-
evant documents among the top k retrieved docu-
ments for a given query. EM means whether the
passage-level prediction is the same as the ground
truth, while retrieval F1 is the harmonic mean of
precision and recall.

4.6 Implementation Details

The question decomposition module employs three
distinct implementation approaches: the closed-
source model GLM-4-Flash and the GLM-4-9B
which can be deployed on consumer-grade GPUs,
both utilizing few-shot prompting, as well as the
GLM-4-9B fine-tuned with LoRA (Hu et al., 2021).
In other LLM applications, we deploy GLM-4-9B.

For document retrieval, we employ the BGE-large-
en-v1.5 (Xiao et al., 2024) as the retriever, selecting
the top-3 documents for each question. Addition-
ally, we guide the LLM to output results in JSON
format for ease of processing. We further aligned
and corrected the format using the LLM for out-
puts that did not conform to the required format
(which could potentially disrupt the experiment).
The detailed model deployment is presented in the
Appendix B.

5 Results and Analysis

5.1 Main Results

Table 2 presents the evaluation results across four
benchmarks, highlighting the superior performance
of DRR-RAG. Compared to baseRAG, DRR-RAG
improves performance by over 20%, with a 30%
increase on the 2Wiki dataset. It outperforms exist-
ing methods by 3—-6% on the 2Wiki, Hotpot, and
CQA datasets. Notably, DRR-RAG excels on the
MuSiQue dataset, particularly known for its com-
plex question structures, showing a more than 10%
advantage over all other approaches. These results
confirm the enhanced capability of DRR-RAG in
handling MHQA.

A horizontal comparison of the three DRR-RAG
implementations demonstrates their robust perfor-
mance across benchmark datasets: 1) when com-
paring two few-shot implementation models, the
9B model deployable on consumer-grade GPUs

Dataset Metric Base + Question Decompose ++ Question Classify + + + Self-Refine
SWiki EM 54.05 76.36 (22.317) 78.46 (2.10M) 79.21 (0.75T)
F1 54.19 70.41 (16.22") 72.6 (2.19M) 73.14 (0.54™)
. EM 25.06 42.13 (17.07M) 44.19 (2.06") 48.60 (4.41M)

MuSiQue + + +

F1 27.45 40.21 (12.76™) 42.51 (2.30M) 4721 (470"
Hotpot EM 46.18 63.73 (17.55M) 66.35 (2.621) 67.81 (1.46")
P F1 48.30 64.42 (16.12") 66.88 (2.46") 68.45 (1.577)
COA EM 53.68 68.40 (14.72M) 72.26 (3.86") 73.74 (1.48")
F1 55.30 65.20 (9.90™) 67.07 (1.87") 67.23 (0.16")

Table 3: Ablation study results. For each dataset, values in parentheses indicate the performance gap between each
ablated variant and the previous variant. The arrows show the direction of the difference.

achieves comparable performance to the closed-
source Flash model; 2) In comparing few-shot
versus LoRA fine-tuning approaches for the 9B
model: the LoORA method shows slightly inferior
performance on 2Wiki and MuSiQue datasets while
demonstrating marginal advantages on the Hotpot
and CQA dataset.

5.2 Analysis

To investigate how our proposed method improves
the evaluation metrics, we test the recall rates of
the target documents for all approaches under top-3
setting. The recall rates for different methods are
presented in Table 2 for a clear comparison. Our
proposed method achieved a target document recall
rate exceeding 90%, significantly surpassing previ-
ous methods. Such a high recall rate is critical in
ensuring the system’s ability to generate answers
from recalled documents correctly.

5.3 Ablation Experiments

‘We conduct ablation experiments on the Question
Decompose, Self-Refine, and Classify modules to
assess the impact of different modules. As shown
in Table 3, the Question-Decompose module has
the most significant effect, improving performance
by over 10% across all benchmarks. The Classify
module provides a consistent average gain of 2.4%,
while the Self-Refine module showed a general im-
provement of over 1%, with a notable 4.5% boost
on the MuSiQue benchmark.

5.4 Strong Adaptablity to Constraints

In this subsection, we explore the impact of the
number of document recalls and model size.
Retrieval Constraint: The number of retrieved
documents plays a critical role in the performance
of RAG systems. To evaluate the stability of the

100

80l 77.00 78.80 479‘13 78‘98 78‘9'6
66.59 67.67 68.57 68.29
g)
3 60
b 48.83 48.60 48.60 46.90
3 Q2u—= oy = —A
2 a0
201 —@— 2Wiki EM
—A— MuSiQue EM
-~ Hotpot EM
0
1 2 3 4 5

Document Recall Count per Iteration

Figure 4: Evalution performance of DRR-RAG across
different document numbers provided per iteration.

RAG system under different retrieval settings, we
tested the EM score across multiple multi-hop
datasets with the number of retrieved documents
varying from 1 to 5. As shown in Fig. 4, the results
demonstrate consistently high scores across differ-
ent retrieval counts. Our system exhibits strong
adaptability to varying retrieval numbers, with only
minimal accuracy loss when the retrieval count
is reduced to 1. This indicates that the system is
highly robust to variations in the retriever’s per-
formance, maintaining reliable effectiveness even
under constrained retrieval conditions.

Model Size Constraint: We test the question-
decomposition module using compact Qwen-
2.5 (Yang et al., 2024) models (1.5B/3B parame-
ters) and compare with Auto-RAG using Qwen1.5-
32B-Chat. As shown in Fig. 5, performance degra-
dation remains moderate when scaling down mod-
els: 3%-6% reduction when halving model size
from 9B—3B and 3B—1.5B across all datasets.
This controlled performance decline (max 6%
across four evaluation metrics) demonstrates our

80 79.06
70
60
50
40
30
20

10

Hotpot CQA

2Wiki MuSiQue

u DRR-RAG-9B ® DRR-RAG-3B " DRR-RAG-1.5B 7 Auto-RAG-32B

Figure 5: Performance of different size models in Ques-
tionDecompose module.

framework’s practical adaptability, enabling the ef-
fective deployment of smaller models in resource-
constrained scenarios while maintaining over 90%
of the capability of our framework.

5.5 Generalizability in Downstream Tasks

We propose cross-downstream experiments across
three datasets, where we train the model on one
dataset and evaluate it on the other with EM met-
ric. The results shown in Table 4 indicate that our
method has strong generalizability in downstream
tasks and even surpasses the model trained on the
original data in some cases.

Train/Eval MuSiQue Hotpot CQA

MuSiQue 46.29 69.17 (0.481) | 67.80 (1.10))
Hotpot | 45.49 (0.80J) 68.69 65.96 (2.94))
CQA 46.04 (0.25)) | 69.00 (0.3171) 68.90

Table 4: Cross-Downstream EM results on four datasets,
where trained on one dataset evaluated on the other.

5.6 Flexibility and Simplicity in
Implementation

To ensure diversity and simplicity in implementa-
tion, we explored three approaches for the critical
decomposition module. As shown in Table 2, the
performance differences among these approaches
are minimal, highlighting the module’s flexibility.
Regarding implementation complexity, prompt
engineering requires only the construction of ap-
propriate prompts with 3 examples (using a 3-shot
setting). LoRA fine-tuning follows a similarly
straightforward process, as demonstrated in the
experiments and supporting theoretical arguments.
Experimental Support: High-quality data is
essential for LLMs, but collecting it remains chal-
lenging. To assess the data requirements for the de-
composition module, we fine-tune the model with

80

value %

Wikt Hotpot CQA
Datasets

MuSiQue

Figure 6: Performance of decompose module under
different amounts of training data in four datasets.

varying dataset sizes (from 0.1k to 1k) and evaluate
using EM metrics. In Fig. 6, the model performed
remarkably well even with as few as 100 samples,
with results differing by less than 3% from those
obtained with larger datasets. Auto-RAG requires
0.5k samples to achieve stable performance !, while
EfficientRAG needs over 10k data points per train-
ing set 2. Additionally, under the conditions de-
scribed in Section 4.3, the average training time per
dataset is approximately 40 minutes.

Theoretical Support: LLMs acquire knowledge
during pretraining and learn desired behaviours
through supervised fine-tuning. For question de-
composition, the primary goal of the model is to
understand the structural patterns of decomposi-
tion. The underlying principle is that decomposing
multi-hop questions involves recognising structural
patterns rather than performing complex reasoning.
As aresult, extensive training data is not necessary
for effective learning.

6 Conclusion

This paper introduced a novel question decomposi-
tion framework designed to handle complex, multi-
hop questions by breaking them into manageable
sub-questions. By leveraging LLMs, the system
decomposes multi-hop questions into smaller ones.
Throughout the retrieval and resolution process,
self-refinement is utilized to verify both the cor-
rectness of sub-question answers and the validity
of the question decomposition. Abundant experi-
ments have demonstrated the high efficiency of our
method, as well as its ease of implementation and
the high robustness of the system. These factors
collectively illustrate the superiority of our method.

Yhttps://arxiv.org/pdf/2411.19443

2ht'cps: //aclanthology.org/2024.emnlp-main.199.
pdf

https://arxiv.org/pdf/2411.19443
https://aclanthology.org/2024.emnlp-main.199.pdf
https://aclanthology.org/2024.emnlp-main.199.pdf

7 Limitations

The following are the limitations associated with
our proposed framework: First, The accuracy of
the framework relies on the correctness of question
decomposition. As shown in Table 2, although our
method has made significant progress, it has not
surpassed an accuracy of 50% on the MuSiQue
dataset, which presents the most complex question
structures. There is still room for improvement in
question decomposition accuracy across different
datasets. Second, to ensure the correct execution
of the process, we guide LL.Ms to output in JSON
format. Although LLMs could correct errors in
the format, a small number of errors will cause the
entire process to throw exceptions. Finally, due to
the additional steps introduced by the decomposi-
tion process, the framework incurs more process-
ing stages than standard RAG systems, potentially
leading to increased response latency. Future work
could focus on enhancing the model’s handling
of even more intricate question dependencies, ex-
ploring further optimizations for reducing response
delays, and expanding the framework’s generaliza-
tion capabilities.

8 Ethics Statement

In this research, we focus on improving the gen-
eration capabilities of LLMs for MHQA. Our pro-
posed method integrates retrieved documents and
retrieval information to enhance LLLM performance
while strictly adhering to ethical guidelines estab-
lished by the broader academic and open-source
community. We ensure transparency by using pub-
licly available datasets and open-source models,
such as Wikipedia, for training and evaluation. All
data used in this work comes from existing, pub-
licly accessible sources, and we have made every
effort to minimize bias and promote fairness. The
questions used for evaluation were sourced from
established benchmarks, ensuring reproducibility.
We acknowledge that the datasets may contain per-
sonally identifying or offensive content, but we
focus on improving the models rather than filtering
such content. No conflicts of interest exist for any
of the authors, and we take care to avoid any harm
or potential misuse of information in developing
this framework.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn,
and Christopher Ré. 2023. Reasoning over public
and private data in retrieval-based systems. Transac-
tions of the Association for Computational Linguis-
tics, 11:902-921.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Self-reflective
retrieval augmented generation. In NeurIPS 2023
Workshop on Instruction Tuning and Instruction Fol-
lowing.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen-
hui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Han-
lin Zhao, Hanyu Lai, et al. 2024. Chatglm: A family
of large language models from glm-130b to glm-4 all
tools. arXiv preprint arXiv:2406.12793.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In International confer-
ence on machine learning, pages 3929-3938. PMLR.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning
steps. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 6609—
6625.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2023. A survey on hallucination in large lan-
guage models: Principles, taxonomy, challenges, and
open questions. CoRR.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, et al.
2024. Openai ol system card. arXiv preprint
arXiv:2412.16720.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,

Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611-626.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459-9474.

Xin-Yi Li, Wei-Jun Lei, and Yu-Bin Yang. 2023. From
easy to hard: Two-stage selector and reader for multi-
hop question answering. In ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 1-5. IEEE.

Vaibhav Mavi, Anubhav Jangra, Adam Jatowt, et al.
2024. Multi-hop question answering. Foundations
and Trends® in Information Retrieval, 17(5):457—
586.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions
for machine comprehension of text. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pages 2383-2392.
The Association for Computational Linguistics.

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie
Huang, Nan Duan, and Weizhu Chen. 2023. Enhanc-
ing retrieval-augmented large language models with
iterative retrieval-generation synergy. arXiv preprint
arXiv:2305.15294.

Zhili Shen, Chenxin Diao, Pavlos Vougiouklis, Pascual
Merita, Shriram Piramanayagam, Damien Graux,
Dandan Tu, Zeren Jiang, Ruofei Lai, Yang Ren,
et al. 2024. Gear: Graph-enhanced agent for
retrieval-augmented generation. arXiv preprint
arXiv:2412.18431.

Zhengliang Shi, Shuo Zhang, Weiwei Sun, Shen Gao,
Pengjie Ren, Zhumin Chen, and Zhaochun Ren. 2024.
Generate-then-ground in retrieval-augmented genera-
tion for multi-hop question answering. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 7339-7353.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
Fever: a large-scale dataset for fact extraction and
verification. In Proceedings of the 2018 Conference
of the North American Chapter of the Association

10

for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages
809-819.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris,
Alessandro Sordoni, Philip Bachman, and Kaheer
Suleman. 2017. Newsqa: A machine comprehension
dataset. In Proceedings of the 2nd Workshop on
Representation Learning for NLP, pages 191-200.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022a. MuSiQue: Multi-
hop questions via single-hop question composition.
Transactions of the Association for Computational
Linguistics, 10:539-554.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022b. Musique: Multi-
hop questions via single-hop question composition.
Transactions of the Association for Computational
Linguistics, 10:539-554.

Ming Tu, Kevin Huang, Guangtao Wang, Jing Huang,
Xiaodong He, and Bowen Zhou. 2020. Select, an-
swer and explain: Interpretable multi-hop reading
comprehension over multiple documents. In Proceed-
ings of the AAAI conference on artificial intelligence,
volume 34, pages 9073-9080.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Bohong Wu, Zhuosheng Zhang, and Hai Zhao. 2021.
Graph-free multi-hop reading comprehension: A
select-to-guide strategy. CoRR, abs/2107.11823.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muen-
nighoff, Defu Lian, and Jian-Yun Nie. 2024. C-pack:

Packed resources for general chinese embeddings. In
Proceedings of the 47th international ACM SIGIR
conference on research and development in informa-
tion retrieval, pages 641-649.

Wenhan Xiong, Xiang Li, Srini Iyer, Jingfei Du, Patrick
Lewis, William Yang Wang, Yashar Mehdad, Scott
Yih, Sebastian Riedel, Douwe Kiela, and Barlas
Oguz. 2021. Answering complex open-domain ques-
tions with multi-hop dense retrieval. In International
Conference on Learning Representations.

Shicheng Xu, Liang Pang, Huawei Shen, Xueqi Cheng,
and Tat-Seng Chua. 2023. Search-in-the-chain: To-
wards accurate, credible and traceable large language
models for knowledgeintensive tasks. CoRR, vol.
abs/2304.14732.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Fangkai Yang, Pu Zhao, Zezhong Wang, Lu Wang,
Bo Qiao, Jue Zhang, Mohit Garg, Qingwei Lin, Sara-
van Rajmohan, and Dongmei Zhang. 2023. Empower
large language model to perform better on industrial
domain-specific question answering. In Proceedings
of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing: Industry Track, pages
294-312.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.

Fuda Ye, Shuangyin Li, Yongqi Zhang, and Lei Chen.
2024. R” 2ag: Incorporating retrieval information
into retrieval augmented generation. arXiv preprint
arXiv:2406.13249.

Tian Yu, Shaolei Zhang, and Yang Feng. 2024.
Auto-rag: Autonomous retrieval-augmented gener-

ation for large language models. arXiv preprint
arXiv:2411.19443.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei
Bi, Freda Shi, and Shuming Shi. 2023. Siren’s song
in the Al ocean: A survey on hallucination in large
language models. CoRR, abs/2309.01219.

Fengbin Zhu, Wengiang Lei, Chao Wang, Jianming
Zheng, Soujanya Poria, and Tat-Seng Chua. 2021.
Retrieving and reading: A comprehensive survey on
open-domain question answering. arXiv preprint
arXiv:2101.00774.

Ziyuan Zhuang, Zhiyang Zhang, Sitao Cheng, Fangkai
Yang, Jia Liu, Shujian Huang, Qingwei Lin, Saravan
Rajmohan, Dongmei Zhang, and Qi Zhang. 2024. Ef-
ficientrag: Efficient retriever for multi-hop question
answering. arXiv preprint arXiv:2408.04259.

11

A Lora Train details

The LoRA fine-tuning format follows the user-
assistant paradigm, as illustrated in the following
example in Figure 7.

For fine-tuning, we use the PEFT library with
LoRA configuration. The input settings include a
maximum input length of 2048 tokens and an out-
put length of 512 tokens. Training parameters are
set to a learning rate of Se-5, a maximum of 10,000
steps, and a batch size of 1. Checkpoints are saved
every 1,000 steps, and evaluations are performed
with the same frequency using the "predict-with-
generate" option. The generation configuration
allow up to 512 new tokens. LoRA-specific set-
tings include a rank of 16, a LoRA alpha of 32, a
dropout rate of 0.1, and modifications targete at the
["query_key_value"] modules. The convergence of
the model is shown in Figure 8.

B Model Deployment Detail

We run all the models on two RTX 4090 GPUs.To
ensure consistent experimental conditions, identi-
cal hyperparameter configurations are maintained
across both models, with the temperature set to 0.1
to ensure response stability by reducing random-
ness, and a maximum token limit of 8,192 was con-
figured to prevent output truncation in multi-step
reasoning tasks. The GLM-4-Flash implementa-
tion utilized the official API endpoints provided by
the BigModel platform, while GLM-4-9B was de-
ployed via a vLLM-accelerated inference (Kwon
et al., 2023) server to optimize computational re-
source utilization.

C Prompt Template

Lora fine-tuning format example

The user input:

You are assigned a multi-hop question decomposition task.

Your mission is to decompose a multi-hop question into a list of single-hop
sub_questions.

The JSON output must contain the following keys:

- "question”: a string, the original multi-hop question.

- "decomposed_questions”: a dict of sub_questions and answers. The key should be
the sub_question number(string format), and each value should be a dict
containing:
- "sub_question”: a string, the decomposed single-hop sub_question. It MUST

NOT contain information more than the original question.

- "answer"”: a string, the answer of the sub_question.

The origin multi-hop questions is: What nationality is the composer of film
Tonight For Sure?

The assistant input:

{
"question”: "What nationality is the composer of film Tonight For Sure?"”,
"decomposed_questions”: {
npn g
"sub_question”: "Who is the composer of film Tonight For Sure?”,
"answer": "{sub_question_1_answer}"”
})
"o g
"sub_question”: "What nationality is {sub_question_1_answer}?",
"answer": "{sub_question_2_answer}”
}
}
}
Figure 7: Lora fine-tuning format example.
train/loss
— 2Wiki_r=16 =— CQA_r=16 =— Hotpot_r=16 =— MuSiQue_r=16
0.4
0.3
0.2
0.1
0 TN T . train/global step

2k 4k 6k 8k 10k

Figure 8: Lora fine-tuning details.

12

Question Decompose Prompt

You are assigned a multi-hop question decomposition task.
Your mission is to decompose a multi-hop question into a list of single-hop
sub_questions.
The JSON output must contain the following keys:
- "question”: a string, the original multi-hop question.
- "decomposed_questions”: a dict of sub_questions and answers.
The key should be the sub_question number(string format), and each value should
be a dict containing:
- "sub_question”: a string, the decomposed single-hop sub_question. It
MUST NOT contain information more than the original question and its
dependencies. NEVER introduce information from documents.
- "answer"”: a string, the answer of the sub_question.

The origin multi-hop questions is: Who is Rhescuporis I (Odrysian)'s paternal

grandfather?
Your response:
{{
"question”: "Who is Rhescuporis I (Odrysian)'s paternal grandfather?”,
"decomposed_questions”: {{
"1 {{
"sub_question”: "Who is Rhesuporis I (Odrysian)'s father?"”,
"answer"”: "{{sub_question_1_answer}}"
355
"2" {{
"sub_question”: "Who is {{sub_question_1_answer}}'s father?",
"answer"”: "{{sub_question_2_answer}}"
13
13}
13

The origin multi-hop questions is: Do both films The Falcon (Film) and Valentin
The Good have the directors from the same country?
Your response:

{{
"question”: "Do both films The Falcon (Film) and Valentin The Good have the
directors from the same country?”,
"decomposed_questions”: {{
"1 {{
"sub_question”: "Who is the director of The Falcon (Film)?",
"answer"”: "{{sub_question_1_answer}}"
13,
"2 {{
"sub_question”: "Who is the director of Valentin The Good?",
"answer": "{{sub_question_2_answer}}"
13,
"3 {{
"sub_question”: "What is the nationality of {{sub_question_1_answer
e,
"answer": "{{sub_question_3_answer}}"”
33,
4" {{
"sub_question”: "What is the nationality of {{sub_question_2_answer
2375
"answer": "{{sub_question_4_answer}}"
13,
"5 {{
"sub_question”: "Are {{sub_question_3_answer}} and {{
sub_question_4_answer}} the same country?”,
"answer": "{{sub_question_5_answer}}"”
33
33}
33

The origin multi-hop question is: {question}
Your response:

\

Figure 9: Question Decompose Prompt.

13

Json Format Correct Prompt

You are assigned a json correct task.
Your mission is to correct the wrong json format into right format.
The your right json output must contain the following keys:
- "question”: a string, the original multi-hop question.
- "decomposed_questions"”: a dict of sub_questions and answers. The key
should be the sub_question number(string format), and each value should be a
dict containing:
- "sub_question”: a string, the decomposed single-hop sub_question.
It MUST NOT contain information more than the original question and its
dependencies. NEVER introduce information from documents.
- "answer": a string, the answer of the sub_question.
wrong json format will be embraced by <wrong_json> and </wrong_json> tags.
There are some examples for you to refer to:
<wrong_json>

{{
"question”: "What year was home brewing first allowed in the country where
Prince of Thieves, who titular character John is depicted alongside, was
made?",
"decomposed_questions”: {{
"1 {{
"sub_question”: "In which country was the film Prince of Thieves
made?",
" "answer": "{{sub_question_1_answer}}"
13,
"2 {{
"sub_question”: "What is the country where home brewing was first
allowed?"”,
"answer"”: "{{sub_question_2_answer}}"”
13,
"3 {{
"sub_question”: "In what year was home brewing first allowed in {{
sub_question_2_answer}}?",
"answer"”: "{{sub_question_3_answer}}"
33
13
33

</wrong_json>
Your response:

{{
"question”: "What year was home brewing first allowed in the country where
Prince of Thieves, who titular character John is depicted alongside, was
made?",
"decomposed_questions”: {{
"1 {{
"sub_question”: "In which country was the film Prince of Thieves
made?",
"answer": "{{sub_question_1_answer}}"
13,
"2 {{
"sub_question”: "What is the country where home brewing was first
allowed?",
"answer": "{{sub_question_2_answer}}"”
13,
"3 {{
"sub_question”: "In what year was home brewing first allowed in {{
sub_question_2_answer}}?",
"answer"”: "{{sub_question_3_answer}}"
33
33}
33

Now your wrong_json information are as follows.
<wrong_json>

{wrong_json}

</wrong_json>

Your response:

Figure 10: Json Format Correct Prompt.

14

Self-Refine Prompt

You are assigned a question-answer correctness Judge task.
Your task is to judge whether the answers are correct based on the documents and
question.
the documents is wrap by <documents> and </documents>
Your answer only needs to contain the following format. No other content is
required.
- "evidence": the text that supports answering the question.Set to null if
documents and question have no correlation
- "correctness”: a string, either "right” or "wrong”, determines whether the
answer is correct based on evidence.
- "correct_answer"”: give the answer you think is correct based on evidence
if you think the origin answer is wrong; leave it as the origin answer
if you think the origin answer is correct;

There are some examples for you to refer to:

The question is: Who was married to Valerie Hobson?
The answer is: {{answer_example}}

<documents>

{{documents_example}}

</documents>

your response:

{{respose_example}}

Now, your question and documents are as follows.
<Question>: {question}

<Answer>: {answer}

<documents>: {documents}

</documents>

Your response:

\

Figure 11: Self-Refine Prompt.

15

Final Answer Inference Prompt

You are assigned a multi-hop question task.

Your mission is to use a list of single-hop sub_questions and their answers to
answer the multi-hop question task.

Your answer should be after <Answer> in JSON format with key "answer"” and its
value should be string.

Your <Answer> must be wrapped by " json and

The given sub_questions and answers will be embraced by <
sub_questions_and_answers> and </sub_questions_and_answers> tags. You can
refer to the sub_questions_and_answers to infer the answer of the question.
If can't infer the answer, answer "i don't know"” directly.

There are some examples for you to refer to:
<sub_questions_and_answers>
"decomposed_questions”:{{

"1 {f
"sub_question”: "Who is the performer of song Soldier (Neil Young Song)
on
"answer”: "Neil Young"
33,
2" {{
"sub_question”: "Which country is Neil Young from?",
"answer”: "Canadian"”
33}

33

</sub_questions_and_answers>

<Question>: Which country the performer of song Soldier (Neil Young Song) is
from?

<Answer>:

T Json

{{"answer"”: "Canada"}}

<sub_questions_and_answers>

"decomposed_questions"”: {{

"1
"sub_question”: "Who is the director of Charge It To Me",
"answer"”: "Roy William Neill"”

13,

"2": {{
"sub_question”: "Who is the director of Danger: Diabolik",
"answer"”: "Mario Bava"

13,

R
"sub_question”: "When was Roy William Neill born?",
"answer": "4 September 1887"

13,

"4": ({
"sub_question”: "When was Mario Bava born?",
"answer”: "31 July 1914"

33

"5 {{
"sub_question”: "Which of the two times 4 September 1887 and 31 July

1914 is earlier?”,

"answer": "4 September 1887"

33

13

</sub_questions_and_answers>

<Question>: Which film whose director is younger, Charge It To Me or Danger:
Diabolik?

<Answer>:

T json

{{"answer"”: "Charge It To Me"}}

Now your question and sub_questions_and_answers are as follows.
<sub_questions_and_answers>

{sub_questions_and_answers?}

</sub_questions_and_answers>

<Question>: {question}

<Answer >: 16

Figure 12: Final Answer Inference Prompt.

	Introduction
	Related Work
	Retrieval-augmented Generation
	Multi-hop Question Answering

	Method
	Question Decompose
	Iterative Retrieval with Self-Refine
	Integration

	Experiments
	Datasets
	Few-Shot Prompting
	Fine-tuning Details
	Baselines
	Evaluation Metrics
	Implementation Details

	Results and Analysis
	Main Results
	Analysis
	Ablation Experiments
	Strong Adaptablity to Constraints
	Generalizability in Downstream Tasks
	Flexibility and Simplicity in Implementation

	Conclusion
	Limitations
	Ethics Statement
	Lora Train details
	Model Deployment Detail
	Prompt Template

