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Abstract

Visual storytelling (VST) is the task of gener-001
ating a story paragraph that describes a given002
image sequence. Most existing storytelling ap-003
proaches have evaluated their models using tra-004
ditional natural language generation metrics005
like BLEU or CIDEr. However, such metrics006
based on n-gram matching tend to have poor007
correlation with human evaluation scores and008
do not explicitly consider other criteria nec-009
essary for storytelling such as sentence struc-010
ture or topic coherence. Moreover, a single011
score is not enough to assess a story as it does012
not inform us about what specific errors were013
made by the model. In this paper, we propose014
3 evaluation metrics sets that analyses which015
aspects we would look for in a good story: 1)016
visual grounding, 2) coherence, and 3) non-017
redundancy. We measure the reliability of our018
metric sets by analysing its correlation with hu-019
man judgement scores on a sample of machine020
stories obtained from 4 state-of-the-arts mod-021
els trained on the Visual Storytelling Dataset022
(VIST). Our metric sets outperforms other met-023
rics on human correlation, and could be served024
as a learning based evaluation metric set that is025
complementary to existing rule-based metrics.026

1 Introduction027

Visual storytelling (VST) is a natural language gen-028

eration (NLG) task that aims to automatically gen-029

erate a cohesive story given a sequence of images030

(Huang et al., 2016). The task is fundamental to031

the development of intelligent agents capable of032

understanding complex visual scenarios, and can033

be further applied to assist the visually impaired034

in understanding images on the web. Recently,035

progress has been made on designing network ar-036

chitectures to accomplish the VST task but little037

work has been done to explore new metrics that038

automatically evaluate and quantify the errors pro-039

duced by these systems. As to date, a majority of040

the past works on VST have used existing popular041

Figure 1: Example gold story found in the VIST dataset
versus machine output from 2 VST models and their
n-gram based metrics.

n-gram based metrics such as BLEU, METEOR, 042

ROUGE, CIDEr, and SPICE to evaluate their mod- 043

els (Wang et al., 2018; Kim et al., 2018; Hsu et al., 044

2019; Chen et al., 2021). However, it is known 045

that such metrics are unreliable for VST. Figure 1 046

shows two machine generated stories for a photo 047

sequence and their corresponding n-gram matching 048

based metrics (BLEU, CIDEr, METEOR, ROUGE- 049

L and SPICE). Evidently, the first candidate story 050

is more repetitive and lacks a narrative style but 051

achieves higher scores across a majority of the n- 052

gram based metrics in Figure 1. The second story 053

however, has greater word diversity and is more ex- 054

pressive through its use of phrases like ‘completely 055

in disrepair’. Relevant words like ‘trip’, ‘country- 056

side’ and ‘hills’ are also used but are not rewarded 057

since they are not mentioned in the gold story. 058

The low level of agreement between human 059

judgement and current automatic metrics may be 060

because such metrics were originally developed 061

to assess machine translation, summarization and 062

image captioning tasks (Sharif et al., 2018), which 063

are significantly different problems to VST. Specifi- 064
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cally, VST is a multimodal task that firstly requires:065

1) generating text relevant to the image content but066

unlike image captioning, there is less emphasis on067

describing relationships between objects and may068

contain concepts that are inferred from the image.069

It additionally needs to ensure that: 2) the story070

must be topically coherent, similar to how a human071

would tell a story in a social setting. Sentences072

should not sound disjointed e.g. ‘We went to the073

park. I grew up in Sydney’. And finally 3) avoids074

repetition which appears to be a common issue in075

current VST models. For instance, Candidate Story076

1 in Figure 1 exhibits inter-sentence repetition be-077

tween the first sentence and last sentence. We also078

find that some output stories may contain repetition079

within sentences (i.e. intra-sentence repetition) e.g.080

‘we had a good time and had a great time!’.081

Moreover, it is noted that open-ended text gen-082

eration tasks usually suffer from the one-to-many083

issue, whereby there are multiple plausible outputs084

for the same input which are not fully reflected in085

the reference sentences (Guan and Huang, 2020).086

This issue is even more prominent in the VST task087

as different individuals may tell significantly differ-088

ent stories and have diverse interpretations given089

the same image sequence. All these issues suggest090

that we require evaluation metrics that do not sim-091

ply rely on comparison with reference sentences.092

In addition, given that the VST task requires several093

aspects, one single metric is not sufficient to eval-094

uate a story and there is a need to design multiple095

interpretable metrics that each target a specific VST096

criteria. Hence, in this paper, we propose several097

unreferenced metrics for the VST task based on the098

three aforementioned criteria: 1) visual grounding,099

2) coherence, and 3) non-redundancy.100

To address criteria 1), we propose a learned met-101

ric to calculate relevance scores between nouns in102

the VST sentences with the bounding box regions103

in the images. We decide to focus on nouns as they104

provide the most visual information. Other words105

like adjectives and adverbs are difficult to ground106

and such words may differ significantly depending107

on the person writing the story. The second criteria108

which is story coherence requires that consecutive109

sentences flow and that each sentence is not just an110

isolated description of the image. Existing methods111

for measuring coherence have used next sentence112

prediction (NSP) to find the probability that a sen-113

tence comes after a preceding sentence (Hu et al.,114

2020). Inspired by this method, we fine-tune the115

ALBERT (Lan et al., 2019) model on story sen- 116

tences and build a sentence-order prediction (SOP) 117

model. Finally, to address criteria 3), we propose 118

an additional metric to explicitly measure inter- 119

sentence and intra-sentence repetition. 120

The contributions are summarized as follows: 121

1) We propose an interpretable and reference-free 122

metric that addresses 3 criteria required for VST - 123

visual grounding, coherence and non-redundancy. 124

2) We conduct human evaluation studies to assess 125

a sample of machine generated stories obtained 126

from 4 state-of-the arts VST models. 3) We test the 127

effectiveness of our proposed metrics by analyzing 128

its correlation with human scores and show that our 129

metrics outperform other existing metrics that are 130

commonly used for VST and NLG tasks. 131

2 Related Works 132

Natural Language Generation Metrics The most 133

popular NLG evaluation metrics are BLEU (Pa- 134

pineni et al., 2002), ROUGE (Lin, 2004), ME- 135

TEOR (Banerjee and Lavie, 2005), CIDEr (Vedan- 136

tam et al., 2015) and SPICE (Anderson et al., 2016). 137

All these metrics are widely used in evaluating im- 138

age captioning tasks (Anderson et al., 2018; Zhou 139

et al., 2020) and have also been predominantly 140

used in VST tasks (Wang et al., 2018; Hsu et al., 141

2019; Chen et al., 2021) due to the lack of metrics 142

designed for VST. While these metrics are com- 143

putationally efficient, they have limited ability in 144

accounting for synonym matches or phrase reorder- 145

ing. This poses a problem for many open-ended 146

text generation tasks like VST where different an- 147

notators may have slightly different (but still plausi- 148

ble) ways of describing the same image. To address 149

this, some metrics focus on comparing distance and 150

similarity between word embeddings such as Word 151

Mover’s Distance (Kusner et al., 2015), Mover- 152

Score (Zhao et al., 2019) and BERTScore (Zhang 153

et al., 2019). However, these metrics mentioned so 154

far still heavily rely on similarity with references, 155

potentially leading to bias for VST tasks as the ref- 156

erences may not fully cover the possible ways to 157

write a story for an image sequence. 158

Visual Grounding Metrics Past studies have 159

proposed examining the images in addition to hu- 160

man written references. Cui et al. (2018) trained 161

a binary classifier to discriminate between human 162

and machine captions using image and text repre- 163

sentations obtained from a CNN and RNN. TIGEr 164

(Jiang et al., 2019) employs the pretrained SCAN 165
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model (Lee et al., 2018) to calculate the text-to-166

image grounding scores and compares the rele-167

vance ranking and grounding weights distribution168

among image regions between the references and169

the candidate. Lee et al. (2020) later introduced170

ViLBERTScore which uses the same approach as171

BERTScore but utilizes the ViLBERT model (Lu172

et al., 2019) to retrieve image-conditioned token173

embeddings. However, we note that these methods174

are initially designed for evaluating image caption-175

ing systems. Hence, while they do consider the176

text-to-image similarity aspect, they do not explic-177

itly address the extra criteria required for VST such178

as story coherence. Moreover, such metrics still179

rely on reference sentences to some extent.180

Story Generation Metrics Language models181

like BERT (Devlin et al., 2018) trained with NSP182

and masked language modelling tasks can identify183

appropriate use of words and sentences and hence,184

may show promising results when applied to evalu-185

ating open-ended text generation. Guan and Huang186

(2020) proposed UNION, an unreferenced metric187

for scoring machine generated stories. They lever-188

age a BERT model trained with negative samples189

created by perturbing ground truth stories and pre-190

dicts a score representing how human-like a story191

is. They showed the effectiveness of BERT in iden-192

tifying stories with conflicting logic, repeated plots193

and incoherence. However, UNION purely evalu-194

ates the output text and cannot be applied to anal-195

yse the text-to-image relatedness required for the196

VST multimodal task. Additionally, a single score197

is outputted which is not informative enough to198

gauge what specific errors were made by the model.199

Moving to VST, Hu et al. (2020) designed reward200

functions to capture story quality for VST models201

that use a reinforcement learning framework based202

on 3 criteria: image relevance, coherence and ex-203

pressiveness. Image relevance is measured by n-204

gram precision of entities between candidate and205

reference sentences, coherence through BERT’s206

NSP task, and word diversity by computing BLEU207

scores between generated sentences.208

Inspired by this, we also analyze story quality209

from 3 similar perspectives 1) visual grounding, 2)210

coherence, and 3) non-redundancy. We attempt to211

extend the methods of Hsu et al. (2019), provide a212

reference-free approach and conduct a comprehen-213

sive analysis with human evaluation.214

3 Method 215

We describe our proposed metric in detail. Given 216

a machine story, we aim to output 3 scores that 217

explicitly evaluates the story based on 1) visual 218

grounding, 2) coherence, and 3) non-redundancy. 219

3.1 RoViST-VG: Visual Grounding Scorer 220

To detect the visual relationship between image 221

and text, we build a model that computes the sim- 222

ilarity between the nouns in the story sentences 223

with the bounding box regions in the images. We 224

focus specifically on nouns because despite the di- 225

verse range of words one can use when storytelling, 226

we notice that the main commonality among the 227

ground truth sentences is the noun mention. This is 228

most likely because nouns (in particular, tangible 229

nouns) tend to offer the most visual information 230

and is the common element that people would rec- 231

ognize when observing an image. An example of 232

this case is in Figure 2 where we can see that the 233

nouns ‘dart’ and ‘game’ tends to appear in multiple 234

gold sentences, even though each sentence is quite 235

different in structure. 236

Our visual grounding scorer is inspired by the 237

phrase localization task (Plummer et al., 2015) 238

which involves learning to align sentence entities 239

with image regions. We note that we could have 240

just employed typical image-text matching models 241

like SCAN (Lee et al., 2018) to calculate a similar- 242

ity score between image and text. However, such 243

models are trained on image captioning sentences 244

and do not explicitly focus on the more fine-grained 245

task of word-region alignment. Moreover, retrain- 246

ing these models with VIST images and whole 247

sentence pairs would be challenging as previously 248

mentioned, story sentences tend to differ signif- 249

icantly in semantics and structure due to human 250

imagination. This is in contrast to image captions 251

where ground truth sentences typically tend to be 252

similar to each other even across different human 253

annotators (e.g. see description in isolation sen- 254

tences in Figure 2). 255

Inspired by CLIP (Radford et al., 2021), we 256

create a model that learns the image region and 257

text embeddings such that the noun mention cor- 258

responding to an image region will have similar 259

vector representations in geometric space. Let Ii 260

be an image of a bounding box region and Ti be 261

the matching noun. For the image encoder, we fol- 262

low Radford et al. (2021) and leverage the Vision 263

Transformer (ViT) (Dosovitskiy et al., 2020) to first 264
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Figure 2: Example ground truth description in isolation
(dii) and story in sequence sentences (sis) sentences
corresponding to an image from the VIST dataset.

Algorithm 1 RoViST-VG
Input: 1)A mini-batch of image regions In with
shape (m× 3× 224× 224) where m is the batch
size, and the last 3 dimensions correspond to the
image channels, height and width respectively. 2)A
mini-batch of matching noun pairs Tn with shape
(m× 300) where 300 represents the dimensions of
the GLoVe vectors. Output: Symmetric loss for
the mini-batch.
Initialization: Pretrained ViT Model with linear
head for the image encoder, and a single linear
layer for the text encoder.

1: hn = VisionTransformer(In)
2: Ie = tanh(Wihn + bi) ▷ image embeddings;

shape = [m,1024]
3: Te = tanh(WtTn + bt) ▷ text embeddings;

shape = [m,1024]
4: logits = Te × ITe ▷ shape = [m, m]
5: Isim = Ie × ITe ▷ shape = [m, m]
6: Tsim = Te × T T

e ▷ shape = [m, m]
7: labels = (Isim + Tsim)/2 ▷ shape = [m, m]
8: Limage = cross_entropy_loss(labelsT , logitsT )
9: Ltext = cross_entropy_loss(labels, logits)

10: Lsymmetric = (Limage + Ltext)/2

extract the image features from Ii. An additional265

linear head is further added to project the features266

to a vector embedding of dimension 1024. For the267

text encoder, Ti is first converted to 300 dimen-268

sional GLoVe vectors (Pennington et al., 2014). If269

Ti is composed of more than one word, the GLoVe270

vectors of each token are simply averaged. These271

vector representations are then passed through a272

single linear layer to project the text features into273

the 1024-dimensional joint embedding space. We274

train the model in a contrastive manner to minimize275

the symmetric loss. The psuedocode for each batch276

iteration is provided in Algorithm 1.277

To compute the visual grounding score, we ex-278

tract all nouns from the output story sentences and279

the top 10 bounding box regions for each image in 280

the story based on the confidence scores generated 281

from Faster R-CNN (Ren et al., 2015). This results 282

in 50 regions for a 5-image story. Each extracted 283

noun and image region is fed through our trained 284

text and image encoder respectively to obtain the 285

image and text embeddings which we denote by Ie 286

and Te. For each noun, the cosine similarity (cos) 287

is calculated between its text embedding with all 288

other region image embeddings. It is noted that a 289

noun mention from a sentence can match with a 290

region from other images and not necessarily just 291

with regions from its corresponding image as we 292

find that words in story sentences may refer to con- 293

cepts in other images of the sequence. We then 294

use a greedy matching approach to obtain the max- 295

imum similarity score for each noun. Following 296

Zhang et al. (2019), we further experiment by multi- 297

plying the similarity score by the inverse document 298

frequency (idf) of the noun calculated from the cor- 299

pus. This is to put less emphasis on abstract nouns 300

that are not visually grounding but frequently occur 301

in stories (such as ‘time’ and ‘today’). Given N 302

stories, the idf score of a token Ti is: 303

idf(Ti) = log(
N

1 + df(Ti)
) (1) 304

where df(Ti) is the number of stories containing 305

token Ti. Finally, inspired by Lee et al. (2018), 306

a recall score is computed by using LogSumExp 307

(LSE) pooling: 308

SV G = log
|Te|∑
i=1

exp(idf(Te,i) max
Ie,j∈Ie

(cos(Te,i, Ie,j)))

(2) 309

For interpretability, one can optionally scale the 310

score between 0 and 1 using a shifted and scaled 311

version of the sigmoid function: 312

SV G(scaled) =
1

1 + exp (−0.5× SV G)
× 2− 1

(3) 313

3.2 RoViST-C: Coherence Scorer 314

To measure the story’s inter-sentence coherence, 315

we leverage the ALBERT model to perform sen- 316

tence order prediction (SOP) (Lan et al., 2019). The 317

SOP task is a binary classification task, whereby 318

positive samples are consecutive sentences while 319

negative samples are simply constructed by swap- 320

ping the two sentences around. This forces the 321
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model to primarily focus on learning coherence322

properties rather than topic prediction. We fine-323

tune the ALBERT model with adjacent story sen-324

tences extracted from the VIST and ROCStories325

dataset. In total, 822,920 training samples were326

created where 15% was used in the validation split.327

Let {si−1, si}Nn=1 denote the training data where328

si−1 and si are adjacent segments. The input se-329

quence fed into ALBERT is in the format sn =330

‘[CLS], si−1, [SEP], si, [SEP]’, where [CLS] and331

[SEP] are special tokens. Then, the pooled 1024-332

dimensional vector representation hn of the input333

sequence is obtained by the output of ALBERT:334

hn = ALBERT(sn) (4)335

To perform SOP, we add a task-specific linear336

layer on top of ALBERT to predict the probability337

that si follows si−1:338

p̂n = softmax(Wchn + bc) (5)339

where Wc and bc are the trainable weights and340

bias. For the loss function, we optimize the binary341

cross-entopy loss as follows:342

L = −pnlog(p̂n)− (1− pn)log(1− p̂n) (6)343

To obtain the final coherence score for each story,344

we compute p̂n for each adjacent sentence pair in345

the story and average the probabilities across all346

sentence pairs.347

3.3 RoViST-NR: Non-redundancy Scorer348

A common problem faced by system output sto-349

ries is redundancy of words in the form of whole350

sentences or phrases. While existing methods (Hu351

et al., 2020) for assessing word diversity and rep-352

etition do consider inter-sentence repetition, they353

do not address repetition within sentences. There-354

fore, to calculate the inter- and intra-sentence non-355

redundancy score, we propose calculating the Jac-356

card Similarity (JS) between and within sentences.357

The JS is defined as the intersection size divided by358

the union size of two sets (Singh and Singh, 2021).359

That is, in our problem, the intersection would be360

the number of co-occurring words between two361

texts, while the union is the total number of words362

in both texts. In particular, we compute the Jaccard363

Similarity with sentence ŷi and all its preceding364

sentences {ŷ1, ..., ŷi−1} as in Eq. 7. Here, C(ŷi)365

and C(ŷj) are the count of unique words in sen-366

tence ŷi and ŷj respectively. The inter-sentence367

repetition score is then just simply the average JS 368

scores across the
(
n
2

)
sentence pairs where n is the 369

number of sentences in the story. 370

JS(ŷi, ŷj) =
C(ŷi) ∩ C(ŷj)

C(ŷi) ∪ C(ŷj)
(7) 371

We also measure the intra-sentence redundancy 372

by first splitting each sentence into non-overlapping 373

n-grams and then calculating the JS score between 374

consecutive n-grams within sentences. The intra- 375

sentence repetition score for a story is then the 376

average JS scores across all consecutive n-gram 377

computations. Lastly, we take the mean of the final 378

inter- and intra-sentence score to obtain the final 379

repetition score for the story and subtract from 1. 380

The result is a score between 0 and 1 where a value 381

closer to 1 means that the story tends to contain 382

less redundancy. 383

4 Data 384

4.1 Supporting Datasets 385

VIST The Visual Storytelling Dataset (VIST) 386

dataset (Huang et al., 2016) consists of 10,117 387

Flickr albums and 210,819 unique images. Each 388

sample is one sequence of 5 photos selected from 389

the same album paired with a single human con- 390

structed story, where each story is comprised of 391

mostly one sentence per image. 392

ROCStories Corpora (Mostafazadeh et al., 2016) 393

is used as additional data along with VIST to train 394

the ALBERT model. It contains 98,161 stories 395

where each story consists of 5 sentences written by 396

humans after being given a prompt. 397

Flickr30K Entities (Plummer et al., 2015) is de- 398

rived from the Flickr30K dataset (Young et al., 399

2014), consisting of 31,783 images each matched 400

with 5 captions. The dataset links distinct sen- 401

tence entities (i.e. a noun/noun phrase) to image 402

bounding boxes, resulting in 70K unique entities 403

and 276K unique bounding boxes. We use the 404

Flickr30K Entities data to train our visual ground- 405

ing scorer. After filtering out stopwords from the 406

entity mention, we obtained 566K unique entity- 407

region pairs. 408

4.2 VST Models 409

We evaluate our proposed metric on the output sto- 410

ries produced by 4 state-of-the art VST models: 1) 411

AREL (Wang et al., 2018): adopts an inverse rein- 412

forcement learning approach trained adversarially. 413

The policy model is a CNN+GRU that generates 414
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sub-stories for each image, while the reward model415

is a CNN-based model designed to output the story416

reward. 2) GLACNet (Kim et al., 2018): com-417

bines both local and global attention. Image fea-418

tures are fed sequentially to a bi-LSTM where the419

output is a global representation of the entire story.420

This is concatenated with local image-specific fea-421

tures to create glocal vectors which are passed to a422

decoder for story generation. 3) KG-Story (Hsu423

et al., 2020): For each image, a word-form con-424

ceptual representation is created by predicting a425

set of terms which are then used to query Visual426

Genome (Krishna et al., 2017) and OpenIE (Pal427

et al., 2016) to identify links between sets of terms428

across images. Finally, a Transformer (Vaswani429

et al., 2017) takes in the term paths to decode the430

story. 4) MCSM+BART (Chen et al., 2021): im-431

age concepts and related concepts extracted from432

ConceptNet (Liu and Singh, 2004) are used as in-433

put for generating richer stories with BART (Lewis434

et al., 2020). To incorporate the most appropriate435

concepts, their Maximal Clique Selection Mod-436

ule model learns a correlation map, reflecting co-437

occurrence probabilities of all candidate concepts.438

5 Evaluation Setup1439

Evaluation Metrics To assess the performance for440

RoViST, we analyze its correlation with reliable441

human judgements by recruiting many responders442

(26) whereas related works (Guan and Huang,443

2020; Hu et al., 2020) have used 3-7 annotators.444

In total, the 26 responders analysed 400 machine445

generated sentences across 80 stories and 4446

models, including AREL, GLACNet, KG-Story447

and MCSM+BART. A Likert scale was used to448

score 3 different criteria for each story based on449

what we believe defines a good story - 1) the story450

is visually grounded, 2) sentences are natural451

sounding and topically coherent, and 3) there is452

no repeating plots within the story. Annotators453

were additionally asked to vote for which of the454

4 models produced the best story relating to the455

visual prompt based on no particular criteria. We456

follow existing literature and report the Spearman’s457

correlation ρ, Pearson’s correlation r and Kendall’s458

correlation τ .459

460

Baseline We select 11 baseline metrics to461

compare with our metric: BLEU-1,2,3,4 (Papineni462

et al., 2002), ROUGE-L (Lin, 2004), METEOR463

1The implementation details can be found in the Appendix

Figure 3: Average human scores for an example story
across 3 criteria for 4 different VST models. ‘Propor-
tion of votes’ refers to the percentage of voters who
voted that model’s story as the best out of the 4. Blue
highlighted words visually relate to the image.

(Banerjee and Lavie, 2005), CIDEr (Vedantam 464

et al., 2015), SPICE (Anderson et al., 2016), WMD 465

(Kusner et al., 2015), FBERT (F1-measure version 466

of BERTScore) (Zhang et al., 2019) and TIGEr 467

(Jiang et al., 2019). 468

6 Results 469

6.1 Human Scores versus Story Ranking 470

We first investigate whether there is any correlation 471

between the human scores for each 3 criteria and 472

the model that was voted as the best for each photo 473

sequence. For each photo sequence, we rank each 474

of the 4 models’ stories based on the proportion 475

of votes that it received. The correlations were 476

then calculated between the mean human scores 477

for each criteria and the model rankings, and the 478

average correlation coefficients were finally taken 479

across the unique stories to obtain the values in 480

Table 2. We also sum up the human scores across 481

the 3 criteria and measure its correlation with the 482

rankings to further analyze at an Overall level. 483

Interestingly, we find that sentence coherence 484

plays the most significant role when ranking sto- 485

ries whereas non-redundancy and visual grounding 486

are less important. Figure 3 provides an exam- 487

ple of this case where our human annotators pre- 488

ferred KG-Story and GLACNet over AREL which 489

was more visually grounding but less coherent- 490

sounding. We observe even stronger correlation 491

when we sum the 3 criteria scores, suggesting that 492

all 3 aspects combined can give better guidance 493

when judging a story as can be seen in Figure 3 494

where most of the votes went to MCSM+BART 495

which scored relatively well in all 3 areas. 496
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Grounding Coherence Non-redun Overall

ρ r τ ρ r τ ρ r τ ρ r τ

BLEU-1 0.233 0.209 0.146 0.045 0.035 0.028 0.016 -0.054 0.019 0.093 0.073 0.058
BLEU-2 0.306 0.295 0.209 0.046 0.045 0.030 -0.029 -0.166 -0.005 0.084 0.048 0.059
BLEU-3 0.314 0.314 0.209 0.107 0.143 0.074 -0.076 -0.188 -0.054 0.087 0.079 0.056
BLEU-4 0.280 0.221 0.183 0.107 0.066 0.068 -0.077 -0.224 -0.060 0.073 -0.012 0.040

ROUGE-L 0.287 0.274 0.192 0.187 0.152 0.122 -0.042 -0.152 -0.021 0.125 0.086 0.086
METEOR 0.412 0.392 0.272 0.271 0.238 0.199 0.201 0.057 0.138 0.353 0.295 0.242

CIDEr 0.332 0.201 0.238 0.186 0.094 0.130 0.011 -0.201 0.005 0.208 0.003 0.149
SPICE 0.353 0.345 0.240 0.043 0.059 0.025 0.018 -0.051 0.014 0.144 0.143 0.105
WMD 0.472 0.490 0.337 0.186 0.235 0.129 0.106 0.015 0.076 0.262 0.312 0.183
FBERT 0.221 0.216 0.149 0.272 0.311 0.189 0.087 0.028 0.062 0.213 0.227 0.137
TIGEr 0.519 0.504 0.354 -0.03 -0.089 -0.027 -0.224 -0.325 -0.147 0.010 -0.005 0.010

RoViST(-VG/C/NR) 0.509 0.460 0.365 0.446 0.456 0.308 0.531 0.736 0.397 0.554 0.579 0.387

Table 1: Criteria level Spearman’s ρ, Pearson’s r and Kendall’s τ correlations between automatic metrics and mean
of human scores. Correlations for Grounding, Coherence, Non-redun and Overall are measured with RoViST-VG,
RoViST-C, RoViST-NR and RoViST respectively.

ρ r τ

Grounding 0.423 0.434 0.400
Coherence 0.663 0.698 0.618
Non-redun 0.379 0.484 0.328

Overall 0.754 0.769 0.676

Table 2: Criteria level Spearman’s ρ, Pearson’s r and
Kendall’s τ between human scores and story ranking.

6.2 Correlation Analysis with Human Scores497

Table 1 displays the correlation between the met-498

rics and the mean human scores. The results were499

analyzed at a criteria level by examining correla-500

tions between each criteria’s scores with our met-501

ric which targets that criteria. We also analyze502

the Overall scores by summing up the 3 criteria503

scores and measuring its correlation with RoViST504

which represents the sum of the scores produced505

by RoViST-VG, RoViST-C and RoViST-NR.506

With the grounding correlations, RoViST-VG507

outperforms the baselines for Kendall’s correla-508

tion. However, it is slightly outperformed by TIGEr509

when comparing Spearman’s correlation and by510

TIGEr and WMD when comparing Pearson’s cor-511

relation. We note that all baseline metrics are512

reference-based and therefore, a likely explanation513

for the moderate correlations for even simple met-514

rics like METEOR is that human references can515

already provide a good guideline when assessing516

text-to-image relatedness. Moreover, we hypoth-517

esize that image captioning metrics will perform518

well for the visual grounding aspect in the case519

when the model happens to output a sentence that520

sounds like an image caption. However, unlike im-521

age captioning, we emphasize that just having high522

correlation between image objects and text descrip-523

Figure 4: Kendall (left) and Spearman (right) correlation
vs. Number of References.

tions does not necessarily mean a good story as we 524

highlighted in the previous section. Examining the 525

coherence and non-redundancy aspect, we observe 526

that a majority of the baselines correlate poorly. 527

Conversely, our RoViST-C and RoViST-NR metric 528

designed to specifically target these criteria gener- 529

ated significantly higher correlations. When com- 530

paring at the Overall level, we also achieved no- 531

ticeably better results in terms of ρ, r and τ . 532

6.3 Changing Number of References 533

Figure 4 shows how the Spearman and Kendall 534

correlations for some of the metrics vary with dif- 535

ferent number of human-written references versus 536

our reference-less metric. The stories selected for 537

our analysis each have a different number of ref- 538

erence stories ranging from 1 to 4. As there were 539

not many stories with 4 references, we select those 540

stories that had 3 references, resulting in 60 stories 541

with 300 sentences for analysis. We then compute 542

the correlations with the human judgement across 543

the metrics using 1,2, and 3 references. 544

It is evident that the results from the reference- 545

based metrics fluctuate significantly according to 546

the number of references. However, the trend is 547

unclear. Increasing the number of references from 548

7



Figure 5: Predicted coherence probabilities from
RoViST-C for 4 VST models.

1 to 2 appears to improve most of the correlations549

for the baseline metrics. This may be because hav-550

ing more references can better capture allowable551

variations in storytelling compared to a single refer-552

ence. However, incorporating 3 references actually553

worsens the performance for some of the metrics554

like BLEU and CIDEr. A possible explanation555

could be that the additional reference added may556

have caused bias for some metrics. In particular,557

n-gram based metrics like BLEU and ROUGE fo-558

cus on n-gram overlap. Thus, it is possible that the559

additional reference introduced may have a high560

n-gram overlap with the candidate but for unimpor-561

tant filler words like ‘the’ or ‘and’. Our RoViST562

metric on the other hand, alleviates this issue by563

first being a reference-free metric and secondly, by564

only focusing on important words (nouns) in the565

candidate story via our visual grounding scorer.566

It is also noted that examining more amount of567

references could potentially reveal a better trend.568

However, this is challenging as the maximum569

amount of references in the VIST dataset is 5 with570

82.50% of the stories having 3 or less. Moreover,571

collecting multiple human reference stories is an572

expensive process in most cases.573

6.4 Qualitative Analysis574

We conduct qualitative analysis on our visual575

grounding scorer (RoViST-VG) and coherence576

scorer (RoViST-C).577

RoViST-VG Figure 6 in Appendix A displays an578

example gold story with noun mentions highlighted579

in blue, followed by the corresponding bounding580

box regions that gave the highest similarity score581

retrieved by our RoViST-VG model. We observe582

that the model performs well at matching a majority583

of the nouns. However, words that are less visu- 584

ally grounding like ‘corner’ or intangible nouns 585

such as ‘visit’ are extremely challenging to ground. 586

Consequently, RoViST-VG can sometimes retrieve 587

a region that is not closely related for these types 588

of words. This also occurs for words that are men- 589

tioned in the story but not explicitly shown in the 590

images like the word ‘photos’ in Example Story 2. 591

A potential problem of this may be the presence 592

of false positives if a story tends to mention many 593

non-visual entities. This could lead to a higher 594

grounding score compared to a story that only men- 595

tions a few entities that are visually grounded. Nev- 596

ertheless, our model can still serve as guidance 597

for analyzing how visually detailed a story is and 598

can also reflect how many related entities a story 599

mentions. 600

RoViST-C The qualititive results for 4 example 601

machine stories is displayed in Figure 5. Notice- 602

ably, RoViST-C tends to assign higher probabil- 603

ities to sentences that flow. These sentences do 604

not necessarily need to be about the same topic. 605

For instance, sentence 2 and 3 in AREL’s story 606

each have a different topic focus but the sentence 607

transition is given a 0.90 coherence score as they 608

follow a narrative style. Conversely, consecutive 609

sentences with similar topics but are incoherent 610

can be given low scores such as sentences 4-5 from 611

KG-Story. It is clear that training ALBERT with 612

sentence order prediction allows the model to cap- 613

ture inter-sentence coherence and is not just limited 614

to modelling topic similarity across sentences. 615

7 Conclusion 616

We propose RoViST, a metric for evaluating VST 617

tasks on 3 aspects: visual grounding, coherence and 618

non-redundancy. RoViST correlates well with hu- 619

man judgement, outperforming other metrics when 620

comparing the coherence and non-redundancy cri- 621

teria as well as when combining all 3 criteria. 622

While some existing metrics slightly outperform 623

our method on visual grounding, we note that 624

image-to-text similarity is just one aspect of VST 625

and this aspect alone is insufficient in defining 626

a good story. Unlike other metrics, RoViST is 627

reference-free and hence, robust to the number of 628

references which are costly to obtain for VST. It 629

is also interpretable and can be used to gauge out 630

where the model is underperforming. We hope that 631

RoViST provides preliminary insight into future 632

work on developing VST models and evaluations. 633
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A RoViST-VG Example Output843

Figure 6 shows the retrieved regions from the844

RoViST-VG model for an example gold story845

(top) and a machine-story generated from the846

MCSM+BART model (bottom). The blue high-847

lighted words are the nouns while red highlighted848

words indicate words that do not explicitly appear849

in the image sequence or are less visually ground-850

ing words.851

B Implementation Details852

RoViST-VG We use the Adam optimizer (Kingma853

and Ba, 2014) with a 0.00001 weight decay. The854

learning rate was initially set to 0.00005 and was855

reduced by 5% with each consecutive epoch. For856

the ViT model, we use the ‘vit-base-patch16-224’857

style configuration which outputs image features as858

a 768 dimensional vector. Further, the linear layer859

used to project the text and embedding features to860

the joint embedding space (of dimension 1024)861

uses a tanh activation function. No normalization862

of the image and text embeddings was done during863

the training process as we did not find any benefit864

from doing this. Finally, we set the mini-batch865

size to 64 and use early stopping to cease training866

after the validation loss fails to improve for 3 867

consecutive epochs. We note that 85% and 15% 868

of the data was used in the training and validation 869

set respectively. The model converged in 3 epochs, 870

taking approximately 12 hours with a Nvidia Tesla 871

P100 GPU. 872

873

RoViST-C For ALBERT, we use the ‘albert-large- 874

v1’ configuration and the Adam optimizer with a 875

0.00001 weight decay for training. The learning 876

rate was 0.00001 which we schedule to reduce by 877

5% every epoch. Additionally, the batch size was 878

32 and a dropout layer with 40% probability was 879

placed before the final linear layer. Early stopping 880

was employed after the validation loss failed to 881

improve for 5 epochs. We note that 85% and 15% 882

of the data was used in the training and validation 883

set respectively. In total, we trained the model 884

for 5 epochs, taking 14 hours with a Nvidia Tesla 885

P100 GPU. 886

887

RoViST-NR For assessing intra-sentence 888

non-redundancy, n-grams of size 4 were used as 889

we found that repetition of words within sentences 890

usually occurred in fours. 891

Figure 6: Retrieved regions from RoViST-VG for an example gold story (top) and machine generated story (bottom).
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C Human Evaluation Survey892

Figure 7 shows the survey instructions used in the human evaluation study and the format of the survey893

questions. Participants recruited were volunteers from a variety of age groups (20-60 years old), education894

level and gender (10 female, 16 male).895

Figure 7: Survey instructions and form format for the human evaluation study.
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