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Abstract

Deep neural networks suffer from critical vulnerabilities regarding robustness, which limits
their exploitation in many real-world applications. In particular, a serious concern is their
inability to defend against adversarial attacks. Although the research community has devel-
oped a large number of effective attacks, the detection problem has received little attention.
Existing detection methods rely on either additional training or specific heuristics at the risk
of overfitting. Moreover, they have mainly focused on ResNet architectures, while trans-
formers, which are state-of-the-art for vision tasks, have yet to be properly investigated. In
this paper, we overcome these limitations by introducing APPROVED, a simple unsupervised
detection method for transformer architectures. It leverages the information available in
the logit layer and computes a similarity score with respect to the training distribution.
This is accomplished using a data depth that is: (i) computationally efficient; and (ii) non-
differentiable, making it harder for gradient-based adversaries to craft malicious samples.
Our extensive experiments show that APPROVED consistently outperforms previous detectors
on CIFAR10, CIFAR100, and Tiny ImageNet.

1 Introduction

Recent years have seen a rapid development of Deep Neural Networks (DNNs), which have led to a significant
improvement over previous state-of-the-art methods (SOTA) in numerous decision-making tasks. However,
together with this growth, concerns have been raised about the potential failures of deep learning systems,
which limit their large-scale adoption (Alves et al., 2018; Johnson, 2018; Subbaswamy & Saria, 2020). In
Computer Vision, a particular source of concern is the existence of adversarial attacks (Szegedy et al., 2014),
which are samples created by adding to the original (clean) image a well-designed additive perturbation,
imperceptible to human eyes, with the goal of fooling a given classifier. The vulnerability of DNNs to such
kinds of attacks limits their deployment in safety-critical systems as in aviation safety management (Ali
et al., 2020), health monitoring systems (Leibig et al., 2017; Meinke & Hein, 2020) or in autonomous driv-
ing (Bojarski et al., 2016; Guo et al., 2017). Therefore, it is crucial to deploy a proper strategy to defend
against adversarial attacks (Amodei et al., 2016).

In this context, the task of distinguishing adversarial samples from clean ones is becoming increasingly
challenging as developing new attacks is getting more attention from the community (Gao et al., 2021; Wang
et al., 2021a; Naseer et al., 2021; Duan et al., 2020; Zhao et al., 2020; Lin et al., 2019; Deng & Karam,
2020a;b; Wu et al., 2020b; Croce & Hein, 2020a; Jia et al., 2020; Dong et al., 2019). Inspired by the concept
of rejection channels (Chow, 1957), which was proposed over 60 years ago for the character recognition
problem, one way to address adversarial attacks is to construct a detector-based rejection strategy. Its
objective is to discriminate malicious samples from clean ones, which implies discarding samples detected
as adversarial. Research in this area focuses on both supervised and unsupervised approaches (Aldahdooh
et al., 2021c). The supervised approaches rely on features extracted from adversarial examples generated
according to one or more attacks (Kherchouche et al., 2020; Feinman et al., 2017; Ma et al., 2018); the
unsupervised ones, instead, do not rely on prior knowledge of attacks and, in general, only learn from clean
data at the time of training (Xu et al., 2018; Raghuram, 2021).
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This work focuses on the unsupervised scenario, which is often a reasonable approach to real-world use
cases. We model the adversarial detection problem as an anomaly detection framework (Breunig et al.,
2000; Schölkopf et al., 2001; Liu et al., 2008; Staerman et al., 2019; 2020; Chandola et al., 2009), where the
aim is to identify abnormal observations without seeing them during training. In this context, statistical
tools called data depths are natural similarity scores. Data depths have a simple geometric interpretation
as they provide center-outward ordering of points with respect to a probability distribution (Tukey, 1975;
Zuo & Serfling, 2000). Geometrically speaking, the data depths measure how deep a sample is in a given
distribution. Although data depths have received attention from the statistical community, they remain
overlooked by the machine learning community.

Contributions. Our contributions can be summarized as follows:

1. Building on novel tools: data depths. Our first contribution is to introduce APPROVED, A simPle
unsuPeRvised method fOr adVersarial imagE Detection. Given an input, APPROVED considers its embedding
in the last layer of the pre-trained classifier and computes the depth of the sample w.r.t the training proba-
bility distribution. The deeper it is, the less likely it is to be adversarial. Contrarily to existing methods that
involve additional networks training (Raghuram, 2021) or heavily rely on opaque feature engineering (Xu
et al., 2018), APPROVED is computationally efficient and has a simple geometrical interpretation. Moreover,
data depths’ non-differentiability makes it harder for gradient-based attackers to target APPROVED.

2. A truly upgraded experimental setting. Motivated by practical considerations which are different
from previous works (Kherchouche et al., 2020; Xu et al., 2018; Meng & Chen, 2017; Ma et al., 2018; Feinman
et al., 2017; Raghuram, 2021) focusing on ResNets (He et al., 2016), we choose to benchmark APPROVED on
vision transformers models (Dosovitskiy et al., 2021; Tolstikhin et al., 2021; Steiner et al., 2021; Chen
et al., 2021; Zhai et al., 2022). Indeed, such networks achieve state-of-the-art results on several visual tasks,
including object detection (He et al., 2021), image classification (Wang et al., 2021b) and generation (Parmar
et al., 2018), largely outperforming ResNets. Moreover, Vision Transformers are becoming increasingly
important as they can be scaled up while retaining the benefits of scale (Dehghani et al., 2023). Interestingly,
we empirically observe that transformers behave differently from ResNets, which justifies the need to develop
detection techniques, such as APPROVED, that leverage the specific features of transformers’ architectures.
Moreover, we test our detection method on a wide range of attack mechanisms to avoid overfitting on a
specific attack.

3. Ensuring reproducibility. We provide the open-source code of our method, attacks, and baseline to
ensure reproducibility and reduce future research computation and coding overhead.

Organization of the paper. The paper is organized as follows. In Sec. 2, we review detection methods
along with attack mechanisms. In Sec. 3, we introduce our detector APPROVED and focus on describing
the data depth on which it relies. In Sec. 4, we study the performance of adversarial attacks on vision
transformers and give insights into models’ behavior under threat. In Sec. 5, we evaluate APPROVED through
numerical experiments, and concluding remarks are relegated to Sec. 6.

2 Background and Related Work

Notations. Let us consider the classical supervised learning problem where x P X Ď Rd denotes the input
sample in the space X , and y P Y “ t1, . . . , Cu denotes its associated label. The unknown data distribution
is denoted by pXY . The training dataset D “ tpxi, yiqun

i“1 is defined as n ě 1 independent identically
distributed (i.i.d.) realizations of pXY . Consider Dc “ tpxi, yiq P D : yi “ cu, the training data for a given
class c P Y. We define the empirical training distribution for the class c at layer ℓ as pℓ

c “ 1
|Dc|

ř

xPDc
δfℓ

θ
pxq

where δu is the dirac mass at point u.

Let f ℓ
θ : X Ñ Rdℓ with ℓ P t1, . . . , Lu, denote the output of the ℓ-th layer of the DNN, where dℓ is the

dimension of the latent space induced by the ℓ-th layer. The class prediction is obtained from the L-th layer
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softmax output as follows:

fL
θ pxq ≜ arg max

cPY
qθ pc|xq with qθ p¨|xq “ softmaxpfL´1

θ pxqq.

2.1 Review of attack mechanisms

The existence of adversarial examples and their capability to lure a deep neural network have been first
introduced in Szegedy et al. (2014). The authors define the adversarial generation problem as follows:

x1 “ arg min
x1PRd : ∥x1´x∥păε

∥x1 ´ x∥p s.t. fL
θ px1q ‰ y, (1)

where y is the true label associated to a natural sample x P X being modified, ∥¨∥p is the Lp-norm operator,
and ε is the maximal allowed perturbation.

Multiple techniques have since been crafted to solve this problem. They can be divided into two main groups
of attack mechanisms depending on the knowledge they have of the DNN model: whitebox and blackbox
attacks. The former has full access to the model, its weights, and gradients, while the latter can only rely
on queries.

Carlini & Wagner’s (CW; Carlini & Wagner, 2017b) attack is among the strongest whitebox attacks devel-
oped yet. It attempts to solve the adversarial problem in Eq. (1) by regularizing the minimization of the
perturbation norm by a surrogate of the misclassification constraint. DeepFool (DF; Moosavi-Dezfooli et al.,
2016) is an iterative method that solves a locally linearized version of the adversarial problem and takes a
step in that direction.

The authors of Goodfellow et al. (2014) relaxed the problem as follows:

x1 “ arg max
x1PRd : ∥x1´x∥păε

Lpx, x1; θq, (2)

where Lpx, x1; θq is the objective of the attacker, which is a surrogate of the misclassification constraint,
and propose the Fast Gradient Sign Method (FGSM) that approximates the solution of the relaxed problem
in Eq. (2) by taking one step in the direction of the sign of the gradient of the attacker’s objective w.r.t. the
input. Basic Iterative Method (BIM; Kurakin et al., 2018) and Projected Gradient Descent (PGD; Madry
et al., 2018) are two iterative extensions of the FGSM algorithm. Their main difference relies on the initial-
ization of the attack algorithm, i.e., while BIM initializes the adversarial examples to the original samples,
PGD adds a random uniform noise to it. Although created for L8-norm constraints, these three methods
can be extended to any Lp-norm constraint.

To overcome the absence of knowledge about the model to attack, Hop Skip Jump (HOP; Chen et al., 2020)
tries to estimate the model’s gradient through queries. Square Attack (SA; Andriushchenko et al., 2020) is
based on random searches for a perturbation. If the perturbation doesn’t increase the attacker’s objective,
it is discarded. Finally, Spatial Transformation Attack (STA; Engstrom et al., 2019) rotates and translates
the original samples to fool the model.

While AutoAttack (Croce & Hein, 2020b) is a state-of-the-art benchmark for testing robust classifiers, we
believe it is not the most appropriate fit for benchmarking adversarial attack detectors. It is worth noting
that AutoAttack is composed of four different attacks, two of which are slightly modified versions of the
PGD (A-PGD (Croce & Hein, 2020b)) algorithm that we consider, another one is a slightly modified version
of DF (FAB (Croce & Hein, 2020a)), and the final one is Square Attack (Andriushchenko et al., 2020).
Furthermore, AutoAttack is based on the worst-case scenario, meaning that if one attack is successful for
a specific sample, the others will not be considered. Since our underlying classifier is defenseless, PGD is
already strong enough to attack almost every sample. Therefore, AutoAttack will end up being just A-PGD.
Thus, evaluating each attack separately, as we did, will provide a better sense of security than considering
AutoAttack directly.
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2.2 Review of detection methods

Defending methods against adversarial attacks have been widely studied for classical CNNs (Madry et al.,
2018; Zhang et al., 2019; Alayrac et al., 2019; Wang et al., 2019; Hendrycks et al., 2019; Rice et al., 2020;
Atzmon et al., 2019; Huang et al., 2020; Carmon et al., 2019; Wu et al., 2020a). Whereas a few works have
focused on studying the robustness of vision transformers to adversarial samples (Aldahdooh et al., 2021a;
Benz et al., 2021; Mahmood et al., 2021). Meanwhile, to protect adversarial attacks from disrupting DNNs’
functioning, it is possible to craft detectors to ensure that the sample can be trusted.

Building a detector falls down to finding a scoring function s : Rd Ñ R and a threshold γ P R to build a
binary rule g : Rd Ñ t0, 1u. For a given test sample x P Rd,

gpxq “ Itspxq ą γu “

#

1 if spxq ą γ,

0 if spxq ď γ.

If s is an anomaly score, gpxq “ 0 implies that x is considered as ‘natural’, i.e., sampled from pXY , and
gpxq “ 1 implies that x is considered as ‘adversarial’, i.e., perturbed, and if s is a similarity score, the
opposite decision is made.

A detection method can act on the model to be protected by modifying its training procedure using tools
such as reverse cross-entropy (Pang et al., 2018) or the rejection option (Sotgiu et al., 2020; Aldahdooh
et al., 2021b). In that case, both the detector and the model are trained jointly. Those methods are usually
vulnerable to changes in attack mechanisms; thus, they need global re-training if a modification of the
detector is introduced. On the other hand, it is also possible to craft detectors on top of a fixed pre-trained
model. Those methods can be divided into two main categories: supervised methods, where the detector
knows the attack that will be perpetrated, and unsupervised methods, where the detector can only rely on
clean samples, which is not desired in practice.

Generally, supervised methods use simple machine learning algorithms (e.g., SVM or a logistic regressor)
to distinguish between natural and adversarial examples. The effectiveness of such methods heavily relies
on natural and adversarial feature extraction. They can be extracted directly from the network’s layers
(Lu et al., 2017; Carrara et al., 2018; Metzen et al., 2017), or using statistical tools (e.g., maximum mean
discrepancy (Grosse et al., 2017), PCA (Li & Li, 2017), kernel density estimation (Feinman et al., 2017),
local intrinsic dimensionality (Ma et al., 2018), model uncertainty (Feinman et al., 2017) or natural scene
statistics (Kherchouche et al., 2020)). Supervised methods, which heavily depend on the knowledge about
the perpetrated attack, tend to overfit that attack mechanism and usually generalize poorly.

Unsupervised methods do not assume any knowledge of the attacker. Indeed, new attack mechanisms are
crafted yearly, and it is realistic to assume knowledge about the attacker. To overcome that absence of
prior knowledge about the attacker, unsupervised methods can only rely on natural samples. The features
extraction relies on different techniques, such as feature squeezing (Xu et al., 2018), adaptive noise, Liang
et al. (2021), using denoising autoencoders (Meng & Chen, 2017), network invariant (Ma et al., 2019) or
training an auxiliary model (Sotgiu et al., 2020; Aldahdooh et al., 2021b; Zheng & Hong, 2018). Raghuram
(2021) uses dimension reduction, kNN, and layer aggregation to distinguish between natural and adversarial
samples. In this paper, we only focus on unsupervised methods that cannot act on the model to be protected.

While effective against attack without knowledge about the defense, most detection methods, supervised
and unsupervised, have their performances close to 0 when we allow the attacker to know about the defense
mechanisms, i.e., under adaptive attacks (Carlini & Wagner, 2017a; Athalye et al., 2018; Tramer et al., 2020).
Therefore, we have to craft methods that do not collapse under such specific attacks.

3 Our Proposed Detector

3.1 Background on data depth

The notion of data depth goes back to John Tukey in 1975, who introduced the halfspace depth (Tukey,
1975). Data depth functions are useful nonparametric statistics allowing to rank elements of a multivariate
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space Rd w.r.t. a probability distribution (or a dataset). Given a random variable Z which follows the
distribution pZ , a data depth can be defined as:

D : Rd ˆ PpRdq ÝÑ r0, 1s ,
pz, pZq ÞÝÑ Dpz, pZq.

The higher the value of the depth function, the deeper the element is in the reference distribution. Various
data depths have been introduced over the year (see Chapter 2 of Staerman (2022) for a survey), including
halfspace depth (Tukey, 1975), the simplicial depth (Liu, 1990), the projection depth (Liu, 1992) or the
zonoid depth (Koshevoy & Mosler, 1997). Despite their applications in statistics and machine learning
(e.g., regression (Rousseeuw & Hubert, 1999; Hallin et al., 2010), classification (Mozharovskyi et al., 2015),
automatic text evaluation (Staerman et al., 2021b) or anomaly detection (Serfling, 2006; Rousseeuw &
Hubert, 2018; Staerman et al., 2020; 2022)) the use of data depth with representation models, and more
generally to deep learning, remains overlooked by the community. The halfspace depth is the first and the
most studied depth in the literature, probably due to its appealing properties (Donoho & Gasko, 1992; Zuo
& Serfling, 2000) as well as its connections with univariate quantiles. However, it suffers from computational
burden in practice (Rousseeuw & Struyf, 1998; Dyckerhoff & Mozharovskyi, 2016). Indeed, it requires
solving an optimization problem over the unit hypersphere of a non-differentiable quantity. To remedy
this drawback, Ramsay et al. (2019) introduced the Integrated Rank-Weighted (IRW) depth (see also Chen
et al., 2015 and Staerman et al., 2021a), which involves an expectation as an alternative to the infimum over
the unit hypersphere of the halfspace depth, making it easier to compute. The IRW depth is scaled and
translation invariant and has been successfully applied to anomaly detection (Chen et al., 2015; Staerman
et al., 2021a), making it a good candidate for our purposes. Formally, the IRW depth is defined as:

DIRWpz, pZq “

ż

Sd´1
min tFu pxu, zyq , 1 ´ Fu pxu, zyqu du,

where the unit hypersphere is denoted as Sd´1 and Fuptq “ Ppxu, Zy ď tq. A Monte-Carlo scheme is used
to approximate the expectation by empirical means. Given a training dataset Sn “ tz1, . . . , znu following
pZ , denotes uk P Sd´1, the empirical version of the IRW depth, which can be computed in Opnprojndq and
is then linear in all of its parameters, is defined as:

rDMC
IRWpz, Snq “

1
nproj

nproj
ÿ

k“1
min

! 1
n

n
ÿ

i“1
Itxuk,zi´zyď0u,

1
n

n
ÿ

i“1
Itxuk,zi´zyą0u

)

. (3)

3.2 APPROVED: Our depth-based detector

Intuition. Our detector tries to answer this simple question: can we find a metric that will be able to
distinguish between natural and arbitrary adversarial samples? At the logit layer, we want to compare the
new input to the training samples of its predicted class to measure whether the new sample is behaving as
expected. Data depths, particularly the IRW depth, are serious candidates as they measure the ‘distance’
between a given new input to the training probability distribution.

APPROVED in a nutshell. To detect whether a given model fθ can trust a new input x, APPROVED will
perform three steps:

1. Logits computation. For an new input x, APPROVED first require to extract the logits (i.e., fL´1
θ pxq)

from the pretrained classifier.

2. Similarity score computation. APPROVED relies on the IRW depth score DIRWpfL´1
θ pxq, pL´1

ŷ q,
between pL´1

ŷ , the training distribution of the predicted class ŷ “ fL
θ pxq at the logit layer, and

fL´1
θ pxq, using Algo. 1 in Appendix B to evaluate Eq. (3).

3. Thresholding. For a given threshold γ, the test input sample x is detected as clean if
DIRWpfL´1

θ pxq, pL´1
ŷ q ą γ, otherwise, it is considered as adversarial. A classical way to select γ

is by selecting a certain number of training samples the detector can wrongfully detect.
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3.3 Comparison with existing detectors

We benchmark our approach with two unsupervised detection methods: FS and JTLA. We chose these
baselines because they are unsupervised and do not modify the model to protect. We could consider NIC (Ma
& Liu, 2019), but extracting features at each layer is computationally expensive.

The Feature Squeezing method (FS; Xu et al., 2018). It computes the feature squeezing of the input,
extracts its prediction, and compares it to the original prediction. The further away they are, the more likely
the input is adversarial. In practice, four versions of the input are needed: the original input, a low-precision
version, a median-filtered version, and a denoising-filtered version. One inference on the model is required
for each of the four inputs. Later, the maximal L1 difference between the original prediction and each of the
other three is picked. FS is, therefore, parameter-free and does not require training. However, the required
time to extract the essential features and the memory needed to store all the input modifications and their
prediction are quite high.

Joint statistical Testing across DNN Layers for Anomalies (JTLA; Raghuram, 2021). This
method is composed of four different steps. The first one consists of computing test statistics for each layer
of the model. The goal is to determine how abnormal the sample is compared to a normal distribution (i.e.,
the training distribution). To do so, for each layer, a k-Neirest Neighbors (kNN) is trained on the training
sample, then a multinomial likelihood ratio test (RLT) is computed on each class count of the kNN the
output of the new sample to test. The second step consists of normalizing the previously obtained RLT
values for each layer. Later, an aggregation step is performed to combine the score for each class and each
layer to output a single score. Finally, a decision is taken according to a specific threshold. While this
method is parameter-free, it does require training a kNN for each layer of the model, which significantly
increases the necessary memory and time.

APPROVED, similar to FS and contrary to JTLA, is parameter-free and does not require training time. Con-
trary to FS, it only requires one inference on the model to extract the logits of the input. It is, therefore, less
computationally and time-consuming. The summary of computational time and resources needed to deploy
each detection method is provided in Appendix D. Finally, since data depths are non-differentiable, it is not
straightforward for gradient-based attacks with full access to the detection method to attack APPROVED.

Table 1: ViT-B accuracy for each dataset

Model Dataset Acc (%)
ViT-B CIFAR10 98.7

CIFAR100 92.4
Tiny ImageNet 86.4

Table 2: ViT-L accuracy for each dataset

Model Dataset Acc (%)
ViT-L CIFAR10 98.9

CIFAR100 92.4
Tiny ImageNet 85.7

4 Adversarial Attacks on Vision Transformers (ViT)

In the following, we provide insights into the behavior of vision transformers under the threat of adversarial
attacks, along with a comparison to the classically used ResNets models.

4.1 Set-Up

Datasets and classifiers. We conducted our study on two different pre-trained Vision Transformers: a
ViT-B and a ViT-L. We rely on three widely used vision datasets: CIFAR10 (Krizhevsky, 2009), CIFAR100,
and Tiny ImageNet (Tiny; Jiao et al., 2019). Training details can be found in Appendix A.
Performance measures. We use two different metrics to compare the different detection methods:
AUROCÒ: Area Under the Receiver Operating Characteristic curve (Davis & Goadrich, 2006). It represents
the relation between True Positive Rates (TPR), i.e., the percentage of perturbed samples detected as
adversarial, and False Positive Rates (FPR), i.e., the percentage of clean samples detected as adversarial.
The higher the AUROCÒ is, the better the detector’s performances are.
FPRÓ90%: False Positive Rate at 90% True Positive Rate. It represents the number of natural samples
detected as adversarial when 90% of the attacked samples are detected. Lower is better.
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Remark. We discard the perturbed samples that do not fool the underlying classifier. Indeed, detecting a
sample that does not perturb the classifier’s functioning as natural or adversarial is a valid answer.
Attacks. For the experiments, we will evaluate the different detection methods on the attacks presented in
Sec. 2.1. Under L1-norm constraint, we craft attacks following PGD1 scheme. For the L2-norm constraint,
we consider PGD2, DF and HOP. Under L8-norm constraint, we study PGD8, BIM and FGSM attacks,
CW8 and SA. Finally, we create STA attacks, which are not subject to a norm constraint. The values
of the maximally allowed perturbation are discussed in the next section. There are multiple definitions of
adversarial attacks. While some definitions require attacks to be invisible to the human eye, others, such as
DeepFool (Moosavi-Dezfooli et al., 2016), FAB (Croce & Hein, 2020a), C&W (Carlini & Wagner, 2017b),
have no limitations on the maximum allowed perturbation. Furthermore, even for classical datasets, attacks
can be perceptible (e.g., the classical ε value for MNIST is 0.3125 (Zhang et al., 2019; Madry et al., 2018;
Goodfellow et al., 2014), which is relatively high). Therefore, we have chosen to consider a wide range of ε
values to cover all possible scenarios.

4.2 Adversarial attack calibration
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Figure 1: Percentage of successful attacks depending on the Lp-norm constraint, the maximal perturbation
ε and the attack algorithm on ResNet18 (green) and ViT (orange).

Given that the variety of attacks comes from choosing the Lp-norm constraint and the maximal allowed
Lp-norm perturbation ε, it is crucial to select them carefully. Adversarial attacks and defense mechanisms
have been widely studied for classical convolutional networks, particularly for ResNets, with an input size of
32 ˆ 32 ˆ 3 (Goodfellow et al., 2014; Moosavi-Dezfooli et al., 2016; Zhang et al., 2019; Madry et al., 2018; Xu
et al., 2018; Meng & Chen, 2017). Hence, when we change the input size, we need to choose the maximally
allowed perturbation ε. It comes naturally to perform a comparison of the success rates of attacks between
attacks on ResNets (with input size 32 ˆ 32 ˆ 3) and ViTs (with input size (224 ˆ 224 ˆ 3).
In Fig. 1, we present the success rates for attacks on Resnet18 (resp. on ViT-B) in blue (resp. in orange), for
different attack mechanisms, different Lp-norms and different maximal perturbation ε (the results for FGSM
and BIM are relegated to Appendix E). Attacks behave differently depending on the input size: on L8-norm
constraints, at equal ε, the attacks are more potent on the ViT than on ResNet18. Indeed, the input of a
ViT has more pixels than the input of a ResNet (32 ˆ 32 ˆ 3 for ResNet and 224 ˆ 224 ˆ 3 for ViT). Limiting
the perturbation by an L8-norm constraint, i.e., controlling the maximal perturbation pixel-wise without
controlling the number of modified pixels, will create samples further away from the original sample if it has
more pixels. On the contrary, under L1 and L2-norm constraints, the opposite behavior is observable: at
fixed ε, the attacks are more potent on ResNets with smaller inputs than on ViTs. This can be explained
by the fact that limiting L1 or L2-norm perturbations controls the average perturbations on the whole input
sample. The modifications are, therefore, smaller pixel-wise if the image is bigger. While on ResNets, the
classical values of ε are lower than 40 on L1-norm constraints and 2 on L2-norm constraints, we had to
increase the maximum ε studied for those Lp-norm constraint to have successful enough attacks. Finally,
Spatial Transformation Attacks (STA) disturb ResNets’ inputs functioning more easily than ViTs’.
Summary. To sum up, in the remaining of the paper, under L1-norm constraint, we craft PGD1 attacks
with maximum norm constraint ε P t50, 60, 70, 80, 90, 100, 500, 1000, 5000u. For the L2-norm, we consider
PGD2 with ε P t0.125, 0.25, 0.5, 5, 10u, DF with no ε, and HOP attacks with 3 restarts and ε = 0.1. Under
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Figure 2: Difference between natural and adversarial IRW depth values as a function of the layer on ViT-B
(left) and on ResNet50 (right), averaged over the attacks.

Table 3: Results on ViT-B averaged over the different attacks for each considered Lp-Norm constraints for
APPROVED, FS and JTLA, along with the Averaged results over the norms tested. The results are presented
as mean ˘standard_deviation. The best results are presented in bold.

APPROVED FS JTLA
CIFAR10 CIFAR100 Tiny CIFAR10 CIFAR100 Tiny CIFAR10 CIFAR100 Tiny

AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

L1 94.0 ˘5.2 13.2 ˘13.5 78.3 ˘7.6 46.4 ˘13.1 75.2 ˘1.3 59.2 ˘2.7 79.5 ˘3.3 34.9 ˘8.3 71.1 ˘5.1 55.5 ˘8.0 54.2 ˘14.0 75.1 ˘11.0 78.9 ˘12.5 61.9 ˘20.4 68.9 ˘12.0 67.0 ˘14.6 68.8 ˘1.5 67.4 ˘3.1

L2 94.1 ˘3.7 14.6 ˘13.5 80.5 ˘4.9 44.0 ˘11.3 76.8 ˘4.6 53.8 ˘10.1 77.3 ˘1.8 37.2 ˘8.6 68.2 ˘5.1 58.9 ˘10.5 61.8 ˘12.0 72.4 ˘10.6 79.4 ˘14.2 51.1 ˘26.7 70.2 ˘12.8 65.1 ˘17.8 69.0 ˘2.6 67.6 ˘4.6

L8 95.3 ˘6.5 13.4 ˘20.9 86.7 ˘0.4 29.9 ˘19.3 91.8 ˘8.8 19.1 ˘19.6 73.0 ˘3.5 53.4 ˘18.3 62.6 ˘6.8 67.3 ˘11.6 74.6 ˘17.8 61.2 ˘23.9 70.1 ˘14.6 66.7 ˘27.9 62.7 ˘13.7 74.9 ˘16.2 65.2 ˘6.1 72.5 ˘9.2

no Norm 94.9 ˘0.0 10.5 ˘0.0 87.4 ˘0.0 32.1 ˘0.0 80.2 ˘0.0 42.5 ˘0.0 78.8 ˘0.0 37.5 ˘0.0 65.4 ˘0.0 50.0 ˘0.0 53.0 ˘0.0 77.5 ˘0.0 78.6 ˘0.0 80.9 ˘0.0 80.4 ˘0.0 64.8 ˘0.0 68.2 ˘0.0 68.3 ˘0.0

Average 94.7 ˘5.6 13.5 ˘17.5 83.2 ˘8.9 37.2 ˘17.8 83.9 ˘10.3 37.7 ˘23.8 75.8 ˘4.2 44.2 ˘16.4 66.1 ˘7.0 62.0 ˘11.8 65.8 ˘18.0 67.7 ˘19.6 74.6 ˘14.4 62.6 ˘26.3 66.4 ˘13.6 70.5 ˘16.5 67.0 ˘4.9 70.0 ˘7.4

L8-norm constraint, we consider PGD8, BIM and FGSM attacks with ε P t0.03125, 0.0625, 0.125, 0.25, 0.5u,
CW8 with ε = 0.3125 and SA with ε = 0.125. Finally, STA attacks, which are not subject to a norm
constraint, can rotate the input up to 60˝ and translate it up to 10 pixels.

4.3 Locating the relevant information

In the previous section, we saw that the attacks behave differently w.r.t. the classifier on which they are
perpetrated. We continue this investigation by examining the differences between the two models from
the depth scores’ perspective. In this framework, we define the layer to have relevant information when
the difference between the depth score on the natural and the depth score on the adversarial is significant.
Indeed, the higher the difference, the more evident the shift between the distributions of the natural and
the adversarial induced by the depth score will be, and hence the easier it will be to find a threshold that
distinguishes natural from adversarial samples. We start by computing layer per layer the differences between
the IRW depth on the natural samples (DIRWpf ℓ

θpxq; pℓ
ŷq) and on the adversarial samples (DIRWpf ℓ

θpx1q; pℓ
ŷq)

both for ViT and for ResNet50. Both models have an input size of 224ˆ224ˆ3. In Fig. 2, we plot the mean
and standard deviation for each layer and each network. The diamond points represent the outliers. Fig. 2
shows that the information about whether a sample is natural or adversarial, based on the study of the
IRW depth is significantly spread across the ResNet18 model: in each layer, the values range between 0 and
0.06. On the contrary, on ViT, this information is concentrated in the logit layer, where the values range
between 0.05 and 0.2, while the values range from 0 to 0.05 for the other layers. To summarize, while relevant
information to distinguish between natural and adversary samples is diffused in the ResNet18 model, which
has small and similar values for all the layers, the most valuable information is instead concentrated at the
logit layer for the ViT network, which experiences larger values only for that particular layer. It seems,
therefore, relevant to build a detector specific for vision transformers based only on the output of the logit
layer.

5 Experiments

5.1 Results

Performances of APPROVED compared to other unsupervised detection methods. In Tab. 10,
Tab. 11, Tab. 12, Tab. 13, Tab. 14, and Tab. 15 relegated to Appendix H, we report the detailed results
for each considered detection method under the threat of each attack mechanism, Lp-norm constraint and
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Table 4: Results on ViT-L averaged over the different attacks for each considered Lp-Norm constraints for
APPROVED, FS and JTLA, along with the Averaged results over the norms tested. The results are presented
as mean ˘standard_deviation. The best results are presented in bold.

APPROVED FS JTLA
CIFAR10 CIFAR100 Tiny CIFAR10 CIFAR100 Tiny CIFAR10 CIFAR100 Tiny

AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

L1 93.2 ˘6.6 15.1 ˘19.6 80.8 ˘11.1 38.6 ˘16.2 76.4 ˘6.4 54.0 ˘7.5 73.8 ˘7.1 49.9 ˘8.7 64.1 ˘3.4 71.7 ˘5.5 60.7 ˘4.8 75.4 ˘6.2 83.0 ˘14.5 43.7 ˘28.6 74.5 ˘13.8 57.3 ˘18.8 68.9 ˘7.8 64.3 ˘11.2

L2 93.2 ˘4.3 18.3 ˘15.5 81.5 ˘9.6 37.9 ˘15.7 76.5 ˘8.3 52.9 ˘14.0 71.8 ˘6.6 50.8 ˘6.2 62.7 ˘4.7 71.9 ˘4.6 59.3 ˘4.8 77.0 ˘4.9 82.6 ˘14.7 47.7 ˘26.1 77.0 ˘4.9 59.8 ˘19.5 68.7 ˘7.4 66.9 ˘11.1

L8 94.3 ˘7.3 16.0 ˘22.4 85.2 ˘10.3 31.2 ˘20.4 76.8 ˘8.3 47.7 ˘15.3 72.8 ˘11.8 52.2 ˘9.5 60.7 ˘13.3 68.6 ˘7.2 69.0 ˘13.8 61.1 ˘18.2 74.6 ˘13.6 62.0 ˘28.9 66.8 ˘12.3 67.2 ˘17.3 64.2 ˘7.2 71.7 ˘11.6

no Norm 94.3 ˘0.0 12.6 ˘0.0 89.4 ˘0.0 26.5 ˘0.0 85.7 ˘0.0 30.7 ˘0.0 69.5 ˘0.0 52.9 ˘0.0 59.2 ˘0.0 71.1 ˘0.0 63.4 ˘0.0 69.3 ˘0.0 90.3 ˘0.0 34.8 ˘0.0 83.3 ˘0.0 45.5 ˘0.0 74.1 ˘0.0 52.4 ˘0.0

Average 93.8 ˘6.3 16.1 ˘19.5 83.5 ˘10.2 34.3 ˘18.1 76.9 ˘7.6 50.0 ˘13.5 72.8 ˘9.4 51.3 ˘8.4 61.6 ˘10.0 70.3 ˘6.2 64.6 ˘11.0 68.4 ˘15.2 78.9 ˘14.2 53.4 ˘28.5 70.6 ˘13.3 62.5 ˘18.1 66.7 ˘7.5 68.2 ˘11.7

Table 5: Results on ViT-B averaged over the different types of attack mechanism for APPROVED, FS, and
JTLA, along with the averaged results over the norms. The results are presented as mean ˘standard_deviation.
The best results are presented in bold. Dashed values (–) corresponds to attacks that take more than 48
hours to run on V100 GPUs.

APPROVED FS JTLA
CIFAR10 CIFAR100 Tiny CIFAR10 CIFAR100 Tiny CIFAR10 CIFAR100 Tiny

AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

PGD 95.5 ˘4.3 9.6 ˘10.8 81.3 ˘7.8 41.2 ˘14.6 81.0 ˘10.2 45.0 ˘24.1 77.2 ˘3.8 44.4 ˘14.2 70.1 ˘4.9 62.5 ˘11.1 65.6 ˘19.0 66.2 ˘22.5 72.9 ˘14.3 67.0 ˘22.0 64.1 ˘13.3 71.6 ˘16.7 66.4 ˘3.9 70.9 ˘5.8

BIM 96.8 ˘4.4 7.1 ˘10.1 82.1 ˘13.1 37.9 ˘26.2 95.0 ˘7.4 11.8 ˘16.6 71.2 ˘1.5 69.6 ˘2.9 64.3 ˘1.9 77.8 ˘3.4 86.5 ˘2.2 60.4 ˘19.2 58.6 ˘2.9 84.2 ˘3.4 51.6 ˘0.6 86.5 ˘0.7 60.9 ˘2.5 79.3 ˘3.6

FGSM 90.5 ˘8.8 29.7 ˘29.4 90.4 ˘6.4 23.9 ˘15.8 85.6 ˘7.2 33.5 ˘14.6 73.7 ˘4.3 32.7 ˘5.0 54.8 ˘6.2 56.0 ˘5.4 52.8 ˘3.3 75.1 ˘2.3 85.3 ˘8.7 43.5 ˘28.5 76.5 ˘4.4 63.9 ˘9.0 73.1 ˘1.9 61.0 ˘3.4

HOP 98.3 ˘0.0 3.3 ˘0.0 89.1 ˘0.0 24.8 ˘0.0 87.1 ˘0.0 31.8 ˘0.0 74.5 ˘0.0 25.0 ˘0.0 62.7 ˘0.0 50.0 ˘0.0 59.1 ˘0.0 76.3 ˘0.0 93.9 ˘0.0 8.6 ˘0.0 81.7 ˘0.0 52.1 ˘0.0 73.4 ˘0.0 60.6 ˘0.0

DeepFool 86.5 ˘0.0 45.4 ˘0.0 75.5 ˘0.0 59.9 ˘0.0 – – 79.7 ˘0.0 31.2 ˘0.0 62.2 ˘0.0 50.0 ˘0.0 – – 80.7 ˘0.0 60.5 ˘0.0 70.5 ˘0.0 75.1 ˘0.0 – –
SA 98.2 ˘0.0 3.3 ˘0.0 89.6 ˘0.0 26.0 ˘0.0 77.0 ˘0.0 49.1 ˘0.0 72.0 ˘0.0 25.0 ˘0.0 63.3 ˘0.0 50.0 ˘0.0 48.7 ˘0.0 78.5 ˘0.0 93.0 ˘0.0 13.6 ˘0.0 87.7 ˘0.0 30.8 ˘0.0 70.6 ˘0.0 63.0 ˘0.0

CW 90.4 ˘0.0 30.6 ˘0.0 81.7 ˘0.0 42.2 ˘0.0 – – 78.8 ˘0.0 37.5 ˘0.0 67.0 ˘0.0 50.0 ˘0.0 – – 84.2 ˘0.0 53.4 ˘0.0 79.1 ˘0.0 60.5 ˘0.0 – –
STA 94.9 ˘0.0 10.5 ˘0.0 87.4 ˘0.0 32.1 ˘0.0 80.2 ˘0.0 42.5 ˘0.0 78.8 ˘0.0 37.5 ˘0.0 65.4 ˘0.0 50.0 ˘0.0 53.0 ˘0.0 77.5 ˘0.0 78.6 ˘0.0 80.9 ˘0.0 80.4 ˘0.0 64.8 ˘0.0 68.2 ˘0.0 68.3 ˘0.0

Table 6: Results on ViT-L averaged over the different types of attack mechanism for APPROVED, FS, and
JTLA, along with the averaged results over the norms. The results are presented as mean ˘standard_deviation.
The best results are presented in bold.

APPROVED FS JTLA
CIFAR10 CIFAR100 Tiny CIFAR10 CIFAR100 Tiny CIFAR10 CIFAR100 Tiny

AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

PGD 94.7 ˘5.4 12.2 ˘15.6 82.3 ˘10.3 35.7 ˘16.8 75.6 ˘7.8 53.2 ˘12.7 76.3 ˘7.0 48.2 ˘7.4 66.0 ˘4.2 69.0 ˘6.3 66.0 ˘10.1 67.7 ˘14.7 77.3 ˘14.8 55.9 ˘28.5 68.4 ˘13.7 65.5 ˘18.0 65.8 ˘8.1 70.2 ˘11.5

BIM 95.8 ˘6.0 9.8 ˘15.8 82.5 ˘15.3 33.4 ˘27.0 74.7 ˘11.3 50.3 ˘ 79.9 ˘2.2 48.0 ˘3.7 68.3 ˘3.9 65.5 ˘5.2 78.1 ˘7.4 49.4 ˘12.0 63.7 ˘2.4 81.8 ˘3.8 57.0 ˘3.5 79.4 ˘5.1 59.8 ˘5.6 78.4 ˘6.1

FGSM 88.8 ˘9.8 33.6 ˘30.5 85.9 ˘7.3 33.2 ˘20.1 79.4 ˘1.9 45.6 ˘4.7 56.9 ˘5.8 65.3 ˘1.8 44.2 ˘11.1 76.3 ˘2.8 53.9 ˘2.1 79.2 ˘2.2 88.3 ˘8.2 38.0 ˘28.5 80.1 ˘6.2 49.2 ˘15.7 71.1 ˘2.6 60.7 ˘8.7

HOP 98.2 ˘0.0 3.6 ˘0.0 91.2 ˘0.0 19.7 ˘0.0 85.3 ˘0.0 32.3 ˘0.0 68.2 ˘0.0 48.4 ˘0.0 55.0 ˘0.0 74.5 ˘0.0 52.6 ˘0.0 81.7 ˘0.0 93.4 ˘0.0 25.7 ˘0.0 86.4 ˘0.0 44.7 ˘0.0 73.0 ˘0.0 54.4 ˘0.0

DeepFool 88.0 ˘0.0 42.2 ˘0.0 ˘ ˘ 80.4 ˘0.0 47.4 ˘0.0 64.0 ˘0.0 58.2 ˘0.0 ˘ ˘ 57.6 ˘0.0 80.0 ˘0.0 87.6 ˘0.0 44.9 ˘0.0 ˘ ˘ 72.5 ˘0.0 61.1 ˘0.0

SA 97.6 ˘0.0 4.0 ˘0.0 91.2 ˘0.0 21.0 ˘0.0 82.3 ˘0.0 40.2 ˘0.0 70.3 ˘0.0 50.3 ˘0.0 56.3 ˘0.0 73.7 ˘0.0 56.3 ˘0.0 82.1 ˘0.0 96.0 ˘0.0 6.7 ˘0.0 86.0 ˘0.0 42.6 ˘0.0 75.0 ˘0.0 50.6 ˘0.0

CW 88.4 ˘0.0 38.1 ˘0.0 77.0 ˘0.0 53.9 ˘0.0 73.7 ˘0.0 57.6 ˘0.0 67.8 ˘0.0 53.1 ˘0.0 55.8 ˘0.0 76.4 ˘0.0 51.9 ˘0.0 83.9 ˘0.0 87.3 ˘0.0 43.6 ˘0.0 74.5 ˘0.0 64.2 ˘0.0 66.7 ˘0.0 70.4 ˘0.0

STA 94.3 ˘0.0 12.6 ˘0.0 89.4 ˘0.0 26.5 ˘0.0 85.7 ˘0.0 30.7 ˘0.0 69.5 ˘0.0 52.9 ˘0.0 59.2 ˘0.0 71.1 ˘0.0 63.4 ˘0.0 69.3 ˘0.0 90.3 ˘0.0 34.8 ˘0.0 83.3 ˘0.0 45.5 ˘0.0 85.7 ˘0.0 30.7 ˘0.0

maximum perturbation ε. In Tab. 3 and Tab. 4, we report the averaged AUROCÒ and FPRÓ90% on each of
the considered Lp-norm, along with the global average for each detector on CIFAR10, CIFAR100, and Tiny
ImageNet on the ViT-B and ViT-L, respectively. Overall, APPROVED shows better results than the SOTA
detection methods. On CIFAR10, APPROVED creates an increase of AUROCÒ of 18.9% (resp. 14.9%) and a de-
crease of FPRÓ90% of 30.7% (resp. 37.3%) compared to the best performing state-of-the-art detector, i.e., FS
(resp. JTLA) on ViT-B (resp. ViT-L). On CIFAR100, the improvements are 16.9% (resp. 12.9%) and 24.8%
(resp. 28.2), respectively, while they are 16.9% (resp. 10.2%) and 32.3% (resp. 18.2%) on Tiny ImageNet.
In addition, all methods have similar dispersions. Moreover, under specific Lp-norm constraints, our method
consistently outperforms SOTA methods, especially under the L8-norm constraint where APPROVED outper-
forms FS (resp. JTLA) by 22.3% (resp. 15.1%) in terms of AUROCÒ and 40.0% (resp. 48.7%) in terms of
FPRÓ90% on CIFAR10 when applied to ViT-B models. On ViT-L, APPROVED increases AUROCÒ values by
19.4% (resp. 10.2%) and decreases FPRÓ90% values by 34.8 % (resp. 28.6%) compared to FS (resp. JTLA)
on CIFAR10. Finally, by looking at the detailed results presented in Appendix H, we can deduce that FS and
APPROVED have opposite behaviors: when the performances of FS decrease, APPROVED’s performances tend
to improve. For example, under the L8-norm constraint, APPROVED has more trouble detecting attacks with
small perturbations, while FS has more difficulty detecting attacks with large perturbations. Indeed, since
APPROVED measures the depth of a sample within a distribution, it will be able to recognize the strongest
attacks well.
Performances per attack. In Tab. 5 and Tab. 6, we give the overall idea of the results on all three datasets
per attack mechanism by showing them in terms of mean and standard deviation (std) on the AUROCÒ and
the FPRÓ90%, on each considered model. APPROVED turns out to consistently outperform the state-of-the-art
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detectors for all datasets. In particular, we notice that the FGSM attacks that are the easiest to generate are
the ones that present the highest diversity among the results in the methods examined. Indeed, by looking
at Tab. 5, we can find larger values of the standard deviation in correspondence to that attack. Moreover,
APPROVED can recognize attacks that are more difficult for the competitors (e.g., BIM for JTLA or FGSM for
FS). We also observe that the most challenging task for APPROVED is to distinguish natural and adversarial
samples when crafted with DeepFool and the Carlini&Wagner attack. However, it is the best choice even in
this case as it reaches better performances than the other detectors.

5.2 Adaptive Attacks

In this experiment, we evaluate APPROVED against adaptive attacks, which has knowledge about the defense
(Athalye et al., 2018; Tramer et al., 2020; Carlini & Wagner, 2017b). Two scenarios can be considered
with adaptive attacks: whitebox and blackbox. Whitebox attacks (e.g., BPDA, Athalye et al., 2018) are not
straightforward to adapt in our case since finding a differentiable surrogate of IRW remains a very challenging
open research question in the statistical community, which has never been tackled. As a matter of fact, the
only attempt to approximate a non-differentiable depth was performed not on the IRW depth but on the
Tukey depth in Dyckerhoff et al. (2021), with very poor results as pointed out in She et al. (2021). Thus, in
this experiment, we rely on blackbox attacks and present the results in Fig. 3. We attacked both APPROVED
and FS using a modified version of SA (Andriushchenko et al., 2020), for which the attack objective has
been modified to allow the attacker to fool both the detection method as well as the classifier. We rely on a
hyperparameter α that weighs the relative importance of the two parts of the objective.
Remark. Both methods have their advantages and drawbacks. Due to speed, memory requirements, and
results on CIFAR10 when attacking a ViT-B, we decided to compare APPROVED to FS under adaptive attacks
and discard JTLA. (see Appendix D.2). It is straightforward (cf. Fig. 3) that APPROVED is less sensitive
to adaptive attacks than FS. These results further validate the use of the IRW depth to craft a detection
method and further assesses the superiority of APPROVED. In Appendix F, we performed another adaptive
attacks, based on a surrogate to the depth score.

5.3 Finer Analysis

Per class analysis. As explained in Sec. 3.2, APPROVED is based on the IRW depth, which computes the
depth score of the sample w.r.t. the original distribution by class. Fig. 4 shows the per-class performances
averaged over the different attacks on CIFAR10, while Fig. 8, relegated to Appendix G due to space con-
straints, shows the performances on CIFAR100. It is clear from Fig. 4 that APPROVED does not have equal
performances in every class. In particular, some classes present extremely high mean average AUROCÒ (i.e.,
class 7), and others exhibit very low FPRÓ90% (i.e., class 6). In contrast, some others have their adversarial
and clean samples tough to distinguish (i.e., classes 3 and 5). The same behavior is observable in CIFAR100
(see Fig. 8).

AUROCÒ vs FPRÓ90%. We conclude our analysis by examining the trade-off between AUROCÒand
FPRÓ90%(see Fig. 5). The ideal method would concentrate the results on the upper left of the figure, which
corresponds to high AUROCÒ and low FPRÓ90%, while a poor detector would concentrate them in the
bottom right corner of the figure, which corresponds to low AUROCÒ and high FPRÓ90%. We observe that
on CIFAR10, the APPROVED points are more concentrated in the upper left corner, while the FS points are
concentrated in the center of the figure, and JTLA’s are spread across the entire figure. On CIFAR100 and
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Figure 3: Detector Performances under blackbox Adaptive Attack.
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Figure 4: APPROVED’s AUROCÒ and FPRÓ90% per class, averaged over CIFAR10.

Tiny ImageNet, the results for our method are slightly more spread out in the top left and center of the
figure, while for FS, they are still in the center and spread out in the center and lowest right corner for
JTLA. Note that FS has a different behavior than expected, i.e., the line connecting the top left corner with
the bottom right corner. This behavior change can be observed for FPRÓ90% between 25%-35% on CIFAR10
and between 50%-75% on CIFAR100 and Tiny ImageNet. On CIFAR10, FS presents a lower AUROCÒ for
a fixed FPRÓ90% than expected, whereas, on CIFAR100, it presents a lower AUROCÒ (for FPRÓ90% values
between 50%-60%) or higher (for FPRÓ90% values around 75%) than expected.

6 Conclusions and Limitations

We introduced APPROVED, an efficient unsupervised detection method designed to defend against adversarial
attacks. In contrast with previous detection methods built for ResNet architectures, APPROVED is well suited
for vision transformers which now represent the state-of-the-art. While the relevant information about
the discrepancy between clean and adversarial samples is distributed across all layers of ResNets, for the
transformers, it was empirically shown to be concentrated in the logit layer. This motivated us to build
APPROVED on top of this logit layer by computing a similarity score between an input sample and the training
distribution based on the statistical notion of data depth. We chose to use the Integrated Rank-Weighted
depth, which lends itself to fast inference computations and is non-differentiable, making it harder for
gradient-based adversarial methods to craft malicious samples.We conduct extensive numerical experiments
and prove that APPROVED significantly outperforms the other state-of-the-art methods.
Future Research. We think our method paves the way for future research efforts. Indeed, there is still
room for improvement: even if the AUROCÒ performances are good, the FPRÓ90% are also fairly high. We
believe the idea of leveraging information contained in layers of transformers through data depths can be
fruitful in improving defense mechanisms against adversarial attacks. Furthermore, It would be interesting
to investigate other architectures to find whether a specific layer contains the relevant information, as for
ViTs, or if the information is spread across the network, as for ResNets. Our research is expected to have
a positive societal impact by protecting the integrity of AI systems, especially necessary in critical systems
such as autonomous cars (Morgulis et al., 2019) or stock predictions (Xie et al., 2022).
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Figure 5: AUROCÒ as a function of FPRÓ90% for APPROVED, FS, and JTLA on all considered datasets.
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Broader Impact Statement

We believe our work will have a positive impact on society. Indeed, in this work, we propose a method to
improve Deep Learning systems to improve our reliability in Deep Neural Networks, as their potential failure
has been raising many concerns, limiting their adoption in critical applications.
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A Training and Evaluation Details

Training. We compare the different detection methods on three vision datasets: CIFAR10, CI-
FAR100 (Krizhevsky et al.) and Tiny ImageNet (Jiao et al., 2019) for which we use the ViT models
presented in Sec. 4.1 to build a classifier.

We trained two different models: a ViT and a ResNet18. The ResNet18 has been trained on 100 epochs,
with a Stochastic Gradient Descent (SGD) optimizer, with a learning rate of 0.1, a momentum of 0.9, and
a weight decay of 10´5. We use the base model with 16 layers (85.8 million of parameters) from https:
//github.com/jeonsworld/ViT-pytorch trained on ImageNet (Deng et al., 2009) as our ViT classifier for
CIFAR10 and CIFAR100. To train it, we set the batch size to 512. The learning rate of SGD (Ruder, 2016)
is set to 3 ˆ 10´2 and we use 500 warming steps with no gradient accumulation (Vaswani et al., 2017). For
Tiny ImageNet, we used a ViT with 16 layers as the underlying classifier, trained by Huynh (2022) and
available at https://github.com/ehuynh1106/TinyImageNet-Transformers. Note that we only use the
class token to output the layer-wise input’s representations.

Remark. We compare our proposed APPROVED method with FS and JTLA, recalled in Sec. 2.2. We train
JTLA according to its original training procedure, while FS and our APPROVED, presented in Sec. 3.2, do not
require any training.

Evaluation. To compute the IRW depth, we set nproj to the standard value of 10000 (« ten times the
dimension), as advised in Staerman et al. (2021a). To generate the attacks, we used the Cross-Entropy loss,
we set the number of steps to 100 and the step size to 0.01 for PGD8 and BIM, 0.1 for PGD2 and 5 for
small ε values and 50 for larger one for PGD1. We used 5 restarts.

B Approximation Algorithm

This appendix displays the algorithm used to compute the IRW depth (see Algo. 1).

Algorithm 1 Approximation of the IRW depth
Initialization: test sample x, nproj, X “ rx1, . . . , xnsJ.

Construct U P Rdˆnproj by sampling uniformly nproj vectors U1, . . . , Unproj in Sd´1

Compute M “ XU and xJU
Compute the rank value σpjq, the rank of xJU in M:,j for every j ď nproj

Set D “ 1
nproj

řnproj
j“1 σpjq

Output: rDMC
IRWpx, Xq “ D

Complexity. The complexity of the algorithm is detailed as follows. Line 1 requires sampling nproj Gaussian
samples and normalizing them in order to define unit sphere directions and can be computed in Opnprojd).
Line 2 requires Opnprojdnq to project data on the nproj unit sphere Monte-Carlo directions. Line 3 requires
computing the sorting operation on nproj columns of the matrix M and then leads to a complexity of
Opnprojn). Line 4 requires the computation of the mean and can be done in nproj operations. Finally, the
total complexity of the algorithm is then in Opnprojdnq, which is linear in all of its parameters.

Remarks. Given that the algorithm is linear in all its parameters, computing the IRW depth can be scaled
to any dataset. Note that the IRW data depth makes no assumption on the training distribution. In line
3 of Algo. 1, “rank values" consists in ranking the elements of the projection of each input on U. This is
achieved by a sorting algorithm. This step allows us to define an ordering of the projected inputs, which is
used to compute the final depth score.
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C Intuition on Data Depth

To provide a better sense of why data-depths are useful tools to distinguish between natural and attacked
samples, we decided to provide a graphical explanation.

On CIFAR-10, using a ViT-B_16 as the underlying classifier, we plotted the training, natural and adversarial
logits for class 0 and class 1 output by the network, using a t-SNE to reduce the dimensions to 2. The
visualisation is provided in Fig. 6.

Figure 6: 2D representation of the logits distribution for class 0 (blue) and class 1 (green). The training
samples are in light colors, using circles (l), the natural testing samples are represented by crosses (+) and
the adversarial samples are triangles (△).

From Fig. 6, we observe that the natural testing samples are deep inside the training distribution while
the adversarial samples are on the border. Data depth, which computes the distance between a reference
distribution and new samples, seems to be a good fit to distinguish between clean and attacked samples.

20



Under review as submission to TMLR

D Time and Computational Requirements

D.1 To generate attacks

We here present the computational requirements to generate the attacks on the transformer, along with the
required time to generate them. We use the Adversarial-Robustness Toolbox (ART; Nicolae et al., 2018) to
generate the attacks.

Table 7: Resources and time needed to generate different types of attack on CIFAR10.

Attack GPUs CPUs Time
FGSM V100-32G 20G 0h25
BIM V100-32G 20G 3h13
PGD V100-32G 20G 4h30
DF V100-32G 20G 1h54
HOP V100-32G 20G 47h39
CW8 V100-32G 30G 2h48
SA V100-32G 20G 5h04
STA V100-32G 20G 1h25

D.2 To deploy detectors

This section presents the computational requirements, along with the time needed to deploy each of the
studied detection methods on a ViT-B on CIFAR10. We use the codes available at https://github.com/
aldahdooh/detectors_review for FS. For JTLA, we used the code proposed by the authors, available at
https://github.com/jayaram-r/adversarial-detection.

Table 8: Resources and time needed to train and test each detection method.

Method GPUs CPUs Training Testing
Time Time

APPROVED V100-32G 40G N/A 0h11
FS V100-32G 80G N/A 0h53

JTLA V100-32G 180G 0h42 1h26
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E Success Rates of Attacks on CIFAR10

We here report the success rate per attack for all the different threat mechanisms (i.e., PGD1, PGD2,
PGD8, BIM, FGSM, CW8, SA, STA, DF and HOP) on a ViT-B on CIFAR10. In orange are the attack
performances on ViT, while the ones on ResNet are in green (see Sec. 4 for a detailed analysis).
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Figure 7: Percentage of successful attacks on a ViT-B depending on the Lp-norm constraint, the maximal
perturbation ε and the attack algorithm on ResNet18 (vert) and ViT-B (orange).
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F Adaptive Attacks

To further analyse our proposed method, we investigate a surrogate of the depth score.

As the depth compute the similarity between a new point and a reference distribution, we could think of the
following surrogate:

arg min
}x´x1}păε

}fL´1px1q ´ fL´1ppxq}2
2, (4)

where px is a randomly selected training sample with py ‰ y.

We used the PGD algorithm to test this new surrogate on CIFAR10 using the ViT-B, with ε varying between
0.03125 and 0.5. The results are reported in Table 9.

Adaptive Attacks - Surrogate
Norm L8 AUROCÒ FPRÓ90%

PGD8

ε = 0.03125 60.0 86.9
ε = 0.0625 57.6 88.1
ε = 0.125 56.9 88.3
ε = 0.25 56.8 88.2
ε = 0.5 56.8 88.3

Table 9: AUROCÒ and FPRÓ90% of APPROVED for the adaptive attack using the surrogate in Equation 4
using the PGD algorithm, varying ε

Although its performance drops a little under this specific attack, our proposed method does not collapse.
As a matter of fact, it achieves similar results as JTLA under non-adaptive attacks.
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G Per Class Analysis
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Figure 8: APPROVED’s AUROCÒ and FPRÓ90% per class, averaged over the attacks on CIFAR100 on a ViT-B.

As for CIFAR10 (see Sec. 5), the detector performances depend on the predicted class. Some classes are
easy to detect (i.e., classes 0, 21, 53, 75, and 94), while others are more difficult (i.e., classes 3, 10, 33, 47,
60, 74, and 93). Some have low variance (i.e., 0, 1, 24, 34, 75, 82, and 94), while others have a substantial
dispersion (i.e., 11, 35,47, 52, 96, and 98).
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H Detailed results for CIFAR10, CIFAR100, and Tiny ImageNet

Table 10: AUROCÒ and FPRÓ90% for each considered attack mechanisms, Lp-norm constraint and ε on
CIFAR10 for APPROVED, FS, and JTLA on a ViT-B. The best result for each attack is shown in bold.

CIFAR10 - ViT-B

Norm L1 APPROVED FS JTLA
AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

PGD1

ε = 50 97.2 5.0 77.6 37.5 89.5 43.6
ε = 60 97.0 5.7 77.4 37.5 90.3 30.7
ε = 70 96.4 6.8 78.0 31.2 88.4 43.4
ε = 80 95.7 8.6 78.1 31.2 85.9 61.4
ε = 90 94.8 11.1 78.7 31.2 84.9 71.8
ε = 100 93.9 13.9 79.0 37.5 86.1 48.4
ε = 500 80.1 50.1 86.8 25.0 65.8 78.9
ε = 1000 93.0 14.2 83.7 37.5 60.2 88.8
ε = 5000 98.0 3.6 76.0 55.2 58.6 90.1

Norm L2 APPROVED FS JTLA
AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

PGD2

ε = 0.125 97.1 4.5 75.5 37.5 90.7 36.3
ε = 0.25 97.1 5.5 77.2 37.5 90.4 26.4
ε = 0.5 92.6 18.1 79.8 31.2 84.1 56.5
ε = 5 93.3 13.6 77.0 45.9 58.5 83.5
ε = 10 94.1 11.5 76.8 52.1 57.3 85.7
HOP
ε = 0.1 98.3 3.3 74.5 25.0 93.9 8.6
DeepFool
No ε 86.5 45.4 79.7 31.2 80.7 60.5

Norm L8
APPROVED FS JTLA

AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

PGD8

ε = 0.03125 96.5 6.4 78.7 42.9 58.2 85.4
ε = 0.0625 99.1 2.1 73.4 64.7 57.5 88.8
ε = 0.125 99.7 0.8 71.8 68.6 60.1 81.1
ε = 0.25 99.8 0.5 70.9 70.0 57.9 81.0
ε = 0.5 99.8 0.5 70.8 70.1 61.3 92.7
BIM
ε = 0.03125 88.3 27.0 74.0 64.5 55.6 85.8
ε = 0.0625 97.1 5.4 70.2 72.3 56.1 89.8
ε = 0.125 99.0 2.2 70.0 72.2 58.9 83.3
ε = 0.25 99.7 0.7 70.7 70.5 58.4 82.0
ε = 0.5 99.9 0.2 71.2 68.4 63.8 79.9
FGSM
ε = 0.03125 78.1 69.5 75.2 38.8 73.0 77.0
ε = 0.0625 82.4 60.2 77.2 37.5 78.5 68.5
ε = 0.125 93.1 16.6 78.9 31.2 85.7 51.1
ε = 0.25 99.1 1.6 69.6 25.0 93.3 17.5
ε = 0.5 99.7 0.6 67.7 31.2 96.2 3.6
SA
ε = 0.125 98.2 3.3 72.0 25.0 93.0 13.6
CW8

ε = 0.3125 90.4 30.6 78.8 37.5 84.2 53.4

No Norm APPROVED FS JTLA
AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

STA
No ε 94.9 10.5 78.8 37.5 78.6 80.9
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Table 11: AUROCÒ and FPRÓ90% for each considered attack mechanisms, Lp-norm constraint and ε on
CIFAR10 for APPROVED, FS, and JTLA on a ViT-L. The best result for each attack is shown in bold.

CIFAR10 - ViT-L

Norm L1 APPROVED FS JTLA
AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

PGD1

ε = 50 96.2 5.6 67.9 57.1 92.1 29.9
ε = 60 96.4 5.1 68.5 54.6 92.5 23.9
ε = 70 96.6 4.7 68.8 56.3 94.0 15.6
ε = 80 96.6 6.1 69.3 55.5 92.4 29.4
ε = 90 96.5 5.6 70.1 55.4 92.3 26.8
ε = 100 96.2 6.3 70.3 54.1 92.0 23.7
ε = 500 78.1 59.2 79.8 41.1 69.1 77.3
ε = 1000 86.4 37.4 85.4 33.6 61.3 82.6
ε = 5000 96.2 6.1 83.5 41.4 61.4 84.4

Norm L2 APPROVED FS JTLA
AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

PGD2

ε = 0.125 95.2 9.6 68.0 56.2 92.5 28.6
ε = 0.25 96.8 4.4 68.8 54.7 92.0 26.8
ε = 0.5 95.8 8.7 72.2 52.2 90.5 38.5
ε = 5 88.2 33.1 81.4 41.6 60.9 84.7
ε = 10 90.2 26.4 80.1 44.4 61.6 84.4
HOP
ε = 0.1 98.2 3.6 68.2 48.4 93.4 25.7
DeepFool
No ε 88.0 42.2 64.0 58.2 87.6 44.9

Norm L8
APPROVED FS JTLA

AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

PGD8

ε = 0.03125 95.7 7.7 85.9 37.0 60.7 85.1
ε = 0.0625 98.8 2.2 83.9 43.4 62.4 84.1
ε = 0.125 99.5 1.2 82.4 45.7 66.2 79.0
ε = 0.25 99.6 0.9 81.8 45.6 67.0 78.9
ε = 0.5 99.6 0.9 81.7 46.0 68.3 77.4
BIM
ε = 0.03125 85.5 37.6 78.2 48.0 62.4 84.1
ε = 0.0625 95.8 7.2 78.2 51.4 62.7 82.5
ε = 0.125 98.6 2.4 79.0 51.1 61.1 86.3
ε = 0.25 99.5 1.1 80.8 47.5 65.2 78.6
ε = 0.5 99.8 0.5 83.3 42.1 67.2 77.3
FGSM
ε = 0.03125 75.5 74.1 64.2 62.6 78.8 69.1
ε = 0.0625 82.9 53.6 59.9 65.3 82.2 62.3
ε = 0.125 90.1 29.9 57.2 65.8 87.9 39.3
ε = 0.25 95.8 10.0 48.6 67.6 93.8 16.7
ε = 0.5 99.9 0.2 54.7 64.9 98.7 2.7
SA
ε = 0.125 97.6 4.0 70.3 50.3 96.0 6.7
CW8

ε = 0.3125 88.4 38.1 67.8 53.1 87.3 43.6

No Norm APPROVED FS JTLA
AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

STA
No ε 94.3 12.6 69.5 48.4 90.3 34.8
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Table 12: AUROCÒ and FPRÓ90% for each considered attack mechanisms, Lp-norm constraint and ε on
CIFAR100 for APPROVED, FS and JTLA on a ViT-B. The best result for each attack is shown in bold.

CIFAR100 - ViT-B

Norm L1 APPROVED FS JTLA
AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

PGD1

ε = 50 83.5 39.3 65.5 56.2 82.1 46.2
ε = 60 82.4 41.0 66.6 56.2 79.5 53.9
ε = 70 81.2 45.3 67.4 50.0 78.1 55.1
ε = 80 79.8 47.8 68.3 50.0 76.5 58.8
ε = 90 78.4 50.0 69.2 50.0 74.5 64.2
ε = 100 77.0 54.0 70.1 50.0 72.9 66.3
ε = 500 58.1 75.5 79.3 50.0 51.9 85.2
ε = 1000 78.3 44.9 80.0 62.5 52.6 86.7
ε = 5000 86.1 29.4 74.0 75.0 52.4 86.2

Norm L2 APPROVED FS JTLA
AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

PGD2

ε = 0.125 84.3 38.3 64.6 56.2 85.5 36.0
ε = 0.25 82.7 41.4 66.2 56.2 80.3 50.1
ε = 0.5 73.9 59.1 72.0 50.0 70.2 71.5
ε = 5 78.6 43.5 75.1 75.0 51.4 86.1
ε = 10 79.4 41.0 74.4 75.0 52.0 84.8
HOP
ε = 0.1 89.1 24.8 62.7 50.0 81.7 52.1
DeepFool
No ε 75.5 59.9 62.2 50.0 70.5 75.1

Norm L8
APPROVED FS JTLA

AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

PGD8

ε = 0.03125 75.4 51.5 76.0 74.8 48.8 87.9
ε = 0.0625 88.1 26.0 68.9 75.0 53.3 83.2
ε = 0.125 93.3 14.9 65.5 75.0 52.4 85.7
ε = 0.25 94.4 12.8 64.3 75.0 51.3 88.4
ε = 0.5 89.7 26.4 64.2 75.0 52.4 84.6
BIM
ε = 0.03125 63.1 72.9 67.6 75.0 51.0 87.1
ε = 0.0625 70.5 64.8 63.0 81.1 51.4 85.1
ε = 0.125 87.2 28.1 62.1 82.7 51.2 86.4
ε = 0.25 93.2 15.4 63.7 75.4 51.5 87.0
ε = 0.5 96.5 8.3 65.3 75.0 52.7 86.9
FGSM
ε = 0.03125 80.8 48.1 61.9 62.5 70.9 71.1
ε = 0.0625 86.5 33.0 61.3 61.4 72.7 72.0
ε = 0.125 90.4 24.0 54.8 50.0 77.0 65.2
ε = 0.25 95.7 10.3 49.6 50.0 83.4 47.0
ε = 0.5 98.6 4.1 46.2 56.2 78.7 64.0
SA
ε = 0.125 89.6 26.0 63.3 50.0 87.7 30.8
CW8

ε = 0.3125 81.7 42.2 67.0 50.0 79.1 60.5

No Norm APPROVED FS JTLA
AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

STA
No ε 87.4 32.1 65.4 50.0 80.4 64.8
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Table 13: AUROCÒ and FPRÓ90% for each considered attack mechanisms, Lp-norm constraint and ε on
CIFAR100 for APPROVED, FS, and JTLA on a ViT-L. The best result for each attack is shown in bold.

CIFAR100 - ViT-L

Norm L1 APPROVED FS JTLA
AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

PGD1

ε = 50 87.0 30.1 61.6 75.5 85.0 43.5
ε = 60 87.4 29.8 61.7 75.3 84.9 42.6
ε = 70 87.4 28.7 61.9 75.4 84.5 42.8
ε = 80 87.3 29.7 62.4 75.5 83.7 42.9
ε = 90 87.1 29.5 62.3 75.2 81.7 49.5
ε = 100 86.8 30.1 62.8 74.8 82.2 47.8
ε = 500 59.6 70.4 63.8 68.8 58.4 81.2
ε = 1000 63.9 63.2 68.9 63.0 54.4 83.7
ε = 5000 80.8 35.5 71.1 62.0 55.7 81.3

Norm L2 APPROVED FS JTLA
AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

PGD2

ε = 0.125 86.2 31.3 61.2 75.7 84.4 43.6
ε = 0.25 87.3 30.0 62.0 75.4 84.0 46.2
ε = 0.5 85.2 32.2 62.9 73.8 78.1 55.5
ε = 5 67.9 59.3 67.6 73.8 55.5 82.9
ε = 10 71.0 55.2 67.5 66.4 53.8 85.9
HOP
ε = 0.1 91.2 21.0 55.0 74.5 86.4 44.7

Norm L8
APPROVED FS JTLA

AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

PGD8

ε = 0.03125 71.3 54.8 70.6 61.5 54.0 83.7
ε = 0.0625 87.2 25.2 71.2 61.7 55.4 80.6
ε = 0.125 93.3 14.0 72.0 61.9 59.7 75.7
ε = 0.25 92.1 17.9 71.7 61.2 60.2 75.8
ε = 0.5 95.6 10.6 71.5 61.3 59.5 77.3
BIM
ε = 0.03125 59.5 82.5 64.0 69.7 52.9 85.2
ε = 0.0625 75.2 48.3 65.7 69.4 55.3 81.7
ε = 0.125 87.1 25.5 67.8 67.7 55.8 81.7
ε = 0.25 93.5 13.6 70.5 63.7 59.5 77.3
ε = 0.5 97.0 7.0 73.7 57.2 61.7 72.4
FGSM
ε = 0.03125 76.2 60.5 56.1 75.5 72.0 66.3
ε = 0.0625 87.2 25.2 52.8 74.3 75.7 59.6
ε = 0.125 89.0 28.5 46.7 73.6 81.3 52.6
ε = 0.25 95.2 11.0 35.0 77.5 86.9 40.7
ε = 0.5 87.5 19.6 30.6 80.6 84.6 26.7
SA
ε = 0.125 91.2 21.0 56.3 73.7 86.0 42.6
CW8

ε = 0.3125 77.0 53.9 55.8 76.4 74.5 64.2

No Norm APPROVED FS JTLA
AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

STA
No ε 89.4 26.5 59.2 71.1 83.3 45.5
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Table 14: AUROCÒ and FPRÓ90% for each considered attack mechanisms, Lp-norm constraint and ε on Tiny
ImageNet for APPROVED, FS and JTLA on a ViT-B. The best result for each attack is shown in bold.

Tiny ImageNet - ViT-B

Norm L1 APPROVED FS JTLA
AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

PGD1

ε = 50 74.2 61.1 44.8 81.6 66.9 69.0
ε = 60 74.3 60.7 45.0 81.8 69.3 64.1
ε = 70 74.8 60.7 45.1 82.0 68.3 65.3
ε = 80 74.7 60.5 45.1 82.3 70.9 66.4
ε = 90 74.9 59.8 45.0 82.2 70.1 63.9
ε = 100 74.6 59.4 44.9 82.0 69.3 66.6
ε = 500 76.5 59.7 60.7 71.7 70.1 66.7
ε = 1000 74.2 59.4 73.7 62.4 68.5 70.0
ε = 5000 78.2 51.8 83.2 50.0 66.0 74.3

Norm L2 APPROVED FS JTLA
AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

PGD2

ε = 0.125 74.2 60.2 45.2 81.4 69.4 68.4
ε = 0.25 75.0 57.2 45.2 81.8 69.3 65.6
ε = 0.5 75.7 53.4 47.1 79.5 70.2 64.7
ε = 5 74.3 60.6 77.9 57.5 66.5 73.2
ε = 10 74.4 59.7 78.1 57.7 65.4 73.3
HOP
ε = 0.1 87.1 31.8 59.1 76.3 73.4 60.6

Norm L8
APPROVED FS JTLA

AUROC FPR AUROC FPR AUROC FPR
PGD8

ε = 0.03125 89.6 28.8 96.0 8.2 58.9 81.5
ε = 0.0625 99.1 1.9 93.8 11.9 58.8 81.5
ε = 0.125 99.9 0.0 89.2 47.1 60.7 76.1
ε = 0.25 99.9 0.0 85.5 73.6 62.0 77.2
ε = 0.5 99.9 0.0 83.6 82.2 62.0 78.8
BIM
ε = 0.03125 80.7 43.1 86.0 44.8 61.2 80.4
ε = 0.0625 95.1 15.1 90.3 33.4 59.1 83.3
ε = 0.125 99.6 1.0 87.4 61.4 58.6 80.7
ε = 0.25 99.9 0.0 84.9 79.9 60.2 79.7
ε = 0.5 99.9 0.0 83.9 82.5 65.5 72.6
FGSM
ε = 0.03125 74.5 55.9 56.3 75.5 70.2 66.5
ε = 0.0625 80.8 43.5 58.0 71.8 72.3 60.0
ε = 0.125 87.1 30.4 53.6 75.1 72.7 62.1
ε = 0.25 91.1 22.3 48.1 78.8 74.4 59.7
ε = 0.5 94.4 15.2 50.9 74.2 75.8 56.4
SA
ε = 0.125 77.0 49.1 48.7 78.5 70.6 63.0

No Norm APPROVED FS JTLA
AUROC FPR AUROC FPR AUROC FPR

STA
No ε 80.2 42.5 53.0 77.5 68.2 68.3
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Table 15: AUROCÒ and FPRÓ90% for each considered attack mechanisms, Lp-norm constraint and ε on Tiny
ImageNet for APPROVED, FS, and JTLA on a ViT-L. The best result for each attack is shown in bold.

Tiny - ViT-L

Norm L1 APPROVED FS JTLA
AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

PGD1

ε = 50 79.8 49.4 57.8 79.6 72.8 54.8
ε = 60 80.1 49.3 57.7 79.0 75.2 54.2
ε = 70 80.1 49.6 57.6 79.2 74.6 54.7
ε = 80 80.5 50.4 57.6 78.7 72.7 59.0
ε = 90 80.5 50.4 58.4 79.0 73.3 62.0
ε = 100 80.6 49.9 58.1 78.5 74.1 58.6
ε = 500 74.8 53.6 61.5 74.4 64.8 72.0
ε = 1000 65.3 67.8 66.1 68.0 58.3 79.6
ε = 5000 65.8 66.3 71.2 62.2 54.6 83.4

Norm L2 APPROVED FS JTLA
AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

PGD2

ε = 0.125 79.5 49.3 57.8 79.3 71.6 68.3
ε = 0.25 80.1 49.5 57.7 78.7 74.1 62.0
ε = 0.5 80.8 48.8 57.7 79.2 73.8 58.8
ε = 5 64.8 71.3 65.4 69.9 57.0 82.2
ε = 10 64.4 71.6 65.9 69.9 58.8 81.7
HOP
ε = 0.1 85.3 32.3 52.6 81.7 73.0 54.4
DeepFool
No ε 80.4 47.4 57.6 80.0 72.5 61.1

Norm L8
APPROVED FS JTLA

AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

PGD8

ε = 0.03125 60.4 73.6 73.3 59.5 53.8 83.6
ε = 0.0625 68.8 60.5 79.6 48.9 55.4 83.4
ε = 0.125 79.4 40.1 82.9 43.3 59.6 81.4
ε = 0.25 84.2 31.3 83.9 39.4 62.8 77.0
ε = 0.5 85.7 28.6 84.3 38.8 63.5 77.6
BIM
ε = 0.03125 63.8 72.2 68.1 64.0 57.2 81.7
ε = 0.0625 64.6 69.3 73.9 57.1 54.3 83.6
ε = 0.125 72.9 53.7 79.0 49.9 57.3 80.6
ε = 0.25 82.3 35.1 82.8 42.8 61.3 78.1
ε = 0.5 89.8 21.4 86.9 33.3 68.8 68.2
FGSM
ε = 0.03125 78.0 50.3 56.2 79.9 68.7 68.7
ε = 0.0625 78.3 48.5 55.4 79.7 69.9 66.0
ε = 0.125 79.5 48.5 53.7 81.0 69.8 64.2
ε = 0.25 82.6 38.2 53.1 80.0 71.8 57.7
ε = 0.5 78.8 44.1 50.9 75.4 75.2 46.9
SA
ε = 0.125 82.3 32.3 56.3 82.1 75.0 50.6
CW8

ε = 0.3125 73.7 57.6 51.9 83.9 66.7 70.4

No Norm APPROVED FS JTLA
AUROCÒ FPRÓ90% AUROCÒ FPRÓ90% AUROCÒ FPRÓ90%

STA
No ε 85.7 30.7 63.4 69.3 74.1 52.4
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