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Abstract

Deploying large language models (LLMs) with billions of parameters is often impractical in
industrial settings due to constraints like cost, latency, and hardware limitations. Knowledge
distillation (KD) provides a solution by compressing the knowledge from large, resource-
intensive models into task-specific smaller ones. Various strategies exist, some relying on
the text generated by the teacher model, optionally, leveraging its output logits to improve
learning. However, these logit-based methods usually require the teacher and student models
to share the same tokenizer, which limits their applicability across different model families.
In this paper, we propose the Universal Logit Distillation (ULD) loss, which uses optimal
transport theory to enable distillation across different architectures and tokenizers. Our
results demonstrate that ULD loss effectively facilitates the distillation process, paving the
way for a more widespread use of distillation.

1 Introduction

A significant trend in NLP involves the utilization of large language models (LLMs) such as LLama (Touvron
et al., 2023a), Mistral (Jiang et al., 2023), Falcon (Almazrouei et al., 2023), GPT-NeoX (Black et al., 2022),
or Mixtral (Jiang et al., 2024). While LLMs offer impressive performance (Bubeck et al., 2023), their
deployment is often hampered by hardware availability, cost, and latency bottlenecks. Several strategies,
such as efficient decoding (Leviathan et al., 2023; Ye et al., 2023), model recycling (Lester et al., 2022),
and model size reduction (Dettmers et al., 2023; Ma et al., 2023), have been developed to streamline their
use. Among these, knowledge distillation (KD) (Buciluundefined et al., 2006; Hinton et al., 2015) a widely
adopted technique (Sanh et al., 2020; Jiao et al., 2020; Mohammadshahi et al., 2022; He et al., 2023; Raman
et al., 2023; Dasgupta et al., 2023), transferring the capabilities of large, complex teacher models into more
manageable and smaller student models, tailored for specific tasks. This approach is particularly valuable in
contexts where the comprehensive knowledge contained within LLMs is not wholly necessary. This process
aims to maintain the peak performance of general models on specific tasks while minimizing latency and
memory usage.
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Figure 1: Vocabulary overlap between
teacher and student models (Sec. 4.2),
illustrating the challenge of cross-tokenizer
distillation. (e.g., Bloomz tokenizer has
30.03% of Mistral’s vocabulary).

Two approaches can be considered. The "white box" approach,
where researchers propose loss functions that require access
to the model architecture to compute similarities across lay-
ers, forcing adjustment for each situation. In contrast, the
"black box" approach, indifferent to models latent spaces, relies
solely on the output logit vectors from teacher and student.
The black-box approach, due to its flexibility and generality, is
easily implemented by practitioners through libraries or APIs,
facilitating its adoption.

Over the past years, NLP researchers have extensively explored
these distillation methods with teacher and student models
sharing similar architecture, notably the BERT encoder (Sanh
et al., 2020; Jiao et al., 2020; Sun et al., 2020). This desire
to maintain similar architecture between teacher and student
models by mirroring some of the teacher blocks, hidden sizes,
or relying on the same tokenizer, came from the need to find similar information supports to apply distillation
losses.

However, KD for generative models, those relying on encoder-decoder or decoder architectures, has received
less attention due to the lack of common support between models. Although models of different sizes exist,
they often diverge in architecture and tokenizer (Fig. 1), making logit distillation loss inapplicable. In fact,
recent research predominantly focuses on synthetic data fine-tuning (He et al., 2022; Kramchaninova &
Defauw, 2022; Ouyang et al., 2022), rather than refining logits loss in the black box approach. Thus far, the
primary method for KD with decoder models is to use the text generated by the teacher model (He et al.,
2023; Hsieh et al., 2023), and if possible, when students and teachers models belong to the same family,
improving KD by employing output-logit distillation with Kullback–Leibler divergence (Mohammadshahi
et al., 2022; Raman et al., 2023; Wang et al., 2020a). This raises the following research question:

How can we build a general distillation loss that leverages logits capacity while staying within a black box
framework that is easy to implement?

Contributions: In this paper, we make the following contributions:

1. A universal logit distillation loss. We introduce a new loss, Universal Logit Distillation Loss
(ULD loss), versatile to tokenizers and with minimal assumptions about the architectures of teacher
and student models.

2. Experimental Results. We demonstrate the robust effectiveness of our loss function in transferring
the capabilities of many teacher models to different smaller student models for a variety of specific
tasks, including extractive question answering, generative question answering, and summarization.

3. Contributing to future research. We make our code1, model weights, and generated datasets2

openly available to facilitate future research, minimizing computational overhead and lowering entry
barriers.

2 Problem Formulation & Related Work

2.1 Notations

We define Ω a model vocabulary set, |Ω| his size, and Ω∗ signifies its Kleene closure3. Let P(Ω) denote
the set of probability distributions defined over the sample space Ω. It is defined as P(Ω) = p ∈ [0, 1]Ω
with

∑Ω
j=1 pj = 1. Consider D as a non-empty set with independent and identically distributed samples

1https://github.com/Nicolas-BZRD/llm-recipes
2https://huggingface.co/Nicolas-BZRD
3The Kleene closure corresponds to sequences of arbitrary size written with words in Ω. Formally: Ω∗ =

⋃∞
i=0 Ωi.
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(xi)N

i=1 ∈ Ω∗. Each xi is a sequence of tokens, where xi
j ∈ Ω represents the jth token of the ith sequence.

The notation xi
<t = (xi

t−1, . . . , xi
0) ∈ Ω∗ denotes the prefix of length t. In this paper, we will denote by ΩS

the student vocabulary and by ΩT the teacher’s vocabulary.
Remark. In general ΩT ̸= ΩS and |ΩT | ≠ |ΩS | but ΩT ∩ ΩS ̸= ∅.

Conditional textual generation: Conditional textual generation aims to model the probability distri-
bution p⋆(x) over variable-length text sequence x by approximating pθ(x) parameterized by θ ∈ Θ to p⋆(x)
for any x. In this work, we assume the presence of a teacher (fθT

) and student (fθS
), two pre-trained condi-

tional language models with a general form applicable to both fθ : Ω∗ → R|Ω|, where the output is provided
in unnormalized logit score. The function fθ parameterizes pθ (fθT

and fθS
respectively parameterize pθS

and qθT
), i.e., for any sentence x, pθ(x) = softmax

(
fθ(x)

τ

)
, where τ ∈ R+ denotes the temperature set

as default to 1. Given an input sequence x, the pre-trained language model fθ can iteratively generate an
output sequence x̂ during inference by sampling x̂t+1 ∼ pθ(.|x̂<t) with x̂t a generate token.

2.2 Knowledge Distillation Framework

In knowledge distillation (KD), the objective is to guide the learning of a student model on a specific task
using a complex teacher model (Buciluundefined et al., 2006; Hinton et al., 2015) that possesses generic
knowledge. This paradigm includes two main components: a cross-entropy loss (LCE), which ensures
the student model accurately predicts the gold tokens, and a secondary loss (LKD) tasked to align the
probability distributions of the student model with those of the teacher model. This alignment transfers
broader knowledge not encapsulated in gold vectors (similar to standard basis vectors) used in the cross-
entropy loss. Formally, the goal of the student is to minimize L:

L = LCE + λ × LKD (1)
where λ ∈ R+ can be used to control the trade-off between learning exclusively from text and knowledge
coming from the teacher.

2.3 Knowledge Distillation Related Work

Building on Eq. 1, various cases have been examined.

Distillation from teacher-generated text: Distillation from teacher-generated text occurs when λ = 0.
This strategy is particularly advantageous when dealing with synthetic data (Kramchaninova & Defauw,
2022; Du et al., 2023; Ushio et al., 2023), a fact highlighted by the effectiveness of instructing large language
models such as GPT-3.5/4 (Wu et al., 2023; Bubeck et al., 2023). Distillation from teacher-generated text
(Kim & Rush, 2016; He et al., 2023; Hsieh et al., 2023; Zhou & Chiam, 2023) will be considered as a baseline
throughout the paper. The primary drawback of these methods lies in their failure to fully leverage all the
information that can be provided by the teacher.

White-box approach: A further refinement of Eq. 1 occurs when LKD relies on the internal features of
the teacher to transfer knowledge(Jiao et al., 2020; Sun et al., 2020). Popular features include transformer
attention and internal layers within both encoder-only and encoder-decoder models (Raman et al., 2023;
Wang et al., 2020a; 2021). However, these methods require access to models’ internal mechanisms, which are
not available through API access, and assume similarities in architectural patterns between models, forcing
adjustments for each situation.

Black-box approach: In the black-box approach, practitioners only used the output logits of the model.
They use these logits to align the student’s output probabilities with those of the teacher through Kull-
back–Leibler divergence (KL) (Sanh et al., 2020). This method has emerged as one of the most widely adopted
approaches, successfully distilling encoder, decoder, or encoder-decoder models (Timiryasov & Tastet, 2023;
Mohammadshahi et al., 2022; Zhao et al., 2023a). However, employing KL divergence necessitates that
both student and teacher share the same vocabulary, a requirement impractical with current large language
models (LLMs) as reported in Fig. 1. We dig into the limitations of this method in the next section.
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Figure 2: Distillation using ULD loss. In block 4, the KL divergence cannot be defined as the two
distributions do not have the same support, breaking the absolute continuity of the quotient in the KL
logarithmic term. To alleviate this we rely on the ULD loss which leverages a closed form of the Wasserstein
distance.

2.4 KL Distillation loss

When distilling using the KL (Li et al., 2021), the goal is to force the student to learn the teacher’s output
probability distribution at each generation step. The formal definition of the objective function is provided
in Eq. 2.

L=
|x|∑
t=1

CE(t) + λKL [qθT(·|x<t), pθS (·|x<t)] (2)

where |x| the length of the tokenized sentence x, qθT (·|x<t) and pθS (·|x<t) are the probability distribution
for the Teacher and Student models at the tth steps. CE (t) denotes the cross-entropy loss at each generation
time step t, expressed as: CE (t) = − log (pθS

(xt|x<t)) with xt the gold token for the tth steps and KL the
Kullback–Leibler divergence defined as: KL [qθT (·|x<t) , pθS (·|x<t)] =

∑
x∈Ω

qθT (x|x<t) × log
(

qθT (x|x<t)
pθS (x|x<t)

)
where λ ∈ R+ controls the trade-off between the two terms.

Remark. Eq. 2 relies on equality across the vocabulary of the student and the teacher, i.e. Ω = ΩS = ΩT ,
ensuring similar support of probability distributions.

Remark. Eq. 2 also suppose absolute continuity for the distributions pθS(·|x<t) ≪ qθT(·|x<t) at each
generation step t, making the use of padding impractical.

Our examination of Eq. 2 illustrating in Fig. 2 highlights that both vocabulary (similar support of probability
distributions) and absolute continuity constraints pose challenges to distilling two distinct LLM families with
logits using KL loss. In the following section, we introduce our ULD loss, providing a flexible framework for
knowledge distillation across a wide range of LLMs.
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3 Universal Logit Distillation

3.1 Background on Optimal Transport

Optimal transport provides a mathematical framework for transferring mass between distributions while
minimizing cost (Villani et al., 2009; Peyré et al., 2019). Within this framework, the Wasserstein distance,
also known as the Earth Mover Distance, is a robust metric for quantifying dissimilarities between distri-
butions. This distance metric has gained popularity in NLP applications such as hallucination detection
(Guerreiro et al., 2022; Shuster et al., 2021), clustering (Zhuang et al., 2022; Ye et al., 2017; Xu et al., 2018)
or sentence similarity (Colombo et al., 2021; Xu et al., 2018; Bahuleyan et al., 2018).

Wasserstein distance: The Wasserstein distance minimizes transport costs between sampled points from
all possible couplings. Let us consider two sets of probability distributions, P (ΩS) and P (ΩT ), respectively
containing discrete distributions over spaces ΩS and ΩT . We denote p ∈ P (ΩS) and q ∈ P (ΩT ) as two
discrete probability distributions with

∑|ΩS |
i=1 piδxS

i
= 1 and

∑|ΩT |
i=1 qiδxT

i
= 1, where δxS

i
and δxT

i
represent

probability mass points at xS
i , xT

i with xS
i ∈ ΩS and xT

i ∈ ΩT for distributions p and q. The values pi and
qi are weight factors ensuring that the sum of weights is equal to 1. Under this discrete setting, computing
the Wasserstein distance is defined as:

Wp(p, q) = min
T ∈Π(p,q)

|ΩS |∑
i=1

|ΩT |∑
j=1

TijCp
ij (3)

where Π(p, q) is the set of joint distributions with marginals p and q, Cp
ij represents the cost matrix, and

T is the transport plan. For the rest of the work, we focus on the Wasserstein distance related to p = 1.
Consequently, the Wasserstein distance seeks the optimal approach to transfer probability mass from p to
q, minimizing the transportation cost defined by the absolute norm.
Remark. Note that the Wasserstein distance (see Eq. 3) makes no assumptions about the support of p or
q, unlike the KL divergence, making it a natural choice for distillation.

3.2 Universal Logit Distillation loss

The Universal Logit Distillation loss (ULD loss) is a novel distillation technique designed to virtually distill
any generative model teacher into any student. It aims to overcome the limitations of KL divergence, as
discussed in Sec. 2.4 and Fig. 2.

Intuition. The ULD loss retains the CE loss term to guide the model in generating the target token and
introduces a Wasserstein Distance term to transfer knowledge from the teacher to the student. By minimizing
the distance between the soft probabilities of the teacher and the student, our goal is to reproduce not only
the predictions for the gold token but also the near-zero labels, which are crucial for performance and
generalization.

ULD loss: Formally, the ULD loss function is formulated as:

LULD =
|x|∑
t=1

CE(t) + λ × W1
[
pθS

(
·|xS

<t

)
, qθT

(
·|xT

<t

)]
(4)

where |x| = min
(
|xS |, |xT |

)
the minimum length between the sentences tokenized with the teacher or

student tokenizers. Respectively qθT

(
·|xT

<t

)
and pθS

(
·|xS

<t

)
are the probability distribution for the Teacher

and Student models at the tth steps, CE(t) the cross-entropy loss defined in Sec. 2.4 and W1 represents the
discrete Wasserstein distance defined in Eq. 3 where λ ∈ R+ controls the trade-off between the two terms
and set to 1.5 in the rest of this paper as discussed in Appendix: Sec. B.1.

Explanation. Similar to the KL loss, the discrete Wasserstein distance ensures that the confidence of the
student at each time step is close to the one from the teacher.
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3.3 Fast Computation & Approximations

To the best of our knowledge, we are the first to motivate and propose the Wasserstein distance as a
learning loss for distillation in the scope of the LLM decoder. Prior efforts focus on Sinkhorn regularization
(Cuturi, 2013) with encoder-decoder for classification (Bhardwaj et al., 2022), while our focus diverges as
we concentrate on the generative setting. This shift presents inherent challenges, as the naive computation
of the Wasserstein loss in Eq. 3 exhibits a complexity of O(n3 log n), where n signifies the size of the larger
support. While manageable in small classification scenarios with encoders, the magnitude of the vocabulary,
which can extend to 100K tokens in generative tasks, renders this approach intractable, particularly for long
sequences.

Closed form solution for ULD loss: To achieve efficient computation of the Wasserstein distance in
Eq. 4, we introduce two additional refinements:

Uniform Support Length: We augment either the student or teacher vocabulary size through distribution
padding, ensuring equal support size for both (i.e., |Ωt| = |Ωs| = |Ω|).

Uniform Cost: As teacher and student supports differ, and no vocabulary relationship is established, we
assert that each transport cost is equal to 1. While this may seem a strong assumption, we will demonstrate
that the approximation we draw still achieves better results in our case.

Under this assumption the Wasserstein distance used in the LULD loss becomes the one introduced by Peyré
et al. (2019):

W1 =
|x|∑
t=1

|Ω|∑
i=1

∣∣∣p(xS
σS(i)|x

S
<t) − q(xT

σT (i)|x
T
<t)

∣∣∣ (5)

with a complexity of O (n · log(n)) (Sec. A.1) where σS and σT are the permutations that sort in decreasing
order the probability of student and teacher probability vectors. An extensive demonstration of this closed
form is provided in App. A, written clearly and accessible.

Intuition. The final version of Eq. 5 is decomposed into two sums:

• The outer sum iterates over the sequence length (denoted as |x|) to compute the Wasserstein
distance at each time step t.

• The inner sum
∑

i |pσS(si) − qσT (ti)| represents the Wasserstein (W1) distance between the logits
of the student and teacher models at that time step.

To compute the W1 distance efficiently, we use a closed-form solution derived under certain assumptions:
uniform support length and uniform transport cost, as detailed in App. A. This solution computes the
absolute difference between the sorted probability masses of the teacher and student vectors at time step t,
ensuring that the overall structure of the teacher’s probability distribution is preserved.

This process allows the student model to learn not only from the golden tokens (as used in the Cross-Entropy
Loss) but also from the surrounding probability distribution, capturing distributional information from the
teacher’s predictions.

4 Experimental Setting

4.1 Evaluation Scenarios

We avoid fine-tuning teacher models to ensure alignment with the black-box approach as training teacher
models may be unavailable. In this way, we enable ULD Loss to operate in an unsupervised environment by
generating all answers text with teacher models. For repeatability and fair comparison between experiments,
we opted to retain original answers for the test set split. We investigated various scenarios to evaluate the
ULD loss performance across different datasets and tasks. These comprised 2 Extractive QA (Ext.), 2
Generative QA (Gen.), and 1 Summary (Sum.) tasks:
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- SQuAD (Ext.): The Stanford Question Answering Dataset (SQuAD) (Rajpurkar et al., 2016) is
a reading comprehension dataset with 87,600 questions generated by crowdworkers from Wikipedia
articles. Answers are text portions from the relevant sections of the articles.

- QED (Ext.): The QED (Lamm et al., 2020) dataset, expertly annotated, extends from a subset of
the Google Natural Questions dataset, comprising 7,640 question-answering pairs with explanations.
Our focus is exclusively on extracted answers (spans).

- FairytaleQA (Gen.): The FairytaleQA Dataset (Xu et al., 2022), created by educational experts,
consists of 10,580 questions from 278 children-friendly stories. Questions may be explicit or implicit.

- PubMedQA (Gen.): The PubMedQA (Jin et al., 2019) dataset contains question-answer pairs
extracted from medical papers. Questions are based on titles, context on abstracts, and responses
on conclusions. Due to the dataset size and context length of our student models, we subset the
dataset by selecting the first 50,000 smaller items.

- DIALOGSum (Sum.): DialogSum (Chen et al., 2021) is a large-scale dialogue summarization
dataset, consisting of 13,460 spoken dialogues with corresponding summaries and topics.

4.2 Experimental Choices

Baseline: As far as we know, the only method currently capable of distilling any pair of teacher and
student LLM models in a black-box approach is distillation from teacher-generated text seen in Sec. 2.3.
Throughout the remainder of this paper, distillation from teacher-generated texts will serve as the baseline
for evaluating the distillation process using the ULD loss across different teacher-student pairs, tasks, and
datasets. Additional experimentation with KL Div methods between models from similar families can be
found in Appendix Sec. B.2

Teacher Models: We employed two teacher decoder models, each with 7 billion parameters: LLama 2 7b
Chat (LLama) by Touvron et al. (2023b) and Mistral 7b Instruct (Mistral) by Jiang et al. (2023). These
instruct models were chosen for their ability to generate few-shot answers (Brown et al., 2020; Wang et al.,
2020b) across diverse tasks and their distinct vocabulary set as shown in Figure 1.

Student Models: We chose student models from various LLM families and architectures with parameters
ranging between 160 million to 1 billion: OPT 350m (Zhang et al., 2022), Pythia 160m, Pythia 410m,
Pythia 1b (Biderman et al., 2023), Bloomz 560m (Muennighoff et al., 2023) all decoder models and MT0
580m (Muennighoff et al., 2023) an encoder-decoder. It’s important to note that models can have been
already pre-trained on some datasets such as SQuAD for Bloomz and MT0.

Training process: ULD loss distillation and teacher-generated text distillation were processed uniformly.
The two teacher models generate answers in inference mode for the five datasets. These answers are then
utilized to train student models. During training, student models are trained exclusively to predict answers,
in teacher forcing configuration. Logits used for the ULD loss are calculated by applying teacher models
to the same data points they generated. Teacher’s weights were frozen, ensuring consistency in teacher-
generated sentences during inference and training. Additional parameter details (learning rate, batch size,
etc.) can be found in the Appendix App. G.

4.3 Teacher Performances

Distilling using synthetic teacher-generated answers might restrict student performance on teacher’s ones.
To measure distillation efficiency accurately, we report the average native performances across tasks for
both teachers Tab. 1 (details in Appendix App. D). We chose a primary metric for each task reflecting
associate performances: F1 score for Extractive QA (Sokolova et al., 2006), BERTScore for Generative QA
(Zhang* et al., 2020), and Rouge-Lsum for summary task (Lin, 2004). Comprehensive evaluation methods
and outcomes, encompassing prompts and few-shot examples, are provided in the Appendix App. E.

7
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Table 1: Average performance of teacher models across tasks with their main metrics. It is important
to note a relative difference of 30% in performance between teacher models on the summary task.

Model Extractive
(F1)

Generative
(BERTScore)

Summary
(Rouge-Lsum)

LLama 69.51 36.11 23.90
Mistral 64.66 33.47 34.71

5 Empirical Results

Table 2: Overall performance of Teacher/Student pair models trained with ULD Loss and teacher-
generated text (Raw Text) across tasks with their main metrics. Evaluations are performed over respective
test splits.

Teacher Model Method SQUAD QED FairytaleQA PubMedQA DIALOGSum
(F1) (F1) (BERTScore) (BERTScore) (Rouge-Lsum)

Teacher LLama - 81.30 57.72 41.59 30.62 23.90
Mistral - 76.31 53.01 36.01 30.93 34.71

LLama

OPT-350m Raw Text 70.78 48.64 33.78 27.99 20.58
ULD Loss 72.97 49.06 33.03 30.01 20.11

Pythia-410m Raw Text 71.39 47.04 33.02 29.86 20.94
ULD Loss 74.14 49.15 34.83 29.89 22.19

Bloomz-560m Raw Text 73.54 50.99 36.70 29.14 20.01
ULD Loss 75.90 55.33 37.86 30.01 22.67

Mistral

OPT-350m Raw Text 71.64 50.13 30.09 27.91 31.44
ULD Loss 73.35 50.88 30.44 30.30 32.17

Pythia-410m Raw Text 71.50 47.07 31.44 28.25 31.64
ULD Loss 73.64 50.38 31.79 29.55 33.10

Bloomz-560m Raw Text 73.34 52.15 32.64 28.87 31.95
ULD Loss 76.00 55.79 33.93 30.60 32.58

Average - Raw Text 72.03 49.34 32.94 28.67 26.09
- ULD Loss 74.33 51.77 33.65 30.06 27.14

5.1 General Results

We empirically validate the effectiveness of the ULD loss step-by-step. First, we report in Tab. 2 the aggre-
gated key metrics performance over the different datasets and teacher/student pairs. ULD loss achieves
the best overall results, which indicates that the proposed ULD loss effectively improves the performances
of every student model on a variety of downstream tasks using any Teacher. Notably, ULD loss exhibits an
average improvement of 2.30 points over models trained on teacher-generated text for extractive QA tasks
and Bloomz outperforms his teacher Mistral on the QED datasets. Furthermore, concerning summarization
tasks, the 30% performance disparity between LLama/Mistral (Tab. 1) persists in their distilled counterparts
(Tab. 2), underscoring the critical role of teacher performances.

5.2 Student Size Ablation Study

General results in Tab. 2 show a consistent pattern regarding the model size and the gain achieved with
the ULD loss, especially for challenging tasks such as generative QA. To understand the impact of student
size on distillation capability, we performed an ablation study over the Pythia family. We hold the training
dataset size fixed at 100% and compare the performance of models from 160m, 410m to 1b parameters and
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report results in Fig. 3. We observe that incorporating ULD loss consistently enhances student models across

Figure 3: Student model size ablation with the Pythia family trained by a LLama teacher. Trainings are
conducted with ULD loss and teacher-generated text (raw text). Evaluation scores on test sets are depicted
on the Y-axis, while Pythia model sizes are on the X-axis.

various tasks. The enhancements are particularly noticeable for smaller models on simpler tasks, while ULD
loss requires larger models for effectively distilling teacher logits on harder tasks. This is especially evident in
tasks requiring reasoning, such as FairytaleQA. While using logits teacher improves training, deep reasoning
tasks still require appropriate model sizes to process complex relationships taught by teachers. Generally, we
observe a significant increase in capacity transfer from teacher to student models through the use of ULD,
enabling student models to match models twice bigger trained with the teacher-generated text
method. For example, Pythia 410m with ULD loss matches the performance of the Pythia 1b distilled with
teacher-generated text on QED and DIALOGSum.

5.3 Dataset Size Ablation Study

In this section, we investigate and report in Fig. 4 the influence of the dataset size for models trained with
ULD Loss or teacher-generated text. We perform ablations with respectively 25%, 50%, 75%, and 100%
of dataset size while keeping training parameters constants. Training for each ratio was conducted five
times to establish a range of performance. For every ablation ratio, models trained with ULD loss achieved
better performance than models trained on teacher-generated text. Specifically, with 50% of a dataset,
ULD loss models overpass the performance of teacher-generated text models trained with full
dataset.

Figure 4: Dataset size ablation with a LLama/Pythia-410m pair trained with ULD loss or teacher-
generated text. The X-axis indicates the % of data used during training while the y-axis represents the test
set score. Minimum and maximum values are represented by the error bars in the plot while the mean is
represented by points.
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5.4 Training Regularization

To understand the impact of the ULD loss during training we decide to compute the validation ULD and
Cross-entropy loss values for two pairs of teacher/student on the SQuAD dataset every 200 steps during
5 epochs. We report the curves formed by this point in Fig. 5. It appears that using the ULD loss
contributes to stabilizing the distillation process over training and mitigates overfitting issues,
enabling the model to train more effectively across multiple epochs. It’s worth noting that incorporating the
ULD loss during training stabilizes both ULD and Cross-entropy loss.

Figure 5: Evolution of validation ULD and Cross-entropy loss curves during training on SQuAD
dataset for a LLama/Pythia-410m and LLama/Bloomz-560m Teacher/Student pair of model. For teacher-
generated text models (raw text), the ULD loss was only computed during validation and did not impact
the training.

Remark. Even though the cross entropy is lower with raw text data than with ULD Loss, the raw data does
not lead to better results. In fact, during training, models distilled with ULD Loss are trained to reproduce
the predictions of the teacher model. Consequently, they are not trained to minimize cross-entropy and have
maximum confidence in each prediction.

For this reason, a student model trained to reproduce the confidence of a teacher model of 0.92, compared to a
model trained only on raw text and trained to predict 1, will have a lower probability on the golden token and
consequently a higher Cross Entropy Loss. However, this model will be better calibrated to its true confidence
for the sentence.

6 Distillation of Decoder Teacher to Encoder-Decoder Student

As shown in Sec. 5, ULD loss effectively transfers knowledge from any pair of teacher/student decoders.
Moreover, by leveraging solely on logit information and adopting a black-box approach, ULD loss should
be able to extend its versatility and improve cross-architecture distillation. To validate this, we distill a
teacher/student pair LLama/MT0-580m and focus our experimentation on PubMedQA, DIALOGSum, and
QED to avoid any data seen during the pre-training of MT0 with the xP3 dataset (Muennighoff et al., 2023;
Sanh et al., 2022).

Table 3: Distillation of a LLama teacher (decoder) to an MT0-580m (encoder-decoder) with
ULD Loss and teacher-generated text on three data sets.

ULD loss QED
(F1)

PubMedQA
(BERTScore)

DIALOGSum
(Rouge-Lsum)

Raw Labels 55.63 27.56 23.22
ULD Loss 56.01 30.19 23.92
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The results presented in Tab. 3 demonstrate that incorporating logit information from a decoder teacher
using ULD loss can enhance the performance of an encoder-decoder student model. Notably, the inherent
ability of the encoder-decoder in the summary task seems to be limited by the synthetic answers as teacher-
generated text distillation matches the teacher’s performance. However, by using the logit information with
the ULD loss, the student model still leads to improved results, suggesting a successful knowledge transfer
through logits. With this additional knowledge, the student model slightly outperforms the teacher one.
Furthermore, in generative tasks where decoder architectures perform, the encoder-decoder student model
gained 2.63 points over distillation with teacher-generated text.

7 Conclusions

In this work, we introduce the Universal Logit Distillation (ULD) loss, a novel approach for distilling any
decoder teacher model into any student model for LLM generative tasks, utilizing a new closed form of the
Wasserstein distance never seen before for distillation. ULD achieves superior overall results and matches the
performance of traditional teacher-generated text distillation with only half the training dataset or student
model size, while effectively preventing overfitting. Our comprehensive experiments demonstrate the efficacy
of the ULD loss across a variety of tasks, datasets, and model architectures, showcasing its advantages over
standard teacher-generated text distillation methods.

Broader Impact Statement

Knowledge distillation aims to reduce the size, cost, and energy consumed by a model at inference time.
Our work opens new perspectives in this area, aligned with the desire for sobriety, notably for environmental
reasons. Although KD allows partial transfer of larger model performance, smaller models remain limited in
their reasoning capacity and are more susceptible to hallucinatory behavior (Rawte et al., 2023), especially in
open-ended generation tasks. This phenomenon has not been extensively studied in this work. Furthermore,
by distilling knowledge from existing models, if a bias is already present in the teacher model, it may be
transferred to the student model. This is not unique to our method, but it’s a common risk for all knowledge
distillation.
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A Appendix - Proof of the closed Form

In this section, we gather an extensive proof of the close form used. Although the proof is not hard, we could
not find it properly written in an easy and readable manner.

Step 1: Wasserstein Distance Definition

Given two discrete distributions p and q over a vocabulary Ω of size n, the Wasserstein distance W1 is given
by:

W1(p, q) = min
π

n∑
i=1

n∑
j=1

π(i, j)c(i, j)

where π(i, j) is the transport plan, and c(i, j) is the cost of transporting mass from i to j.

Step 2: Uniform Cost Assumption

Assume that the cost c(i, j) = 1 for all i, j. This reduces the Wasserstein distance to:

W1(p, q) = min
π

n∑
i=1

n∑
j=1

π(i, j) · 1 = min
π

n∑
i=1

n∑
j=1

π(i, j)

Step 3: Transport Plan Constraints

The transport plan π(i, j) must satisfy:
n∑

j=1
π(i, j) = p(i) for all i

n∑
i=1

π(i, j) = q(j) for all j

Step 4: Closed-Form Solution Using Permutations

To derive a closed-form solution, we can utilize the assumptions and inherent structure of the problem:

1. Uniform Cost Implication: Given the uniform cost assumption, the cost of transporting mass
from i to j is constant. Consequently, the optimal transport plan minimizes costs by directly
matching the masses without any additional expenditures.

2. Sorting and Matching: Assume the distributions p and q are sorted in decreasing order. If they
are not already sorted, we can introduce permutations σS and σT such that p(σS(i)) and q(σT (i))
are in sorted order.

3. Simplified Transport Plan: With the distributions sorted, the optimal transport plan π(i, j)
becomes straightforward. We can directly match p(σS(i)) with q(σT (i)) for corresponding indices
i.

With this optimal transport plan, the Wasserstein distance simplifies to:

W1(p, q) =
n∑

i=1
|p(σS(i)) − q(σT (i))|
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Let’s prove that the optimal transport plan is the one that directly matching the masses.

We assume that the cost c(i, j) = 1 for all i and j. This means that the cost of transporting any unit of
mass from any i to any j is identical. To prove that the optimal transport plan under the uniform cost is
one that directly matches the masses, we need to show that any deviation from direct matching does not
reduce the cost.

Step 1: Feasibility of the Direct Matching Transport Plan

Consider the direct matching transport plan π(i, j) = p(i) · δij , where δij is the Kronecker delta function.
This means that π(i, j) is non-zero only when i = j, and it directly assigns p(i) to q(i).

π(i, j) =
{

p(i) if i = j

0 otherwise

This plan satisfies the constraints because:

n∑
j=1

π(i, j) =
n∑

j=1
p(i) · δij = p(i) for all i

n∑
i=1

π(i, j) =
n∑

i=1
p(i) · δij = q(j) for all j

Step 2: Cost comparison

According to the direct matching plan, the cost is:

W1 =
n∑

i=1
π(i, i) =

n∑
i=1

p(i)

Similarly, for any alternative transport plan that satisfies the constraints, the total cost remains unchanged
because the total amount of mass transported is conserved and each unit of mass incurs a uniform cost of 1:

n∑
i=1

n∑
j=1

π(i, j) =
n∑

i=1
p(i)

Conclusion

Given that the cost under any valid transport plan is equivalent to the total mass transported, which is 1 per
unit of mass due to uniform cost, the direct matching plan is optimal. Consequently, under the assumption
of uniform cost, the optimal transport plan directly matches the masses without incurring additional costs.
Thus, the Wasserstein distance can be approximated by summing the absolute differences between the aligned
distributions, yielding the exact closed-form proposed under these assumptions:

W1(p, q) =
n∑

i=1
|p(i) − q(i)|

A.1 Complexity

W1 =
|x|∑
t=1

|Ω|∑
i=1

∣∣∣p(xS
σS(i)|x

S
<t) − q(xT

σT (i)|x
T
<t)

∣∣∣
Closed form Wasserstein Distance (Eq. 5)

CE(t) = −
|x|∑
t=1

|Ω|∑
i=1

log (pθS
(xi|x<t))

Cross Entropy (Sec. 2.4)
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KL =
|x|∑
t=1

|Ω|∑
i=1

qθT(xi|x<t) × log
(

qθT(xi|x<t)
pθS(xi|x<t)

)
Kullback–Leibler Divergence (Sec. 2.4)

As discussed in (Sec. 3.3), we emphasize the significance of a newly closed-form Wasserstein distance for
knowledge distillation, which from the base of our knowledge has not been previously seen. Indeed, the
conventional approach poses challenges due to the Wasserstein high computational complexity of O(n3·log n),
where n signifies the size of the larger support, hindering scalability and practical adoption. However, our
discovery of a closed-form solution with the ULD Loss markedly reduces this complexity to O (n · log(n)).
Precisely, in the case of a sentence of size |X| and output vector of support size |Ω| (vocabulary length) the
complexity cost O (|X| · (|Ω| · log (Ω))) with log (Ω) the complexity induced by sorting algorithms in general
GPU frameworks 4.

4https://developer.nvidia.com/gpugems/gpugems2/part-vi-simulation-and-numerical-algorithms/
chapter-46-improved-gpu-sorting
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B Appendix - Complementary experiments

B.1 Distillation Factor Ablation

Model Dataset λ = 0 λ = 0.5 λ = 1 λ = 1.5 λ = 2 λ = 3

pythia-410m FairytaleQA 33.02 34.83 35.52 34.83 34.93 33.99
pythia-410m SQuAD 71.39 74.33 74.53 74.14 74.75 74.91
pythia-410m Dialogsum 20.94 22.68 23.26 22.19 21.74 21.24

bloomz-560m FairytaleQA 36.70 36.98 36.95 37.86 37.96 37.21
bloomz-560m SQuAD 73.54 75.96 75.95 75.90 77.23 76.92
bloomz-560m Dialogsum 20.01 22.26 22.34 22.67 21.90 20.02

opt-350m FairytaleQA 33.78 34.60 33.95 33.03 33.45 32.72
opt-350m SQuAD 70.78 73.43 73.78 72.97 74.03 73.26
opt-350m Dialogsum 20.58 20.30 20.02 20.11 19.63 18.94

Table 4: Ablation Study on the Lambda Distillation Factor with the LLama teacher. The values compared
for each dataset are as follows: FairytaleQA (BERTScore), SQuAD (F1), Dialogsum (Rouge-Lsum)

Due to the prohibitive costs associated with training models across various datasets using multiple lambda
values, we restricted our analysis to specific values. These values were identified through an ablation study
involving three students across three distinct tasks, assessing six lambda values. A lambda value higher than
1 implies greater emphasis on the ULD Loss than on the cross-entropy term, as detailed in Eq. 1. Conversely,
a lambda value of zero indicates that distillation proceeds without incorporating logit information. Results
presented in Tab. 4 demonstrate that the ULD loss consistently enhances performance compared to baseline
(λ = 0) in nearly all experimental scenarios. Based on these findings, we have chosen to focus on λ = 0 for
baseline purposes and λ = 1.5 for the ULD Loss to provide the most general results in the remainder of this
paper. Importantly, the ablation suggests that fine-tuning λ could enhance performance by as
much as 1.5 percentage points over the general results presented in this paper.

B.2 Comparison between KL Divergence and ULD Loss

Model Dataset Method λ = 0 λ = 0.5 λ = 1 λ = 1.5 λ = 2 λ = 3

TinyLlama-1.1B FairytaleQA KL Div 38.45 39.21 39.20 39.67 39.61 39.88
TinyLlama-1.1B FairytaleQA ULD Loss 38.45 38.53 39.37 39.39 39.75 39.36

TinyLlama-1.1B SQuAD KL Div 81.06 81.87 81.95 82.12 82.06 82.02
TinyLlama-1.1B SQuAD ULD Loss 81.06 81.52 81.90 82.04 81.72 81.47

TinyLlama-1.1B Dialogsum KL Div 24.77 24.36 24.17 24.17 24.03 24.07
TinyLlama-1.1B Dialogsum ULD Loss 24.77 24.97 24.74 24.08 24.48 24.85

Table 5: Comparison between a LLama-7b teacher distilled with TinyLlama-1.1B-intermediate-step-1431k-
3T, a model based on the same architecture, using the Kullback-Leibler divergence or the ULD Loss. The
values compared for each dataset are as follows: FairytaleQA (BERTScore), SQuAD (F1), Dialogsum (Rouge-
Lsum). The distillation performer with a lambda value = 0 is equivalent to training with raw data.

Although ULD Loss is designed to function across different model families, we opted to evaluate it alongside
the Kullback-Leibler divergence (KL Div) method within the specific environment, where both the student
and teacher models share the same architecture. In our case the student model is TinyLlama and the teacher
is Llama-7b. As illustrated in Tab. 5, ULD Loss demonstrates performance comparable to existing black-box
distillation methods. Notably, we observed that the most significant improvements between raw text versus
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logit distillation occur at identical lambda values for ULD Loss and KL divergence. This result raises the
hypothesis of parallel behavior between the two methods when applied to models of the same architecture.
However, ULD Loss offers the unique advantage of applicability across diverse model pairs, making it a
superior alternative to KL divergence.

21



Published in Transactions on Machine Learning Research (01/2025)

C Appendix - General Results

C.1 Summary

Teacher Model Method Dataset Rouge-1 Rouge-2 Rouge-L Rouge-Lsum

Llama Bloomz-560m Raw Text DIALOGSum 24.71 10.06 19.99 20.01
Llama Bloomz-560m ULD Loss DIALOGSum 28.08 11.68 22.64 22.67
Mistral Bloomz-560m Raw Text DIALOGSum 39.85 15.36 31.92 31.95
Mistral Bloomz-560m ULD Loss DIALOGSum 40.57 15.94 32.6 32.58
Llama OPT-350m Raw Text DIALOGSum 25.4 10.48 20.57 20.58
Llama OPT-350m ULD Loss DIALOGSum 23.69 9.76 20.13 20.11
Mistral OPT-350m Raw Text DIALOGSum 39.33 14.97 31.49 31.44
Mistral OPT-350m ULD Loss DIALOGSum 39.8 15.76 32.19 32.17
Llama Pythia-410m Raw Text DIALOGSum 26.28 10.52 20.92 20.94
Llama Pythia-410m ULD Loss DIALOGSum 27.29 11.2 22.17 22.19
Mistral Pythia-410m Raw Text DIALOGSum 39.69 15.0 31.62 31.64
Mistral Pythia-410m ULD Loss DIALOGSum 41.39 15.93 33.08 33.1
Llama Pythia-160m Raw Text DIALOGSum 20.34 7.46 16.81 16.81
Llama Pythia-160m ULD Loss DIALOGSum 22.94 8.39 19.56 19.55
Llama Pythia-1b Raw Text DIALOGSum 27.71 11.08 21.86 21.88
Llama Pythia-1b ULD Loss DIALOGSum 28.48 12.16 23.04 23.04

Table 6: Details performance of Teacher/Student pair models trained with ULD Loss and
teacher-generated text (Raw Text) for the Summary task. Evaluations are performed over respective
test splits.

C.2 Extractive QA

Teacher Model Method Dataset F1 Precision Recall

Llama Bloomz-560m Raw Text SQuAD 73.54 75.35 75.19
Llama Bloomz-560m ULD Loss SQuAD 75.9 77.37 77.88
Llama Bloomz-560m Raw Text QED 50.99 58.9 52.38
Llama Bloomz-560m ULD Loss QED 55.33 63.22 56.47
Mistral Bloomz-560m Raw Text SQuAD 73.34 73.31 78.52
Mistral Bloomz-560m ULD Loss SQuAD 76.0 76.1 81.1
Mistral Bloomz-560m Raw Text QED 52.15 57.49 56.28
Mistral Bloomz-560m ULD Loss QED 55.79 61.98 58.8
Llama OPT-350m Raw Text SQuAD 70.78 72.52 72.78
Llama OPT-350m ULD Loss SQuAD 72.97 74.61 74.99
Llama OPT-350m Raw Text QED 48.64 54.74 51.84
Llama OPT-350m ULD Loss QED 49.06 55.38 51.74
Mistral OPT-350m Raw Text SQuAD 71.64 71.67 77.28
Mistral OPT-350m ULD Loss SQuAD 73.35 73.25 78.91
Mistral OPT-350m Raw Text QED 50.13 55.36 54.56
Mistral OPT-350m ULD Loss QED 50.88 56.61 54.53
Llama Pythia-410m Raw Text SQuAD 71.39 73.76 72.85
Llama Pythia-410m ULD Loss SQuAD 74.14 75.88 76.31
Llama Pythia-410m Raw Text QED 47.04 54.31 48.87
Llama Pythia-410m ULD Loss QED 49.15 54.75 53.13
Mistral Pythia-410m Raw Text SQuAD 71.5 71.33 77.54
Mistral Pythia-410m ULD Loss SQuAD 73.64 73.34 79.71
Mistral Pythia-410m Raw Text QED 47.07 50.2 54.67
Mistral Pythia-410m ULD Loss QED 50.38 54.19 56.62
Llama Pythia-160m Raw Text SQuAD 52.83 53.68 56.67
Llama Pythia-160m ULD Loss SQuAD 53.86 54.57 58.19
Llama Pythia-160m Raw Text QED 21.11 21.69 34.46
Llama Pythia-160m ULD Loss QED 27.48 30.3 33.8
Llama Pythia-1b Raw Text SQuAD 75.89 77.36 78.28
Llama Pythia-1b ULD Loss SQuAD 77.1 78.57 79.55
Llama Pythia-1b Raw Text QED 48.59 51.05 60.41
Llama Pythia-1b ULD Loss QED 51.22 55.3 59.7

Table 7: Details performance of Teacher/Student pair models trained with ULD Loss and
teacher-generated text (Raw Text) for Extractive QA task. Evaluations are performed over respec-
tive test splits.
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C.3 Generative QA

Teacher Model Method Dataset BERTScore PBERT RBERT

Llama Bloomz-560m Raw Text FairytaleQA 36.7 45.42 28.46
Llama Bloomz-560m ULD Loss FairytaleQA 37.86 46.93 29.36
Llama Bloomz-560m Raw Text PubMedQA 29.14 29.45 28.86
Llama Bloomz-560m ULD Loss PubMedQA 30.01 32.5 27.65
Mistral Bloomz-560m Raw Text FairytaleQA 32.64 39.46 26.09
Mistral Bloomz-560m ULD Loss FairytaleQA 33.93 42.45 25.8
Mistral Bloomz-560m Raw Text PubMedQA 28.87 28.59 29.14
Mistral Bloomz-560m ULD Loss PubMedQA 30.6 32.08 29.13
Llama OPT-350m Raw Text FairytaleQA 33.78 41.46 26.57
Llama OPT-350m ULD Loss FairytaleQA 33.03 41.16 25.32
Llama OPT-350m Raw Text PubMedQA 27.99 28.46 27.56
Llama OPT-350m ULD Loss PubMedQA 30.01 36.11 24.14
Mistral OPT-350m Raw Text FairytaleQA 30.09 35.47 24.91
Mistral OPT-350m ULD Loss FairytaleQA 30.44 37.38 23.81
Mistral OPT-350m Raw Text PubMedQA 27.91 27.06 28.75
Mistral OPT-350m ULD Loss PubMedQA 30.3 36.99 23.82
Llama Pythia-410m Raw Text FairytaleQA 33.02 41.31 25.26
Llama Pythia-410m ULD Loss FairytaleQA 34.83 42.61 27.49
Llama Pythia-410m Raw Text PubMedQA 29.86 31.06 28.72
Llama Pythia-410m ULD Loss PubMedQA 29.89 31.23 28.62
Mistral Pythia-410m Raw Text FairytaleQA 31.44 37.97 25.18
Mistral Pythia-410m ULD Loss FairytaleQA 31.79 38.17 25.71
Mistral Pythia-410m Raw Text PubMedQA 28.25 25.91 30.56
Mistral Pythia-410m ULD Loss PubMedQA 29.55 30.09 29.01
Llama Pythia-160m Raw Text FairytaleQA 22.03 30.05 14.5
Llama Pythia-160m ULD Loss FairytaleQA 22.58 31.61 14.08
Llama Pythia-160m Raw Text PubMedQA 26.54 26.26 26.85
Llama Pythia-160m ULD Loss PubMedQA 29.78 36.4 23.36
Llama Pythia-1b Raw Text FairytaleQA 36.13 46.11 26.74
Llama Pythia-1b ULD Loss FairytaleQA 37.34 46.93 28.33
Llama Pythia-1b Raw Text PubMedQA 30.12 31.67 28.64
Llama Pythia-1b ULD Loss PubMedQA 29.88 30.4 29.44

Table 8: Details performance of Teacher/Student pair models trained with ULD Loss and
teacher-generated text (Raw Text) for generative tasks. Evaluations are performed over respective
test splits.
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D Appendix - Native Performances

Base models used as teacher and student can be respectively download on HuggingFace: LLama 2 7b Chat5,
Mistral 7b Instruct6, Pythia 160m, Pythia 410m, Pythia 1b7, Bloomz 560m, MT0 580m8.

D.1 Summary

Model Dataset Number Few-
Shot

Few-Shot Ti-
tled

Rouge-1 Rouge-2 Rouge-L Rouge-Lsum

Bloomz-560m DIALOGSum 3 False 15.36 1.47 11.92 11.9
OPT-350m DIALOGSum 2 False 22.06 3.31 17.86 17.84
Pythia-410m DIALOGSum 3 False 23.38 6.4 20.12 20.13
Pythia-160m DIALOGSum 3 False 16.0 4.72 13.88 13.88
Pythia-1b DIALOGSum 3 False 33.95 11.85 29.06 29.1
Llama DIALOGSum 3 False 0.3 0.13 0.24 0.24
Mistral DIALOGSum 2 False 0.43 0.18 0.35 0.35

Table 9: Native performance details of Teacher/Student pair models benchmark in few-shot
setting for the Summary task. Evaluations are performed over respective test splits.

D.2 Extractive QA

Model Dataset Number Few-Shot Few-Shot Titled F1 Precision Recall

Bloomz-560m SQuAD 3 False 66.05 68.6 66.09
Bloomz-560m QED 3 False 41.01 51.55 38.83
OPT-350m SQuAD 3 False 30.01 29.34 41.04
OPT-350m QED 3 False 30.21 32.82 37.6
Pythia-410m SQuAD 3 False 37.4 36.58 47.55
Pythia-410m QED 3 False 33.35 38.05 37.02
Pythia-160m SQuAD 3 False 15.05 16.39 18.83
Pythia-160m QED 3 False 15.48 20.15 17.31
Pythia-1b SQuAD 3 False 48.41 48.52 55.55
Pythia-1b QED 3 False 41.72 47.18 45.76
Llama SQuAD 1 False 0.81 0.83 0.84
Llama QED 5 False 0.58 0.64 0.63
Mistral SQuAD 3 True 0.76 0.74 0.89
Mistral QED 5 True 0.53 0.55 0.68

Table 10: Native performance details of Teacher/Student pair models benchmark in few-shot
setting for extractive QA tasks. Evaluations are performed over respective test splits.

D.3 Generative QA

Model Dataset Number Few-Shot Few-Shot Titled BERTScore PBERT RBERT

Bloomz-560m FairytaleQA 3 False 27.43 31.42 23.67
Bloomz-560m PubMedQA 3 False -20.3 -9.43 -30.97
OPT-350m FairytaleQA 3 False 3.82 -4.33 13.1
OPT-350m PubMedQA 3 False 19.98 23.29 16.94
Pythia-410m FairytaleQA 3 False 6.76 1.82 12.43
Pythia-410m PubMedQA 3 False 25.65 30.13 21.42
Pythia-160m FairytaleQA 3 False -0.96 -6.87 6.3
Pythia-160m PubMedQA 3 False 21.35 27.14 15.93
Pythia-1b FairytaleQA 3 False 20.59 22.4 19.23
Pythia-1b PubMedQA 3 False 26.13 29.29 23.24
Llama FairytaleQA 2 False 0.42 0.48 0.36
Llama PubMedQA 3 False 0.31 0.3 0.32
Mistral FairytaleQA 5 True 0.41 0.38 0.45
Mistral PubMedQA 3 False 0.31 0.28 0.34

Table 11: Native performance details of Teacher/Student pair models benchmark in few-shot
setting for generative QA tasks. Evaluations are performed over respective test splits.

5https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
6https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
7https://huggingface.co/EleutherAI
8https://huggingface.co/bigscience
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E Appendix - Few-Shot examples and Prompt Systems

The few-shot technique was used to generate synthetic data with the teacher. The number of few-shots
reported for evaluating teacher models in App. D are the same numbers used to generate the synthetic
answers. It’s also important to note that the few-shot method was only used to determine the native
performance of the teacher and student, not the distilled versions.

E.1 Prompt Systems

List of prompt system used with teacher templates. The default templates for chat models provided with
the huggingface tokenizer have been retained:

• Extractive QA: You are an agent answering questions as part of a reading comprehension activ-
ity. You must read and understand the context text step by step. Answers are brief and consist
exclusively of continuous words taken from the context text provided.

• Generative QA: You are an expert agent in reading comprehension (question answering). You
must read and understand the contextual text step by step, then answer the question. The answer
must be brief.

• Summary: You’re an expert at summarizing dialogues. You have to read the dialogue between two
people and summarize it in no more than one sentence. The summary should be as short as possible,
not re-explaining the dialogue in detail and using the person’s name when implicitly mentioned.

E.2 Few-Shot examples

Title Context Question Answer

Christine’s
boyfriend

Patrick Harris (Tim DeKay), Old Christine’s new boyfriend, who she
meets in a video store and starts dating.

Who played patrick on
new adventures of old
christine?

Tim DeKay

June 14, 2018:
Death Row In-
mates

As of June 14, 2018, there were 2,718 death row inmates in the United
States.

Total number of death
row inmates in the us? 2,718

Modern Com-
munism

Most modern forms of communism are grounded at least nominally in
Marxism, an ideology conceived by noted sociologist Karl Marx during
the mid nineteenth century.

Who came up with the
idea of communism? Karl Marx

Napoleon’s De-
feat by Seventh
Coalition

A French army under the command of Napoleon Bonaparte was de-
feated by two of the armies of the Seventh Coalition : a British-led Al-
lied army under the command of the Duke of Wellington, and a Prussian
army under the command of Gebhard Leberecht von Blücher, Prince of
Wahlstatt.

Who commanded
british forces at the
battle of waterloo?

The Duke of
Wellington

Canine charac-
ter Astro is a canine character on the Hanna-Barbera cartoon, The Jetsons. What was the dog’s

name on the jetsons? Astro

Table 12: Few-shot examples for extractive QA used to benchmark models and generate synthetic
answers from teachers.
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Context Summary
#Person1#: John, shall we go to Sun Store? I have decided to buy that Murrberry handbag. Anyway, I’m not carrying
this one to Mary’s wedding. #Person2#: But, Jane, why not rent one with Handbag Hire? Instead of 990, pay 50, and
you have it for a whole week. #Person1#: Sounds great, but I never knew I can rent a handbag. #Person2#: Handbag
Hire is a new business. It was founded two months ago. Its collection covers many designer handbags. #Person1#:
So... for the price of one Murrberry, I can use a different bag each week for twenty weeks? #Person2#: Absolutely.
And if you like one of them, you can choose to buy it at a discounted rate. Of course, the price varies by age and
condition. For example, a $ 1500 Murrberry bag can sell for just $750. #Person1#: Great, but how do I rent? By
telephone? Or in person? #Person2#: Either. And more conveniently, it accepts online orders. #Person1#: I’ll do
it online now. I still have one more question. Mary’s wedding is next Saturday. There are only five days left. Do I
have enough time? #Person2#: Don’t worry. It promises that customers receive their orders by post within two days.
Three more days to go. #Person1#: Oh, I’d better order one right now.

Jane wants to buy that
Murrberry handbag to
carry to Mary’s wed-
ding, but John suggests
renting one with Hand-
bag Hire and tells her
about the service in de-
tail. Jane is pleased to
have a try.

#Person1#: The summers are so great here! Not hot at all. I love the cooling breezes, the clear air, all the greenery.
#Person2#: This really has been a wonderful holiday for us. Shall we take a walk around the pond or into those
woods for a while? #Person1#: Let’s do both! Are we in a rush or anything? #Person2#: No, not really. I had
thought we’d stay in Hamburg tonight, but we can’t unless we rush it. Let’s stay in Bremen instead. Tomorrow we
can have lunch in Hamburg, then check into a hostel in Copenhagen and have dinner there. #Person1#: Sounds fine
to me. Whatever, let’s enjoy this pond first. #Person2#: Sure. We can walk around to that path that leads into the
woods there. Hey, look! There are some wild ducks over there in the reeds. #Person1#: I see them! Wow! How do
you know they’re wild? #Person2#: I used to go hunting with my uncle, that’s how. #Person1#: They’re neat. Now
let’s take that path into the woods and see what we can see...

#Person1# and #Per-
son2# are enjoying
a pond. #Person1#
and #Person2# had
planned to stay in
Hamburg tonight, but
they decide to stay in
Bremen since they are
not in a rush.

#Person1#: Well, Rebecca, is there anything else you need to know for now? #Person2#: I don’t think so, Mr.
Parsons. I think you have covered all the main points for me. #Person1#: Okay well listen, here is my business
card with my mobile number. If any other questions spring to mind don’t hesitate to contact me. Of course, you can
also call Miss Childs too. #Person2#: Great. Rmm, when can I expect to hear from you? #Person1#: Well, we
are finishing the shortlist interviews tomorrow, so we will certainly have a decision made by early next week. Miss
Childs will call you to discuss more on Monday or Tuesday. How does that sound? #Person2#: That sounds perfect.
Thank you very much for taking the time to speak to me Mr. Parsons. #Person1#: The pleasure’s all mine, Rebecca.
#Person2#: I hope to hear from you very soon. #Person1#: Absolutely. Thanks for coming Rebecca. Goodbye.

Mr. Parsons gives Re-
becca his business card
after the interview and
tells Rebecca the deci-
sion will be made by
early next week and
Miss Childs will contact
Rebecca.

Table 13: Few-shot examples for summary used to benchmark models and generate synthetic summary
from teachers.

Title Context Question Answer

The Wee Ban-
nock

So, she jumped up with her lint and her lint cards, and the tailor jumped up
with his great shears, and one apprentice grasped the line measure, while
another took up the saucer full of pins; and they all tried to catch the wee
bannock. But it dodged them round and round the fire, and at last it got
safely out of the door and ran down the road, with one of the apprentices
after it, who tried to snip it in two with his shears. It ran too quickly for
him, however, and at last he stopped and went back to the house, while
the wee bannock ran on until it came to a tiny cottage by the roadside. it
trundled in at the door, and there was a weaver sitting at his loom, with
his wife beside him, winding a clue of yarn.

How did the bannock
escape from the tailor’s
wife and the three tai-
lors?

Dodged them
round and
round the fire,
and at last it
got safely out
of the door and
ran down the
road.

Princess Glass
Mountain

Then he took the prince by the hand, led him deep down in the earth into
his cave, and there on the wall hung a suit of armor altogether forged of
the clearest silver, and so bright that it shone afar. Right beside it stood
a snow-white steed, saddled and bridled, pawing the earth with his silver
hoofs, and champing his bit till the foam dropped to the ground. The wild
man said: ’now get quickly into your armor, ride out and try your luck! in
the meantime I will tend your oxen.’ The prince did not wait to be told a
second time; but put on his helmet and armor in all haste, securely buckled
on his spurs, hung his sword at his side, and felt as light in his silver armor
as a bird in the air. Then he leaped into the saddle so that every clasp and
buckle rang, laid his reins on the neck of his steed, and rode hastily toward
the glass mountain.

What was the suit of ar-
mor given by the wild
man forged from?

The clearest sil-
ver.

Money Box

He knew very well that he had enough inside him to buy up all the other
toys, and this gave him a very good opinion of his own value. The rest
thought of this fact also, although they did not express it, for there were so
many other things to talk about. A large doll, still handsome, though rather
old, for her neck had been mended, lay inside one of the drawers which was
partly open. She called out to the others, ’let us have a game at being men
and women, that is something worth playing at.’

Why didn’t the other
toys talk about how
valuable the pig was?

There were so
many other
things to talk
about.

A Legend of
Confucius

When confucius came to the earth, the kilin, that strange beast which is
the prince of all four-footed animals, and only appears when there is a great
man on earth, sought the child and spat out a jade whereon was written:
’son of the watercrystal you are destined to become an uncrowned king!’
and confucius grew up, studied diligently, learned wisdom and came to be
a saint. He did much good on earth, and ever since his death has been
reverenced as the greatest of teachers and masters. He had foreknowledge
of many things and even after he had died, he gave evidence of this.

Why was confucius’s
death reverenced as the
greatest of teachers and
masters?

He did much
good on earth.

Naughty Boy

’Oh, let me in! Let me in! I’m cold, and I’m so wet!’ Exclaimed suddenly
a child that stood crying at the door and knocking for admittance, while
the rain poured down, and the wind made all the windows rattle. ’Poor
thing!’ said the old poet, as he went to open the door. there stood a little
boy, quite naked, and the water ran down from his long golden hair. He
trembled with cold, and had he not come into a warm room he would most
certainly have perished in the frightful tempest.

Why did the boy ask to
come inside?

He was cold and
wet.

Table 14: Few-shot examples for generative QA used to benchmark models and generate synthetic
answers from teachers.
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Context Question Answer
Injury severity score (ISS), Glasgow coma score (GCS), and revised trauma
score (RTS) are the most frequently used methods to evaluate the severity of
injury in blunt trauma patients. ISS is too complicated to assess easily and
GCS and RTS are easy to assess but somewhat subjective. White blood cell
count (WBC) is an easy, quick and objective test. This study was performed to
evaluate the significance of the WBC count at presentation in the blunt trauma
patients. 713 blunt trauma patients, who were admitted to the Uludag Uni-
versity Medical Center Emergency Department between 01.04.2000-31.12.2000,
were retrospectively evaluated in terms of ISS, GCS, RTS and white blood cell
count at presentation. Statistical analysis revealed that WBC was correlated
positively with ISS, but negatively with GCS and RTS.

Does the leukocyte
count correlate with
the severity of injury

The leukocyte count at pre-
sentation can be used as an
adjunct in the evaluation of
the severity of injury in blunt
trauma patients.

The aim of this study was to assess the diagnostic value of articular sounds,
standardized clinical examination, and standardized articular ultrasound in the
detection of internal derangements of the temporomandibular joint. Forty pa-
tients and 20 asymptomatic volunteers underwent a standardized interview,
physical examination, and static and dynamic articular ultrasound. Sensitiv-
ity, specificity, and predictive values were calculated using magnetic resonance
as the reference test. A total of 120 temporomandibular joints were examined.
Based on our findings, the presence of articular sounds and physical signs are
often insufficient to detect disk displacement. Imaging by static and dynamic
high-resolution ultrasound demonstrates considerably lower sensitivity when
compared with magnetic resonance. Some of the technical difficulties resulted
from a limited access because of the presence of surrounding bone structures.

Internal derange-
ment of the temporo-
mandibular joint: is
there still a place for
ultrasound?

The present study does not sup-
port the recommendation of ul-
trasound as a conclusive diag-
nostic tool for internal derange-
ments of the temporomandibu-
lar joint.

Figures from the British Defence Dental Services reveal that serving personnel
in the British Army have a persistently lower level of dental fitness than those
in the Royal Navy or the Royal Air Force. No research had been undertaken to
ascertain if this reflects the oral health of recruits joining each Service. This
study aimed to pilot a process for collecting dental and sociodemographic data
from new recruits to each Service and examine the null hypothesis that no dif-
ferences in dental health existed. Diagnostic criteria were developed, a sample
size calculated and data collected at the initial training establishments of each
Service. Data for 432 participants were entered into the analysis. Recruits in
the Army sample had a significantly greater prevalence of dental decay and
greater treatment resource need than either of the other two Services. Army
recruits had a mean number of 2.59 (2.08, 3.09) decayed teeth per recruit, com-
pared to 1.93 (1.49, 2.39 p<0.01) in Royal Navy recruits and 1.26 (0.98, 1.53
p<0.001) in Royal Air Force recruits. Among Army recruits 62.7% were from
the two most deprived quintiles of the Index of Multiple Deprivation compared
to 42.5% of Royal Naval recruits and 36.6% of Royal Air Force recruits.

Is there a differential
in the dental health
of new recruits to the
British Armed Forces?

A significant difference in den-
tal health between recruits to
each Service does exist and
is a likely to be a reflection
of the sociodemographic back-
ground from which they are
drawn.

Table 15: Few-shot examples for generative QA used to benchmark models and generate synthetic
answers from teachers for medical topic.
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F Appendix - Non-uniform transport costs Systems

We study how the uniform transport cost affects ULD Loss by comparing distillation results with and without
it, as shown in Tab. 16. To emphasize the computational cost of the Wasserstein distance with non-uniform
transport costs, which scales as O(n3 log n) with n being the size of the larger support, we use teacher
and student models with both small and large vocabulary sizes. For small vocabularies, we select LLaMA
(32, 000 tokens) as the teacher and Pythia-410 (50, 304 tokens) as the student. For large vocabularies, we
pair LLaMA with Bloomz-560m (250, 880 tokens). We use 5k samples of the SQuAD dataset due to its short
answers, averaging 5.52 tokens for LLaMA, 3.48 for Pythia, and 3.37 for Bloomz. For non-uniform transport
costs, the Levenshtein distance and the L2 norm between embedding tokens are used to define the cost of
transporting mass between points in the transport plan.

The Levenshtein distance (Lcvenshtcin, 1966) measures how different two strings or tokens are. This
distance is the smallest number of operations needed to turn one string into another. These operations
are: inserting a character, deleting a character, or substituting a character, each increasing the cost of
transformation by 1. For example, converting “cat” to “cats” needs one insertion, giving a distance of 1.

Before distillation training, we calculated the distance between all teacher and student tokens, resulting in
a matrix C of size (|Ωt|, |Ωs|) with |Ωt| the teacher vocabulary size and |Ωs|) the student vocabulary size.
Each element Cij = Cji represents the transport cost between points i and j in the transport plan. This
matrix was used as a cost dictionary during training in the Wasserstein distance computation Eq. 3.

Embedding token (Bojanowski et al., 2017) is a process that maps tokens (such as words or subwords) into
continuous vector representations in a high-dimensional space. In this space, tokens with similar meanings or
contexts are positioned closer together, reflecting their semantic similarity. We use the L2 norm between the
teacher and student token embeddings to compute the cost matrix. However, since the teacher and student
models do not share a common embedding space, we employ the widely used FastText subword embeddings
9 as a shared space. To achieve this, each token from the teacher and student models is mapped to its
nearest token in the FastText vocabulary based on the Levenshtein distance. The corresponding FastText
embedding is then assigned to the respective teacher or student token. This approach allows us to compute a
matrix of L2 norm distances between all teacher and student token embedding representations. This distance
matrix is then used as a cost dictionary during training in the Wasserstein distance computation.

To compute the Wasserstein distance during training, we used the POT library (Flamary et al., 2021). Ex-
tensive GPU memory management including, Offloading Optimizer/Gradient state states to CPU, activation
offloading, and gradient accumulation, were employed to address the high memory demands of calculating
transport plans and cost matrices. We highlight, that these experiments were conducted on A100 GPUs
with 80GB of memory, using SQuAD dataset with an average label length of 4.12 tokens. Longer sentences
were infeasible due to severe memory constraints.

Table 16: Distillation using ULD Loss for LLama teacher to a Pythia-410m and Bloomz-560m student with
and without uniform transport cost.

Student Transport Cost F1 score Training time
Pythia Uniform 69.56 64 minutes (×1)
Pythia Levenshtein distance 69.32 172 minutes (×2.68)
Pythia Embedding L2 norm 69.61 203 minutes (×3.17)

Bloomz Uniform 72.11 59 minutes (×1)
Bloomz Levenshtein distance 72.08 221 minutes (×3.74)
Bloomz Embedding L2 norm 72.37 265 minutes (×4.49)

For all experiments, in our limited setting, we do not observe a consistent improvement between models
trained with ULD Loss and uniform transport costs defined by the Levenshtein distance or Embedding L2

9https://fasttext.cc/docs/en/english-vectors.html
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Norm. These methods were however slower, requiring up to 4.49× the time of uniform cost training, par-
ticularly as the model vocabulary size increased, such as when distilling Llama into Bloomz. Furthermore,
training with non-uniform transport costs introduced additional challenges, including pre-training steps and
intensive memory management to avoid GPU “out of memory” errors. These findings emphasize the practi-
cality of using uniform costs for maintaining training efficiency while achieving comparable performance. We
encourage future work to explore novel cost matrices that balance computational complexity with potential
gains in model performance.
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G Appendix - Training Information

During training, all distillation processes were performed over 5 epochs with a batch size of 8 for the SQuAD
dataset and 4 for the others. A one-cycle learning rate scheduler was used with the following configuration
for decoder models: max_lr = 1e − 6, initial_lr = max_lr/2, min_lr = initial_lr/5. For mt0 (encoder-
decoder), the max learning rate parameter varied according to datasets: DIALOGSum: 1e-4, PubMedQA:
3e-4, and QED: 7e-6. Finally, distillation was performed in BFLOAT16 mode introduced by Kalamkar et al.
(2019), on 4*NVIDIA A100-SXM4-80GB with the Fully Sharded Data Parallel (FSDP) technique (Zhao
et al., 2023b). In total 4.923 GPU hours were used (i.e. consumption for the entire project in tonnes of CO2:
0.268).
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