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ABSTRACT

Motivated by efficiency requirements, most industrial anomaly detection and seg-
mentation (IADS) methods process low-resolution images, e.g., 224× 224 pixels,
obtained by downsampling the original input images. In this setting, downsam-
pling is typically applied also to the provided ground-truth defect masks. Yet, as
numerous industrial applications demand the identification of both large and small
defects, this downsampling procedure may fail to reflect the actual performance
achievable by current methods. In this work, we propose a fast approach based on
a novel Teacher-Student paradigm. This paradigm relies on two shallow Student
MLPs that learn to transfer patch features across the layers of a frozen Teacher
Vision Transformer. Our framework can spot anomalies from high-resolution
images faster than other methods, even when they process low-resolution images,
achieving state-of-the-art overall performance on MVTec AD and segmentation
results on VisA. We also propose novel evaluation metrics that capture robustness
regarding defect size, i.e., the ability of a method to preserve good localization
from large anomalies to tiny ones, focusing on segmentation performance as a
function of anomaly size. Evaluating our method with these metrics reveals its
stable performance in detecting anomalies of any size.

1 INTRODUCTION

Industrial anomaly detection and segmentation (IADS) aims to identify anomalous samples and
localize their defects. This task is particularly challenging in industrial applications where anomalies
are varied and unpredictable, and nominal samples may be scarce. In these settings, IADS is usually
tackled in a cold-start fashion: the training procedure is unsupervised, with the train set comprising
only images of nominal samples. Modern approaches for IADS Roth et al. (2022); Gudovskiy et al.
(2022); Chiu & Lai (2023); Rudolph et al. (2023); Cao et al. (2022); Deng & Li (2022); Tien et al.
(2023); Batzner et al. (2024) create a model of the nominal samples during training. Then, at inference
time, each test sample is compared to this nominal model, and any discrepancy is interpreted as an
anomaly. To reduce both training and inference time, all these IADS solutions process low-resolution
images obtained by downsampling the original input images. However, this approach is detrimental
to the task since smaller anomalies could be lost due to strong downsampling, as may be observed
in Fig. 1. Moreover, it is common practice to downsample also the ground-truth defect masks provided
with the benchmarks. Accordingly, as shown in Fig. 1, the areas of defects get smaller, and tiny
anomalies may even disappear from the ground truth. Yet, since many industrial applications require
the detection of both large and small defects, the practice described above might not accurately reflect
the ability of current methods to localize defects of all sizes. Recently, EfficientAD Batzner et al.
(2024) proposed a benchmark in which all the considered methods’ outputs are upsampled to the
original ground-truth resolution, although all methods still process a low-resolution input.

In this work, we propose a novel unsupervised IADS approach that can process high-resolution
images faster than other methods, even when they process low-resolution images. This enables our
technique to detect even smaller anomalies while maintaining applicability in industrial contexts.
Our approach relies on a frozen Transformer backbone and a novel Teacher–Student paradigm
whereby lightweight MLPs (i.e., the Students) shared across all patch embeddings learn to mimic
the contextualization and decontextualization transformation occurring between the layers of the
Transformer backbone (i.e., the Teacher) by observing only nominal samples. The core concept of our
approach is that, after optimization, the Student networks can hallucinate contextual information from
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Figure 1: Effects of downsampling on VisA. Tiny defects are no longer visible in both RGB and GT.

more local content and vice versa, on nominal samples, and falter to do so in anomalous samples. At
inference time, for each image patch, the actual features computed by the Teacher are compared to
those predicted by the Students, with the discrepancies between the former and the latter highlighting
the presence of anomalies.

Figure 2: Comparison between IADS
methods. The metrics reported in the charts
are described in Section 4. Values are nor-
malized for better readability.

Notably, our method formulation is general and can be
applied to any Transformer feature extractor, as also
supported by our experiments. However, by learning
the contextualization and decontextualization pretext
task on the feature extracted by DINO-v2 Oquab et al.
(2023), which has been trained on images of varying res-
olutions, our approach achieves superior performance
to other methods, as depicted in Fig. 2, even when
trained and evaluated at high resolution, while being
remarkably faster – ∼ 2 ms on a NVIDIA GeForce
RTX 4090 to detect anomalies on 1036× 1036 images.

The key to its speed is using shallow MLP student
networks shared across patch features. In this way,
each feature vector can be processed independently,
allowing extremely fast batched processing. Moreover,
each patch feature becomes a different training sample
for our Student networks, significantly enlarging the training set size compared to the number of
training images. As a result, our method also achieves excellent few-shot performance.

Finally, to evaluate the advantages of processing high-resolution images, we propose novel evaluation
metrics to assess the segmentation performance as a function of the size of the anomalies. This
protocol captures the robustness concerning the defect size, i.e., the ability to preserve localization
performance from large anomalies to smaller ones. Evaluating our method with this novel protocol
revealed its ability to detect even tinier defects better than competitors.

Our contribution can be summarized as follows: (i) we propose a novel IADS method that exhibits
state-of-the-art performance on MVTec AD and state-of-the-art segmentation performance on VisA,
while running at a remarkably higher speed than all competitors; (ii) we introduce novel evaluation
metrics to assess how effectively IADS methods handle anomalies of different sizes; (iii) we propose
a challenging few-shot AD benchmark built upon the VisA dataset on which our proposal achieves
state-of-the-art segmentation performance.

2 RELATED WORK

Anomaly detection. Several approaches have been proposed in the literature to perform IADS.
These solutions can be categorized based on the approach followed to model nominal samples.
Normalizing Flows Papamakarios et al. (2021); Yu et al. (2021); Rudolph et al. (2021); Gudovskiy
et al. (2022); Chiu & Lai (2023) based methods construct complex distributions by transforming a
probability density via a series of invertible mappings. In particular, these methods extract features
of normal images from a pre-trained model and transform the feature distribution into a Gaussian
distribution during the training phase. At test time, after passing the extracted features through the
Normalizing Flow, the features of abnormal images will deviate from the Gaussian distribution of the
training phase, suggesting an anomaly. Lately, several solutions Roth et al. (2022); Cohen & Hoshen
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(2020); Bergman et al. (2020) that employ Memory Banks have been introduced. This category of
solutions exploits well-known feature extractors trained on a large plethora of data Caron et al. (2021);
Oquab et al. (2023); He et al. (2022) to model nominal samples. More in detail, during training, the
feature extractor is kept frozen and used to compute features for nominal samples which are then
stored in a memory bank. At test time, the features extracted from an input image are compared
to those in the bank in order to identify anomalies. Despite their remarkable performance, these
approaches suffer from slow inference speed, since each feature vector extracted from the input image
needs to be compared against all the nominal feature vectors stored in the memory bank. Methods
close to our solution which follows a Teacher–Student strategy Bergmann et al. (2020); Wang et al.
(2021); Cao et al. (2022); Salehi et al. (2021); Deng & Li (2022); Batzner et al. (2024); Tien et al.
(2023) have also been proposed. In this family of solutions, the training phase involves a Teacher
model that extracts features from nominal samples and distils this knowledge to the Student model,
which learns to mimic the Teacher’s feature extraction process. During the testing phase, differences
between the features generated by the Teacher model and those produced by the Student model reveal
the presence of anomalies. Recently, a multimodal approach Costanzino et al. (2024) investigated
the idea of mapping features from one modality to the other on nominal samples and then detecting
anomalies by pinpointing inconsistencies between observed and mapped features. This solution
leverages MLPs to learn a mapping between features coming from two different modalities, RGB
images and point clouds. Conversely, our novel solution does not require two modalities.

Anomaly detection datasets. During the last few years, several IADS datasets have been released.
The introduction of MVTec AD Bergmann et al. (2019) kicked off the development of IADS
approaches for industrial applications. This dataset contains several industrial inspection scenarios,
each comprising train and test sets. Each train set contains only nominal images, while the test sets
also contain anomalous samples. Such a scenario represents realistic real-world applications where
types and possible locations of defects are unknown during the development of IADS algorithms.
Later, the work was extended with the MVTec 3D-AD Bergmann et al. (2022b) dataset, which follows
the same structure of MVTec AD, but also provides the pixel-aligned point clouds of the samples to
address the IADS in a multimodal fashion. Shortly afterward, the Eyecandies Bonfiglioli et al. (2022)
dataset was released, miming the structure of MVTec 3D-AD by introducing a multimodal synthetic
dataset containing images, point clouds, and normals for each sample. To provide a more challenging
scenario the VisA dataset Zou et al. (2022) has been introduced, in which high-resolution images of
complex scenes that can also contain multiple instances of the same object have been released. In the
end, more task-specific datasets such as MAD Zhou et al. (2023) and MVTec LOCO Bergmann et al.
(2022a) have been released. In particular, MAD Zhou et al. (2023) introduced a multi-pose dataset
with images from different viewpoints covering a wide range of poses to tackle a pose-agnostic IADS.
MVTec LOCO Bergmann et al. (2022a) contains not only structural anomalies, such as dents or
holes but also logical anomalies, which violations of logical constraints can be for instance a wrong
ordering or a wrong combination of normal objects.

3 METHOD

As outlined in Fig. 3, our method follows a Teacher-Student paradigm in which the Teacher, T , is a
frozen Transformer encoder (e.g., DiNO-v2 Oquab et al. (2023)), while the two Students, referred to
as Forward and Backward Transfer Networks (SF and SB) are realized as shallow MLPs.

Overview. The Students are trained on nominal samples and learn to mimic the transformations
between the patch embeddings occurring within the layers of the Transformer. In particular, the
Forward Transfer Network learns to predict the patch embeddings computed by a layer of the
Transformer (k in Fig. 3), given the corresponding embeddings computed by a previous layer (j
in Fig. 3). Conversely, the Backward Transfer Network learns to predict the features calculated by
the Transformer at layer j given the corresponding ones at layer k. The Student networks SF , SB
are shared across patch embeddings, i.e., both take as input the features associated with the patch (i)

at a layer f (i)
j , f (i)

k and predict the corresponding features at the other layer f̂ (i)
k , f̂ (i)

j . At inference
time, for all patch embeddings of the given test sample, the features predicted by the Students are
compared to the ones extracted by the Teacher, with the discrepancies between the former and the
latter providing the signal to highlight anomalies. As shown in Fig. 3, the difference between the
outputs from SF , SB and the patch embeddings from layers k,j of T yield two anomaly maps,
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Figure 3: FBFT overview. Given an RGB Image I , a frozen pre-trained transformer backbone T is
leveraged to extract two sets of patch-aligned features Fj , Fk, from different layers, one from a lower
contextualization layer j and one from a higher contextualization layer k. Then, a pair of feature
transfer networks, SF ,SB , predict the extracted features from one layer to the other, processing
the features at each patch independently. Lastly, extracted and transferred features are compared
through a Euclidean distance, to create contextualization-specific anomaly maps, ∆j ,∆k, that are
then combined to obtain the final anomaly map ∆.

∆j and ∆k, that are fused to obtain the final one. Due to the novel pretext tasks employed by our
approach, realized through SF , SB , we dub it Forward Backward Feature Transfer (FBFT).

Rationale. The intuition behind our approach relies on the observation that as patch embeddings
travel from shallower to deeper layers of a Transformer encoder, they become increasingly contextu-
alized, i.e., deeper representations capture more global information that helps singling out a patch
based on the specific context provided by the input image.

Our Forward and Backward Transfer networks are trained to contextualize and decontextualize patch
embeddings according to the function, which we assume to be invertible, executed by the Transformer
between a pair of chosen layers. In particular, contextualization gathers and integrates local details to
form a coherent global understanding of an image; conversely, decontextualization is the opposite of
this process, i.e., finding local features from a global understanding of the image.

By learning contextualization and decontextualization on nominal samples, our Students will under-
stand how local features, such as edges and textures, transform into larger structures, such as shapes
and objects, for normal entities. However, when presented with anomalous samples, this mapping
breaks down because the predicted local and global features do not align with those extracted by the
Teacher model, revealing inconsistencies that indicate anomalies.

Moreover, we conjecture that feature contextualization and decontextualization are complex functions
that do not admit a trivial solution, such as, e.g., the identity function. Therefore, small-capacity
networks trained only on nominal samples are unlikely to learn general functions that can yield
correct predictions on out-of-distribution data, i.e., features extracted from anomalous patches.

Teacher. As a first step, we provide as input to the Teacher T an image I with dimensions
H ×W × C, where H , W , and C correspond to the height, width, and number of channels. In our
framework, we employ a Transformer-based backbone that provides a set of features, one for each
input patch processed by the backbone after each layer. Each feature, f (i) ∈ RD, has dimension D
according to the inner representation employed by the backbone, while the number of features is
N = HW/P 2, where the patch size is P ×P pixels. During the forward pass, we extract two sets of
features, Fj =

{
f
(i)
j , i = 1 · · ·N

}
and Fk =

{
f
(i)
k , i = 1 · · ·N

}
, from two different layers of the

backbone, i.e. layers j and k, with j < k.

We highlight that, as far as the representation of small defects is concerned, a Transformer backbone
can effectively handle high-resolution inputs because, although it processes images by dividing them
into patches, which results in smaller spatial size, the input information is not compressed, on the
contrary, each patch is expanded to a higher dimensionality related to the internal representation of the
Transformer (e.g., RGB patches of 14× 14× 3 pixels are mapped into 768-dimensional embeddings).
Therefore, as high resolution information is retained, we can also detect smaller defects.

Students. The two sets of features extracted by the Teacher are processed by a pair of Forward and
Backward Transfer networks, SF and SB , representing the Students in our architecture. SF maps
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a feature vector from a less contextualized layer j to a more contextualized layer k, while SB does
the opposite. Each network predicts the features of one layer from the corresponding ones extracted
from the other, processing each patch location independently. Thus, given a patch location (i) and
the corresponding features f (i)

j and f
(i)
k , the features predicted by the Students can be expressed as:

f̂
(i)
k = SF (f (i)

j ) f̂
(i)
j = SB(f (i)

k ) (1)
where SF and SB are parametrized as MLPs, shared across all patches. By processing all patches, we
obtain the two sets of transferred features: F̂j =

{
f̂
(i)
j , i = 1 · · ·N

}
and F̂k =

{
f̂
(i)
k , i = 1 · · ·N

}
.

As stated in Section 1, employing Student networks that process each patch independently with
shallow MLPs enables fast batched inference. Moreover, as each patch is in an independent training
sample, this approach effectively increases the training set size relative to the number of training
images. Consequently, our method can be trained on a few images while achieving excellent
performance (see Section 5).

Training. During training, the weights of SF and SB are optimized only on nominal samples of a
specific class from a dataset. For both networks, we employ the cosine distance between the features
extracted from the backbone at the considered layers and the transferred ones as a loss function. More
details on the employed loss can be found in Appendix A.2. Thus, the per-patch losses are:

L(i)
j

(
f
(i)
j , f̂

(i)
j

)
= 1−

f
(i)
j · f̂

(i)
j

∥f (i)
j ∥∥f̂

(i)
j ∥

L(i)
k

(
f
(i)
k , f̂

(i)
k

)
= 1−

f
(i)
k · f̂

(i)
k

∥f (i)
k ∥∥f̂

(i)
k ∥

(2)

Inference. At inference time, the image under analysis is processed by the Transformer backbone
and the features extracted from the two layers, Fj and Fk are provided as input to the Forward
and Backward Transfer networks to obtain the corresponding transferred features, F̂j and F̂k. The
Euclidean distance is then employed to compute the patch-wise differences between extracted and
transferred features ∆(i)

j ,∆
(i)
k :

∆
(i)
j = ∥f (i)

j − f̂
(i)
j ∥2 ∆

(i)
k = ∥f (i)

k − f̂
(i)
k ∥2, i = 1 . . . N (3)

Typically, we can identify anomalies from both ∆
(i)
j ∆

(j)
j , i.e., from both transfer directions. However,

in case of failure of the Student networks, the bidirectional mapping creates a fail-safe mechanism
since it is unlikely for an anomaly to pass through contextualization and decontextualization with-
out detection. Thus, we fuse the predicted anomaly maps ∆

(i)
j and ∆

(j)
j by multiplying those

corresponding to the same patch:

∆(i) = ∆
(i)
j ·∆

(i)
k , i = 1 . . . N (4)

This fusion strategy let us achieve more accurate results, as shown in Table 6 of Appendix. More
details on the employed fusion function in Appendix A.3.

Finally, the set of fused differences, ∆(i), is reshaped as a
√
N ×

√
N anomaly map according to

the positions of the patches within the input image. This map is then up-sampled to H ×W , i.e.
the spatial size of the input image, by bilinear interpolation and successively smoothed according to
common practice Roth et al. (2022); Costanzino et al. (2024); Tien et al. (2023); Liu et al. (2023).
The global anomaly score required to perform sample-level anomaly detection is computed as the
mean value of the top M values of the final anomaly map ∆.

4 EXPERIMENTAL SETTINGS

4.1 DATASETS

To assess our proposal we rely on two IADS datasets: VisA Zou et al. (2022) and MVTec
AD Bergmann et al. (2019). The VisA Zou et al. (2022) dataset provides images of varying resolution,
with the height spanning from 1284 to 1562 pixels and anomalies as tiny as 1 pixel and up to 478781
pixels. The dataset contains 10821 images of 12 objects across 3 domains, with challenging scenarios
including complex structures in objects, multiple instances, and pose variations. Between the provided
images, 9621 are nominals while 1200 contains defects.
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Figure 4: Anomaly size distribution.

The MVTec AD dataset mimics real-world industrial in-
spection scenarios and includes 5354 images, with heights
spanning from 700 to 1024 pixels and anomalies ranging
from 24 pixels to 517163 pixels. The images pertain to 15
objects exhibiting 73 different types of anomalies for 1888
anomalous samples. Both Visa and MVTec AD provide
pixel-accurate ground truths for each anomalous sample.

As highlighted in Fig. 4, VisA features a significantly wider
range of anomaly sizes and includes tiny defects. As a
result, downsampling the ground-truths to 224×224 pixels,
i.e., the most commonly employed inference and evaluation
size in present literature, yields a reduction in the number
of defects of 21.42% and 0.37% for VisA and MVTec AD,
respectively. These observations render VisA a particularly
challenging scenario for assessing the robustness of IADS methods with respect to defect size.

4.2 METRICS

Standard Metrics. We utilize the metrics employed in MVTec AD Bergmann et al. (2019) and
VisA Zou et al. (2022). These two datasets assess the image anomaly detection performance
employing the Area Under the Receiver Operator Curve (I-AUROC) computed on the global anomaly
score. As for segmentation performance, the Area Under the Per-Region Overlap (AUPRO) on the
anomaly map is computed, with the integration threshold set to 0.3. Recently, Batzner et al. (2024);
Costanzino et al. (2024) have proposed to compute the AUPRO considering a tighter threshold, i.e.,
0.05. We will consider both metrics and denote AUPROs with integration thresholds 0.3 and 0.05 as
AUPRO@30%, and AUPRO@5%, respectively.

Performance across defects sizes. To highlight the capability of each method to segment defects
with varying sizes, we introduce a variation of the AUPRO metric. In particular, for each object in a
dataset, we compute the anomaly size distribution and partition it in cumulative quartiles, denoted as
Q1, Q2, Q3, Q4. These cumulative quartiles are associated with sets that contain only anomalies with
a size smaller than or equal to the considered quartile. Hence, the set associated with Q4 consists
of all anomalies, while Q1 includes only the smallest ones. Then, we calculate the AUPRO@30%
and AUPRO@5% on each set, with the segmentation metrics associated with Q4 being the already
described segmentation metrics adopted in the standard benchmarks.

Robustness. We also introduce a novel metric, ρ, to assess the robustness of a method w.r.t. the
size of the defects in a dataset. In particular, ρ captures a method’s ability to segment tiny and larger
defects accurately. Accordingly, we define the robustness as:

ρ = w · (1− s) , s =
|AUPRO(Q4)− AUPRO(Q1)|

max
(
AUPRO(Q1),AUPRO(Q4)

) , w =
1

4
·

4∑
i=1

AUPRO(Qi) (5)

Here, for the sake of compactness, we denote as AUPRO either AUPRO@5% or AUPRO@30%, such
that considering the former or the latter will yield ρ@5% or ρ@30%, respectively. In the definition
of ρ, the AUPRO is evaluated for the smallest defects only, i.e., AUPRO(Q1), and for all defects,
i.e., AUPRO(Q4). With this measure, if a method can correctly segment larger defects but struggles
with small ones, its sensitivity to defect size, s, is high and its robustness, ρ, is low. Conversely, a
robust method should be able to accurately segment defects regardless of their sizes, which in our
metric would be captured by the difference between AUPRO(Q4) and AUPRO(Q1) turning out low,
yielding low sensitivity and high robustness. Yet, to avoid deeming as robust a method that performs
poorly on both small and large defects, such that AUPRO(Q4) and AUPRO(Q1) are both similarly
low, we propose to introduce the average AUPRO across all quartiles, denoted as w, as weighing
factor of the term (1− s) in the definition of ρ. It is worth pointing out that the proposed robustness
metric, ρ, is bounded by 1 since both s and w are smaller than 1.
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4.3 EVALUATION PROTOCOL AND IMPLEMENTATION DETAILS

Evaluation Protocol. We evaluate our proposal, FBFT, alongside with several state-of-the-art IADS
methods, such as PatchCore Roth et al. (2022), SimpleNet Liu et al. (2023), EfficientAD Batzner
et al. (2024) and RD++ Tien et al. (2023). EfficientAD Batzner et al. (2024) proposes two variants:
EfficientAD-S and EfficientAD-M. We consider the latter since it provides better IADS performance.

As described in Batzner et al. (2024), the results reported in SimpleNet Liu et al. (2023) are obtained
by repeatedly evaluating the metrics on all test images during training to select the best check-point.
Analyzing the official implementation, we noticed how this protocol has been followed also by
RD++ Tien et al. (2023). However, in real-world settings, the test data is not available at training time.
Thus, to avoid overestimating the actual performance of the models, we disable the above check-point
selection mechanism, train all methods for a fixed number of epochs and evaluate the model obtained
at the last checkpoint. For Batzner et al. (2024); Liu et al. (2023); Tien et al. (2023), we train for the
number of epochs specified in the official implementations.

PatchCore Roth et al. (2022) employs a centre-crop of the input images since in MVTec AD, most
of the defects lie within this cropped area. However, in a real-world scenario, anomalies can occur
outside of this area, thus, we disable this strategy as it implies knowledge about the location of
anomalies in the test set.

As anticipated in Section 1, we compute all metrics based on the original ground-truths provided
with the datasets, which have the same resolution as the original input images. Hence, we do not
downsample the ground-truths to the input image size processed by a method, but we bilinearly
upsample the anomaly map to the same resolution as the ground-truth in order to calculate all metrics.

Some methods, including ours, must add padding to the input image to adapt it to the input size
of the employed backbone. However, we remove these extra pixels from the final anomaly maps
as, otherwise, they usually decrease the False Positive Rate (and thus artificially ameliorate the
segmentation metrics) because they tend to yield very low anomaly scores. Finally, we calculate the
AUPRO considering all the samples in the test set, both nominal and anomalous 1.

Implementation details. As our default Teacher network, we employ DINO-v2 ViT-B/14 Oquab
et al. (2023) pre-trained on a large, curated, and diverse dataset of 142 million images, comprising
ImageNet-22k Deng et al. (2009); Ridnik et al. (2021). Thus, our T network processes 1036×1036×3
RGB images and outputs 74× 74× 768 feature maps. Both SF and SB consist of three linear layers,
each but the last one followed by GeLU activations. The number of units per layer is 768 for both
SF and SB . The two networks are trained jointly for 50 epochs using Adam Kingma & Ba (2015)
with a learning rate of 0.001. As default, we select the layers j = 8 and k = 12 to realize the Feature
Transfer Networks. A detailed ablation study on the choice of the best pair of layers is reported in
Appendix A.1. We employed M = 0.001 ·H ·W to attain the number of pixels used to calculate the
global anomaly score. We conducted all the experiments on a single NVIDIA GeForce RTX 4090.

5 EXPERIMENTS

Anomaly detection and segmentation. For a fair evaluation, for both training and inference,
we provide input to all methods images at the highest resolution that would enable execution on
a single GPU to avoid or minimize downsampling. In particular, we could handle input images
up to 1036 × 1036 pixels with EfficientAD, RD++, and FBFT, while the highest input resolution
for PatchCore and SimpleNet was found to be 512 × 512 pixels. The anomaly detection and
segmentation results on VisA and MVTec AD are reported in Table 1. Our approach achieves the
best segmentation results on the VisA dataset, with 0.952 AUPRO@30% and 0.787 AUPRO@5%
and the state-of-the-art in both detection and segmentation on the MVTec AD dataset, with 0.988
I-AUROC, 0.945 AUPRO@30%, and 0.782 AUPRO@5% Regarding detection performance on VisA,
our method attains results comparable to the runner-up (0.968 of EfficientAD vs. 0.964 of Ours). The
supplemental material provides the detailed per-class metrics for each method. In Fig. 5, we depict
some qualitative results on the VisA dataset. Our method provides more localized anomaly scores

1We noticed that official code from Roth et al. (2022), calculates the AUPRO only on anomalous test samples,
obtaining higher scores since the false positive rate is inherently lower with this protocol.
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Table 1: I-AUROC, AUPRO30@% and AUPRO5@% on VisA and MVTec AD for several IADS
methods. Average metrics of all classes on the respective test set. Best results in bold, runner-ups
underlined. All methods are trained and tested at high resolution.

ALGORITHM
VisA MVTec AD

I-AUROC AUPRO@30% AUPRO@5% I-AUROC AUPRO@30% AUPRO@5%

PatchCore 0.982 0.752 0.542 0.983 0.937 0.701
SimpleNet 0.904 0.718 0.469 – – –
EfficientAD 0.968 0.937 0.777 0.965 0.920 0.757
RD++ 0.930 0.907 0.758 0.915 0.901 0.716
FBFT (Ours) 0.964 0.952 0.787 0.988 0.945 0.782
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Figure 5: VisA dataset qualitative results. All methods are trained and tested at high resolution.

compared to EfficientAD Batzner et al. (2024), i.e., the second-best method on VisA. For instance, by
looking at the capsules example, our anomaly score peak is centered on the anomaly differently
from Batzner et al. (2024). Further qualitative results are reported in Appendix A.12.

Cumulative quartiles based anomaly segmentation. We report in Table 2 the analysis on VisA
and MVTec AD of the performance w.r.t. anomaly size using the cumulative quartile metrics defined
in Section 4. The results highlight that the defect size impacts the segmentation metrics, especially
for the tiniest ones, i.e., the anomalies in Q1. Nevertheless, our method is the best across all quartiles,
with a notable gap compared to the second-best method on Q1 on VisA, which is the dataset with the
highest frequency of tiny defects (e.g., AUPRO30@% 0.935 Ours vs. 0.890 EfficientAD). Moreover,
our method is remarkably stable and robust across quartiles. For instance, on VisA, we go from 0.758
to 0.730 AUPRO5@%, losing only 2.6% segmentation quality, much less than the runner-up method,
EfficientAD, which decreases its performance of 6.7%, from 0.743 to 0.693 AUPRO5@%.

Inference time and input resolution ablation. We report in Table 3 the inference time and main
IADS metrics on VisA for our method and state-of-the-art approaches Roth et al. (2022); Liu et al.
(2023); Batzner et al. (2024); Tien et al. (2023). Using the same machine, we compute the speed in ms
per sample as the average across all the test samples of the VisA dataset. For each method, we compute

Table 2: Quartile-based segmentation metrics. Best results in bold, runner-ups underlined. Results
on VisA (top) and MVTec AD (bottom). All methods are trained and tested at high resolution.

ALGORITHM DATASET
AUPRO@30% AUPRO@5%

Q1 Q2 Q3 Q4 Q ρ@30% Q1 Q2 Q3 Q4 Q ρ@5%

PatchCore

VisA

0.703 0.720 0.740 0.752 0.728 0.679 0.484 0.492 0.518 0.542 0.509 0.454
SimpleNet 0.658 0.668 0.696 0.718 0.685 0.627 0.390 0.399 0.435 0.469 0.423 0.351
EfficientAD 0.890 0.923 0.933 0.937 0.920 0.873 0.693 0.741 0.763 0.777 0.743 0.662
RD++ 0.867 0.898 0.906 0.907 0.894 0.853 0.710 0.740 0.755 0.758 0.740 0.692
FBFT (Ours) 0.935 0.941 0.946 0.952 0.943 0.926 0.730 0.749 0.768 0.787 0.758 0.702
PatchCore

MVTec AD

0.924 0.932 0.935 0.937 0.932 0.918 0.653 0.677 0.691 0.701 0.680 0.633
EfficientAD 0.922 0.925 0.925 0.920 0.923 0.920 0.758 0.769 0.767 0.757 0.762 0.760
RD++ 0.946 0.922 0.918 0.901 0.921 0.952 0.782 0.752 0.744 0.716 0.748 0.684
FBFT (Ours) 0.958 0.948 0.947 0.945 0.949 0.986 0.806 0.798 0.795 0.782 0.795 0.783
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Table 3: Performance and inference time on VisA at different input resolution. Inference time in
ms per sample. Best results in bold, runner-ups underlined.

ALGORITHM INPUT RESOLUTION INFERENCE TIME I-AUROC
AUPRO@30% AUPRO@5%

Q1 Q2 Q3 Q4 Q ρ@30% Q1 Q2 Q3 Q4 Q ρ@5%

PatchCore

Original

87.151 0.948 0.739 0.741 0.760 0.779 0.754 0.715 0.443 0.441 0.471 0.508 0.465 0.405
SimpleNet 210.833 0.896 0.650 0.654 0.671 0.690 0.666 0.627 0.309 0.311 0.338 0.372 0.332 0.275
EfficientAD 7.837 0.984 0.876 0.904 0.919 0.931 0.907 0.853 0.646 0.663 0.697 0.732 0.684 0.603
RD++ 17.748 0.856 0.770 0.787 0.814 0.843 0.803 0.733 0.411 0.429 0.478 0.541 0.464 0.352
FBFT (Ours) 1.321 0.938 0.809 0.815 0.822 0.831 0.819 0.787 0.652 0.658 0.667 0.688 0.666 0.700

PatchCore

High

227.230 0.982 0.703 0.720 0.740 0.752 0.728 0.679 0.484 0.492 0.518 0.542 0.509 0.454
SimpleNet 560.17 0.896 0.658 0.668 0.696 0.718 0.685 0.627 0.390 0.399 0.435 0.469 0.423 0.351
EfficientAD 82.367 0.968 0.890 0.923 0.933 0.937 0.920 0.873 0.693 0.741 0.763 0.777 0.743 0.662
RD++ 63.176 0.930 0.867 0.898 0.906 0.907 0.894 0.853 0.710 0.740 0.755 0.758 0.740 0.692
FBFT (Ours) 1.786 0.964 0.935 0.941 0.946 0.952 0.943 0.926 0.730 0.749 0.768 0.787 0.758 0.702

the inference time, from when the sample is available on the GPU to the computation of the anomaly
scores, after a GPU warm-up, synchronizing all threads before estimating the total inference time.
Our approach attains state-of-the-art anomaly segmentation performance, namely AUPRO@30%,
ρ@30%, AUPRO@5%, and ρ@5%, while being extremely fast. We highlight that, even though
PatchCore attains the best detection performance on the VisA dataset, it largely falls behind in terms
of segmentation performance (AUPRO@30%=0.752 of PatchCore vs. AUPRO@30%=0.952 of Ours,
AUPRO@5%=0.542 of PatchCore vs. AUPRO@5%=0.787 of Ours), and inference speed (227.230
ms of PatchCore vs. 1.786 ms of Ours).

We also include the results obtained by evaluating each competitor using inputs at their official low
resolution (e.g., 224 × 224), reporting the performance for each anomaly size quartile, following
the evaluation protocol described in Section 4.3. We also report the results of FBFT when trained
and evaluated at 224 × 224. Comparing each method across different resolutions, we note how
segmentation performance typically drops in all metrics when using the official input resolution,
especially when detecting tiny anomalies, e.g., for RD++, from 0.710 to 0.411 in Q1 for AUPRO@5%.
We highlight that FBFT processing high-resolution images is the best on all metrics. These results
emphasize the key role of input resolution in maintaining consistent segmentation across defect sizes.

Few-shot anomaly detection and segmentation. As mentioned in Section 1, collecting many
nominal samples in most industrial scenarios can be extremely expensive or unfeasible. Also, frequent
production changeover requires fast adaptation. For these reasons, a beneficial property of IADS
methods is the ability to create a model of the nominal data even with few samples. We define a
few-shot benchmark – based on the VisA dataset – randomly selecting 5, 10, and 50 images from each
category as training data. We train the competitors Roth et al. (2022); Liu et al. (2023); Batzner et al.
(2024); Tien et al. (2023) along with our proposed approach on these samples, and we test them on
the entire test set, with the evaluation protocol proposed in Section 4, reporting the results in Table 4.
We obtain the best segmentation performance for both metrics (AUPRO@30% and AUPRO@5%)
in all the few-shot settings, significantly improving the most challenging segmentation metrics
(+0.167 AUPRO@5% on 5-shot) and retaining a stable segmentation performance (AUPRO@30%
always above 0.9) across the various settings. These results confirm the ability of our method to
optimize feature transfer networks even from a few nominal samples, thanks to the patch–independent
processing enabled by the MLPs.

Table 4: Few-shot IADS performance. Best results in bold, runner-ups underlined.
ALGORITHM

Full 50-shot 10-shot 5-shot

I-AUROC AUPRO@30% AUPRO@5% I-AUROC AUPRO@30% AUPRO@5% I-AUROC AUPRO@30% AUPRO@5% I-AUROC AUPRO@30% AUPRO@5%

PatchCore 0.982 0.752 0.542 0.959 0.724 0.485 0.948 0.704 0.459 0.916 0.698 0.455
SimpleNet 0.896 0.718 0.469 0.917 0.758 0.430 0.883 0.725 0.408 0.862 0.691 0.377
EfficientAD 0.968 0.937 0.777 0.831 0.854 0.569 0.816 0.806 0.469 0.810 0.834 0.511
RD++ 0.930 0.907 0.758 0.776 0.861 0.563 0.615 0.733 0.303 0.555 0.654 0.253
FBFT (Ours) 0.964 0.952 0.787 0.927 0.934 0.743 0.897 0.910 0.695 0.879 0.901 0.678

Backbone ablation. All previous results were achieved using FBFT with DINO-v2 as the Teacher,
T , backbone. However, since our method formulation is general, we also explored different Trans-
former backbones, such as ViT/B-16 pre-trained on ImageNet, reporting segmentation results on
ViSA in row 5 of Table 5. This network was pre-trained on 224× 224 images with a classification
objective. Thus, we resize images at 224× 224 at inference time. We observe a performance drop
compared to FBFT when processing high-resolution images (last row) with DINO-v2. Despite this,
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Table 5: Segmentation metrics on VisA. Best results in bold, runner-ups underlined.
ALGORITHM BACKBONE INPUT RESOLUTION AUPRO@30% AUPRO@5%

PatchCore WideResNet101 224 × 224 0.779 0.508
SimpleNet WideResNet50 224 × 224 0.690 0.372
EfficientAD Custom 224 × 224 0.931 0.732
RD++ WideResNet50 224 × 224 0.843 0.541

FBFT ViT/B-16 224 × 224 0.868 0.610
FBFT DINO-v2 224 × 224 0.831 0.688
FBFT DINO-v2 1036 × 1036 0.952 0.787

RGB fj f̂j ∆j fk f̂k ∆k ∆

N
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in
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A
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m
al
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Figure 6: Features visualization. Channels average of feature maps before and after feature mapping.

our FBFT method outperforms all competitors except EfficientAD when operating on 224 × 224
resolution images. This demonstrates that our method can deliver competitive results with different
backbones, although optimal performance is achieved by processing high-resolution images.

One could attribute FBFT’s superior performance to the larger dataset used for pre-training DINO-v2
(∼ 142M images), compared to ImageNet (∼ 14M images), which was used for training WideRes-
Net101 and ViT/B-16. However, if we compare FBFT performance with DINO-v2 at 224 × 224
resolution to DINO-v2 at 1036× 1036 (last vs second-to-last rows of Table 5), we note a significant
drop in performance, sometimes larger than the drop obtained when using ViT-B/16. This suggests
that the excellent performance is primarily driven by high-resolution image processing rather than
the choice of the pre-trained backbone.

Features visualization. In Fig. 6, we show the contextualized feature maps before fj , fk and after
f̂j , f̂k the feature transfer, as well as their ∆j ,∆k and final anomaly maps ∆, for a nominal (top) and
an anomalous (bottom) test sample of VisA. In the nominal case, we can notice how the features
before and after the feature transfer look similar, resulting in low anomaly scores. In the anomalous
case, as the extracted features fj , fk fall out of the nominal distribution, the feature transfer network
fails to contextualize or decontextualize them, resulting in erroneously reconstructed features f̂j and
f̂k. Thus, by analyzing the discrepancy between the original and reconstructed features, we produce
accurate anomaly maps. Furthermore, after the combination, the overall anomaly map ∆ exhibits
less noise, thanks to the product-based aggregation employed in this work.

6 DISCUSSION

We introduced a fast approach based on Forward–Backward Feature Transfer that processes features
extracted from layers with different contextualization levels of a Transformer backbone. We devised
a novel metric to evaluate the stability of existing methods in segmenting anomalies of different sizes,
spanning from very tiny to larger ones, along with a fair and sound training and evaluation protocol
to assess the performance. The proposed solution achieves the best segmentation results on the VisA
dataset, both on the classical benchmark and the proposed novel metrics, while running remarkably
faster than existing IADS approaches. Also, it exhibits state-of-the-art performance on the MVTec
AD dataset. Lastly, our approach also outperforms competitors in segmentation performance when
considering a more challenging few-shot scenario built upon the VisA dataset.

A limitation of our method resides in the small spatial size of the output anomaly map, which is
constrained by the leveraged backbone. An interesting future direction would be to employ strategies
that can yield high-resolution feature maps such as FeatUp Fu et al. (2024).
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A SUPPLEMENTAL MATERIAL

In this supplemental material, we provide additional quantitative and qualitative results to validate
the performance of the proposed approach.

A.1 ABLATION ON THE LAYERS CONSIDERED FOR THE FORWARD AND BACKWARD FEATURE
TRANSFER NETWORKS.

We investigate the impact of transferring features from different levels of the transformer architecture,
i.e., layers j and k described in Section 3, either by aggregating them or by considering the individual
maps. In Table 6, we report results for various combinations of layers. The notation [j, k] means
fusing both forward and backward transfer from layer j to layer k and vice-versa as seen in the main
paper. With [j → k] or [k ← j], we intend the performance of the individual anomaly map in a
single direction. We note that transferring features between layers with high contextualization, i.e.,
the last four layers, begets better detection and segmentation results, with the transfer between j = 8
and k = 12 providing the best performance. We also observe that transferring features from closer
layers, such as j = 11 and k = 12, can harm the performance. We believe that being the function
learned by a single transformation layer smooth Jelenić et al. (2024), the task of transferring between
two close layers is simpler. Thus, it might overgeneralize to anomalous samples, leading to worse
performance. Conversely, between two farther layers, the function is highly non-linear. Nevertheless,
the performance is relatively stable after layer 8, independent of the employed layers. Notably, fusing
the maps obtained from the forward and backward transfer always yields the best results except for
layers [1, 4]. We suggest that this occurs because the features in the earlier layers lack sufficient
contextualization.

Table 6: Layers Ablation. Best results in bold, runner-ups underlined.
LAYERS I-AUROC AUPRO@30% AUPRO@5%

[1, 4] 0.906 0.828 0.570
[1→ 4] 0.913 0.906 0.682
[1← 4] 0.773 0.663 0.378

[4, 8] 0.940 0.941 0.773
[4→ 8] 0.924 0.942 0.764
[4← 8] 0.931 0.903 0.702

[8, 12] 0.964 0.952 0.787
[8→ 12] 0.953 0.943 0.773
[8← 12] 0.949 0.925 0.745

[10, 12] 0.960 0.950 0.784
[10→ 12] 0.957 0.926 0.742
[10← 12] 0.960 0.947 0.782

[11, 12] 0.956 0.946 0.774
[11→ 12] 0.868 0.853 0.710
[12→ 11] 0.888 0.876 0.730

A.2 ABLATION ON THE LOSS EMPLOYED TO OPTIMIZE THE FORWARD AND BACKWARD
FEATURE TRANSFER NETWORKS.

Table 7 reports the results obtained by the proposed framework considering different distances
(i.e., cosine distance and ℓ2 distance) for the optimization and the inference of the forward and
backward feature transfer networks, i.e., the Students MLPs. We report the results of the four possible
combinations of these distances at training and inference time. Our chosen combination shows
slightly better performance than the alternatives, though differences are minimal.
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Table 7: Loss ablation. Best results in bold, runner-ups underlined.
TRAINING INFERENCE I-AUROC AUPRO@30% AUPRO@5%

Cosine distance ℓ2 distance 0.964 0.952 0.787
ℓ2 distance ℓ2 distance 0.954 0.950 0.786

Cosine distance Cosine distance 0.957 0.952 0.790
ℓ2 distance Cosine distance 0.954 0.938 0.741

A.3 ABLATION ON THE FUNCTION EMPLOYED TO FUSE THE ANOMALY MAPS.

Given the best combination of transferring features between layers being between j = 8 and k = 12,
as shown in Table 6, we also investigate the fusion strategy. In particular, we chose multiplication to
minimize potential false positives from the maps produced by each student network. This operation
can be viewed as a logical AND between the two maps, meaning that a pixel is categorized as a
defect only if both student networks agree to predict it. As shown in Table 8, choosing multiplication
as an aggregation function enhances the performance of the individual maps, while addition slightly
degrades their performance.

Table 8: Aggregation ablation. j = 8, k = 12. Best results in bold, runner-ups underlined.
ANOMALY MAP I-AUROC AUPRO@30% AUPRO@5%

∆k ·∆j 0.964 0.952 0.787
∆k +∆j 0.944 0.931 0.732

∆j 0.953 0.943 0.773
∆k 0.949 0.925 0.745

A.4 IS DINO-V2 A GENERALLY BETTER IADS BACKBONE?

In Section 5, we demonstrated that DINO-v2 performs better with our approach, as it allows effective
processing of high-resolution images. However, we also analyze whether the performance of other
methods improves when using DINO-v2 with high-resolution inputs. Specifically, we evaluate two ad-
ditional IADS methods—PatchCore Roth et al. (2022) and SPADE Cohen & Hoshen (2020)—which
can easily accommodate changes to their backbone without requiring ad-hoc modifications. The
results are reported in Table 9. As shown, neither PatchCore nor SPADE fully benefit from high-
resolution processing, as their memory bank mechanisms do not scale well with increased resolution.
Therefore, we conclude that DINO-v2 may not always be the best backbone for IADS.

Table 9: Segmentation metrics on VisA. Best results in bold, runner-ups underlined.
ALGORITHM BACKBONE INPUT RESOLUTION AUPRO@30% AUPRO@5%

PatchCore WideResNet101 224 × 224 0.779 0.508
PatchCore WideResNet101 512 × 512 0.752 0.542
PatchCore DINO-v2 1036 × 1036 0.705 0.445
SPADE WideResNet101 224 × 224 0.780 0.480
SPADE DINO-v2 1036 × 1036 0.779 0.462

FBFT ViT/B-16 224 × 224 0.868 0.610
FBFT DINO-v2 1036 × 1036 0.952 0.787

A.5 ABLATION ON DIFFERENT INPUT RESOLUTION SIZES DURING TRAINING.

We report in Table 10 the anomaly detection and segmentation performance achieved by the proposed
methods when different input resolution sizes are considered for the feature extractor. The same
resolution is used during training and inference, while the evaluation is performed by upsampling
the output to the original full resolution of the ground-truth. From these results, it is possible to
appreciate that the proposed solution is able to exploit the higher resolution and correctly detect and
segment the majority of samples, with an I-AUROC of 0.964 at full resolution, compared to 0.899
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when providing low-resolution images. The same trend can be observed for the localization metrics,
i.e., AUPRO@30% and AUPRO@5%.

Table 10: Ablation on the input resolution employed at training time. Best results in bold,
runner-ups underlined.

TRAINING RESOLUTION I-AUROC AUPRO@30% AUPRO@5%

224× 224 0.899 0.830 0.562
518× 518 0.952 0.944 0.779
1036× 1036 0.964 0.952 0.787

A.6 P-AUROC SEGMENTATION RESULTS ON VISA

We report in Table 11 the segmentation performance based on the P-AUROC metric on the VisA
dataset alongside the other segmentation metrics. We note that our method also achieves state-of-
the-art performance on this metric. We wish to highlight that even though is a common practice to
evaluate the segmentation performance metric with such a metric, we believe that AUPRO@5% is
the best metric to describe segmentation performance as it is less saturated (0.787 AUPRO@5% vs.
0.991P-AUROC for our method), and it considers each anomaly independently during calculation,
making it suitable for our quartile-based evaluation.

Table 11: Segmentation metrics on VisA. Best results in bold, runner-ups underlined.
ALGORITHM P-AUROC AUPRO@30% AUPRO@5%

PatchCore 0.902 0.752 0.542
SimpleNet 0.956 0.718 0.469
EfficientAD 0.977 0.937 0.777
RD++ 0.938 0.907 0.758
FBFT (Ours) 0.991 0.952 0.787

A.7 MORE INSIGHT ON THE CONTEXTUALIZATION AND DECONTEXTUALIZATION TASKS

To better understand how these contextualization and decontextualization tasks are useful to detect
anomalies, let us imagine that we are modelling images of nominal cats at training time. The Students
(MLPs) have learned from the Teacher (Transformer) how a typical cat looks by understanding the
relationships between the local features, like fur texture, whiskers, eyes, and the global features, like
the overall shape and arrangement of body parts.

Then, at inference time we can distinguish four different scenarios:

Nominal test sample. Given a nominal test sample of a cat, during contextualization the Forward
Network process the features of smaller details, such as fur texture, eye shapes, and ears and then
correctly predicts the features of these details integrated into a broader context, realizing these features
together form a coherent cat with proper body part arrangements. The Backward Network’s global
understanding of the cat is that it knows where the eyes, ears, and fur should be placed. When the
Backward Network tries to map this global understanding back to local features, it succeeds because
the local features match the global cat shape. Both contextualization and decontextualization succeed,
confirming this is a nominal sample of a cat.

Anomalous test sample that breaks both contextualization and decontextualization. Given an
anomalous sample, like a cat with bird wings, during contextualization, the Forward Network detect
typical local cat features but also sees something odd, such as bird wings instead of the expected legs.
Hence, when the Forward Network tries to build a global context, it struggles because bird wings do
not fit into the overall cat structure. When trying to decontextualize, the Backward Network fails to
map back correctly since the wings create confusion in its global representation and do not align with
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the typical local features of a cat. Both Forward and Backward Networks detect this misalignment as
an anomaly.

Anomalous test sample that breaks only decontextualization. Given an anomalous sample, like
a cat with the fur texture subtly changed in some areas to resemble scales, the Forward Network
processes local features, and since is still detecting the overall shape of the cat and other features, it
forms a correct global understanding of the image as a whole, successfully building a global context.
The overall structure of the cat is intact, so contextualization does not fail, since the cat still looks
like a cat, even though some textures are unusual. However, during decontextualization, when the
Backward Network tries to map the global context back to local features, the scale-like textures do not
fit what the model expects from a cat’s fur, breaking the consistency between the global understanding
features and local textures features. The subtle anomaly did not disrupt the overall structure of the
image, but when trying to map back to local details, the inconsistency in texture caused the model to
fail. Only the Backward Network detect this misalignment as an anomaly.

Anomalous test sample that breaks only contextualization. Given an anomalous sample, like a cat
where the head is slightly displaced, during contextualization, the Forward Network detects normal
local features, however, when trying to form a global context, the misaligned cat’s head leads to an
incoherent global structure. Essentially, the parts of the cat are shifted slightly out of position, hence,
the global context is broken but the local features are intact. Nevertheless, during decontextualization,
although the global context is broken, the individual parts of the cat still seem coherent on their own.
As a result, the decontextualization succeeds because the model can map back to the local features
successfully, even though the global context was incorrect. Only the Forward Network detect this
misalignment as an anomaly.

A.8 FULL RESULTS ON VISA

For the sake of completeness, in Table 12 we report the per-class detection and segmentation
performance, previously summarized in Table 1 of the main paper. Results of our solution and
state-of-the-art methods on the VisA dataset are reported.

Table 12: I-AUROC and AUPRO30@% on the VisA dataset for several IADS methods. Best
results in bold, runner-ups underlined. All methods are trained and tested at high-resolution.

ALGORITHM candle capsules cashew chewinggum fryum macaroni1 macaroni2 pcb1 pcb2 pcb3 pcb4 pipe_fryum MEAN

I-AUROC

PatchCore Roth et al. (2022) 0.986 0.937 0.990 0.991 0.993 0.997 0.934 0.980 0.988 0.996 0.998 0.998 0.982
SimpleNet Liu et al. (2023) 0.964 0.769 0.972 0.984 0.922 0.809 0.618 0.984 0.956 0.949 0.937 0.986 0.904
EfficientAD Batzner et al. (2024) 1.000 0.884 0.933 0.996 0.957 0.947 0.967 0.991 0.971 0.972 1.000 1.000 0.968
RD++ Tien et al. (2023) 0.846 0.935 0.862 0.838 0.966 0.964 0.897 0.935 0.972 0.980 0.982 0.990 0.930
FBFT (Ours) 0.958 0.992 0.972 0.996 0.988 0.931 0.885 0.980 0.938 0.956 0.976 0.999 0.964

AUPRO@30%

PatchCore Roth et al. (2022) 0.955 0.575 0.912 0.670 0.836 0.349 0.340 0.941 0.864 0.703 0.910 0.969 0.752
SimpleNet Liu et al. (2023) 0.867 0.574 0.876 0.723 0.766 0.531 0.244 0.801 0.828 0.757 0.737 0.918 0.718
EfficientAD Batzner et al. (2024) 0.982 0.897 0.888 0.822 0.895 0.968 0.982 0.945 0.948 0.950 0.982 0.982 0.937
RD++ Tien et al. (2023) 0.964 0.959 0.699 0.642 0.919 0.977 0.979 0.932 0.938 0.957 0.949 0.967 0.907
FBFT (Ours) 0.979 0.963 0.971 0.908 0.944 0.971 0.961 0.965 0.939 0.910 0.935 0.972 0.952

AUPRO@5%

PatchCore Roth et al. (2022) 0.823 0.402 0.783 0.491 0.497 0.140 0.133 0.799 0.609 0.399 0.592 0.831 0.542
SimpleNet Liu et al. (2023) 0.660 0.396 0.650 0.444 0.397 0.221 0.121 0.611 0.579 0.385 0.446 0.715 0.469
EfficientAD Batzner et al. (2024) 0.897 0.675 0.715 0.582 0.585 0.839 0.897 0.779 0.775 0.782 0.897 0.897 0.777
RD++ Tien et al. (2023) 0.859 0.826 0.505 0.384 0.749 0.872 0.879 0.789 0.811 0.827 0.739 0.851 0.758
FBFT (Ours) 0.881 0.833 0.851 0.674 0.751 0.848 0.839 0.834 0.746 0.684 0.664 0.840 0.787

A.9 TRAINING TIME.

We provide in Table 13 the average time in hours needed per class to train every framework, given
the number of epochs reported in their official implementations. These timings have been computed
using the same hardware employed for all our experiments.

Table 13: Training time required on the VisA dataset. Average training time in hours per class. All
methods are trained and tested at high resolution.

ALGORITHM PatchCore Roth et al. (2022) SimpleNet Liu et al. (2023) EfficientAD Batzner et al. (2024) RD++ Tien et al. (2023) FBFT (Ours)

Training time 1.212 6.266 7.783 28.767 2.361
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A.10 IMPLEMENTATION EMPLOYED FOR THE COMPETITORS AND THEIR LICENSES

For all the competitors Roth et al. (2022); Liu et al. (2023); Tien et al. (2023), except Efficien-
tAD Batzner et al. (2024), we employed their official implementations. As far as it concerts Efficien-
tAD, which does not provide an official repository, we leverage an implementation that obtains the
most similar results with respect to the values reported in their manuscript Batzner et al. (2024). In
particular:

• PatchCore: https://github.com/amazon-science/
patchcore-inspection released under Apache License 2.0;

• SimpleNet: https://github.com/DonaldRR/SimpleNet released under MIT
License;

• RD++: https://github.com/tientrandinh/
Revisiting-Reverse-Distillation released under MIT License;

• EfficientAD: https://github.com/nelson1425/EfficientAD released under
Apache License 2.0.

A.11 LICENSE FOR THE EMPLOYED DATASETS

The VisA dataset Zou et al. (2022) is released under the Creative Commons Attribution (CC BY 4.0)
license. The MVTec AD dataset Bergmann et al. (2019) is released under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0).

A.12 ADDITIONAL QUALITATIVE RESULTS ON THE VISA AND MVTEC AD DATASETS.

As anticipated in the main paper, we show in Fig. 7 some additional qualitative results for the
remaining classes of the VisA dataset which have not been reported in Fig. 5. As already highlighted
in Section 5, the anomaly maps produced by our solution provide a more localized response for the
anomalies, compared to EfficientAD Batzner et al. (2024).

Additionally, in Fig. 8 we show some qualitative examples of the anomaly map produced by our model
on the MVTec AD dataset. Also in this scenario, our method provides more localized anomaly scores,
motivating the segmentation performance gap in terms of both AUPRO@30% and AUPRO@5%.
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Figure 7: VisA dataset qualitative results. All methods are trained and tested at high resolution.
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Figure 8: MVTec AD dataset qualitative results.
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