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Abstract. An assumption-free, disease-agnostic pathology detector and
segmentor is often regarded as one of the holy grails in medical image
analysis. Building on this concept, un- or weakly supervised anomaly
localization approaches have gained popularity. These methods aim to
model normal or healthy samples using data and then detect deviations
(i.e., abnormalities). However, as this is an emerging field situated be-
tween image segmentation and out-of-distribution detection, most ap-
proaches have adapted their evaluation setups and metrics from either
of these areas. Consequently, they may have overlooked peculiarities in-
herent to anomaly localization. In this paper, we revisit the anomaly lo-
calization setup, analyze commonly used metrics, introduce alternative
metrics inspired by instance segmentation, and compare these metrics
across various settings and algorithms. We contend that the choice of
metric is use-case dependent, but the SoftInstanceIoU and other object-
based metrics show significant promise for future applications.
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1 Introduction

Accurate detection and localization of pathologies in medical images is a corner-
stone of effective diagnosis and treatment. The ability to identify and precisely
locate anomalies is crucial for early intervention, which can significantly improve
patient outcomes. Traditionally, this task has relied on extensive disease-specific
labeling and expert annotation, which are time-consuming and labor-intensive
processes. The emergence of unsupervised and weakly-supervised anomaly lo-
calization techniques has shown great potential in revolutionizing this aspect of
medical imaging. These approaches offer the capability to identify abnormalities
without the need for extensive disease-specific labeling, thereby reducing the
dependency on large annotated datasets [19]. By modeling the characteristics
of normal, healthy tissue (or explicitly trying to model and generalize beyond
preselected abnormalities), these methods can facilitate the detection of devia-
tions that indicate potential pathologies. Historically, most anomaly localization
methods have employed heatmaps to visualize the likelihood of anomalies within
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an image. These heatmaps provide a spatial representation of the areas most
likely to contain anomalies, which can be extremely useful for clinicians. How-
ever, evaluating the effectiveness of these heatmaps requires specialized metrics
that can accurately capture their performance. As the field of anomaly localiza-
tion is rapidly developing, it has often borrowed evaluation metrics from related
domains such as image segmentation and out-of-distribution (OoD) detection
[1, 3, 4, 7, 9, 12, 13, 15, 18, 20]. These metrics, while useful, may not fully
capture the unique challenges and requirements specific to the anomaly localiza-
tion task. Metrics borrowed from other domains might not account for unique
factors, potentially leading to sub-optimal performance assessments. Therefore,
there is a need for the development and adoption of evaluation metrics that are
specifically designed to address the intricacies of anomaly localization in medical
imaging. While current practices in anomaly localization have made significant
strides, selecting the most appropriate evaluation metrics remains a critical area
for improvement. Our goal is to address this gap by analyzing the properties
of various metrics from related fields and comparing their performance across
multiple datasets, as well as using a human judge as a reference. Additionally,
we aim to refine these metrics to better combine the predicted heatmaps with
an object-based evaluation approach, enhancing their relevance and accuracy in
the context of anomaly localization.

2 Anomaly Localization Evaluation

2.1 Level of Evaluation

Evaluating anomaly detection in medical imaging requires careful consideration
of different levels of analysis which cover different detailed aspects of model
performance (see Fig. 1). Here, we discuss four levels of evaluation: dataset level,
sample level, object level, and slice level.

Dataset level At the dataset level, evaluation is performed by aggregating all
pixels across the entire dataset into one large set and calculating a single score
for the entire dataset. This approach treats the dataset as one sample, providing
a broad measure of performance but potentially overlooking individual sample
nuances.

Sample level Sample-level evaluation involves computing scores for individual
images or volumes, followed by aggregating (e.g. averaging) these scores across
the entire test set. This approach mirrors the typical practice in image segmen-
tation, where a single score is calculated and averaged per sample.

Object level At the object level, evaluation focuses on the abnormal structures
within the images. Scores are calculated for each detected object and then ag-
gregated across all objects in the dataset. This approach can address issues like
the presence of multiple abnormal objects within an image and helps to avoid
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Fig. 1: (a) Overview of Anomaly localization problem formulation. (b) Different
levels of metric m calculation given a prediction P and the ground-truth G.

the bias of standard segmentation metrics that prioritize larger objects while ne-
glecting smaller ones. However, it can ignore scans where no objects are defined,
thus potentially overlooking normal samples.

Slice level Slice-level evaluation involves splitting 3D volumes into 2D slices,
with individual scores computed for each slice before aggregation. This approach
aligns with the design of many 2D models, offering additional advantages in
computational efficiency and resource utilization.

2.2 Metrics

To effectively evaluate the performance of anomaly localization models, a range
of metrics are employed, spanning various domains:

Segmentation metrics Often employed metrics here are DSC (Dice Similarity
Coefficient) and IoU (Intersection over Union).

– DSC score: Quantifies the spatial overlap between the predicted anomaly
region P and the ground truth G for a sample x. A DSC score of 1 indicates
perfect overlap, while a score of 0 means no overlap. Often the maximal
achievable DSC score is calculated by choosing the best binarization thresh-
old t to turn the continuous “heatmap” prediction into a binary segmentation:

⌈DSC⌉ = max
t

(
2 ·

∑
x(P (x) ≥ t) ·G(x)∑

x(P (x) ≥ t) +
∑

x G(x)

)
. (1)

– IoU (Intersection over Union): Similarly to the DSC score, the IoU measures
the overlap between the predicted and ground-truth anomaly masks:

IoU(x) =
|P (x) ∩G(x)|
|P (x) ∪G(x)|

. (2)
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While commonly used in segmentation tasks [6], DSC and IoU rely on binarized
predictions. This necessitates thresholding heatmaps, a process that introduces
potential bias via threshold selection and can lead to undefined scores when
ground-truth segmentations are sparse – a frequent occurrence in anomaly local-
ization. Here we often choose the “Best” threshold or calculate the performance
over all thresholds, as indicated by “AUC”.

Out-of-distribution detection metrics :

– AP (Average Precision): Calculated from the area under the precision-recall
curve, which plots precision P (how many of the predicted anomalies are
actually anomalies) against recall R (how many of the true anomalies are
detected). This measures a model’s ability to rank anomalies higher than
normal examples.

AP =

N∑
n=1

(Rn −Rn−1)Pn. (3)

– AUROC (Area Under the Receiver Operating Characteristic): Similarly to
AP, it summarizes the performance of a model at different classification
thresholds (utilizing the false positive rate FPR and the true positive rate
TPR). High AUROC indicates a model’s capability to differentiate anoma-
lies and normal samples.

AUROC =

N−1∑
i=1

(FPRi+1 − FPRi) · (TPRi+1 + TPRi)

2
. (4)

Unlike segmentation metrics, ranking-based metrics like AUROC and AP di-
rectly handle heatmaps without requiring thresholding or relying on exact pre-
diction values. However, they still yield undefined scores for data samples with-
out ground-truth labels. Although often addressed by combining labeled and
unlabeled data (e.g., evaluating metrics throughout the entire dataset (“Dataset
level”), or using batch-wise calculations as in [18]), this approach can overem-
phasize larger, potentially easier-to-detect anomalies ([8, 14]).

Object-detection and instance segmentation metrics transition from ba-
sic overlap measurements to object-centric anomaly localization. This requires
defining distinct objects in ground-truth labels (often via connected-component
analysis). Key metrics include Instance IoU and Center-point Distance. A for-
mulation of the InstanceIoU can be:

InstanceIoU(t) =
∑

i∈Objects

|P (xi) ≥ t ∩G(xi)|
|P (xi) ≥ t ∪G(xi)|

, (5)

which can be calculated for all objects in a sample i.e., sample-level or all objects
in that dataset i.e., dataset-level. The Center-point distance for an object i can
be formulated as:

CPD(i) = ||µPi
− µGi

||2, (6)
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where µPi
and µGi

are the center points (or center of mass) for P (xi) and
G(xi) respectively. Additionally, these metrics can not just be aggregated using
mean, but also median or by applying a threshold (e.g., IoU > 0.5) to classify
TPs, FPs, and FNs at the object level, allowing the calculation of derived metrics
like F1 score. However, binarization of predictions remains necessary and also
objects have to be identified (e.g., using connected-component analysis). For this
work, we adapt the Center Distance metric: an object’s heatmap center point
lying within the convex hull of a labeled object constitutes a TP, which we term
“Center Matching”.

Anomaly Localization Metrics To harness the strengths of instance seg-
mentation metrics while avoiding the drawbacks of binarization thresholds, we
introduce SoftInstanceIoU (inspired by Soft DSC [1]). This modified Instance
IoU integrates continuous anomaly scores for a more nuanced assessment of pre-
dicted anomaly confidence:

SoftInstanceIoU(x) =

∑
i∈Object∪Background αP̂ (x)iĜ(x)i∑

i∈Object∪Background(0.5P̂ (x)i + (1− α)Ĝ(x)i)
, (7)

where Background refers to all pixels not labeled as objects, i indexes the ob-
jects in the sample x, P̂ (x)i and Ĝ(x)i refer to the prediction and ground-truth
segmentation with all pixels masked out that do not belong to the background or
the object i and α is a weighting factor to balance under- and over-segmentation
(with setting the target for background to 0).

3 Experiments & Results

3.1 Understanding Metric through Controlled Experiments

To analyze the behavior of different evaluation metrics for anomaly localiza-
tion, we conducted a controlled experiment using 50 samples containing circular
objects and the respective (perfect) segmentations. These samples were system-
atically altered in the following ways:

(a) Adding small objects: We introduced small, correctly detected objects
while reducing the overall segmentation size (approximately maintaining the to-
tal segmented pixel count). This simulates improved object detection. (b) Vary-
ing segmentation size: We altered the size of the segmentations to observe the
impact of over-/under-segmentation on metric performance. (c) Introducing
false positives (FPs): We added segmentations that were not present in the
ground truth (false detections) to evaluate metric sensitivity to these errors. (d)
Introducing missed instances (FNs): We removed segmentations present in
the ground truth to simulate by a model not detected (missed detections) to as-
sess how metrics respond to these misses. (e) Including empty samples: We
added samples devoid of any labels or predictions ("empty samples") to analyze
metric behavior in such scenarios.
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Fig. 2: Analysis of the impact of various segmentation alterations (size, pres-
ence/absence of objects) on the performance of different anomaly localization
metrics.
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The experiment’s findings, presented in Figure 2, reveal distinct behaviors
for different metric categories:

(a) Adding small objects: Surprisingly, metrics like AP and AUROC de-
creased despite improved object detection. Soft IoU metrics, as expected, in-
creased with better detection. Object-based metrics displayed some variation
but remained relatively stable. (b) Segmentation size variations: Most met-
rics exhibited a peak-shaped response as segmentation size changed, indicating
optimal performance at a specific size. However, F1 metrics based on center dis-
tance and 0.5 IoU thresholds showed weaker responses, while Dataset AP and F1
with a 0.01 IoU threshold were nearly constant on one side. (c) False positives
(FPs): Sensitivity to false positives varied across metrics. AP, AUROC, and
F1 (center) were highly sensitive, while Soft IoU was less affected. (d) Missed
instances (FNs): F1 metrics, Soft IoU, Dataset Level AP, and DSC displayed
the greatest sensitivity to missed instances. Sample-level and slice-level metrics,
however, failed to capture this performance change. (e) Empty samples: Only
F1 metrics and Soft IoU showed improvement when completely normal samples
were added. Dataset AP surprisingly decreased, while other metrics remained
insensitive as intended for such scenarios.

This controlled experiment sheds light on the strengths and weaknesses of
various evaluation metrics for anomaly localization. Selecting appropriate met-
rics based on the desired performance characteristics is crucial for accurate as-
sessment in this domain.

3.2 Anomaly Localization Benchmark with Human Agreement

In this section, we evaluate the performance of various anomaly detection al-
gorithms on diverse metrics and assess their alignment with human assessment
in a more realistic setting (Fig. 3). Human raters (n = 1) were presented with
the image, ground truth (GT) segmentation, and blinded predictions by each
algorithm for each GT object/anomaly. The evaluation focused on two aspects:
(1) whether the algorithm sufficiently detected the anomaly and (2) which al-
gorithms achieved the best detection (allowing for multiple if heatmaps were
subjectively similar, or none if all failed). Notably, both rating schemes yielded
the same ranking, hence only the "Human rater" column is shown.

It is important to acknowledge that interpreting heatmaps can be challeng-
ing, so the evaluation solely considered object detection performance within seg-
mented slices. However, this restriction might have downplayed the impact of
false positives outside segmented regions.

For the first dataset (CamCAM [17]), seven algorithms were tested. We in-
troduced artificial colored spheres (one large, four small) into 50% of the test
images. The framework, hyperparameters, and training schedules remained con-
sistent with [7], however, we added a “Fake” algorithm which only returned the
absolute intensity values as anomaly score, inspired by [11]. For the second and
third datasets (MOOD brain and abdominal [18]), we evaluated the winning
algorithms from the MOOD challenge [2, 5, 10, 16] on their respective datasets,
again introducing colored sphere anomalies in 50% of test images.
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Fig. 3: Anomaly Localization Benchmark Evaluation of different methods and
metrics on the CamCAN, MOOD abdominal, and MOOD brain dataset and
comparison with a human rater.

Here, see Fig. 3, metrics like Sample-level AUC, SoftInstanceIoU, and F1-
based metrics closely mirrored human judgment on anomaly detection. However,
the focus on segmented slices in human evaluation might have underestimated
the impact of false positives outside these regions. Additionally, as noted by the
human raters, only FAE and Fake algorithms showed significant performance in
detecting the artificial anomalies on the CamCAM dataset.

Sample-level and object-level metrics offer additional advantages beyond
their alignment with human assessment. One such benefit is the ability to as-
sess ranking stability through bootstrapping. Fig. 4 (a) demonstrates this for
the SoftInstanceIoU metric applied to the CamCAM dataset. The figure reveals
a highly stable ranking in this specific case. Furthermore, object-based met-

Fig. 4: (a) Stability analysis of the CamCAN dataset using bootstrapping. (b)
An AUC-like plot of the SoftInstanceIoU for the CamCAN dataset.
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rics provide a continuous score for each object, enabling visualization similar to
AUROC and AP curves. This approach offers valuable insights into model per-
formance across different object types. As shown in Figure 4 (b), where for each
object (and the background) in the dataset the (sorted) SoftInstanceIoU scores
are plotted next to each other, the initial portion of the plot reflects the back-
ground segmentation quality. This highlights an advantage of SoftInstanceIoU -
its ability to incorporate background evaluation. Subsequently, the plot transi-
tions smoothly to depict performance on detected objects, with scores decreasing
for poorly or undetected objects.

4 Discussion & Conclusion

Our investigation into anomaly localization metrics yielded valuable insights
into their strengths and weaknesses. The experiments demonstrated that dif-
ferent metrics emphasize distinct aspects of performance, highlighting the im-
portance of selecting metrics that align with the specific goals of the anomaly
detection task. Soft Instance IoU emerged as a particularly promising metric.
It exhibited desirable characteristics, including resilience to false positives while
remaining sensitive to missed detections. This balance makes it suitable for sce-
narios where both precise localization and overall anomaly capture are crucial.
F1-based metrics also displayed favorable properties. Their sensitivity to both
missed detections and false positives provides a comprehensive assessment of
performance. However, further investigation is needed to determine the opti-
mal threshold selection for these metrics in the context of anomaly localization.
Here, it is important to acknowledge the limitations of our human evaluation ap-
proach. While it provided valuable insights, the focus on segmented slices might
have underestimated the impact of false positives outside these regions. Future
studies could explore alternative evaluation strategies that encompass the entire
image to obtain a more holistic assessment. Our findings highlight the impor-
tance of meticulous metric selection, particularly when working with datasets
containing both healthy and pathological cases. The observed sensitivity of met-
rics like Dataset AP to the introduction of normal samples underscores this
point. Furthermore, some metrics, like sample-level Dice Similarity Coefficient
(DSC), may become entirely inapplicable in such settings. To comprehensively
evaluate performance in these diverse scenarios, researchers might consider em-
ploying a combination of metrics, each capturing distinct aspects of anomaly
detection. This approach becomes even more critical when dealing with complex
anomaly detection tasks or highly variable datasets. In conclusion, our work em-
phasizes the critical role of metric selection in anomaly localization. By carefully
considering the desired performance characteristics and potential limitations of
available metrics, researchers can achieve a more accurate and informative evalu-
ation of their models. This paves the way for the development and refinement of
anomaly localization techniques with the potential to improve medical diagnosis
and patient care significantly.
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