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Abstract

Sharpness-Aware Minimization (SAM) has been
demonstrated to improve the generalization per-
formance of overparameterized models by seek-
ing flat minima on the loss landscape through op-
timizing model parameters that incur the largest
loss within a neighborhood. Nevertheless, such
min-max formulations are computationally chal-
lenging especially when the problem is highly
non-convex. Additionally, focusing only on the
worst-case local solution while ignoring poten-
tially many other local solutions may be subopti-
mal when searching for flat minima. In this work,
we propose Tilted SAM (TSAM), a smoothed
generalization of SAM inspired by exponential
tilting that effectively assigns higher priority to
local solutions that incur larger losses. TSAM is
parameterized by a tilt hyperparameter t and re-
duces to SAM as t approaches infinity. We show
that TSAM is smoother than SAM and thus easier
to optimize, and it explicitly favors flatter min-
ima. We develop algorithms motivated by the
discretization of Hamiltonian dynamics to solve
TSAM. Empirically, TSAM arrives at flatter local
minima and results in superior test performance
than the baselines of SAM and ERM across a
range of image and text tasks.

1. Introduction
Empirical risk minimization (ERM) is a classic framework
for machine learning that optimizes for the average per-
formance of the observed samples. For n training sam-
ples {xi}i∈[n] (which may also contain label information),
model parameters θ ∈ Rd, and a loss function l(·), let ERM
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be defined as

min
θ

L(θ) :=
1

n

∑
i∈[n]

l(xi; θ). (1)

In overparameterized models, however, minimizing ERM
may arrive at a bad local minimum. To address this, one
line of work focuses on minimizing the sharpness of final
solutions, ensuring that the losses of parameters around local
minima are uniformly small. One popular formulation is
sharpness-aware minimization (SAM), that optimizes over
the worst-case loss over perturbed parameters (Foret et al.,
2020). For a perturbing region ∥ϵ∥ ≤ ρ where ϵ ∈ Rd, the
canonical SAM objective is defined as

min
θ

Ls(θ) := max
∥ϵ∥≤ρ

L(θ + ϵ). (2)

Typically, SAM is optimized by alternating between running
gradient ascent (to find the max loss) and gradient descent
steps (to minimize the max loss) on model parameters (e.g.,
Foret et al., 2020; Andriushchenko & Flammarion, 2022).
However, it is difficult for such algorithms (and its variants)
that rely on one or few steps of gradient ascent to find the
exact perturbation ϵ that incurs the true max loss, as the loss
landscape can be highly non-convex and potentially non-
smooth. Despite recent advancements on approximately
solving the SAM objective (e.g., Liu et al., 2022b;a; Zhuang
et al., 2022), the min-max formulation itself overlooks many
neighborhood regions that may also result in large losses,
leaving some loss surface near local minima sharp. For
instance, we have computed the average loss across the
neighborhoods of SAM solutions, and find that it is still
higher than the ones obtained by our approach (Section 5.2).

To this end, we propose a generalized and smoothed variant
of SAM inspired by exponential tilting and its widespread
usage in probability and statistics. In optimization literature,
it has also been used as an efficient min-max smoothing
operator (Kort & Bertsekas, 1972). Tilted SAM (TSAM),
parameterized by a tilt scalar t ≥ 0, is defined as

min
θ

Lt(θ) :=
1

t
log

(∫
etL(θ+ϵ)dµ(ϵ)

)
=

1

t
log
(
Eµ(ϵ)

[
etL(θ+ϵ)

])
, (3)

where L(θ + ϵ) is defined in Eq. (1). µ(ϵ) denotes an un-
certainty probability measure for ϵ ∈ Rd that can represent
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uniform balls such as ∥ϵ∥ ≤ ρ (but other measures are pos-
sible as well). When t→∞ and µ(ϵ) takes ∥ϵ∥ ≤ ρ, Lt(θ)
reduces to the SAM objective Ls(θ). When t = 0, Lt(θ)
reduces to the average loss over the perturbed neighborhood
µ(ϵ), i.e., Eµ(ϵ)[L(θ + ϵ)] where the expectation is taken
with respect to the randomness of ϵ (formally proved in Ap-
pendix B). When we set t = 0 and ρ = 0, the TSAM loss is
reduced to the classic average empirical risk L(θ). We may
use Eµ(ϵ), Eϵ, and E interchangeably when the meaning is
clear from the context.

TSAM provides a smooth transition between min-
max optimization (Eq. (2)) and min-avg optimization
minθ Eµ(ϵ)[L(θ + ϵ)]. The min-avg optimization has ap-
peared in prior works known as average-perturbed sharp-
ness (Wen et al., 2022), noise-perturbed loss (Zhang et al.,
2024), or random smoothing (Duchi et al., 2012). The
smoothness parameter of the TSAM objective increases as
the value of t increases, which suggests that it is easier
to optimize than SAM (Section 3). As we formalize later,
TSAM reweights gradients of neighboring solutions based
on their loss values, which can be viewed as a soft version
of SAM that assigns all the weights to one single worst
minimum. In addition to the benefits in optimization, rigor-
ously considering many, as opposed to one, neighbourhood
parameters that incur large losses can result in improved
generalization. We provide both theoretical characterization
and empirical evidence showing that TSAM solutions are
flatter than those of ERM and SAM. One line of the mostly
related works have explored tilted risks to reweight different
data points (Li et al., 2023; Robey et al., 2022). In this work,
we use the TSAM framework to assign varying priority to
local minima in the parameter space.

To solve TSAM, we need to estimate the integral over µ(ϵ)
(Eq. (3)), or equivalently, to estimate the full gradient of the
objective, which is a tilted aggregation of gradients evalu-
ated at L(θ + ϵ). Both require sampling the perturbation ϵ
with probability proportional to etL(θ+ϵ) for the integration.
Naively sampling ϵ at random to obtain Lt(θ) would be
inefficient, as it is likely that L(θ + ϵ) under the sampled ϵ
is small and therefore we need many samples to converge
to the true distribution. On the other hand, methods based
on Hamiltonian Monte Carlo (HMC) (Leimkuhler & Re-
ich, 2004) are guaranteed to arrive at the exact distribution.
Inspired by the Euler’s rules for HMC, we develop an algo-
rithm to efficiently sample ϵ’s and estimate the true gradient
of Lt(θ). Our contributions are summarized as follows.

Contributions. We propose TSAM, a new sharpness-
aware optimization objective that reweights the parameters
around local minima via exponential tilting. We rigorously
study several properties of TSAM, showing that it always fa-
vors flatter solutions as t increases (Section 3). To optimize
TSAM, we adapt a specific HMC algorithm to efficiently

sample the model perturbation ϵ (Section 4). We empirically
demonstrate that TSAM results in flatter solutions and supe-
rior generalization performance than SAM and its variants
for deep neural networks including transformers on both
image and text datasets (Section 5).

2. Related Work
Sharpness-Aware Minimization. SAM regularizes over-
parameterized models by considering adversarial data points
that have large training errors (Foret et al., 2020; Zheng
et al., 2021). The SAM variants, training dynamics, and
applications in different models have been extensively stud-
ied in prior work (Long & Bartlett, 2023; Foret et al., 2020;
Bartlett et al., 2023; Andriushchenko & Flammarion, 2022;
Chen et al., 2024; Kwon et al., 2021; Chen et al., 2021;
Liu et al., 2022b; Zhou et al., 2021; Du et al., 2022; Baek
et al., 2024; Zhao et al., 2022; Mi et al., 2022; Zhuang et al.,
2022; Mueller et al., 2023; Xie et al., 2024; Tahmasebi et al.,
2024). Notably, TSAM objective can be viewed as a spe-
cial case of a general sharpness-aware approach (Tahmasebi
et al., 2024), though Tahmasebi et al. (2024) do not specifi-
cally study TSAM. Some work aim to improve efficiency
of the SAM algorithm studying different relaxations (Du
et al., 2022; Liu et al., 2022a). Zhao et al. (2022) use a
linear interpolation between normal gradients and SAM
outer gradients evaluated at the max-loss parameter, which
does not take into account the possibly many bad local min-
ima for highly non-convex problems. Zhou et al. (2021)
perform sample-wise reweighting for SAM, as opposed
to parameter-wise reweighting proposed herein. Liu et al.
(2022b) improve the inner max optimization by adding a
random perturbation to the gradient ascent step to smoothen
its trajectory. Li & Giannakis (2023) leverage a moving
average of stochastic gradients in the ascent direction to
reduce the gradient variance1. Our goal is not to better ap-
proximate the inner max or develop algorithms for solving
the min-max SAM formulation, but rather, to solve a dif-
ferent TSAM objective that reweights many local minima
to seek flat solutions. Nevertheless, we still compare with
more advanced algorithms for the SAM objective and show
the superiority of TSAM solutions (Section 5). As TSAM
is a new objective, in principle, we can readily apply many
existing optimization techniques (that can be potentially ap-
plied to SAM as well) such as variance reduction (Johnson
& Zhang, 2013), acceleration (Nesterov, 1983), or adaptiv-
ity (Streeter & McMahan, 2010; Duchi et al., 2011; Kingma
& Ba, 2014) on top of the tilted stochastic gradients to gain
further improvement.

1Note that the notion of ‘variance’ in VASSO (Li & Giannakis,
2023) refers to the variance of stochastic gradients compared with
full gradients; whereas in TSAM, we examine the loss variance
around the neighborhood regions, where the randomness in vari-
ance (Definition 3.4) comes from the perturbation ϵ.
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There are also works exploring why SAM leads to better gen-
eralization or theoretically studying what SAM (and its im-
plementation) is effectively minimizing (Chen et al., 2024;
Andriushchenko & Flammarion, 2022; Long & Bartlett,
2023; Wen et al., 2022). In this work, we prove that TSAM
(and SAM) encourages flatter models for a class of prob-
lems including generalized linear models, where flatness
(or sharpness) is characterized by the variance of the losses
around the minima (Definition 3.5). Our proposed TSAM
framework is particularly suitable for problems where flat-
ness helps generalization. The various notions of sharpness,
along with theoretical relations between sharpness and gen-
eralization still remain an open problem (Andriushchenko
et al., 2023; Wen et al., 2024; Ding et al., 2024; Tahmasebi
et al., 2024), which is outside the scope of our paper.

Tilting in Machine Learning. Exponential tilting, used
to shift parametric distributions, has appeared in previous
literature in importance sampling, optimization, control,
and information theory (e.g., Siegmund, 1976; Kort & Bert-
sekas, 1972; Dembo, 2009; Aminian et al., 2024; Whittle,
2002; 1981). Recently, the idea of tilted risk minimization
(which exponentially reweights different training samples)
has been explored in machine learning applications such
as enforcing fairness and robustness, image segmentation,
and noisy label correction (Li et al., 2023; Robey et al.,
2022; Zhou et al., 2020; Szabó et al., 2021; Aminian et al.,
2024). A closely-related LogSumExp operator is often used
to as an smooth approximation to the max, which is always
considered more computationally favorable (Kort & Bert-
sekas, 1972; Calafiore & El Ghaoui, 2014; Shen & Li, 2010;
Li et al., 2023). One application of tilted risks applied to
the adversarial training problem is to balance worst-case
robustness (i.e., adversarial robustness) and average-case
robustness in the data space (Robey et al., 2022), among
other approaches that can also achieve a transition between
worst-case and average-case errors (Rice et al., 2021). Our
work is similar conceptually, but we consider reweighting
adversarial model parameters, instead of adversarial data
points. Compared with SAM (optimizing the largest loss),
the TSAM framework offers additional flexibility of optimiz-
ing over quantiles of losses given the connections between
exponential tilting and quantile approaches (Rockafellar
et al., 2000; Li et al., 2023).

3. Properties of TSAM
In this section, we discuss properties of the TSAM objec-
tive. We first state the convexity and smoothness of TSAM
(Section 3.1). We then show that as t increases, the gap
between less-flat and more-flat solutions of the TSAM ob-
jective becomes larger. In other words, optimizing TSAM
would give flatter solutions as t increases (Section 3.2). Fi-
nally, we discuss the generalization behavior of TSAM and

prove that there exists t ∈ (0,∞) that result in the tightest
bound (Section 3.3). All properties discussed in this section
hold regardless of the distributions of ϵ (i.e., choice of µ(ϵ)),
unless otherwise specified.

3.1. Convexity and Smoothness

In this part, we connect the convexity and smoothness of
TSAM with the convexity and smoothness of the ERM loss.
We provide complete proofs in Appendix B. We first define a
useful quantity (tilted weights) that will be used throughout
this section.

Definition 3.1 (t-tilted weights). For a perturbed model
parameter θ + ϵ, we define its corresponding t-tilted weight
as wt(θ + ϵ) := etL(θ+ϵ)

E[etL(θ+ϵ)]
.

The weight of parameter θ+ ϵ is exponentially proportional
to the loss evaluated at this point. The expectation is with
respect to the randomness of ϵ constrained by µ(ϵ). When
t = 0, 0-tilted weights are uniform. When t→∞, wt(θ+ϵ)
focuses on the max loss among all possible {θ + ϵ}. Such
weights have appeared in previous literature on importance
sampling (Siegmund, 1976), but they are only applied to
reweight sample-specific losses, as opposed to perturbation-
specific parameters. Given tilted weights in Definition 3.1,
we can present the TSAM gradients and Hessian as follows.
Lemma 3.2 (Gradient and Hessian for TSAM). Assume
L(·) is continuously differentiable. The full gradient of
TSAM (Objective (3)) is

∇Lt(θ) =
E[etL(θ+ϵ)∇L(θ + ϵ)]

E[etL(θ+ϵ)]
= E[wt(θ + ϵ)∇L(θ + ϵ)].

The Hessian of TSAM∇2Lt(θ) is

t
(
E
[
wt(θ + ϵ)∇L(θ + ϵ)⊤∇L(θ + ϵ)

]
−E

[
wt(θ + ϵ)∇L(θ + ϵ)

]⊤ E
[
wt(θ + ϵ)∇L(θ + ϵ)

])
+ E

[
wt(θ + ϵ)∇2L(θ + ϵ)

]
. (4)

The gradient of TSAM can be viewed as reweighting the
gradients of ∇L(θ + ϵ) by the loss values etL(θ+ϵ). Exam-
ining the Hessian, we note that the first term is t multiplied
by a positive semi-definite matrix, and the second term can
be viewed as a reweighted Hessian of the original loss L
evaluted at θ + ϵ.

It is not difficult to observe that if L(θ) is p-Lipschitz with
respect to θ, then Lt(θ) is p-Lipschitz with respect to θ. If
L is µ-strongly convex, then Lt is also µ-strongly convex
(proof in Appendix B). Next, we show that the smoothness
of TSAM scales linearly with t.

Lemma 3.3 (Smoothness of TSAM). Let L(·) be β-smooth
and β is bounded. Then Lt(θ) is β(t)-smooth, where β(t)

satisfies 0 < limt→∞
β(t)
t < +∞.

3



Tilted Sharpness-Aware Minimization

That is, β(t) = O(t). The proof is deferred to Appendix B.
In Lemma 3.3, we connect the smoothness of the tilted ob-
jective with the smoothness of the original ERM objective.
We see that for any bounded t, the smoothness parameter is
bounded. As t increases, TSAM becomes more difficult to
optimize as the loss becomes more and more non-smooth.
When t → ∞, β(t) → ∞. If we have access to unbiased
gradient estimates at each round, it directly follows that
the convergence of SAM (TSAM with t → ∞) objective
is slower than that of tilted SAM following standard argu-
ments (Nesterov, 2013). To further visualize this, we create
a one-dimensional toy problem in Appendix A, where we
obtain the globally optimal solutions for each objective. We
show that both SAM and TSAM are able to arrive at flat
solutions; but the SAM objective is non-smooth, hence more
difficult to optimize.

3.2. TSAM Prefers Flatter Models as t Increases

In this subsection, we focus on a specific class of models
including generalized linear models (GLMs), where the loss
function l(xi; θ) carries the form of

l(xi; θ) = A(θ)− θ⊤T (xi), (5)

L(θ) = A(θ)− θ⊤

 1

n

∑
i∈[n]

T (xi)

 . (6)

For GLMs, A(θ) is a convex function, and∑
i∈[n] T (xi)T (xi)

⊤ ≻ 0 (Wainwright & Jordan,
2008). Our results in this section apply to loss functions
defined in Eq. (6), which subsume linear models. Before
introducing the main theorem, we define two important
quantities that will be used throughout this section, and in
the experiments.

Definition 3.4 (t-weighted mean and variance). We define
t-weighted mean of a random variable X as E[etXX]

E[etX ]
. Simi-

larly, we define t-weighted variance of a random variable

X as E[etXX2]
E[etX ]

−
(

E[etXX]
E[etX ]

)2
.

When t = 0, these definitions reduce to standard mean
E[X] and variance E[X2]−(E[X])2. Similar tilted statistics
definitions have also appeared in prior work (Li et al., 2023).
We leverage weighted variance to define sharpness below.

Definition 3.5 (t-sharpness). We say that a model param-
eter is θ1 is t-sharper than θ2 if the t-weighted variance of
L(θ1 + ϵ) (which is a random variable of loss distribution
under model parameters perturbed by ϵ) is larger than the
t-weighted variance of L(θ2 + ϵ).

Given the definition of sharpness above based on weighted
variance, we are ready to prove that TSAM encourages
flatter local minima as the increase of t. Empirically, in
Section 5, we also plot the 0-sharpness of the solutions

obtained from different objectives, and observe that TSAM
achieves smaller sharpness values (measured in terms of
standard variance) than ERM and SAM. Proper definitions
of sharpness is generally still an open problem, and other
options are possible such as the trace of Hessian, gradient
norms, and other functions over Hessian (Wen et al., 2022;
Tahmasebi et al., 2024).

Theorem 3.6 (TSAM prefers flatter models as t increases).
Assume L(θ) is given by Eq. (6) and L(θ) is continuously dif-
ferentiable. For any θ1, θ2 ∈ Rd, let gt(θ1, θ2) := Lt(θ1)−
Lt(θ2). If θ1 is t-sharper than θ2, then ∂gt(θ1,θ2)

∂t ≥ 0.

For some θ1 sharper than θ2, it is possible that L(θ1) =
L(θ2), which implies that ERM is not able to distin-
guish between the two solutions, while TSAM can. Fur-
thermore, Theorem 3.6 indicates that as t increases, the
TSAM objective favors θ2 more aggressively, as the gap
between Lt(θ1) and Lt(θ2) grows larger. We explore a
one-dimensional toy problem with many local minima:
L(θ) = 2 sin(4πθ)/(2θ) + 0.005(θ − 1)2, and focus on
the area θ ∈ (0.2, 2.5) to visualize this behavior. We take
ρ = 0.2 and a fixed learning rate 0.005 for all objectives.
Each run starts from the same initialization θ = 0.5. In
Figure 1, we see that as t increases, TSAM leads to flatter
solutions, despite having larger objective values measured
by L(θ). As a side note, we prove that for any θ, the objec-
tive value of Lt(θ) is monotonically increasing as t increases
(Appendix B). Next, we discuss a special case when t is
close to 0, where we provide another perspective on the
TSAM behavior.

Discussions for t → 0. All the results above hold for
the small-t regime, where sharpness reduces to standard
variance when t → 0 (Definition 3.4). It still follows that
∂gt(θ1,θ2)

∂t

∣∣∣
t→0
≥ 0 if θ1 is sharper than θ2. Here, we pro-

vide another interpretation of TSAM when t is close to zero.
Similar statements have also appeared in prior works in a dif-
ferent context (e.g., Liu & Theodorou, 2019; Li et al., 2023).
For a very small t, it holds that 1

t log
(
E
[
etL(θ+ϵ)

])
≈

E[L(θ+ ϵ)] + t
2var (L(θ + ϵ))+ o(t2). We provide a proof

in Appendix B. Hence, optimizing TSAM is approximately
equivalent to optimizing for the mean plus variance of the
losses under the perturbed parameters. When t = 0, it re-
duces to only optimizing for E[L(θ + ϵ)]. In other words,
TSAM with t close to 0 is directly minimizing 0-sharpness
(standard variance). For any θ1 and θ2 such that θ1 is sharper
than θ2, we have

gt(θ1, θ2) ≈ E[L(θ1 + ϵ)] +
t

2
var (L(θ1 + ϵ))

− E[L(θ2 + ϵ)]− t

2
var (L(θ2 + ϵ)) ,

∂gt(θ1, θ2)

∂t
≈ 1

2
(var (L(θ1 + ϵ))− var (L(θ2 + ϵ))) ≥ 0.
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Figure 1. Optimization trajectories of different objectives (orange) with final solutions marked in star. The local minima gets flatter from
left to right in each subfigure. We see that TSAM favors flat minima as t increases. ERM solution by gradient descent converges to a
sharp minimal. We solve TSAM on this one-dimensional problem by sampling thousands of ϵ’s to estimate the gradient of Lt(θ) at each
step, which is infeasible for real problems.

This is a special case of Theorem 3.6 for t→ 0. It suggests
that as we increase t from 0 for a small amount, the standard
variance of neighborhood loss would reduce. Note that some
recent works propose a noise-injected loss similar to TSAM
with t → 0 (Zhang et al., 2024). The proposed algorithm
therein explicitly minimizes the trace of Hessian, which
aligns with our arguments that the TSAM objective can lead
to flatter solutions.

So far, we study properties of TSAM regarding convexity,
smoothness of the objective, and sharpness of the resulting
solutions. We note that these properties of the objective
are independent of the actual optimization algorithms used
to optimize TSAM. Though Theorem 3.6 implies similar
benefits of both TSAM and SAM relative to ERM (assum-
ing we optimize TSAM and SAM perfectly), Lemma 3.3
shows the superiority of the TSAM objective over SAM
with unbounded smoothness parameters, as TSAM is eas-
ier to optimize. The performance of practical applications
depends on both the properties of the objectives and the
approximation algorithms used to solve them.

3.3. Generalization of TSAM

In this section, we give a uniform bound on the gener-
alization error of our TSAM objective. By solving the
tilted objective empirically, during test time, we are ulti-
mately interested in evaluating the linear population risk
EZ [l(θ;Z)] where Z denotes the underlying data distribu-
tion and {xi}i∈[n] ∼ Z. We define generalization error as
the difference between population risk and our empirical
objective value EZ [l(θ;Z)]− 1

t logEϵ[e
tL(θ+ϵ)], bounded

as follows.

Theorem 3.7 (Generalization of TSAM). Assume losses
are bounded as 0 ≤ L(·) ≤M . Suppose we have n training
data points. For any θ ∈ Θ and t ≥ 0, with probability 1−δ,
the difference between population risk and empirical TSAM
risk gent := EZ [l(θ;Z)]− 1

t logEϵ[e
tL(θ+ϵ)] satisfies

gent ≤M

√
log(2/δ)

2n
− varϵ(etL(θ+ϵ))

2te2tM
+ c, (7)

where c = L(θ)−Eϵ[L(θ+ ϵ)] is a constant unrelated to t.

We defer the proof to Appendix B, where we build upon ex-
isting generalization results of a related objective (Aminian
et al., 2024). From Theorem 3.7, we see that when the sam-
ple space of ϵ is empty, our result reduces to EZ [l(θ, Z)] ≤
L(θ) + M

√
log(2/δ)

2n , scaling at a rate of 1√
n

consistent
with standard uniform bound on the average risk (Shalev-
Shwartz & Ben-David, 2014). When t → ∞ and we de-
fine µ(ϵ) to be ∥ϵ∥ ≤ ρ over some distribution, the re-
sult gives an upper bound on the generalization of SAM:

EZ [l(θ, Z)]−max∥ϵ∥≤ρ L(θ + ϵ) ≤M
√

log(2/δ)
2n + c.

Additionally, denote θTSAM and θERM as optimal solu-
tions for TSAM (Eq. (3)) and ERM (Eq. (1)), respec-
tively. For modest values of t, due to the negativity of
− varϵ(etL(θ+ϵ))

2te2tM
, the upper bound of the linear population

risk EZ [l(θ
TSAM, Z)] can be smaller than that of the lin-

ear risk EZ [l(θ
ERM, Z)], as long as 1

t logEϵ[e
tL(θTSAM+ϵ)]−

varϵ(etL(θTSAM+ϵ))
2te2tM

≤ L(θERM). This implies that by solving
TSAM, we can obtain a solution that results in a smaller
upper bound of the linear population error than that of ERM.

4. Algorithms
In this section, we describe the algorithms we use to solve
TSAM. The main challenge in solving TSAM is to sample
ϵ to get a good estimator of Lt(θ), or equivalently, ∇Lt(θ).
We first describe a general approach where we use estimated
tilted gradients (given sampled ϵ’s) to update the model
(Section 4.1). Then, we discuss how to sample ϵ’s via a
specific Hamiltonian Monte Carlo algorithm and present
our method and implementation (Section 4.2).

4.1. General Algorithm

To solve TSAM, the primary challenge is to estimate
the integral 1

t log
(∫

etL(θ+ϵ)dµ(ϵ)
)
, or its full gradient

E[etL(θ+ϵ)∇L(θ+ϵ)]
E[etL(θ+ϵ)]

, assuming gradient-based methods and
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the differentiable loss L. A naive way is to first sample ϵ
from µ(ϵ) following the pre-defined distribution (e.g., Gaus-
sian or uniform) over µ(ϵ), and then perform tilted aggrega-
tion with weights proportional to etL(θ+ϵ). However, this
approach may be extremely inefficient, as there could be an
infinite set of perturbed model parameters with relatively
small losses, which are not informative. In Figure 5 in the
appendix, we empirically show that even when we sample
a much larger number of ϵ’s, the resulting accuracy is still
worse than our proposed method. Instead, we propose to
sample s number of ϵ’s from distribution eδL(θ+ϵ) (denoted
as {ϵj}j∈[s]), where 0 ≤ δ ≤ t. We then use these {ϵj}j∈[s]

to obtain an empirical gradient estimation with weights pro-
portional to {e(t−δ)L(θ+ϵj)}j∈[s], as the full gradient is a
tilted average of the original gradient on L(·). To improve
sample efficiency, we use gradient-based methods such as
Hamiltonian Monte Carlo (HMC) that simulates Hamilto-
nian dynamics (Leimkuhler & Reich, 2004). The structure
of our proposed method is in Algorithm 1. Note that in
principle, after estimating the tilted stochastic gradients,
we can further apply existing optimization techniques such
as variance reduction (Johnson & Zhang, 2013), accelera-
tion (Nesterov), or adaptivity (Streeter & McMahan, 2010;
Duchi et al., 2011) to gain further improvement, which we
leave for future work.

Algorithm 1 Tilted SAM Solver

Require: t, θ0, learning rate η, total iterations T , total
number of samples s, 0 ≤ δ ≤ t

1: for i = 0, · · · , T − 1 do
2: Sample s random perturbations {ϵj}j∈[s] from distri-

bution eδL(θi+ϵ) under the constraint characterized
by µ(ϵ) via some HMC algorithm (Algorithm 3)

3: Update θi with the estimated gradient evaluated on
the mini-batch:

θi+1 ← θi − η

∑
j∈[s] e

(t−δ)L(θi+ϵj)∇L(θi + ϵj)∑
j∈[s] e

(t−δ)L(θi+ϵj)

4: end for
5: Return θT

4.2. Sampling ϵ

There could be potentially different algorithms for sampling
ϵ where p(ϵ) ∝ eδL(θ+ϵ). Here we propose an approximate
and cheap sampler based on discretization of Hamiltonian
dynamics. Our method is inspired by one of the best-known
way to approximate the solution to a system of differential
equations, i.e., Euler’s method or its modification (Neal
et al., 2011). A more accurate solver like the leap-frog
method might be more popular for HMC, but these come
at an increased expense (Neal et al., 2011). As our goal
to minimize computational cost, we stick with the cheaper

Euler’s approach as follows. We first initialize ϵ0 from an L2

ball that satisfies ∥ϵ∥ ≤ ρ, and initialize the momentum p0 ∈
Rd from some Gaussian distribution, i.e., p0 ∼ N (0, σ2I).
Note that the negative log probability density of the energy
function U(ϵ) is − log(eδL(θ+ϵ)) = −δL(θ + ϵ). At each
sampling step, we run the following steps for N iterations
with a small step-size β to obtain a candidate ϵ:

p← p+ βδ∇ϵL(θ + ϵ), ϵ← ϵ+ βp/σ2. (8)

After obtaining a candidate ϵ, we accept ϵ with probability

min{1, eδL(θ+ϵ)− ∥p∥2

2σ2 /eδL(θ+ϵ0)− ∥p0∥2

2σ2 }. If the candidate
ϵ is not accepted, we set (p, ϵ) to the initial point before the
N iterations. Repeating the above for enough times would
give us a sample ϵ from the exact distribution.

Algorithm 3 Sampling from eδL(θi+ϵ) where ∥ϵ∥ ≤ ρ

Require: θ0, total samples s, uncertainty ball radius ρ
1: for j = 0, · · · , s do
2: Perturb θi with a random δj sampled from Gaussian

or uniform distribution: θij ← θi + δj
3: Run normalized SGD on the mini-batch data at θij :

θ̂ij ← θij + ρ
∇L(θij)
∥∇L(θij)∥

; ϵj ← θ̂ij − θi

4: end for
5: Return {ϵj}j∈[s]

Generating one ϵ via HMC requires at least 2N gradient
evaluations, which is infeasible for large-scale problems.
Hence, we set N = 1 in all the main experiments, and
meanwhile accept the generated ϵ with probability 1. For
completeness, we evaluate the effects of increasing N in
HMC in Appendix C. We observe that using N > 1 does not
significantly improve the performance. Running equations
in Eq. (8) for one step, if p is initialized as p = 0, we have
ϵ← ϵ+β′∇L(θ+ ϵ), where β′ is a constant. We adopt this
updating rule in our problem, and run the aforementioned
procedure in parallel for s times to get s samples. Our
method is presented in Algorithm 3. Though Algorithm 3
does not guarantee the ϵj’s result in a consistent estimator
of the TSAM integral, we empirically showcase its effec-
tiveness on non-convex models including transformers in
the next section.

5. Experiments
In this section, we first describe our setup. Then we present
our main results, comparing TSAM with the baselines of
ERM (Eq. (1)), SAM (Eq. (2)), and SAM variants on both
image and text data (Section 5.1). We explain TSAM’s su-
perior performance by empirically examining the flatness of
local minima in Section 5.2. In Section 5.3, we discuss the
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effects of hyperparameters. Our code is publicly available
at github.com/litian96/TSAM.

Tasks and Datasets. We study image classification tasks
with CNNs and transformers, and language modeling tasks
with BERT. First, we explore training ResNet18 (He et al.,
2016) and WideResNet16-8 (Zagoruyko, 2016) on CI-
FAR100 (Krizhevsky et al., 2009). Previous works show
that SAM is robust to label noise (Foret et al., 2020; Baek
et al., 2024); and we investigate this setting by training the
same models on on CIFAR100 with label noise generated
by substituting 20% of the true labels uniformly at random
to other labels. Since vision transformers (ViTs) (Dosovit-
skiy et al., 2020) have been shown to result in sharper local
minima than CNNs (Chen et al., 2021), we study the perfor-
mance of finetuning ViTs (pretrained on ImageNet (Deng
et al., 2009)) on an out-of-distribution Describable Tex-
ture Dataset (DTD) (Cimpoi et al., 2014), where the task
is 47-class classification. We also use WideResNet16-8
to train DTD from scratch. Additionally, we evaluate a
200-class classification task for TinyImagenet (Le & Yang,
2015) with ResNet18 and ResNet34 (He et al., 2016) mod-
els. Lastly, for text data, we study finetuning a pretrained
DistilBERT (Sanh, 2019) model on the GLUE benchmark
including both classification and regression problems.

Hyperparameter Tuning. We take µ(ϵ) to be ∥ϵ∥ ≤ ρ for
all TSAM experiments, and tune the ρ parameters separately
from {0.05, 0.1, 0.2} for relevant methods. For TSAM, we
tune t from {0, 1, 5, 20, 100} and select the best one based
on the validation set. We also report the performance for
all t’s in the next sections. We use s=3 or s=5 sampled ϵ’s
for all datasets and find that it works well. For some SAM
variants that introduce additional hyperparameters, we tune
those via grid search as well. The batch size is 64 for all
the datasets and methods and a constant learning rate is
tuned from {0.0003, 0.001, 0.003, 0.01, 0.03, 0.1} for each
algorithm. Despite the existence of adaptive methods for
SGD and SAM (Kingma & Ba, 2014; Kwon et al., 2021), we
do not use adaptivity for any algorithm for a fair comparison.
See Appendix C for details on hyperparameter tuning.

5.1. TSAM Leads to Better Test Performance

We compare the performance of various objectives and algo-
rithms in Table 1. ERM denotes minimizing the empirical
average loss with mini-batch SGD. SAM is the vanilla SAM
implementation with one step of gradient ascent and one
step of gradient descent at each iteration (Foret et al., 2020).
Note that TSAM requires more gradient evaluations per iter-
ation. Hence, we include two additional baselines of SAM
under the same computational budget as TSAM runs. (1) We
simply run the vanilla SAM algorithm for more iterations
until it reaches the same runtime as TSAM. (2) We try an-
other SAM approximation by exploring different step sizes

along the gradient ascent directions and pick the one incur-
ring the biggest loss. Then we evaluate the gradient under
that step size to be applied to the original model parame-
ters. We call these expensive SAM baselines ESAM1, and
ESAM2, respectively. We also evaluate two more advanced
sharpness-aware optimization methods: PGN that combines
normal gradients and SAM gradients (Zhao et al., 2022), and
Ramdom SAM (RSAM) which adds random perturbations
before finding the adversarial directions (Liu et al., 2022b).
We let PGN and RSAM run the same amount of time as
TSAM on the same computing platform. On all the datasets,
we tuned t values via grid search from {0, 1, 5, 20, 100}.

Our results are shown in Table 1. The performance for all
t’s on three image datasets and different model architectures
are reported in Section 5.3. For the GLUE benchmark, we
report the standard metrics for each dataset in GLUE. TSAM
consistently achieves higher test performance than ERM and
variants of SAM. We provide corresponding convergence
plots of ERM, vanilla SAM, and TSAM in Appendix C.

5.2. Flatness of TSAM Solutions

In this part, we take a more detailed look into the properties
of TSAM solutions compared with the ones of ERM and
SAM on the CIFAR100 dataset trained by ResNet18 from
scratch. In Figure 2, we plot the loss mean and variance
over the neighborhood areas around local minima obtained
by different objectives, i.e., E[L(θ∗+ϵ)] and var[L(θ∗+ϵ)],
where ϵ ∼ N (0, δ2), and θ∗ denotes the different solutions
of any objective (with a slight abuse of notation). These
measurements have appeared in prior works named average-
loss sharpness (Wen et al., 2024; Chen et al., 2021), and
are consistent with our sharpness definition (Definition 3.5)
mentioned before. In Figure 2, for all δ values, we see that
TSAM consistently result in flatter local minima than ERM
and SAM measured by both the mean and variance of losses
around the minima. In addition, we evaluate sharpness
following other common notions by investigating the top-5
eigen values of Hessian (e.g., Foret et al., 2020). Under
the same model setup, the top-5 eigenvalues are {342.11,
304.72, 260.71, 252.92, 210.88} for ERM, {232.60, 198.35,
182.61, 153.74, 145.76} for SAM, and {140.91, 113.38,
105.90, 92.94, 89.55} for TSAM (t=20). We see that TSAM
achieves the smallest max eigenvalues among the three.

We further report the training and test performance of best-
tuned ERM, SAM, and TSAM in Table 3 in the appendix.
We show that ERM solutions have lower training losses but
higher test losses than SAM and TSAM when evaluated on
the average test performance (i.e., the ‘ERM’ column in
the right table). This is due to the fact that ERM does not
generalize as well as SAM or TSAM, and there exist bad
sharp local minima around ERM solutions. On the other
hand, while TSAM’s average training loss is the highest
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Table 1. TSAM achieves higher test performance relative to ERM and different variants of SAM across image datasets and the GLUE
benchmark with both CNNs and transformers. TSAM (or SAM) is particularly suitable for applications with distribution shifts (DTD and
noisy CIFAR100 datasets), which is also consistent with observations in prior works (Foret et al., 2020; Baek et al., 2024). TSAM also
results in lower test loss, discussed in detail in the next section.

Methods CIFAR100 DTD Noisy CIFAR100 TinyImagenet
ResNet18 WideResNet ViT WideResNet ResNet18 WideResNet ResNet18 ResNet34

ERM 71.39 (.2) 73.22 (.2) 66.38 (.2) 16.97 (.3) 61.01 (.2) 57.03 (.3) 71.10 (.2) 74.90 (.1)
SAM 76.52 (.1) 78.44 (.1) 67.87 (.2) 17.45 (.2) 69.00 (.1) 68.02 (.2) 72.43 (.1) 76.75 (.2)
ESAM1 77.40 (.1) 80.22 (.1) 68.18 (.2) 17.67 (.2) 69.20 (.1) 69.79 (.1) 73.24 (.1) 77.41 (.1)
ESAM2 77.52 (.1) 79.03 (.2) 68.35 (.1) 17.71 (.1) 67.27 (.1) 66.83 (.1) 73.26 (.1) 77.40 (.1)
PGN 77.45 (.1) 78.58 (.2) 67.76 (.1) 18.23 (.2) 65.68 (.1) 64.02 (.2) 73.18 (.1) 77.80 (.1)
RSAM 77.35 (.1) 79.02 (.2) 68.35 (.2) 17.66 (.3) 69.31 (.1) 65.93 (.2) 73.57 (.1) 77.72 (.1)
TSAM 77.78 (.1) 80.85 (.2) 68.82 (.1) 18.63 (.2) 69.98 (.1) 70.26 (.1) 73.55 (.1) 77.79 (.1)

Objectives CoLA WNLI SST-2 MNLI QNLI RTE MRPC QQP STSB AVG

ERM 52/80.34 54.93 90.48 79.6 87.72 60.65 83.82 86.32 86.6/86.3 77.15
SAM 52/80.48 56.34 91.74 81.1 86.42 58.84 85.29 87.71 87.0/86.5 77.56
ESAM1 52/80.44 56.34 91.63 81.1 86.18 59.02 85.31 87.69 87.1/86.7 77.59
ESAM2 52/80.53 56.34 91.63 81.2 86.29 59.25 85.80 87.47 86.8/86.5 77.62
TSAM 52/80.81 56.34 91.86 81.1 87.81 60.65 85.05 88.77 87.1/86.6 78.01
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Figure 2. Sharpness of the solutions found by ERM, SAM, and
TSAM on CIFAR100 with ResNet18. We empirically measure
sharpness by both E[L(θ∗ + ϵ)] and var[L(θ∗ + ϵ)] where ϵ ∼
N (0, δ2). θ∗ denotes different optimal model parameters obtained
from the three objectives. These metrics (especially variance) are
also consistent with Definition 3.5 with t = 0. We see that TSAM
solutions have a flatter neighborhood compared with the other two.

(which is expected because it does not directly optimize over
ERM), the test losses of TSAM for both the average-case
performance and worst-case performance are lower than the
other two baselines. While we show better generalization
of TSAM empirically, rigorous understandings between
generalization and flatness remains an open area of research.

5.3. Sensitivity to Hyperparameters

Effects of the Tilting Hyperparameter t. One critical
hyperparameter in TSAM is t. When t = 0, TSAM objec-
tive reduces to the average-case perturbed objective. When
t → ∞, the TSAM objective (Eq. (3)) recovers SAM
(Eq. 2). But the TSAM algorithm (Algorithm 3) do not
exactly recover SAM’s alternating updating approximation
when t→∞. See Section 4 for a detailed discussion. Here,

we report the test accuracies as the training proceeds under
multiple values of t’s for all the three tasks. Results are
plotted in Figure 7 in the appendix. We see that there are
a range of t’s that result in faster convergence or higher
accuracies than SAM. There also exists an optimal t that
leads to the best test performance. This is consistent with
our previous generalization bound (Section 3.3). Though
Theorem 3.6 captures the benefits of both SAM and TSAM,
we note that the final empirical performance does not only
depend on the properties of the objectives. But rather, it also
relies on the choice of approximation algorithms. Results
in Theorem 3.6 assume that the objectives are optimized
perfectly, which is infeasible in high-dimensional settings.

Additionally, we empirically study the effects of scheduling
t during optimization. Increasing t from 0 to a fixed value
effectively switches from weighting local minima uniformly
to rewighting them based on the loss values, and vice versa.
We experiment with two options: linearly decreasing t and
linearly increasing t on the noisy CIFAR100 dataset trained
by ResNet18. The convergence curves are shown in Figure 8.
We see that using a fixed t throughout training does not have
significant difference from scheduling t. Hence, we stick to
fixed t’s for our TSAM experiments.

Effects of the Number of ϵ’s. One may wonder if we need
to sample a large number of perturbations for the algorithm
to be effective. In Table 2, we show that we usually only
need s = 3 or 5 number of ϵ’s to achieve significant im-
provements relative to SAM. The models in three columns
correspond to ResNet18, ViT, and ResNet18, respectively.
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CIFAR100 DTD noisy CIFAR100

SAM 76.52 67.87 69.00
TSAM, s=3 77.40 68.82 69.55
TSAM, s=5 77.78 68.70 69.98

Table 2. Test accuracies of SAM and TSAM with different number
of sampled ϵ’s (denoted as s; see Algorithm 3). Empirically, we
do not need many samples from the tilted distribution.

6. Conclusion
In this work, we have proposed a tilted sharpness-aware min-
imization (TSAM) objective, which leverages exponential
tilting (parameterized by t) to reweight potentially many lo-
cal minima in the neighborhoods. TSAM is a more smooth
problem relative to SAM with a bounded t, and it explicitly
encourages flatter solutions as t increases. We have pro-
posed a practical algorithm motivated by HMC to sample
from the tilted distribution etL(θ+ϵ). Through experiments
on different models and datasets including label-noise set-
tings, we have demonstrated that TSAM consistently outper-
forms SAM and its variants on both image and text datasets.
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manner, e.g., to some malicious attacking approaches, it
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A. Additional Toy Problems
In Figure 1 in Section 1, we present a specific toy problem where TSAM arrives at more flat solutions as t increases. Though
the TSAM objective will recover SAM when t → ∞, we note that TSAM can be easier to solve due to smoothness. To
illustrate this, we create another toy problem in Figure 3 and 4 below. We see that SAM always leads to a non-smooth
optimization problem for ρ > 0.
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Figure 3. SAM losses as ρ increases. The original loss function (shown in the blue lines across all figures) is a one-dimensional problem
L(θ) = |θ−1|−0.01 if θ ≤ 2, and L(θ) = (θ−3)2 otherwise. Note that θ = 3 is a more flat solution than θ = 1, though L(1) < L(3).
The SAM objective is minθ max|ϵ|≤ρ L(θ + ϵ), shown in the red lines, where the values of ρ’s increase from 0 to 0.8. When ρ = 0,
the objective reduces to ERM. For ρ > 0, the SAM objectives (red lines) are non-smooth, and the global minima (marked in orange)
are achieved at a flat region in L(·). The SAM objective visualization holds regardless of the usage of any existing SAM algorithms or
implementation.
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Figure 4. TSAM (t=0.01) losses as ρ increases. The TSAM objective (red lines) is 1
t
log

(
Eµ(ϵ)

[
etL(θ+ϵ)

])
, where µ(ϵ) := U(|ϵ| ≤ ρ)

defines a uniform distribution of ϵ’s constrained in a ball with radius ρ. The larger ρ is, the darker the redness becomes. TSAM with a
small t is able to find flat solutions.
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B. Complete Proofs
B.1. Proofs for Section 3.1

Proof for the Case of t→ 0, Lt(θ + ϵ)→ E[L(θ + ϵ)]. Note that if L(·) is continuously differentiable, then etL(θ+ϵ) is
continuous w.r.t. ϵ ∈ Rd. It is also continuous w.r.t. t ∈ R. When t→ 0,

lim
t→0

Lt(θ) = lim
t→0

1

t
log

(∫
etL(θ+ϵ)dµ(ϵ)

)
(9)

=
1∫

etL(θ+ϵ)dµ(ϵ)

∫
etL(θ+ϵ)L(θ + ϵ)dµ(ϵ) (10)

=

∫
L(θ + ϵ)dµ(ϵ) (11)

= E[L(θ + ϵ)]. (12)

Proof for Lipschitzness. First observe that if L(θ) is p-Lipschitz with respect to θ, then Lt(θ) is p-Lipschitz with respect
to θ. This follows from ∣∣Lt(θ1)− Lt(θ2)

∣∣ = ∣∣∣∣1t logE [etL(θ1+ϵ)
]
− 1

t
logE

[
etL(θ2+ϵ)

]∣∣∣∣ (13)

=

∣∣∣∣∣1t log E
[
etL(θ1+ϵ)

]
E
[
etL(θ2+ϵ)

] ∣∣∣∣∣ (14)

≤

∣∣∣∣∣1t log etp∥θ1−θ2∥E
[
etL(θ2+ϵ)

]
E
[
etL(θ2+ϵ)

] ∣∣∣∣∣ (15)

= p∥θ1 − θ2∥. (16)

Proof for Strong Convexity. Assume L is continuously differentiable. If L is µ-strongly convex, then Lt is also µ-strongly
convex. This is because of the Hessian in Eq. (17), which can be written as

∇2Lt(θ) = t ·M + E
[

etL(θ+ϵ)

E[etL(θ+ϵ)]
∇2L(θ + ϵ)

]
, (17)

where M is a positive semi-definite matrix. We note that due to the µ-strong convexity of L, the second term satisfies
E
[

etL(θ+ϵ)

E[etL(θ+ϵ)]
∇2L(θ + ϵ)

]
≽ µI. Hence,∇2Lt(θ) ≽ µI.

Proof for Smoothness. From Eq. (17), we know that

1

t
∇2Lt(θ) = M +

1

t
E
[

etL(θ+ϵ)

E[etL(θ+ϵ)]
∇2L(θ + ϵ)

]
. (18)

As E
[

etL(θ+ϵ)

E[etL(θ+ϵ)]

]
= 1, and the max eigenvalue λmax(∇2L(θ + ϵ)) ≤ β, we have

0 < min
t→∞

1

t
λmax(∇2L(θ + ϵ)) < +∞. (19)

B.2. Proofs for Section 3.2

In the following, we use E to denote Eϵ. Define g(t) as

g(t) := Lt(θ1)− Lt(θ2) (20)

=
1

t
log

(∫
etL(θ1+ϵ)dµ(ϵ)

)
− 1

t
log

(∫
etL(θ2+ϵ)dµ(ϵ)

)
. (21)
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Assume l has the specific form of

l(xi; θ) = A(θ)− θ⊤T (xi), (22)

L(θ) = A(θ)− θ⊤

(
1

n

n∑
i=1

T (xi)

)
:= A(θ)− θ⊤T (x). (23)

Under this form, we have that

Lt(θ) =
1

t
log

(∫
et(A(θ+ϵ)−(θ+ϵ)⊤T (x))p(ϵ)dϵ

)
(24)

=
1

t
log

(
e−tθ⊤T (x)

∫
et(A(θ+ϵ)−ϵ⊤T (x))p(ϵ)dϵ

)
(25)

= −θ⊤T (x) + 1

t
log

(∫
et(A(θ+ϵ)−ϵ⊤T (x))p(ϵ)dϵ

)
(26)

Define

Γt(θ) := log
(
E
[
etA(θ+ϵ)−tϵ⊤T (x)

])
. (27)

Then we have

Lt(θ) =
1

t
log
(
E
[
et(A(θ+ϵ)−(θ+ϵ)⊤T (x))

])
= −θ⊤T (x) + 1

t
Γt(θ). (28)

Define

nt(θ) := etA(θ+ϵ)−tϵ⊤T (x), (29)

ht(θ) :=
E
[
nt(θ)(A(θ + ϵ)− ϵ⊤T (x)

]
E [nt(θ)]

, (30)

mt(θ) := − 1

t2
Γt(θ) +

1

t
ht(θ). (31)

We have that

∂nt(θ)

∂t
= nt(θ)(A(θ + ϵ)− ϵ⊤T (x)). (32)

We know

∂Γt(θ)

∂t
=

E
[
etA(θ+ϵ)−tϵ⊤T (x)(A(θ + ϵ)− ϵ⊤T (x))

]
E
[
etA(θ+ϵ)−tϵ⊤T (x)

] = ht(θ), (33)

∂Lt(θ)

∂t
= − 1

t2
Γt(θ) +

1

t

∂Γt(θ)

∂t
= − 1

t2
Γt(θ) +

1

t
ht(θ) = mt(θ). (34)

B.3. Lt(θ) is monotonically non-increasing as t

We would like to prove the sign of ∂Lt(θ)
∂t , or mt(θ), is non-negative. The sign of mt(θ) is the same as the sign of t2mt(θ).

We have

t2mt(θ) = −Γt(θ) + tht(θ), (35)

∂(t2mt(θ))

∂t
= −ht(θ) + ht(θ) + t

∂ht(θ)

∂t
= t

∂ht(θ)

∂t
, (36)

and

∂ht(θ)

∂t
=

E[nt(θ)(A(θ + ϵ)− ϵ⊤T (x))2]E[nt(θ)]

(E [nt(θ)])
2 (37)

− E[nt(θ)(A(θ + ϵ)− ϵ⊤T (x))]E[nt(θ)(A(θ + ϵ)− ϵ⊤T (x))]

(E [nt(θ)])
2 . (38)
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Let random variables X =
√
nt(θ)(A(θ+ϵ)−ϵ⊤T (x)), and Y =

√
nt(θ). Following the fact E[X2]E[Y 2]−(E[XY ])2 ≥ 0

gives

∂ht(θ)

∂t
=

E[X2]E[Y 2]− E[XY ]E[XY ]

(E [nt(θ)])
2 ≥ 0. (39)

Therefore,

∂(t2mt(θ))

∂t
≥ 0. (40)

We note that limt→0 t
2mt(θ) = limt→0 t

2 − Γt(θ) + tht(θ) = 0. Hence t2mt(θ) ≥ 0. Therefore, mt(θ) ≥ 0. we have
shown that the tilted SAM loss Lt(θ) is monotonically non-decreasing as the increase of t, for any θ.

B.4. t-SAM prefers flatter models as t increases

Next, we examine gt(θ1, θ2) := Lt(θ1)− Lt(θ2). First, we have

∂gt(θ1, θ2)

∂t
=

∂Lt(θ1)

∂t
− ∂Lt(θ2)

∂t
(41)

= − 1

t2
Γt(θ1) +

1

t
ht(θ1) +

1

t2
Γt(θ2)−

1

t
ht(θ2) (42)

= mt(θ1)−mt(θ2). (43)

Similarly, it holds that

∂(t2mt(θ1))

∂t
− ∂(t2mt(θ2))

∂t
= t

∂ht(θ1)

∂t
− t

∂ht(θ2)

∂t
. (44)

For t ≥ 0, we have

sign
(
∂ht(θ1)

∂t
− ∂ht(θ2)

∂t

)
= sign

(
∂(t2mt(θ1))

∂t
− ∂(t2mt(θ2))

∂t

)
, (45)

sign
(
mt(θ1)−mt(θ2)

)
= sign

(
t2mt(θ1)− t2mt(θ2)

)
. (46)

Let the random variable L1 denote A(θ1 + ϵ)− ϵ⊤T (x), and random variable L2 denote A(θ2 + ϵ)− ϵ⊤T (x). Then

∂ht(θ1)

∂t
=

E
[
etL1L2

1

]
E
[
etL1

]
−
(
E
[
etL1L1

])2
(E [etL1 ])

2 =
E
[
etL1L2

1

]
E [etL1 ]

−
(
E[etL1L1]

E[etL1 ]

)2

, (47)

∂ht(θ1)

∂t
− ∂ht(θ2)

∂t
=

E
[
etL1L2

1

]
E [etL1 ]

−
(
E[etL1L1]

E[etL1 ]

)2

−

(
E
[
etL2L2

2

]
E [etL2 ]

−
(
E[etL2L2]

E[etL2 ]

)2
)
. (48)

Given random variables L1 and L2, the exponentially reweighted losses can be defined as etL1L1 and etL2L2. The t-

weighted second moment is
E[etL1L2

1]
E[etL1 ]

, and the t-weighted mean is E[etL1L1]
E[etL1 ]

. Hence,
E[etL1L2

1]
E[etL1 ]

−
(

E[etL1L1]
E[etL1 ]

)2
can be

viewed as t-weighted variance. As θ1 is t-sharper than θ2, we have ∂ht(θ1)
∂t − ∂ht(θ2)

∂t ≥ 0. Therefore t2mt(θ1)− t2mt(θ2)

is non-decreasing as t increases. It takes value of 0 when t = 0, which implies that t2mt(θ1)− t2mt(θ2) =
∂gt(θ1,θ2)

∂t ≥ 0.

Proof for the Discussions on t→ 0. Recall that exp and log functions can be expanded as

exp(x) = 1 +

∞∑
k=1

xk

k!
≈ 1 + x+

1

2
x2, (49)

log(x+ 1) =

∞∑
k=1

(−1)k−1x
k

k!
≈ x− x2

2
+

x3

6
. (50)
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For very small t ≤ 1,

1

t
log
(
E
[
etL(θ+ϵ)

])
(51)

≈ 1

t
log

(
E
[
1 + tL(θ + ϵ) +

t2

2
L2(θ + ϵ)

])
(52)

≈ 1

t

(
E
[
tL(θ + ϵ) +

t2

2
L2(θ + ϵ)

]
− 1

2
E2

[
tL(θ + ϵ) +

t2

2
L2(θ + ϵ)

])
(53)

=
1

t

(
tE[L(θ + ϵ)] +

t2

2
E
[
L2(θ + ϵ)

]
− t2

2
E2[L(θ + ϵ)] +O(t3) +O(t4)

)
(54)

= E[L(θ + ϵ)] +
t

2

(
E
[
L2(θ + ϵ)

]
− E2 [L(θ + ϵ)]

)
+O(t2) (55)

≈ E[L(θ + ϵ)] +
t

2
var (L(θ + ϵ)) (56)

Hence, our proposed objective can be viewed as optimizing for the mean plus variance of the losses in the neighborhood
regions when t is very close to 0. When t = 0, it reduces to only optimizing for E[L(θ+ ϵ)] for ϵ ∈ µ(ϵ). For any θ1 and θ2
such that θ1 is sharper than θ2, we have

g(t) ≈ E[L(θ1 + ϵ)] +
t

2
var (L(θ1 + ϵ))− E[L(θ2 + ϵ)]− t

2
var (L(θ2 + ϵ)) , (57)

g′(t) ≈ 1

2
(var (L(θ1 + ϵ))− var (L(θ2 + ϵ))) . (58)

Recall that sharpness is defined as standard variance when t→ 0 (Definition 3.5), and we have that g′(t) ≥ 0.

B.5. Proof for Theorem 3.7

We first state some useful lemmas.
Lemma B.1 (Stated and proved in Aminian et al. (2024)). Let X be a random variable. Suppose 0 < a < X < b < +∞,
we have

var(X)

2b2
≤ log(E[X])− E[log(X)] ≤ var(X)

2a2
. (59)

The Lemma directly follows from existing results in Aminian et al. (2024). For completeness, we include the proof here.

Proof. As d2

dx2

(
log(x) + βx2

)
= −1

x2 + 2β, the function log(x) + βx2 is concave for β = 1
2b2 and convex for β = 1

2a2 .
Hence, by Jensen’s inequality,

E[log(X)] = E
[
log(X) +

X2

2b2
− X2

2b2

]
≤ log(E[X]) +

1

2b2
E[X]2 − 1

2b2
E[X2] (60)

= log(E[X])− 1

2b2
var(X), (61)

which completes the proof of the lower bound. A similar approach can be applied to derive the upper bound.

Proof for Theorem 3.7. We can now proceed with the detailed proof below.

Proof. Examine the following decomposition of the generalization error:

EZ [l(θ, Z)]− 1

t
logEϵ[e

tL(θ+ϵ)] = EZ [l(θ, Z)]− Eϵ[L(θ + ϵ)] + Eϵ[L(θ + ϵ)]− 1

t
logEϵ[e

tL(θ+ϵ)]. (62)

Based on Lemma B.1, let X be etL(θ+ϵ) and 1 ≤ etL(θ+ϵ) ≤ etM (assuming positive and bounded losses and non-negative
t), we have that

var(etL(θ+ϵ))

2te2tM
≤ 1

t
log(Eϵ[e

tL(θ+ϵ)])− E[L(θ + ϵ)] ≤ var(etL(θ+ϵ))

2t
, (63)
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and

−var(etL(θ+ϵ))

2te2tM
≥ Eϵ[L(θ + ϵ)]− 1

t
log(Eϵ[e

tL(θ+ϵ)]) ≥ −var(etL(θ+ϵ))

2t
. (64)

For the term EZ [l(θ, Z)]− Eϵ[L(θ + ϵ)], we further decompose it into

EZ [l(θ, Z)]− Eϵ[L(θ + ϵ)] = EZ [l(θ, Z)]− L(θ) + L(θ)− Eϵ[L(θ + ϵ)]. (65)

Recall that L(·) denote the empirical average loss based on n training samples (Eq. (1)), applying Hoeffding Inequal-
ity (Boucheron et al., 2013) gives

EZ [l(θ, Z)]− L(θ) ≤M

√
log(2/δ)

2n
. (66)

Combining Eq.(64), (65), and (66), we have the desired bound

EZ [l(θ, Z)]− 1

t
logEϵ[e

tL(θ+ϵ)] ≤M

√
log(2/δ)

2n
− var(etL(θ+ϵ))

2te2tM
+ L(θ)− Eϵ[L(θ + ϵ)]. (67)

To investigate the impacts of t on the generalization bound, we can leave the last term L(θ)− Eϵ[L(θ+ ϵ)] as it is since it is
independent of t.

Additionally, to bound L(θ)− Eϵ[L(θ + ϵ)] (the gap between empirical average losses and its randomly-smoothed version)
we note that it is related to the curvature of L(θ). If we further assume that the loss is µ-strongly convex, then it holds that

L(θ)− E[L(θ + ϵ)] ≤ L(θ)− L(θ)− E[∇L(θ)⊤ϵ]− µ

2
∥ϵ∥2 ≤ −µ

2
E[∥ϵ∥2]. (68)

Combining all the above results gives

EZ [l(θ, Z)]− 1

t
logEϵ[e

tL(θ+ϵ)] ≤M

√
log(2/δ)

2n
− var(etL(θ+ϵ))

2te2tM
− µ

2
E[∥ϵ∥2]. (69)
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C. Additional Experimental Details
C.1. Hyperparamter Tuning

For all the three datasets and all methods, we tune learning rates from {0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1}. We
use a fixed batch size of 64, label smoothing of 0.1 (for smooth cross-entropy loss), momentum with a parameter 0.9, and L2

weight decay 0.0005 for all runs. For vanilla SAM, we tune ρ from {0.05, 0.1, 0.5, 1, 5, 15} and found that the best values
are 0.05, 0.1, 0.1 for CIFAR100, DTD, noisy CIFAR100, respectively. For SAM variants, we tune ρ parameters in the same
way. The PGN baseline (Zhao et al., 2022) introduces another hyperparameter—the coefficients for the linear combination
between normal gradients and SAM gradients, and we tune that from {0.3, 0.5, 0.7, 0.9}. We follow the recommendations
of λ and γ hyperparameters in the original Random SAM paper (Liu et al., 2022b). For TSAM, we set δ = t

2 in Algorithm 1,
set ρ to be 20, and α in Algorithm 3 to be 0.995 across all datasets. We tune t from {0, 1, 5, 20, 100}, and the best t’s are 20,
5, 1 for the three image datasets. The number of sampled ϵ’s (the s hyperparameter in Algorithm 1) are chosen from {3, 5}.
We show the effects of t and s in detail in Section 5.3 in the main text.

C.2. Naive Sampling

As discussed in Section 4, one naive approach to estimate E[etL(θ+ϵ)∇L(θ+ϵ)]
E[etL(θ+ϵ)]

for ϵ in uniformly distributed over µ(ϵ) is to
first uniformly sample s ϵ’s over µ(ϵ), and then perform tilted aggregation, as follows:

ĝ ←
∑

i∈[s] e
tL(θ+ϵi)∇L(θ + ϵi)∑
i∈[s] e

L(θ+ϵi)
, ϵi ∼ µ(ϵ). (70)

We demonstrate convergence as a function of s on the CIFAR100 dataset in the figure below. We see that as s increases, the
performance increases. However, when s = 10, which means that we need 10 gradient evaluations per model updates, the
accuracy is lower than that of TSAM with the proposed algorithm.
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Figure 5. TSAM (t = 20) under the proposed algorithm compared with first uniformly sampling ϵ and then performing tilted aggregation.

C.3. Additional Results

Convergence Curves. In Table 1, we present the final test accuracies of TSAM and the baseline. In Figure 6, we show the
convergence of these methods on three datasets. We see that TSAM achieves the fastest convergence, and arrives at a better
solution. This is consistent with our argument that TSAM with a bounded t is a more smooth objective than the original
SAM formulation (Section 3).
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Figure 6. Convergence curves on three image datasets showing test accuracies.

Training and Test Loss Comparisons under Different Objectives. In Table 3, we show that TSAM generates better
than ERM and SAM by comparing training and test losses.

Table 3. To further understand TSAM behavior, we report the losses of models trained by {ERM, SAM, TSAM} and evaluated on {ERM,
SAM, TSAM} objectives, respectively. The left table shows training losses and the right one shows test losses. We see that (1) every
objective achieves the smallest training loss if directly being optimized (diagonal entries, left table). (2) Though SAM and TSAM
incurs larger training losses than ERM (last two rows, left table), they lead to smaller test losses (last two rows, right table), i.e., better
generalization. (3) Optimizing TSAM results in the smallest test loss across all the three metrics (last row, right table).

trained on
evaluated on ERM SAM TSAM

training loss

ERM 0.1283 1.35 3.48
SAM 0.1489 0.22 0.60

TSAM 0.1763 0.27 0.46

trained on
evaluated on ERM SAM TSAM

test loss

ERM 0.9302 2.05 3.54
SAM 0.7414 0.91 1.34

TSAM 0.7163 0.90 1.08

Effects of N in HMC. Recall that Algorithm 3 follows HMC updates in Eq. (8) by running it for N = 1 step. In
principle, we can run Eq. (8) for more than 1 step to generate each candidate perturbation ϵ. This require additional gradient
evaluations, which can be very expensive. We report results of N = 2 and N = 3 in Table 4 below.

configurations CIFAR100 DTD

N = 1 (s = 3) 0.7740 0.6882
N = 1 (s = 5) 0.7778 0.6870
N = 2 (s = 3) 0.7745 0.6883
N = 3 (s = 3) 0.7752 0.6880

Table 4. N > 1 requires N times more gradient evaluations to generate a single perturbation ϵ (Eq. (8), without resulting in significantly
better model accuracies.

Runtime Comparisons. We report the runtime of TSAM and other baselines in Table 5 below.

Effects of the Tilting Hyperparameter t. One critical hyperparameter in TSAM is t. When t = 0, TSAM objective
reduces to the average-case perturbed objective. When t→∞, the TSAM objective (Eq. (3)) recovers SAM (Eq. 2). Here,
we report the test accuracies as the training proceeds under multiple values of t’s for the three tasks. In Figure 7, we see that
there are a range of t’s that result in faster convergence or higher accuracies than SAM.

Effects of Scheduling t. We also evaluate the performance when we schedule t dynamically during training. In Figure 8,
we see that there is no significant difference between using a fixed t, increasing t linearly, or decreasing it lienarly on the
noisy CIFAR100 data.
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Table 5. Runtime comparisons (in minutes) averaged over different hyperparameter sets. ERM and SAM run the same numbers of epochs
as TSAM. All baselines are explained in Section 5. ESAM1 denotes the baseline of letting SAM run longer until it reaches the same
computation budget as TSAM.

datasets ERM SAM ESAM1 ESAM2 PGN RSAM TSAM

CIFAR100 32 65 325 310 333 320 333
DTD 5 6 18 17 15 16 15
Noisy CIFAR100 45 92 350 315 302 312 337
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Figure 7. Test accuracies of SAM and TSAM for various values of t when the number of sampled ϵ’s is 3 for each dataset. We select the
best SAM and TSAM runs based on the final accuracies on validation data. The results suggest that (1) there are multiple t values that give
superior performance than SAM; and (2) we typically need to manually tune a best t via grid search. The empirical performance under
different values of t relies on tradeoffs between optimization efficiency (Section 3.1, Section 4), flatness (Section 3.2), and generalization
(Section 3.3), and it is difficult to determine an optimal t prior to training. Note that in the label noise regime (left subfigure), one might
think that SAM performance could be further improved via a smaller learning rate or early stopping; however, we observe that SAM with
a smaller learning rate does not give better accuracy. With early stopping, SAM accuracy is 0.6918, which is still 0.4% lower than that of
TSAM without early stopping.
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Figure 8. Linearly decreasing or increasing the tilting hyperparameter t with the epochs does not differ from the results of a fixed t.
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