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Abstract

Large Language Models (LLMs) are powerful reasoners in natural language, but
their actions are typically confined to outputting vocabulary tokens. As a result, in-
teractions with external environments—such as symbolic operators or simulators—
must be expressed through text in predefined formats, parsed, and routed to external
interfaces. This overloads the model’s language with both reasoning and control
duties, and requires a hand-crafted parser, external to the LLM. To address this,
we decouple environment interactions from language by internalizing them in
an Expanded Action space (ExpA), beyond the vocabulary. The model starts
reasoning in the default language environment, but may trigger routing actions
and switch to an external environment at any time. From there, the model can
only invoke environment-specific actions, receive feedback from the environment,
and potentially route back to language as a result. To promote effective explo-
ration of the expanded action space and new environments, we introduce ExpA
Reinforcement Learning (EARL) with counterfactual policy optimization. On
tasks requiring multi-turn interactions and contingent planning, EARL outperforms
strong baselines with vocabulary-constrained actions. It performs robustly across
calculator-based multi-task learning and, in the partially observed sorting prob-
lem, achieves perfect Sort-4 accuracy while self-discovering an efficient algorithm
competitive with classical designs.

1 Introduction

vocab.
space

Recent progress has transformed Large Language
Models (LLMs) from pure language reasoners
into agents that interact with external environ-
ments such as tools, APIs, and embodied sys-
tems [39,9,136]. External environments both aug-
ment LLMs with missing capabilities—such as
symbolic computation [26] or up-to-date knowl-
edge [38]—and extend their reasoning by map-
ping instructions into concrete operations like
API calls or robotic control [36, 27,143, 49]. (a)

Existing works treat LLMs as agents whose ac-

tions are limited to outputting vocabulary tokens Figure 1: MDP of LLM-environment interaction.
V (Figure[Ta). Interactions with external environ- (a) Existing works confine actions to vocabulary
ments rely on parsers that map predefined text pat- V, relying on external parsers for interaction. (b)
terns (e.g., tool tags or JSON) into environment- EXpA introduces an expanded action space £ that
specific actions [38]], which return plain-text ob- internalizes environment-specific actions beyond
servations appended to the sequence. Models are language.

observations in V
parse & route
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guided by prompts and further trained via supervised tool-call data [38|31] or reinforcement learning
(RL) with rewards from either language outputs [L1, 41] or external environments [36].

We propose a fundamental shift from the language-only paradigm. Our aim is threefold: (1) to
decouple environment interactions from language reasoning, (2) to enable end-to-end training by
removing reliance on external parsers and keeping interactions under the model’s control, (3) to
fully support RL on base models, i.e., Zero-RL [9], without requiring supervised tool-call data or
adherence to predefined language patterns.

We introduce an Expanded Action space £ (ExpA) that allows models to act beyond vocabulary
tokens by directly interacting with external environments. In the default language mode, the model
either generates tokens from V or triggers a routing action g; € £ to enter environment i (e.g., a
calculator). Inside i, it is restricted to environment-specific actions (e.g., calculator buttons) that
produce observations in V, and upon completion (e.g., pressing “="), control returns to the language
environment. As shown in Figure [Tb] this cleanly separates reasoning from interaction. Unlike
simply enlarging the token space [6} 45], ExpA treats external actions as outputs only, avoiding costly
input-side fine-tuning and enabling efficient, modular integration of new environments.

To encourage effective intereactions with external environments, we introduce EARL, a reinforcement
learning framework built on the Expanded Action space (ExpA), which leverages counterfactual
rollouts to promote exploration of crucial but rarely used actions. Experiments show consistent gains
on multi-turn tasks, including perfect Sort-4 accuracy with a learned efficient algorithm in a partially
observed environment.

2 Approach

Problem setting. We consider Large Language : -
Models (LLMs) that interact sequentially with one or Algorithm 1 Rollout with ExpA
more external environments, in addition to the default
language environment. At each step, a model (agent) 5
acts by selecting either a token from the language en- 3
vironment or an action in an external one. We formal- Sample a; ~ 79(- | he, e;=0)
ize this as a partially observed Markov decision pro- 5. if a, €V then ’
cess (POMDP) with a global state s; = (he, €4, 2¢), 6 hes1 < he @ ag
7
8
9

—

: Input: policy 79, horizon T, initial s =
(ho7 60207 Zo)
:fort=0,1,..., 7 —1do
if e; = 0 then > language environment

where h; is a history of language tokens from a vo-

else if a; = g; then > route to env ¢
cabulary V, e; € {0,1,..., K} denotes the agent’s

hit1 < he @ desc(g:);

active environment (e; = 0 for language), and z; is : err1 1
the latent state of the external environments. The 10: end if
history h; is fully observed by the agent, comprising 11:  else > external environments
a record of tokens selected in the language environ- 1% Sample a; ~ mo(- | he, ec 7 0)
ment and token-based descriptions of observations 13 (01, ze11, exif) < step,, (e, 2t, at)
from the external environments. Unlike h; and ey, 2; 14: hit1 + b @ desc(ar) ® o¢
is only partially observed through interactions 15: if exit=true then

’ 16: er+1 < 0 > route back to lang
The agent is represented by a policy mp(a; | by, ), 17: end if
with parameters 6, that samples an action a; de- 18:  endif

190 7y« Rlet, he,ar)
20: end for
21: return trajectory 7 = {(h¢, ar,74) } g

pending on the observable state and the active en-
vironment. Each external environment i # 0 ex-
poses a step procedure, with a set of permissible
set of actions &;, denoted as (o, zpy1,exit)
step, (h+, 2t, at) , which executes a; € &;, produces an observation described by language tokens
0, € V1), an exit flag, and updates the latent state to z,, ;. After acting, the agent updates its history
by appending the new observation, hy;1 < hy @ o; and is routed back to language environment
if exit is true. At each step, the active environment produces a reward r, = R(eq, hy, at), and the
agent’s objective is to maximize the cumulative reward 7 =, 7.

Interaction with expanded action space (ExpA). In this work, we let agents interact directly
with environments by expanding their action spaces beyond the vocabulary V. For each environment
i # 0, we add a transition action g; for entering it and an environment-specific action set &; that
interfaces with step;. With £ = Ufil gi U &; the set of added actions and A = V U & the full
action set, the agent’s policy 7y is a distribution over .4, conditioned on the history h; and active
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Figure 2: An example rollout with ExpA. Here, <sw> and <cp> route to the swap and compare
environments, respectively. Inside them, agents can choose <A>,<B>,<C> as operands. After two
operands are chosen, the step procedure updates the latent state z when necessary, routes back to the
language environment, and returns the swap or comparison result as a plain-text observation.

environment e;. Algorithm T|describes interactions under this paradigm. Every rollout begins in the
language environment (ey = 0), where the policy my may either select a vocabulary token a; € V to
extend the history, or a transition action g; that routes control to environment ¢ while appending a
description of g; to h¢, denoted as desc(g;). Once inside environment i, the policy chooses actions
from &;, triggering the corresponding step,, which outputs an observation described in V), updates
the latent state, and returns an additional exiz flag. If exit = true, the environment resets to e; 1 = 0,
routing control back to the language environment. We illustrate with an example in Figure 2]

Training. We train ExpA with Reinforcement Learning (EARL), and propose Counterfactual
Policy Optimization (CPO), which optimizes the following objective:

Tcro(0) = Esg, T(s0)={(rer)}m, | 2 Z Ui(T (50);0) |, (D
=1

where s is an initial state sampled from the training data, 7 (sg) comprises m rollout pairs, and
U;(+; 0) denotes the update function for the i-th pair. Each 7; is a factual rollout obtained by inputting
Sg into Algorithm E], while each 7/ is a counterfactual rollout obtained by forcing a routing action at
a plausible intermediate step in ;. We describe our parameterization of the policy 7y and the design
of the update function in Appendix.

One key challenge is that the policy may fail to reliably invoke routing actions when needed. For
instance, a pretrained model has no prior experience of invoking a calculator and thus may not assign
high probability to its routing action (e.g., gcalc = <calculate>), even when complex arithmetic is
required. We address this with counterfactual rollouts, which evaluate what would have happened
had the policy taken a routing action at a plausible intermediate step, thereby encouraging exploration
of rarely invoked but critical decisions.

Given a factual rollout 7 = {(h, as, rt)}tT;Ol, we construct a counterfactual rollout 7/ as follows: 1)
Select a routing action g; € £ to be encouraged (e.g., gearc for arithmetic tasks); 2) Sample a time
step t’ € {t | e; = 0} with weight proportional to 7y (desc(g;) | ht, e: = 0); 3) Initialize 7/ + 7
using the factual rollout for ¢t = 1, ..., ¢’; 4) Intervene with do(ay = g;) at t’ and apply the transition
in Algorithm 5) Continue rollout fort = ¢ +1,...,T — 1 with Algorithmto obtain 7’.

This relies only on the pretrained next-token distribution (step 2). For example, if desc(geac) =
“calculate”, the insertion “To solve it, first calculate” is more probable under the language model than
“To solve calculate, ...” and is weighed more heavily when forcing a routing action. Hence the method
is fully compatible with zero-RL training [9, [52].

3 Experiment

Setup. We evaluate tasks that require multi-turn interactions with external environments. Prior
work has focused mainly on math problems [[11]] or API calls [36], where the solution path follows a
fixed derivation. We additionally target the harder problem of contingent planning, where the agent
must adapt its strategy based on intermediate observations. We design two complementary tasks:



Example Questions Environments

Arithmetic What is subtraction of 69 divided by 6 plus 7049 plus 13 plus 50 plus 643 from 99367 Calculator
Countdown Using the numbers [2900,1205,5911, 4], create an equation that equals -4212. +—X+=()1234567890.
GSM8K* Henry made two stops ina 691206-mile trip...How many miles did he go in the first stop? Cznl;pzr(;) B
Count How many times does the digit 0 appear in the number fifty-eight billion, thirty million...? Swap
AB,C,D,E

Sorting Sort the following items in ascending order: A, B, C, D, E.

Figure 3: Example questions and the environment-specific actions in Calc-Bench and Sorting.

Table 1: Results (EM) on Calc-Bench, we jointly train our models on all Calc-Bench tasks to assess
the benefits of shared representation learning.

Method Calc Bench
Arithmetic Countdown Count GSMS8K* Overall
GPT-40 41.30 18.85 66.85 31.95 39.74
Qwen-2.5-3B-Instruct 15.80 2.80 66.50 20.55 26.41
SFT+GRPO 70.75 48.50 93.85 30.57 60.92
Prompt+GRPO 64.70 49.15 94.75 30.39 59.75
Prompt+CPO 61.50 38.30 91.35 46.80 59.49
ExpA+CPO (EARL) 69.20 75.15 93.70 48.53 71.65
Qwen-2.5-7B-Instruct 22.60 11.75 74.05 24.01 33.10
SFT+GRPO 56.00 66.70 93.00 34.20 62.48
Prompt+GRPO 80.30 60.70 98.60 33.33 68.23
Prompt+CPO 64.85 55.15 94.55 52.33 66.72
ExpA+CPO (EARL) 78.10 84.25 98.70 53.71 78.69

* Calc-Bench. The agent uses a stateless calculator environment (Figure [3), with rewards based on
exact-match (EM) accuracy. The benchmark spans four datasets (statistics in Appendix, examples
in Figure [3): (1) Arithmetic, which tests calculator use under out-of-distribution settings where
operations or numbers may appear in natural language; (2) Countdown, which stresses contingent
planning by requiring efficient adaptation across up to 7,680 possible combinations; (3) GSM8K*,
an upscaled variant of GSM8K [8] with larger numbers but preserved semantics; and (4) Count,
which checks whether agents retain basic numerical understanding while learning (1)—(3).

» Sorting. The agent must order a set of hidden numbers using compare and swap environments;
e.g., “compare A, B” reveals their relation, while “swap A, B” updates the hidden state. Rewards
depend on correctly sorting the hidden state zp, with penalties for excessive operations. This task
is challenging as it forms a POMDP: the agent must plan contingently from comparison outcomes,
reason precisely over first-order relations, and manipulate hidden states through interactions rather
than text output. Training uses Sort-2 to Sort-5, while evaluation is on Sort-4 and Sort-5.

Baselines. We compare against four paradigms: (1) SFT+GRPO, fine-tuning on labeled interactions
followed by GRPO [39, [11]; (2) Prompt-GRPO [9, 41|, which provides interaction patterns in
the prompt and trains with GRPO; (3) Prompt-CPO, identical to Prompt-GRPO but using our
Counterfactual Policy Optimization (CPO); and (4) Zero-shot, proprietary models like GPT-4o0 [18].

Calc-bench results. As shown in Table|l} zero-shot models perform poorly on this challenging
benchmark, with GPT-40 reaching only 39.74 overall EM. Training with a calculator greatly im-
proves performance, but baselines remain inconsistent across tasks and perform especially poorly on
contingent-planning tasks like Countdown. In contrast, EARL delivers strong results across all tasks,
with up to 10.73% absolute gain overall and as much as 26% gain on Countdown. We analyze in
Appendix how the proposed ExpA and CPO help achieve these large gains.

Sorting results. Figure [ reports sorting accuracy, stratified by the minimum number of swaps
required. On Sort-4, EARL achieves perfect accuracy across all levels, whereas Prompt+CPO degrade
as the required number of swaps increases. The gap widens on the more challenging Sort-5 problems,
where EARL outperforms the best baseline (Prompt+GRPO) by up to 21% in a stratum and more
than 10% overall.



Sort-4 Acc. Sort-5 Acc.

[ Prompt+GRPO:

N — T DPrompt:CPO { Taple 2: Average number of
- EIEARL swaps (SW) and comparisons
08 - (CP) to sort 4 random numbers.
06 M Method #SW  #CP
04 — Prompt+GRPO 2.076 6.101
EARL 1.917 5.708
0z |'| I-I EARL* 1.917 4.833
) [l ccc 2333 5.000
0 1 2 3 0 1 2 3 4 Insert-sort 3.000 4.917
Figure 4: Sort accuracy stratified by the number of required swaps. _Optimal 1917 4.667
. ) . Algorithm 2 EARL* Sort-4
Efficiency. We assess efficiency by measuring the
average comparisons and swaps needed to sort ran- ; %Ittbfour numbers A, B,C, D
dom numbers. With greedy decoding, EARL exe- 3R RU {Compare(A4, B)}
cutes a deterministic decision tree (visualized in the 4 R + R U {Compare( A’ o)}
appendix). Pruning redundant steps yields a simpli- 5. » . R {Compare(A: D)}
fied variant, EARL* ( Algorithm[2). The algorithm  ¢. jf pot (C<A<BV B<A<C) then
pivots on A, performs only necessary checks, and ap-  7: R + R U {Compare(B, C)}
plies MIN_SWAP(R) for minimal swaps. As shown  8: end if
in Table[2] both EARL and EARL* match the optimal ~ 9: ifnot (D < A< B V B < A < D) then
number of swaps and nearly achieve the optimal com- 10: R < R U {Compare(B, D)}
parisons, surpassing insertion sort and even GCC’s 11 _e“d if
built-in routine. 12: ifnot (D < A< C V C < A< D) then
13: R + R U {Compare(C, D)}
14: end if

Sorting with RL. Our study connects to recent
work on discovering faster sorting algorithms with
RL, most notably AlphaDev [32]. A key distinction
is that we leverage the LLM’s natural language vo-
cabulary to represent context and chain reasoning steps, rather than relying on dedicated symbolic
states or low-level assembly instructions. This means that our agent is more general-purpose, capable
of reusing pre-trained language knowledge. Consequently, EARL achieves 100% accuracy on Sort-4
after only ~70 training steps, compared to the million-step training required by AlphaDev, underscor-
ing the value of transferring language reasoning into interactive environments. While performance
on Sort-5 is not yet perfect, our goal is to demonstrate how ExpA improves reasoning with external
environments, leaving dedicated algorithm discovery and more challenging settings (e.g., VARSORT)
as promising future work.

: MIN_SWAP(R)

4 Conclusion

We presented ExpA, a paradigm that equips LLMs with expanded action space for environment
interactions. ExpA decouples reasoning from interaction, eliminating reliance on external parsers and
enabling end-to-end training. To optimize in this setting, we proposed EARL, a counterfactual RL
method that encourages exploration of rarely used but crucial actions. Experiments show consistent
gains over strong baselines, especially on contingent planning tasks, and even the discovery of an
efficient Sort-4 algorithm. Overall, ExpA and EARL provide a scalable framework for reasoning
beyond language, opening paths toward mathematical reasoning and large-scale zero-RL tool use.
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A Appendix

B Related Work

Recent advances demonstrate LLMs as powerful reasoners in natural language [51} 40} 38]. Many
works have extended their role to agents interacting with external environments, and consider tasks
such as tool utilization [34, |30} 135]], multi-modality interpretability [55, 142} 46], math reasoning [24}
17,153, program-guided reasoning [14} [12} |5, 28]], real-time knowledge integration [47, (13} [15]],
and domain-specific scenarios [1} 22, 44]]. However, most existing approaches require the model to
express task-specific actions as predefined text patterns, which are then parsed and routed to external
environments. This design relies heavily on the model’s instruction-following ability [[16], making
performance highly sensitive to prompt variations [33]] and dependent on pre-trained knowledge
for action execution [16]. Moreover, many methods require human-crafted demonstrations of tool
usage [4} 29], further limiting scalability. In contrast, EARL endows agents with new capabilities
by introducing environment-specific actions, explored and learned through counterfactual policy
optimization without human demonstration.

While prior works have not explored expanding the action space of LLMs, expanding the roken
space is common in multimodal LLMs, which typically requires large-scale training on multimodal
demonstrations, sometimes combined with online RL [43]]. Another related direction introduces action
adaptors, which constrain the model to a set of learned actions tailored for a specific environment [[7}
48]|. This can be viewed as a simplified version of Figure[Tb] involving only one external environment
and no language environment. Beyond LLMs, growing action spaces have been studied to accelerate
exploration [10] or to extend the set of available actions in a single environment [21} 20 3]. Continual
RL research [25] 23] 154] has also demonstrated the effectiveness of action learning in non-stationary
settings [2,137]. In contrast, our work considers the more general and challenging case where LLMs
must reason in language while sequentially interacting with multiple external environments. To
this end, we expand the action space of LLMs and propose a reinforcement learning algorithm for
efficient exploration of external interactions.

C Additional Details of Setting

Language-only interaction. In existing approaches to tool use and external interaction [11} |41]],
agents never truly leave the language environment: they always select actions a; € V from their
own vocabulary, and extend the observation history as h;11 = hy @ a,. Interacting with an external
environment ¢ # 0 requires translating hyy1 to actions in &;. Typically, this is realized by detecting
predefined patterns, such as <calculator>...</calculator> or structured JSON fields. When a
pattern that indicates interaction with environment ¢ appears in h; 1, its contents are parsed into a
sequence of actions from &; that get executed by step,. A drawback is that no intermediate feedback
can affect the choice of actions within the pattern (e.g., <calculator> block), which may hamper
performance and credit assignment.

D EARL

D.1 A Policy over the Expanded Action Space

A central challenge in operating with expanded action spaces is how to represent and generalize to
the newly introduced actions. Prior work points to two guiding principles: First, the policy should
condition on the set of available actions [21} [19]. Second, prior knowledge about actions can be
leveraged to improve generalization, through learned action embeddings [19]] or by incorporating
known structure in training [[10]. We adopt both.

Policy parameterization. To condition the policy on all available actions, we extend the standard
LLM classification head. In the language-only setting, the head produces |V| logits over the vocabu-
lary. With ExpA, this head is expanded to output |V U &| logits. We denote by 6 the parameters of the
LLM together with the expanded head. At step ¢, the encoded feature of h; is projected to logits, and
a softmax is applied over the subset of actions available in environment e;, yielding 7o (- | hy, e;).

Policy initialization. Each action a € & has a natural language description desc(a), such as the
environment name (e.g., “calculator”) or the semantic label of a step procedure (e.g., “compare”). To
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exploit this prior knowledge about action similarities, we initialize the weights of new actions so that
selecting an action has approximately the same likelihood as producing its description:
mg(a | he,er) = mo(desc(a) | hy,eq),

where e, is the active environment at ¢t. In particular, when the description is a single token,
this condition can be satisfied directly (and exactly) by initializing the new action weight with the
pretrained weight of the token desc(a). This aligns expanded actions with their linguistic counterparts
from the start, providing a strong prior that accelerates learning.

D.2 Update Function

Finally, we define the update function for each rollout pair (7;,7/), i € {1,...,m}, as

i

[ 7 =740), ifT; <0Vje{l,...,m},

Ui(T(s0);0) = {

f(r, B250),  otherwise,

where 7; and 7; denote the cumulative rewards of 7; and 7/, respectively, and u, o are the mean
and standard deviation of rewards across the factual rollouts. Here f(7, a; ) denotes the standard
update rule [39], which takes as input a rollout trajectory 7 and its associated advantage scalar, and
applies PPO-style clipping and KL regularization (details in Appendix). The design is motivated
by balancing exploration and exploitation: when the current rollout fails to achieve positive reward,
the first counterfactual branch encourages exploration of missing interactions; otherwise, the update
reduces to group-relative advantage, exploiting successful strategies.

D.3 Update Rule

The update rule is given by
T—1

f(r,a;0) = Z [min(rt(Q) a, clip(r:(0), 1 —€, 1+¢€) a) - BKL(W(;(- | i) || e (- | ht)) )},

t=0
(2)
where

o 7= {(hs,as, )} =4 is a rollout trajectory,
* h, denotes the token history (state) at step t,

e r(0) = % is the importance sampling ratio between the new and old policies,

* ¢ is the PPO clipping threshold,
 Jis the KL regularization coefficient,

o m(- | hy) and (- | he) denote the current and reference policies, respectively. We use the
pre-trained LLM as the reference model.

Note that we slightly abuse notation in the main paper by saying 7 is generated with my. In practice,
rollouts are generated by the reference policy 74, which is held fixed during data collection. The
objective in (2) then compares the likelihood of these sampled actions under the current policy g
versus the reference policy 7o, with the ratio r;(6) providing the necessary importance weighting.
This distinction ensures stable on-policy learning: trajectories are collected with 7,4, While updates
adjust my to maximize advantage without diverging too far from 4.

In training, we do not perform update on positions in each rollout corresponding to observations
returned by external environments. For EARL, we apply the KL loss with token probabilities
computed over the original vocabulary space V.

E Additional Dataset Details

Calc-Bench Dataset Details. The Calc-Bench benchmark consists of four sub-datasets targeting
different types of mathematical reasoning: Arithmetic, Countdown, Count, and a rewritten subset of
GSMBK, denoted GSMSK*. Each dataset is generated via task-specific scripts, with explicit control
over complexity, number format, and structure.
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Table 3: Statistics of the Calc-Bench datasets. Language portions refer to the portion of questions
where operations or numbers are written in natural language.

Task Max number (10%) #Operands Lang. portion #Instances
Train Test Train Test Train Test Train Test
Arithmetic 5 5 5 7 10% 70% 1,000 2,000
Countdown 4 4 4 4 NA NA 20,000 2,000
GSMS8K* 6 6 NA NA NA NA 5,317 579
Count 20 20 NA NA 90% 90% 1,000 2,000

Arithmetic: This dataset contains randomly generated arithmetic expressions involving up to 5-digit
integers and between 2 and 6 operations. The training set includes 1,000 samples with a maximum
of 4 operations and 10% of examples paraphrased into natural language. The test set contains 2,000
samples with up to 6 operations and 70% paraphrased into natural language.

Countdown: Each instance is generated by sampling a valid arithmetic expression, extracting all
numerical values, shuffling them, and using the original result as the target. The final dataset
includes 20,000 training and 2,000 test examples. Expressions contain up to 4-digit numbers and
allow up to 3 operations. Each number must appear exactly once in the constructed expression.

GSMS8K*: This subset is derived from a manually rewritten version of GSMSK, filtered to include
only examples explicitly marked as rewritten. Each sample includes a paraphrased question and
corresponding reasoning-based answer. This version preserves the complexity of GSM8K while
reducing lexical overlap with the original dataset.

Count: This dataset consists of symbol sequences with a maximum length of 20. Each example is
labeled with a count-based target (e.g., the number of specific items). The training set includes
1,000 examples and the test set includes 2,000.

Sorting Experimental Setup. We adopt a curriculum-based training strategy for sorting tasks.
Specifically, we first use an ordering dataset to pre-train the model on simpler relational tasks,
followed by a sorting dataset that introduces the full sorting items. Each dataset is constructed with
its own generation procedure and input length distribution, as detailed below.

* Ordering: A total of 20,000 training examples are generated, with 95% assigned to the order task
and 5% to compare. Each input sequence contains 2 to 5 items, with a length distribution of 30%
for 2 items, 30% for 3 items, 20% for 4 items, and 20% for 5 items. The corresponding test set
contains 2,000 order examples, with the same item length distribution.

* Sorting: The training set contains 80,000 examples, with input lengths ranging from 2 to 5 elements,
denoted as Sort-2 through Sort-5. The distribution is 10% Sort-2, 20% Sort-3, 30% Sort-4, and
40% Sort-5. The test set includes 2,000 examples, equally split between Sort-4 and Sort-5 cases.

Implementation Details. We use the open-source Qwen2.5 [50]] as our backbone, including results
for both base models and instruction-tuned variants with 0.5B, 3B, and 7B parameters. The maximum
sequence length is set to 1,024 for Calc-Bench and 384 for Sorting. Training is performed on NVIDIA
A100-80GB GPUs, with 1, 2, and 4 GPUs allocated for the 0.5B, 3B, and 7B models, respectively.
For fair comparison, we follow standard hyperparameters and optimization protocols [41] (e.g., KL
regularization weight, PPO clipping threshold) for both baselines and our method.

F Additional Results

Countdown analysis. We provide a detailed analysis of the results on Countdown with the 3B
model in Table d] supplemented by case studies in the appendix. Several observations emerge:

* Prompt+GRPO triggers the most calculator interactions and avoids hallucinations. However, it
often degenerates into inefficient brute-force trials, showing limited use of planning cues after
observations (e.g., “this is far from target”).

» Replacing GRPO with CPO increases the use of planning keywords, likely because counterfactual
interventions provide more training signals on how to react to observations. Yet this also introduces
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Table 5: Ablation on Countdown: CPO vs. o
GRPO, training on Qwen-Instruct vs. -Base, and
with (w/) vs. without (w/0) environment prompt *°
(env.p). ExpA+CPO corresponds to EARL.

04

Instruct Base

w/env.p w/o w/envp w/o w/ env.p w/o w/ env.p w/o

ExpA+CPO 80.09 76.76 77.31 74.56 CPO — — CPO — —
ExpA+GRPO  75.10 73.79 76.45 70.27 Syeere R s -
Prompt+CPO 6723 - 63.64 - 0 =

Prompt+GRPO 58.16 - 51.15 - 0. 50 00 150 0 50 10 150
SFT+GRPO 62.05 - 61.17 ] Figure 6: ExpA training reward vs. iteration.

hallucinations, where the agent invents numbers not in the problem. A plausible cause is interference
between language reasoning and action learning, e.g., the KL penalty helps preserve pre-trained
language knowledge but may hinder the grounding of calculator actions.

SFT+GRPO uses the fewest interactions, sometimes performing parts of a computation in language
mode and then feeding incorrect results to the calculator, causing hallucinations. This suggests that
SFT-learned patterns transfer poorly to diverse problem instances.

EARL uses a moderate number of interactions but produces by far the most planning-related
language, yielding much stronger results than all baselines in Table[I] This strongly validates the
benefit of decoupling environment interactions from language reasoning, which removes confusion
between reasoning and action learning and enables effective use of external environments.

GSMS8K* analysis. In Figure[5] we show the distribution of response lengths among correct rollouts
on GSM8K* with the 3B model. The results reveal a clear link between efficiency in reasoning (fewer
tokens) and stronger performance. Notably, the two methods using CPO (EARL and Prompt+CPO)
outperform those with GRPO (SFT+GRPO and Prompt+GRPO), underscoring the importance of
encouraging diverse environment interactions.

Ablation Study. We perform ablation on the challenging Countdown task from 3 perspectives:

CPO vs. GRPO: As shown in Table[5] CPO consistently outperforms GRPO across all settings, even
for baselines (Prompt+CPO). It also converges faster, as seen by comparing each solid line (CPO)
with the dotted line of the same color (GRPO) in Figure[6] highlighting the role of counterfactual
rollouts in promoting exploration of new environments and their actions.

Instruct vs. Base: With ExpA, even base models achieve competitive performance, whereas
baselines algorithms such as Prompt+GRPO degrade sharply without instruction tuning. This
suggests strong potential for using EARL in Zero-RL training of agents for interactive problem
solving.

Prompted vs. unprompted environments: Prompting the agent on how to interact is essential for
prompt+RL baselines. With ExpA, however, models succeed without such prompts by leveraging
weight initialization (Section [D.I] ExpA+GRPO w/0) and counterfactual rollouts (ExpA+CPO
w/0), indicating scalability to settings with large number of environments.
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