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ABSTRACT

Continual learning (CL) has been a crucial topic in contemporary deep neural
network usages, where catastrophic forgetting (CF) can impede a model’s ability
to progressively acquire knowledge, leading to critical training inefficiency and
constraint in the improvement of model’s overall capacity. Existing CL strate-
gies mostly mitigate CF either by regularizing model weights and outputs during
finetuning or by distinguishing task-specific and task-sharing model components
to adapt the training process accordingly. Yet despite their effectiveness, these
previous explorations are mainly limited to elements of task models, while we
speculate a deeper exploitation of interrelationship among tasks can provide more
enhancement for CL. Therefore, to better capture and utilize the task relations, we
propose a transferability task embedding guided hypernet for continual learning.
By introducing the information theoretical transferability based task embedding
named H-embedding and incorporating it in a hypernetwork, we establish an on-
line framework capable of capturing the statistical relations among the CL tasks
and leveraging these knowledge for deriving task-conditioned model weights. The
framework is also characterized by notable practicality, in that it only requires
storing a low dimensional task embedding for each task, and can be efficiently
trained in an end-to-end way. Extensive evaluations and experimental analyses on
datasets including Permuted MNIST, Cifar10/100 and ImageNet-R showcase that
our framework performs prominently compared to various baseline methods, as
well as displays great potential in obtaining intrinsic task relationships.

1 INTRODUCTION

Continual learning (CL), also known as incremental learning or life-long learning, has been an es-
sential topic in the modern application of deep neural networks, where a model is expected to learn
a series of tasks sequentially for the optimization of its capability (Wang et al., 2024). However, in
practical usages, catastrophic forgetting (CF) (Kirkpatrick et al., 2017) can hamper the model from
accumulatively gaining knowledge as intended, severely hindering the overall growth of model ca-
pacity and resulting in significant wastes of training resources. Specifically, in CL settings, a model
is trained one-by-one (i.e. data in the old tasks are not fully available anymore when training new
ones) on a sequence of tasks, which typically contains either category change or data distribution
shifts (Qu et al., 2021). Consider the training process of a new task, a desirable model performance
should be characterized by two aspects (von Oswald et al., 2020). 1) Backward transfer / non
catastrophic forgetting (Kirkpatrick et al., 2017): improvement or at least no significant degrada-
tion on previous tasks. 2) Forward transfer: higher efficiency in learning the new task compared
to training a model from scratch.

Up to now, there have been many studies dedicated to CL strategies, with most of them involving re-
hearsal of previous data to alleviate the knowledge degradation caused by CF. However, the growing
concerns of privacy and data safety have made this solution not always feasible, bringing increased
attention to the rehearsal-free CL setting (Smith et al., 2023, more discussion in Sec. 2). Previous
works on rehearsal-free CL can be mostly described as regularization-based approaches, including
parameter space regularization (e.g. Kirkpatrick et al., 2017; Zenke et al., 2017) and feature space
regularization (e.g. Li & Hoiem, 2017; Rebuffi et al., 2017), with the latter alternatively referred to

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

as distillation approaches. These approaches introduce different regularization losses during training
on the model weights, the intermediate layer or the final output. Despite their effectiveness, regu-
larization methods are limited in their design that the models learned on subsequent tasks are forced
to stay close to those on previous tasks, while in fact the tasks in a CL setting are not necessarily
similar or relevant to each other.

This brings us to a fundamental question in continual learning: Having positive backward and for-
ward transfer in CL relies on capturing the underlying relationship between different tasks, but how
do we learn and utilize such relationship as we train the model? Architecture-based approaches
(Wang et al., 2024) have recently emerged as a tentative answer to this question1. Rather than
attempting to forcibly align all tasks in their model parameters or outputs, they generally aim at
dedicating task-specific and task-sharing model components from different architecture levels (e.g.
Mallya & Lazebnik, 2018; Wortsman et al., 2020; Jin & Kim, 2022), and tailoring the training pro-
cess accordingly. Nevertheless, the allocation of model parts to different tasks usually comes with
scaling problems with the growth of task number, potentially resulting in either insufficient model
capacity or excessive model size growth. On the other hand, as a variant of these approaches, von
Oswald et al. (2020) introduces a task-conditioned hypernet, allowing for comprehensive genera-
tions of task-specific model weights based on the corresponding task embeddings without trying to
draw a clear distinction between common and specific model elements. However, the original hyper-
net relies solely on the black-box learning of task embeddings to compute task relationships. This
approach can be inefficient in capturing the true relationship between tasks in the high dimensional
task space, as it overlooks the prior knowledge that can be incorporated using statistical tools.

Therefore, with the aim of a better understanding and utilization of the task space in CL, we propose
in this work a novel hypernet framework, where the learning of task embedding is guided by dy-
namically estimated task relationships. As transferability scores (Ding et al., 2024, see Sec. 2) aims
to statistically estimate the fitness of source models on target tasks, it can provide prior information
on the relationship between new tasks and old tasks. Based on these desiderata, we optimize the hy-
pernet to learn task embeddings that preserve the transferability between the current task and prior
tasks. Particularly, we propose an online task embedding scheme named H-embedding, which dis-
tills the transferability information into the hypernet through an optimization process. H-embedding
can be learned efficiently without accessing previous data by maximizing the consistency between
their Euclidean distances and the H-score (Bao et al., 2019) transferability among the corresponding
tasks. To match the magnitude of the task embedding distance with that of the transferability score,
we further introduce a learnable scaling constant in H-embedding. This significantly enhances the
learning stability over long task sequence without sacrificing performance.

Our H-embedding can be seamlessly incorporated into the hypernet via an encoder-decoder module
to ensure its alignment with the learned task embedding2, serving as a guidance for the training
of hypernetwork. With the introduction of H-embedding guidance, the framework has markably
improved in its capability of capturing task relationship, featured by: 1) an efficient and reliable
learning of task embedding based on the information theoretical foundation of H-score metric; 2)
a notable enhancement of CL in its forward transfer performance; 3) ease of practical use with
end-to-end training and no extra storage required beyond the low-dimensional task embeddings.

2 RELATED WORKS

2.1 REHEARSAL-FREE CONTINUAL LEARNING

The strictness of CL settings varies with the extent of allowed previous data accessibility. Multi-task
learning (Caruana, 1997), with full data availability of all tasks, can actually be viewed as a special
case and upper-bound of CL, while rehearsal-free CL (Smith et al., 2023), with non previous data
involved in the training of new tasks, is on the other hand the strictest CL setting under this criteria.
In spite of the success of rehearsal based methods in various benchmarks (Bang et al., 2021; Shin
et al., 2017; Belouadah & Popescu, 2019), rehearsal-free CL is catching the attention of researchers

1A large proportion of these approaches actually require certain access to previous data and hence do not
conform to our rehearsal-free setting. We cover them here mainly for a comprehensiveness of discussion.

2In fact, this guidance is more general and can be incorporated into any hypernet-based CL framework, yet
here we mainly base our framework on the work of von Oswald et al. (2020).
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recently (Smith et al., 2023) because of its low dependency on revisiting previous tasks and therefore
broader application in the era of growing data privacy concern.

Existing works on rehearsal-free CL are generally based on regularization strategies. EWC (Kirk-
patrick et al., 2017) and SI (Zenke et al., 2017) introduce penalties to restrict the alteration of pa-
rameters vital for addressing prior tasks, thereby reducing the risk of catastrophic forgetting. LwF
(Li & Hoiem, 2017; Rebuffi et al., 2017) proposes a cross entropy loss between the predicted class
distribution of the (n-1)-th task, as generated by the model before and after learning the n-th task.
Smith et al. (2023) gives an overview of these methods and proposes regularization combinations
for better CL performance. In this work, we follow these works and focus on the more challenging
rehearsal-free CL setting.

2.2 HYPERNETS

Hypernets (Ha et al., 2017), or hypernetworks, are specialized neural networks that produce weights
for another neural network, i.e., the target network. Recently, they have gained recognition as a
potent tool in deep learning, providing advantages such as increased flexibility, adaptability, dy-
namic nature, training efficiency and model compression (Chauhan et al., 2023). Hypernets have
yielded encouraging results in various deep learning applications, including continual learning (von
Oswald et al., 2020), causal inference (Chauhan et al., 2024), domain adaptation (Volk et al., 2022),
uncertainty quantification (Krueger et al., 2017), few-shot learning (Sendera et al., 2023), and rein-
forcement learning (Sarafian et al., 2021).

2.3 TRANSFERABILITY METRICS

Task transferability (Zamir et al., 2018) investigates the relationships between tasks and provides an
effective method for evaluating and selecting source tasks in transfer learning. It also plays a crucial
role in developing strategies for multi-task learning and meta-learning. For the ease of usage, previ-
ous studies have proposed metrics based on task models and data distributions for a quick estimation
of transferability (Ding et al., 2024). H-score (Bao et al., 2019; Ibrahim et al., 2022; Wu et al., 2024)
uses an information-theoretic framework to evaluate transferability by solving a maximum correla-
tion problem. NCE (Tran et al., 2019) employs conditional entropy to assess transferability and task
difficulty. LEEP score (Nguyen et al., 2020; Agostinelli et al., 2022) offers a more generalized met-
ric, defined by measuring the performance of a classifier developed from source model predictions
when applied to the target task. LogME (You et al., 2021) assesses target task accuracy using a for-
mulation integrating all possible linear classifiers derived from source model features. OTCE (Tan
et al., 2021; 2024) combines optimal transport with conditional entropy to both estimate the domain
and task difference between source and target. These metrics are mostly designed with differed
assumptions and source accessibility, with their use applicable to different problem settings.

3 PRELIMIMARY

3.1 MATHEMATICAL FORMULATION

Consider a problem setting consisting of M tasks {Tj}Mj=1, the data of task j is denoted by Dj =

(X(j),Y(j)), with input samples X(j) = {x(j,i)}Nj

i=1 and output samples Y(j) = {y(j,i)}Nj

i=1. Here,
Nj = |X(j)| = |Y(j)| denotes the sample size of the j-th task, and the attributes of sample data
x(j,i), y(j,i) depends on the particular CL setting as well as the form of tasks. In CL, the M tasks
are learned sequentially during the training stage. To be specific, denoting a neural network model
as f(x,Θ) (where f represents the model function, x represents the input data, and Θ represents the
model weights) and the model weights acquired in task j−1 as Θ(j−1), the goal of learning task j is
to derive a new set of weights Θ(j) that not only achieves the optimal performance on task j, but also
performs better or not significantly worse than Θ(j−1) on tasks T1, . . . , Tj−1. For a rehearsal-free
CL setting, the previous data D1, . . . , Dj−1 are not accessible during the training of the j-th task.

Based on the discrepancy between Dj−1 and Dj , Hsu et al. (2018) and Van de Ven & Tolias (2019)
categorized CL settings into three specific scenarios: task incremental, class incremental, and do-
main incremental. Table 1 summarizes the differences among these scenarios. For a better con-
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centration on the study of CL methodology, our work only focuses on the task incremental CL. In
this scenario, the output spaces of tasks are partitioned by task IDs and are mutually exclusive be-
tween Dj−1 and Dj , which is denoted as Y(j−1) ̸= Y(j). It can be then naturally indicated that
P (Y(j−1)) ̸= P (Y(j)) and P (X(j−1)) ̸= P (X(j)). Notably, here task IDs are accessible during
both training and testing phases.

Scenario P (X(j−1)) ̸= P (X(j)) P (Y(j−1)) ̸= P (Y(j)) Y(j−1) ̸= Y(j) Task ID

Domain Incremental ! % % %

Class Incremental ! ! % %

Task Incremental* ! ! ! !

Table 1: Categorization of CL settings based on the discrepancy between Dj−1 and Dj .‘*’
denotes the scenario focused on in our work.

3.2 H-SCORE

H-score is firstly introduced by Huang et al. in 2019 as a metric assessing the informativeness of
features for a task. Theoretically derived from the maximal correlation interpretation of deep neural
networks, its mathematical foundation roots to the information theory work known as maximal
correlation analysis, which originates from the works of Hirschfeld, Gebelein and Renyi (Hirschfeld,
1935; Gebelein, 1941; Rényi, 1959) and has been followed and further explored by a broad spectrum
of successive work. The H-score of f with regard to the task casting X to Y is defined as:

H(f) = tr(cov(f(X))−1cov(EPX|Y [f(X)|Y ])). (1)

Subsequent work has extended H-score to also serve as a metric for transferability and validated its
efficiency with extensive experiments (Bao et al., 2019; Ibrahim et al., 2022), implying the potential
of H-score for transfer learning and its application in related problems. With input data X , label
Y and feature extractor function f(X). The choice of H-score employment in our framework is
because of its strong theoretical reliability, conformity of assumption to our problem setting, as well
as its non-dependence on source data which makes possible an online embedding estimation.

𝑇𝑇1 𝑇𝑇2 𝑇𝑇𝑗𝑗-1 𝑇𝑇𝑀𝑀𝑇𝑇𝑗𝑗 𝑋𝑋𝑗𝑗 𝑌𝑌𝑗𝑗𝛩𝛩(𝑗𝑗)· · · · · ·

𝑒𝑒(1) 𝑒𝑒(2) · · · 𝑒𝑒(𝑗𝑗−1) 𝑒𝑒(𝑗𝑗)

𝑓𝑓ℎ

Previous Tasks (Inaccessible) Current Task

HyperNet 
Training

Task Embeddings

Regularizations

Future Tasks

Embedding
Learning

Learned
Learning

 CL Direction

Figure 1: Illustration of the CL status on the step of learning task j under our framework. The
hypernet is being trained to provide the optimal task model weight Θ(j) concurrently with the learn-
ing of current task embedding e(j), where regularizations are applied using previous embeddings.

4 METHODOLOGY

4.1 EMBEDDING GUIDED HYPERNET FRAMEWORK

As mentioned in the Introduction, unlike most existing approaches that constrain the magnitude or
range of variations in model weights Θ or outputs f(x,Θ) during the training of task j to achieve
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maximum proximity between {Θ(j); f(x,Θ(j))} and {Θ(j−1); f(x,Θ(j−1))}, we address the CL
problem from a meta perspective. In this work, a hypernet framework is proposed to capture the
underlying relation between different tasks and maximally leverage our prior knowledge about task
interrelationships.

Following von Oswald et al. (2020), we introduce a task-conditioned hypernetwork fh(e,Θh) with
hypernet weights Θh to map a task embedding e to its corresponding model weights Θ, and present
a framework that guides the hypernet with transferability based task embeddings ê. Specifically, all
tasks {Tj}Mj=1 in the learning scenario share a single hypernet fh that generates their task model
weights using their task-specific embeddings {e(j)}Mj=1, i.e. Θ(j) = fh(e

(j),Θh) for task j. During
each task Tj in training, the task embedding e(j) is learned via gradient descent simultaneously with
the updating of hypernet parameters Θh, while parameters other than Θh and e(j) are fixed and can
be viewed as constants. The loss to be minimized is composed of three parts:

• The target loss, a supervised loss to learn the current task j.

Lt = L(f(x(j),Θ(j)), y(j)) = L(f(x(j), fh(e
(j),Θh)), y

(j)) (2)

• The continual learning loss (same as introduced by von Oswald et al. (2020)), to prevent CF
by ensuring that given previous task embeddings {e(n)}j−1

n=1, the network weights output
by the hypernet before and after training on task j are analogous.

Lc =
1

j − 1

j−1∑
n=1

L(n)
c =

1

j − 1

j−1∑
n=1

||fh(e(n),Θh)− fh(e
(n),Θ∗

h)||2 (3)

• The embedding regularization loss to provide the hypernet with additional prior knowledge
about the task relationships.

Le = Le(e
(j), ê(j)) (4)

Here, L denotes certain supervised task loss (cross-entropy loss in our experiments), and Θ∗
h is the

set of hypernet parameters before learning task j. The exact form and derivation of the embedding
regularization loss Le will be covered in Sec. 4.2. To summarize, our final loss function is as follows:

L = Lt + βeLe + βcLc (5)

Take a slice on the j-th task, our approach for the training of Tj is depicted in Fig. 2. Notably,
although it may appear that the task model weights are first generated and subsequently used for
inference, the framework is actually end-to-end, with the hypernet parameters Θh and embeddings
e(j) optimized directly by feeding the task data and minimizing the total loss. In other words, there
is no additional training procedure introduced in our framework, and the only information to save
is the task embeddings e(j) (typically of low dimensions3). For a more comprehensive view of our
guided hypernet framework, we further present the full continual learning procedure in Fig. 1.

4.2 EMBEDDING REGULARIZATION VIA ENCODER AND DECODER

As a key contribution of our framework, we introduce an embedding regularization module to in-
corporate prior information - specifically, the relationships among CL tasks - into the hypernet. The
hypernet is composed of an encoder and a subsequent network. During the forward pass, the task
embedding e is mapped from the embedding space E to a hidden feature h in the hidden spaceH by
the encoder, and then to the weight spaceW by the subsequent network. For task j, we have:

Θ(j) = fh′(h(j)) = fh′

(
fEnc(e

(j))
)
= fh(e

(j)). (6)

Here, fEnc and fh′ denote the encoder and the rest part of hypernet respectively. From an infor-
mation transmission perspective, we presume that the hypernet should in its hidden space encode
sufficient information to recover the H-embedding ê that indicates the known relationships among
tasks. Therefore, we additionally introduce a trainable decoder to map the hidden feature h to a

3The dimension of task embedding is set to 32 in Cifar10/100 & ImageNet-R and 24 in MNIST experiments.
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𝐿𝐿𝑒𝑒 = 𝐿𝐿𝑒𝑒(𝑒𝑒 𝑗𝑗 , 𝑒̂𝑒(𝑗𝑗))

𝐿𝐿𝑡𝑡 = 𝐿𝐿(𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
(𝑗𝑗) ,𝑦𝑦(𝑗𝑗))

HyperNet
Model
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En
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r
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Space

Prior H-embedding

Weights

HyperNet

X

Y

Main
Model

MainNet

Regularization Loss

Task Loss

𝐿𝐿𝑐𝑐 =
1

𝑗𝑗 − 1
�
𝑛𝑛=1

𝑗𝑗−1

𝐿𝐿𝑐𝑐
(𝑛𝑛)

CL Loss

Decoder

Figure 2: Framework of our hypernet on the slice of task j. A hypernet (left, blue) is utilized to
learn the weights of the main model (right, orange), where the H-embedding guidance is introduced
using an encoder-decoder module. The entire framework is trained end-to-end by inputting task data
into the main model and propagating gradients backward to update both hypernet and embedding.

embedding ẽ such that the discrepancy between ẽ and the H-embedding ê should be minimized, i.e.,
for task j

ẽ(j) = fDec(h
(j)) = fDec

(
fEnc(e

(j))
)

(7)

should be as close to ê(j) as possible, where fDec denotes the decoder. Summarize it up in a mathe-
matical form, we have the embedding regularization loss for task j:

Le = Le(e
(j), ê(j)) = L

(
fDec(fEnc(e

(j))), ê(j)
)
. (8)

L denotes certain similarity loss, set to the cosine similarity loss in our experiments. The decoder
is updated together with the hypernet during training. Notably, the encoder and decoder are both
shallow fully connected neural networks, and hence no significant computing cost is posed with
the introduction of our embedding regularization module. The influence of this module will be
discussed through experimental studies in later sections.

4.3 H-SCORE TASK EMBEDDING

In order to guide the hypernet and embedding through the encoder-decoder module, we need to
incorporate the interrelationships among tasks implied by the accessible data into a prior embedding.
In this work, we propose a H-score based online embedding named H-embedding for the CL tasks.

Particularly, during the training stage of task j, we first measure the H-score transferability to Tj

from each previous tasks {Tn}j−1
n=1 with Dj and previous task embeddings {e(n)}j−1

n=1, leveraging
that the previous task models can be conveniently reconstructed by the hypernet and corresponding
task embeddings.

H(Tn, Tj) = tr
(
cov(fl(x

(j),Θ(n)))−1cov(EPX|Y [fl(x
(j),Θ(n))|y(j)])

)
(9)

Θ(n) = fh(e
(n),Θh) (10)

Here, fl(∗) denotes the output of the last layer before the classifier in the main net f , which can be
viewed as the feature of task data X(j). The H-embedding ê(j) is then computed by minimizing the
difference between the Euclidean distance of e(n), ê(j) and their H-score transferability H(Tn, Tj):

ê(j) = argmin
ê(j)

j−1∑
n=1

(
||ê(j) − e(n)||2 −H(Tn, Tj)

)2

, (11)

where e(n) is calculated and stored when learning previous tasks. Consider that the transferability
can only be derived with at lease two tasks, the H-embeddings and embedding loss are only com-
puted after the first two tasks. Nevertheless, as a target centered transferability metric, the H-score

6
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may not consistently align in magnitude with the embedding initialization when sequentially learn-
ing the tasks in CL. Hence, we further introduce a scaling constant γ(j) that would be optimized
together with ê(j) but not utilized later, modifying Eqn. 11 to:

ê(j), γ(j) = argmin
ê(j),γ(j)

j−1∑
n=1

(
||ê(j) − e(n)||2 − γ(j)H(Tn, Tj)

)2

. (12)

Given that H(Tn, Tj) and e(n) are actually constants, the above optimization problem is a benign
bi-variate optimization problem. We could thus apply a gradient descent algorithm to effectively
compute the H-embedding ê(j) for the j-th task. As such, the H-embeddings for all tasks during the
continual learning can be calculated in an inductive way. We summarize the entire training process
of task j in our H-embedding guided hypernet as Algorithm. 1

Algorithm 1: H-embedding guided Hypernet: Training of Task j

Input: Task data Dj , previous task embeddings {e(n)}j−1
n=1, hypernet weights Θh

Parameter: Learning rate λ
Output: Current task embedding e(j), updated hypernet weights Θh

Randomly initialize e(j), ê(j), γ(j);
if j > 2 then

for n← 1 to j − 1 do // Compute transferability
Θ(n) ← fh(e

(n),Θh) ;
H(Tn, Tj)← tr

(
cov(fl(x

(j),Θ(n)))−1cov(EPX|Y [fl(x
(j),Θ(n))|y(j)])

)
▷ Eq. 10

end
ê(j), γ(j) ← argminê(j),γ(j)

∑j−1
n=1

(
||ê(j) − e(n)||2 − γ(j)H(Tn, Tj)

)2
▷ Eq. 12

end
repeat // Train hypernet

e(j) ← e(j) − λ∇e(j)L;
Θh ← Θh − λ∇Θh

L ▷ Eq. 5
until converge;
Return e(j), fh( · ,Θh)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

5.1.1 BENCHMARKS

To comprehensively verify the effectiveness of our framework and further analyse its reliability,
we conduct extensive experiments on three CL benchmarks. PermutedMNIST (Goodfellow et al.,
2013) benchmark is an variant of MNIST (LeCun et al., 1998), forming CL tasks from the original
MNIST dataset by applying random permutations to the input image pixels. The permuting pro-
cedure can be repeated in experiments to yield a task sequence of needed length, with each task
consisting of 70,000 images (60,000 for training and 10,000 for testing) of digits from 0 to 9. Ci-
far10/100 is a benchmark composed of 11 ten-way classification tasks, with a full Cifar10 task and a
Cifar100 dataset split into ten tasks (Krizhevsky et al., 2009). The model will be firstly trained on the
Cifar10 task with 60,000 images (50,000 for training and 10,000 for testing) and then sequentially
trained on the ten Cifar100 tasks, each with 6,000 images (5,000 for training and 1,000 for testing).
Built on the basis of ImageNet dataset (Deng et al., 2009), ImageNet-R (Hendrycks et al., 2021)
contains a wide range renditions of ImageNet classes, covering a total of 30,000 images covering
200 ImageNet classes. In the CL benchmark, ImageNet-R is also split into 10 tasks, each with 20
classes and around 3,000 samples (roughly 2,500 for training and 500 for testing)4.

4Training specifics and detailed results of our experimental studies are listed in Appendix A.1, with codes
available at https://anonymous.4open.science/r/H-embedding_guided_hypernet/.
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Method AA (↑) BWT (↑) FWT (↑)

Finetune 18.32 ± 0.70 -66.98 ± 0.45 10.20 ± 0.55
Finetune Head 15.35 ± 0.11 -70.52 ± 0.36 9.63 ± 0.32

LwF 33.02 ± 0.59 -57.22 ± 0.64 15.87 ± 0.45
EWC 36.15 ± 1.48 -53.39 ± 1.69 15.40 ± 0.42

L2 39.84 ± 0.67 -50.27 ± 0.79 16.14 ± 0.50
PredKD + FeatKD 33.03 ± 0.76 -56.19 ± 1.23 14.91 ± 0.85

PackNet 71.78 ± 0.11 0.00 (N/A) 1.86 ± 0.49
WSN 82.87 ± 0.20 0.00 (N/A) 13.94 ± 0.37

Vanilla Hnet 82.21 ± 0.23 -0.05 ± 0.05 12.82 ± 0.53
Rand-embed Hnet 82.42 ± 0.17 -0.12 ± 0.11 12.70 ± 0.60

H-embed Hnet* 83.51 ± 0.17 -0.06 ± 0.04 14.25 ± 0.57

Table 2: Accuracy (%) Comparison on Cifar10/100. All range of results are derived by three
times of running with different random seeds and calculating the average and standard deviation.
Our method (marked by ‘*’) achieves the top average accuracy with high confidence.

5.1.2 EVALUATION METRICS

Following our desiderata stated in Sec. 1 as well as the metrics introduced in previous works (Qu
et al., 2021; Wang et al., 2024), we evaluate the different CL methods from three aspects:

• Overall performance, measured by average accuracy (AA) of final model on all CL tasks:

AA = 1
M

∑M
j=1 aj,M ;

• Memory degradation of old tasks, measured by average backward transfer (BWT):

BWT = 1
M−1

∑M−1
j=1 (aj,M − aj,j) ;

• Learning enhancement of new tasks, measured by average forward transfer (FWT):

FWT = 1
M−1

∑M
j=2(aj,j − ãj).

Here, ai,j denotes the accuracy (%) measured on the test set of i-th task after learning the j-th task,
and ãj denotes the test accuracy derived by training a randomly initialized model directly on the
j-th task. To conclude, a most desirable CL strategy should come with higher results on all three
metrics, i.e. AA, BWT and FWT .

5.2 PERFORMANCE EVALUATION

5.2.1 COMPARISON EXPERIMENTS

Our primary evaluation study is conducted on the Cifar10/100 benchmark with a total of 11 tasks.
To ensure fairness in comparison, a non pre-trained ResNet-32 (He et al., 2016) is selected as the
backbone model for all the chosen baselines. We reproduce all the methods with our own codes and
each methods are run three times with 100 epochs and shared random seeds.

The choice of baselines is based on the requirements that they should both conform to our rehearsal-
free setting and be applicable to the benchmark and backbone. For a thorough comparison with ex-
isting methods to the greatest extent possible, we selected representative baselines of varied method-
ology categories, including: Basic Methods: Finetune, Finetune Head; Regularization Methods
(Basic): LwF (Li & Hoiem, 2017), EWC (Kirkpatrick et al., 2017), L2, PredKD+FeatKD (Smith
et al., 2023); Architecture Methods: PackNet (Mallya & Lazebnik, 2018), WSN (Kang et al.,
2022); HyperNet Methods: HyperNet (Vanilla Hnet) (von Oswald et al., 2020), HyperNet with
random guidance (Rand Guide Hnet). We summarize the experimental results in Table. 2. As can be
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Setting PermutedMNIST Cifar10/100 ImageNet-R
MLP CNN ResNet-32

Method AA BWT FWT AA BWT FWT AA BWT FWT

Vanilla Hnet 97.495 0.007 0.063 69.679 -7.790 7.970 38.485 -0.250 7.132
Rand-embed Hnet 97.464 0.019 0.021 71.179 -6.140 7.970 38.860 -0.214 7.513
H-embed Hnet* 97.570 -0.013 0.156 71.768 -6.440 8.950 39.547 -0.162 8.168

Table 3: Ablation Study on different benchmarks and backbones. Our H-embedding guidance
proves to be effective across all three settings, attaining the highest average accuracy, with competi-
tive backward transfer and the best forward transfer performance.

told from the table, our method perform prominently in the ultimate acquisition of CL tasks, achiev-
ing the highest final average accuracy. It also derives the best overall ability in terms of forward and
backward transfer, outperforming all architecture based and hypernet baselines in FWT as well as
surpassing regularization baselines by a large margin in BWT.

5.2.2 ABLATION STUDIES

To broaden the comprehensiveness of evaluation and take on a better concentration on validating
our introduction of H-embedding guidance, we conducted extra ablation studies on three differed
settings with different benchmarks as well as model backbones. Namely, experimental settings
include: PermutedMNIST (10 tasks) using an MLP model, Cifar10/100 (11 tasks) using a 4-layer
CNN model, and ImageNet-R (10 tasks) using a ResNet-32 model. The performance are evaluated
and summarized in Table. 3, where a broad increase in CL performance could be observed across all
benchmarks and backbones.

5.3 DISCUSSION AND IN-DEPTH PERFORMANCE ANALYSIS

For a better analysis of the effectiveness of our strategy, we further investigate the detailed training
behaviour displayed in different CL strategies, showing that our H-embedding guided hypernet is
characterized by the following superiority.
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Figure 3: The during and final task test accuracy of Cifar10/100 benchmark (ResNet-32 back-
bone, 100 epochs), with axis x for CL task IDs and y for the test accuracy. In the figures, ▷ and
◁ denote the during and final accuracy, while the dashed line shows the average final accuracy and
colored region represents their discrepancy, i.e. AA and BWT. From left to right is the accuracy
visualization for H-embedding guided hypernet (ours), vanilla hypernet, WSN and L2 respectively.
The grey regions in the right three figures denote the margin of during accuracy between these base-
lines and our method, i.e. discrepancy of FWT.

Optimal Overall Transfer Ability We select the best-performing baselines from each methodol-
ogy category and plot their task-specific performance in Fig. 3. Each task is presented with two test
accuracies: the accuracy obtained upon finishing training on the task, and the accuracy achieved by
the final model after learning all CL tasks. As illustrated in the figures, our H-embedding guided
hypernet demonstrates a notable advantage over vanilla hypernet and WSN, exhibiting both effec-
tiveness and stability in forward transfer while performing comparably in backward transfer. On the
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other hand, L2 as a regularization baseline, achieves good forward transfer ability, but fails in the
mitigation of catastrophic forgetting. On the whole, our method displays a steady boost in forward
transfer while retaining a competitive backward transfer, showcasing the best overall transfer ability,
thereby attaining the highest average performance.

Quicker Convergence With the intention of understanding how our guidance aids the training
process, we visualize the test accuracy trend during the training stage of task 1, 4, 7, 11 of the 11
CL tasks under Cifar-ResNet setting in Fig. 4. It is shown in figures that, compared to a hypernet
without H-embedding guidance, our method converges noticeably faster and achieves a higher final
accuracy performance, especially with the growth of task numbers. Such phenomenon serves as
a further suggestion that our H-embedding guidance provides substantial enhancement to the task
learning in CL through forward transfer.
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Figure 4: Plotting of test accuracy during training task 1, 4, 7, 11 of Cifar10/100 benchmark,
with axis x and y for the number of checkpoints and accuracy respectively. The blue curve represents
vanilla hypernet and orange represents our H-embedding guided hypernet. As CL progresses, our
method exhibits quicker convergence to higher accuracy in later tasks.
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Figure 5: Visualization of discrep-
ancy between the task embedding
distances learned w/ and w/o H-
embedding guidance.

Embedding Interpretability To assess the task embed-
dings {e(j)}Mj=1 learned in our framework, we compute the
task-wise Euclidean distances of the embeddings obtained
with and without H-embedding guidance, and visualize the
discrepancy between these two distance matrix in Fig. 5.
The grid of i-th row and j-th column in the figure repre-
sents the relationship between task i and task j. Darker cells
indicate larger divergence between with- and without- guid-
ance embeddings. Red signifies that the with-guidance em-
beddings result in a closer distance between the two tasks
compared to the without-guidance embeddings, while blue
represents the opposite. Take task 9, a Cifar100 split task
covering classes of people and reptiles, as an instance. The
embedding derived in our H-embedding guided hypernet
successfully marks task 4, 6, 7, 8, 10 as more related, which
all contain coverage of terrestrial animal classes or human
scenarios. Our embedding also generally displays a greater
preference on task 1, the more comprehensive Cifar10 task. Such correspondence with human intu-
ition suggests a better capture of task interrelationships, leading to higher CL efficiency.

6 CONCLUSION

In this work, we propose a transferability task embedding guided hypernet to exploit the task re-
lationships for continual learning. By introducing the information theoretical transferability based
task embedding named H-embedding and incorporating it in a hypernetwork, we establish an online
framework capable of capturing the statistical relations among the CL tasks and leveraging these
knowledge for task-conditioned model weight guidance. Through extensive experimental studies,
we validated that the adoption of H-embedding guidance enhances continual learning by facilitating
forward transfer and improving the reliability of task embeddings, achieving the best final accuracy
performance under various CL benchmarks.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

Experiments in our paper are run with fixed random seeds and are completely reproducible (with de-
tailed information in Appendix. A.1). We also open-source the code implementation of our method
at https://anonymous.4open.science/r/H-embedding_guided_hypernet/ for
better reproducibility and facilitating future researches.
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A APPENDIX

A.1 EXPERIMENTAL SETTINGS

A.1.1 COMPARISON EXPERIMENTS

General Settings. In CIFAR10/100 dataset using a ResNet-32 backbone network without pre-
training, we evaluated several baseline methods include Finetune, Finetune-Head, EWC, L2,
PredKD+FeatKD, and PackNet. The ResNet-32 uses ‘option A’, i.e., leveraging the zero-padding
shortcuts for increasing dimensions, as indicated in CIFAR-10 experiments of the original ResNet
paper Sec4.2. All experiments were conducted using NVIDIA GeForce RTX 3090 GPUs.

To ensure a fair comparison, we adopted consistent training settings across all baseline methods
except listing separately. Specifically, the batch size was set to 32, and each task was trained for 100
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epochs. We used the Adam optimizer with an initial learning rate of 0.001. The learning rate was
decayed by a factor of 10 after the 50th and 75th epochs. A weight decay of 1× 10−4 was applied.
For robustness, each experiment was run three times with different random seeds 22, 32, and 42,
and the results were averaged.

Choice of Baselines. Our selection of baselines in this work aims to encompass a wide range
of baseline categories, covering two of three primary categories in contemporary CL researches
(i.e., replay based, regularization based and architecture based), with the replay-based methods not
conforming to our rehearsal-free setting. The specific choice of baselines in each category is mainly
based on performance comparison conclusions in recent works such as Smith et al. (2023) and Kang
et al. (2022). Therefore, we believe that our comparison study has included the most competitive
and representative baselines.

Details of Specific Methods. For our H-embedding guided hypernet, the learning rate of 0.0005
and the embedding loss beta is set to 0.05. For other hypernet based baselines, we primarily follows
von Oswald et al. (2020) in the training settings with a learning rate of 0.001 and the CL loss beta
being 0.05). The embedding loss beta is set to 0.05 (same as our H-embed hypernet) in Rand-embed
hypernet. Notably, for all hypernet methods, we used exactly the same scheduling and transforming
strategies as used by Oswald, and the embedding size is all set to 32.

For the Finetune baseline, the model was sequentially trained on each task without any mechanisms
to prevent catastrophic forgetting. The model was randomly initialized and trained from scratch on
the first task. For subsequent tasks, training continued using the weights obtained from the previous
task.

In the Finetune-Head baseline, all convolutional layers of the ResNet-32 model were frozen after
training on the first task. When learning new tasks, only the parameters of the final fully connected
layer (the classifier) were updated. This approach aims to retain the feature representations learned
from earlier tasks while adapting the classifier to new task-specific outputs.

For the EWC baseline (Kirkpatrick et al., 2017), we added a regularization term to the loss function
to penalize significant changes to parameters important for previously learned tasks. The importance
of each parameter was estimated using the Fisher Information Matrix. The regularization coefficient
λ was set to 10, following standard practice.

In the L2 baseline, an L2 regularization term was added to the loss function to limit changes in
the model parameters during training on new tasks. The regularization coefficient λ was set to 1.0,
determined by tuning on a small validation set derived from the training data of the first task.

For the PredKD + FeatKD method (Smith et al., 2023), we incorporated both prediction distillation
and feature distillation to transfer knowledge from previous tasks to new ones. The distillation loss
combines the Kullback-Leibler divergence between the soft outputs of the teacher (model trained
on previous tasks) and the student (current model), as well as the mean squared error between their
intermediate feature representations. The loss weights were set to α = 1.0 and β = 0.5 based on
preliminary tuning.

In the PackNet method (Mallya & Lazebnik, 2018), we employed iterative pruning to allocate ded-
icated network weights for each task. After training on each task, we pruned a certain percentage of
the weights with the smallest magnitudes. Following the recommendations in the original paper, we
experimented with pruning rates of 0.5, 0.75, and 0.8. We selected the pruning rate of 0.8, which
yielded the best performance in our setting. After pruning, we fine-tuned the remaining weights for
an additional 10 epochs with a reduced learning rate of 1× 10−4.

For the WSN method (Kang et al., 2022), we follows its original paper and use the default values of
parameters in its official code repository. We choose the sparsity parameter c = 0.5 which performed
best as listed in the WSN literature. Other parameters are set to the following values: optimization
via Adam, a learning rate initialized at 1e-3 with a minimum of 1e-6, and a patience of 6 epochs for
reducing the learning rate by a factor of 2. The models were trained for 100 epochs, with a batch
size of 64 for both training and testing.

In all methods, we adhered to the principles of continual learning by not tuning hyperparameters on
the full task set. Special care was taken in handling batch normalization layers, especially in meth-
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ods involving parameter freezing or pruning. Following the settings in von Oswald et al. (2020), we
stored and updated batch normalization statistics separately for each task to ensure proper normal-
ization during both training and inference.

A.1.2 ABLATION STUDIES

ImageNet-R For the ImageNet-R dataset, we split the original 200 classes into ten 20-way clas-
sification tasks. Because of the uneven class sample size of ImageNet dataset, each task has varied
numbers of training and test samples: Task 1 with 2,166 training samples and 543 test samples, Task
2 with 2,655 training and 716 test samples, . . . , until Task 9 with 2,058 training samples and 471
test samples. In our method, we used a learning rate of 0.0005 and a the embedding loss beta of
0.05, training the models for 200 epochs. The backbone model is the same as used in comparison
experiments. The results are derived on NVIDIA A800 GPUs, and is reproducible with random seed
42.

Cifar10/100 The tasks in this setting are derived the same as in comparison studies. Yet, the
backbone model is differently set to a 4-layer CNN as used by Zenke et al. (2017). We also followed
Oswald in most of the hyperparameters, configuring learning rate to 0.0001, embedding size to 32,
as well as using the same scheduling strategies. We trained each method with 100 epochs and the
embedding loss beta is set to 0.2 for H-embed and rand-embed hypernets. The results are derived
on NVIDIA GeForce RTX 3090 GPUs, and is reproducible with random seed 42.

PermutedMNIST Considering the smaller data dimension and model size in this setting, the em-
bedding size is reduced to 24 and training iteration number is set to 5000. The backbone model on
PermutedMNIST is selected to be an MLP with fully-connected layers of size 1000, 1000 as used
by Van de Ven & Tolias (2019). We configured the learning rate as 0.0001 and the embedding loss
beta as 0.05. The results are derived on NVIDIA GeForce RTX 3090 GPUs, and is reproducible
with random seed 42.

A.2 DETAILED EXPERIMENTAL RESULTS

Considering the limited space, we only presented the experimental results measured by our three
metrics in main text. Here, we list the whole continual learning performance below. The during ac-
curacy refers to the test accuracy of tasks upon finishing training on that task, and the final accuracy
refers to the test accuracy of tasks when finishing learning all CL tasks. The results of comparison
experiments are derived with three times running of seed 22, 32, 42 and the ablation studies are
conducted with seed 42 only.
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