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ABSTRACT

As humans seek to collaborate with, learn from, and better understand artificial
intelligence systems, developing AI agents that can accurately emulate individual
decision-making becomes increasingly important. Chess, with its long-standing
role as a benchmark for AI research and its precise measurement of skill through
chess ratings, provides an ideal environment for studying human-AI alignment.
However, existing approaches to modeling human behavior require large amounts of
data from each individual, making them impractical for new or sparsely represented
users. In this work, we introduce Maia4All, a model designed to learn and adapt
to individual decision-making styles efficiently, even with limited data. Maia4All
achieves this by leveraging a two-stage fine-tuning method to bridge population
and individual-level models and uses a meta-network to initialize and refine these
embeddings with minimal data. Our experimental results show that Maia4All
can accurately predict individual moves and profile behavioral patterns with high
fidelity, establishing a new standard for personalized human-like AI behavior
modeling in chess. Our work provides an example of how population AI systems
can flexibly adapt to individual users using a prototype model as a bridge, which
could lead to better and more accessible human-AI collaboration in other fields like
education, healthcare, and strategic decision-making. Maia4All implementation is
available at https://anonymous.4open.science/r/UChess-3103.

1 INTRODUCTION

The rise of artificial intelligence (AI) systems that rival or surpass human ability in domains where
humans remain active has introduced the possibility of people collaborating with and learning from
AI agents. A line of research has pursued this vision in the model system of chess, where AI became
superhuman 20 years ago, people vary widely in their ability, and vast detailed datasets of action traces
abound. Since capturing human decision-making style is a prerequisite to algorithmically-informed
teaching and collaboration, previous work has focused on creating AI agents that mimic human
play (McIlroy-Young et al., 2020; 2022; Jacob et al., 2022; Tang et al., 2024). Further, since capturing
individual decision-making style is a prerequisite to personally tailored algorithmic instruction,
researchers have developed models of how specific people play chess, surpassing population models
in their accuracy rates on their target individual’s decisions (McIlroy-Young et al., 2022).

However, these fine-tuning-based models require extraordinary amounts of data per person to function.
When Maia, a human-like chess engine, was fine-tuned to play like specific individuals, gains in
accuracy over base Maia were only achieved when the player had 5,000 games worth of data (McIlroy-
Young et al., 2022). This is an immense amount of game-playing; a typical person would take around
1,000 hours to play this many games, which is equivalent to almost 25 weeks of full-time work at 40
hours per week. To put this in perspective, less than 1% of players on Lichess, a popular online chess
platform, have played at least 5,000 games. Therefore, the fine-tuning-based approaches explored in
previous work are proofs of concept that individual-level modeling is possible in chess, but it isn’t a
full solution to the problem because it doesn’t work for the vast majority of people who would stand
to benefit from algorithmically-informed teaching, learning, and collaboration.

How could we go about modeling individual-level decision-making behavior for people with much
more modest amounts of data available? This is a difficult task for two reasons. First, existing
models for modeling human decision-making, such as Maia and Maia-2 (McIlroy-Young et al., 2022;
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Tang et al., 2024), are population models. This makes direct fine-tuning difficult, especially for
low-resource players, as previously discussed. Second, human action prediction is formulated as a
generative task to predict the next move that requires a model with strong generalization capabilities,
which is particularly hard to achieve in a low-resource environment.

In this work, we propose Maia4All, a model that overcomes both of these challenges and can
successfully predict chess moves at the individual level. Strikingly, Maia4All can model individual-
level play with only 20 games of data. While Maia-2 shows virtually no progress when given 20
games of data played by a specific individual, and Maia fine-tuned with 1,000 games even gets worse,
Maia4All significantly rises in accuracy from a baseline of 51.4% to 53.2%—a comparable rise to
the accuracy gains reported in previous work using 5,000 games per player (McIlroy-Young et al.,
2022).

We achieve data-efficient modeling of individual behavior in chess with two methodological con-
tributions. First, we design a two-stage fine-tuning approach, where we first fine-tune Maia-2 to a
diverse set of prototype players with rich game histories in order to adapt the model parameters from
population-level modeling to individual-level modeling. Empirically, this makes it easier for the
model to further adapt to low-resource players. In the second stage, this prototype-infused model with
individual-level modeling capabilities is used as a bridge to be further fine-tuned with low-resource
player data. Our second contribution is to start with a discriminative task instead of attempting the
difficult generative task directly; we first find the most similar prototype player to the target player we
want to model with a prototype-matching meta-network. Once we’ve identified a suitable prototype
player, we initialize the target player’s embedding with the prototype’s embedding, and fine-tune on
their limited data with this much better start.

Our framework not only provides state-of-the-art human modeling in chess, which can open the
door to personalized AI teaching, learning, and collaboration, but it also holds potential for broader
applications in domains where human-AI collaboration and algorithmically-informed education are
possible.

2 RELATED WORK

Human Behavior Modeling in Chess. The challenge of creating a chess engine that can outplay any
human was solved over 20 years ago. The research focus shifts towards extracting useful knowledge
from these superhuman systems for humans. A direct way of doing this is to probe an AI chess
engine in a human representation space. Evidence of human chess concepts learned by AlphaZero
is found and measured by linear probes (McGrath et al., 2022). Going further, AlphaZero also
encodes knowledge that extends beyond existing human knowledge but is ultimately learnable by
humans (Schut et al., 2023). Another direction was the creation of a ‘behavioral stylometry’ model
that can identify chess players from the moves they play (McIlroy-Young et al., 2021). Moreover,
efforts have been made towards creating systems that can act as guides to humans (McIlroy-Young
et al., 2020; Jacob et al., 2022; Tang et al., 2024), in which a model is trained to predict the next
move a human will play, instead of optimizing for winning the game. In addition to predicting human
actions at the population level, the models have been fine-tuned for individual-level human behavior
modeling under data-rich settings (McIlroy-Young et al., 2022).

Few-shot Learning and Meta Learning. Few-shot learning focuses on the ability of models to
learn and generalize from a very limited amount of labeled training data (Fei-Fei et al., 2006; Fink,
2004; Wang et al., 2020). Modeling unseen players follows the few-shot learning paradigm, where
players’ behavioral patterns are revealed by a limited collection of historical behaviors. Meta learning
is a main approach to few-shot learning, aiming to improve novel tasks’ performance by training
on similar tasks. Meta learning can be categorized into metric-based methods (Vinyals et al., 2016;
Snell et al., 2017; Koch et al., 2015; Sung et al., 2018) that aim to learn a similarity or distance
function over objects and represent the relationship between inputs and the task space, model-
based methods (Santoro et al., 2016; Munkhdalai & Yu, 2017), which focus on designing models
with internal mechanisms to quickly adapt to new tasks, and optimization-based methods (Ravi &
Larochelle, 2016; Finn et al., 2017; Nichol et al., 2018; Raghu et al., 2019) that aim to learn an
initialization such that the model can adapt faster with few examples from there. Maia4All can be
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regarded as a meta learning framework in that we learn a prototype matching meta network for player
embedding initialization.

Imitation Learning. We can also frame this work as part of the imitation learning tradition, where a
model is trained to perform some task after observing expert (human) demonstration(s) (Schaal, 1999;
Zare et al., 2024; Wang et al., 2019). In the imitation learning context the model is usually attempting
to learn a value function (inverse RL) (Ng et al., 2000), or to quickly learn an optimal solution to a
given optimization problem (Schaal, 1999). In this paper we attempt to learn a flawed value function
using non-expert demonstrations. Additionally, many imitation learning methods require the model
to be in the same, or similar, state to the demonstrated one (Ho & Ermon, 2016; Zare et al., 2024)
which is a condition that is impossible to guarantee in chess outside of the early game.

3 METHODOLOGY

3.1 OVERVIEW

As shown in Figure 1. (a) and (b), either the well-established human-like chess engine Maia (McIlroy-
Young et al., 2020; 2022) and the state-of-the-art model Maia-2 (Tang et al., 2024) can be used as
the population-level pre-trained foundation model to be fine-tuned towards individual players. We
use Maia-2 as the base population model as it enables us to adjust its predictions by only varying the
population embeddings. This property is particularly desirable for individual behavior modeling
because the problem of adapting to individual players can be reduced to finding representative player
embeddings. Thus the variant player embeddings can guide the personalized adjustments of human
move predictions over a frozen model.

We face two challenges in fine-tuning Maia-2 for players with rare game histories. On the one hand,
Maia-2 is a population model, which means its parameters are trained toward modeling common
behavioral patterns among groups of players. This makes direct fine-tuning difficult, especially
for low-resource players. Therefore, as shown in Figure1. (c), we design a two-stage fine-tuning
approach to bridge population-oriented and individual-oriented parameters. To achieve this, we first
fine-tune Maia-2 to a diverse set of prototype players with rich game histories (Maia-2-Prototype). In
the second stage, the Maia-2-Prototype model with individual-level modeling capabilities is used as a
bridge to be further fine-tuned to model low-resource players.

On the other hand, human action prediction is formulated as a generative task to predict the next move
that requires a model with strong generalization capabilities, which is particularly hard to achieve
in a low-resource environment. Therefore, we start with a discriminative task instead of attempting
the difficult generative task directly. We first find the most similar prototype player to the target
player we want to model with a prototype-matching meta-network, as shown in Figure 2. Once we’ve
identified a suitable prototype player, we initialize the target player’s embedding with the prototype’s
embedding, and fine-tune on their limited data with this much better start.

3.2 POPULATION MODEL

Population Embeddings. In chess, players can be meaningfully grouped by their skill level (McIlroy-
Young et al., 2020; 2022), which is measured with now-pervasive rating systems that were originally
developed for chess Elo (1967; 1978). Let EP ∈ R|EP |×d be the matrix of population embeddings,
where each row corresponds to the embedding with dimension d of a group of players that share a
similar strength: EP = [e(0,1100], e(1100,1200], ..., e(2000,+∞)]

⊤. Given a player i of strength level
r(i), we look up the embedding matrix EP by rows to map the player strength to its embedding:
ei = EP [r(i)].

Player Embeddings. Similarly, given a set of individual players I , we denote their embedding matrix
as EI ∈ R|EI |×d, where each row corresponds to a player. Given a player i ∈ I , we look up EI

by rows to obtain the corresponding embedding of the active player: ei = EI [i]. For an unseen
individual u /∈ I , its embedding eu ∈ Rd will be initialized with prior knowledge and fine-tuned
following the procedures in Section3.4.
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Figure 1: Overview of Maia4All training procedures.
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Figure 2: The architecture of the Prototype Matching Meta Network.

Maia-2 uses a ResNet (He et al., 2016) tower for chess position encoding and a skill-aware attention
mechanism to bridge the population embedding and position embedding for human move prediction.

Maia-2(B, r(i)|θ,EP ), (1)

where B and r(i) denote the encoded tensor representation of board positions and players’ skill level
as inputs, respectively, and θ represents the shared parameters across different groups of players
(populations). EP denotes the embedding matrix of populations.

3.3 MAIA-2-PROTOTYPE

We build on Maia-2 to develop the individual model:

Maia-2-Prototype(B, i|θ′,EI), (2)

where EI denote the embedding matrix of individual players. The shared parameters θ′ are initialized
with θ. Since θ is already trained towards modeling diverse groups of players, it is easier to update to
a universal set of parameters that models the more fine-grained individual-level move predictions.

While Maia-2-Prototype can be directly used to model the behaviors of individual players in I , it
is unrealistic to include all players (e.g., 11 million on Lichess) in Maia-2-Prototype. On the one
hand, learning a separate embedding for huge amounts of players can be challenging for computation
and model learnability. On the other hand, most players haven’t played enough games to support an
accurately learned embedding for them. Furthermore, there are always new chess players, making
it infeasible to have their embedding pre-trained. Therefore, we regard Maia-2-Prototype as a base
model that can facilitate further adaptation to all individual players, in particular players with rare
histories. This extensibility requirement guided us to select the player set I in Maia-2-Prototype under
two criteria: First, players should have sufficient historical games to ensure that their decision-making
styles can be well learned in EI and so θ′ is not being interfered by under-trained embeddings.
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Second, the number of players should be balanced for each strength level. This design not only helps
the model to learn a universal set of parameters θ′ for an unbiased distribution of players but also
facilitates prototype-informed initialization.

Following previous work (McIlroy-Young et al., 2020), besides the main policy head to predict the
human move, we include a value head to predict the game outcome as a regression task, where
the labels 1, 0, -1 denote winning, drawing, and losing, respectively. To enhance the model’s
understanding of the game state, we inject auxiliary information as labels, including legal moves
represented by multi-hot vectors and human move information: one-hot vectors of which piece is
moved, which piece is captured (if any), the move’s originating square, the move’s destination square,
and whether or not the move will deliver a check. It enriches the model’s understanding of human
chess moves by providing contextual insights beyond mere move indices and integrating essential
objective knowledge of the game’s mechanics, which has been proven to be helpful in human move
prediction (Tang et al., 2024). This head is trained using bit-wise binary cross-entropy loss with
multi-hot labels. The training objectives of these heads are balanced to contribute equally to model
optimization.

3.4 MAIA4ALL

Since players can have limited historical data and there are always new players, it is crucial to ensure
our proposed unified framework can effectively adapt to these players. We denote players that are not
included in the training player set I of Maia-2-Prototype as unseen players.

3.4.1 MAIA4ALL FINE-TUNING

Ideally, player strengths and styles can be well-learned by directly fine-tuning Maia4All with the new
player embedding e:

Maia-2-Prototype(B, u|θ′, eu)
Full fine-tuning−−−−−−−−→Maia4All(B, u|θ′′, e′u) (3)

where the full parameter set is fine-tuned. However, since modeling unseen players follows the
few-shot learning paradigm, severe overfitting is expected when limited historical behaviors are
provided. Moreover, full fine-tuning results in a shifted player embedding space for each player.
As a result, the player embeddings learned are not transferable or directly comparable with other
(pre-trained or future) player embeddings, which hinders its applications in downstream tasks such as
behavioral stylometry (McIlroy-Young et al., 2021).

Since the shared parameters θ′ in Maia4All are specifically learned towards modeling a wide range
of individual players, this enables player embedding fine-tuning without updating θ′:

Maia-2-Prototype(B, u|θ′, eu)
Emb fine-tuning−−−−−−−−→Maia4All(B, u|θ′, e′u) (4)

Note that the universal set of parameters θ′ are shared across pre-trained or unseen players. The
number of trainable parameters is drastically reduced to the embedding dimension d, preventing
overfitting and enhancing knowledge sharing on the general understanding of individual behavior
modeling.

Nevertheless, fine-tuning under low-resource settings is still challenging. Therefore, we propose to
initialize unseen player embeddings with prior knowledge for data-efficient parameter updates. Such
prior knowledge can be player strengths, as reflected by their ratings, and player styles, as derived
from their historical behaviors.

3.4.2 STRENGTH INFORMED INITIALIZATION

In chess, decision-making style is informed by one’s strength: e.g., a novice will typically not employ
deep stratagems that indicative of grandmaster-level insight. Therefore, the player strength levels are
ideal starting points to learn player styles:

eu
Initialize←−−−− E′

P [r(u)], (5)

where E′
P denote the learned population embedding matrix in Maia-2-Prototype and r(u) represent

the strength level of player u.
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However, player strengths are not accurately measured by the ratings until many games with different
opponents are played and recorded. In real-world applications, player strength is very likely to be
unknown and may be inaccurate. For example, when a grandmaster player joins an online chess
platform as a new member, the rating will start to update from a preset rating that is close to the
average ratings of the crowd. In this case, until many games are played on this platform, the player’s
rating will be far from the grandmaster level. Therefore, we need a procedure to initialize the player
embedding that does not rely on the long-term strength measurements provided by ratings.

3.4.3 PROTOTYPE INFORMED INITIALIZATION

We aim to initialize unseen player embeddings with similar player embeddings. We denote the
pre-trained players as prototypes to be matched. Since we balanced the number of players within each
strength level during Maia-2-Prototype training, prototypical players should ideally cover the player
styles within each level. We train a transformer-based meta-network for prototype matching, i.e.,
finding the most similar prototypical players. In particular, as shown in Figure 2, given a collection
of historical behaviors of a prototype player, we use ResNet-based towers pre-trained by Maia-2 to
extract positions before and after actions, and employ stacked Transformer layers to aggregate action
embeddings. We use the frozen prototypical player embeddings EI to measure the similarities and
use cross-entropy loss for model training. The goal is to recognize the player given the historical
actions. In the inference stage, we input the historical moves of unseen players to the meta-network
and take the matched prototype embedding as the initialization for eu.

3.4.4 DISCUSSION

Note that both prototype matching and Maia4All exploit the same set of historical behaviors. However,
prototype matching is a much easier task than human move prediction. This is because prototype
matching is essentially a discriminative task against a fixed set of classes (prototypes), and human
move prediction is a next-move generative task that requires a deeper understanding of the player’s
decision-making style. Therefore, we initialize the player embedding with the easier prototype
matching task to get a rough understanding of how similar players behave and further calibrate the
player embedding with human move prediction loss.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. Online chess platforms feature a variety of game types, including blitz, rapid, and classical,
each representing games played at different time controls (amount of time given to each player for the
whole game). We use data from Lichess, a well-known large open-source chess platform, and its open
database. In Lichess, since each game type is given a separate rating, ratings across different game
types are not comparable (e.g. a rating of 1800 in “Rapid” is significantly weaker than a rating of
1800 in “Blitz” on Lichess). We focus on Blitz games because it’s data-rich and we do not mix with
other game types to ensure the ratings are meaningfully comparable. For individual model training
and fine-tuning, we use the full game history in 2023 to compromise between the changing player
strengths and styles over time and the availability of rich historical behaviors. We divide players
into 11 bins: under 1100, over 2000, and nine 100-point wide strength bins from 1100 to 2000, i.e.,
|EP | = 11. During Maia-2-Prototype training, we use the game history of the N most frequent
players in each strength level, i.e., |EI | = 11N . We use 10 pre-trained and unseen players in each
strength level for testing. We simulate unseen players with limited game history by limiting the
training positions to the first M positions, and we test them with the last 2048 positions in 2023. This
yields the testing datasets for the testing datasets of prototypical and unseen players with 225,280
positions each.

Implementation Details. To maintain a consistent perspective from both sides of players, we used
board flipping during training and testing; that is, positions with black to move were mirrored such
that all analyses could be conducted from the white side’s viewpoint. We further refined our dataset
through game and position filtering, selecting only Blitz games with available clock information and
disregarding the initial 10 plies of each game as well as positions where either player had less than 30
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Table 1: Performance on unseen players under extremely low resource settings.
Move Prediction Accuracy Move Prediction Perplexity

#Positions 20000 8000 2000 800 20000 8000 2000 800
#Games ≈500 ≈200 ≈50 ≈20 ≈500 ≈200 ≈50 ≈20

Maia 0.5132 0.5132 0.5132 0.5132 5.4530 5.4530 5.4530 5.4530
Maia-2 0.5146 0.5146 0.5146 0.5146 4.5316 4.5316 4.5316 4.5316
Maia-2-Individual 0.5195 0.5196 0.5193 0.5189 4.4932 4.4939 4.4976 4.5022

Maia4All 0.5365 0.5348 0.5334 0.5322 4.2295 4.2431 4.2669 4.2988

Table 2: Performance on unseen players with 100,000 positions ≈ 2500 games.
Move Prediction Accuracy Move Prediction Perplexity

Skilled Advanced Master Overall Skilled Advanced Master Overall

Maia 0.4996 0.5099 0.5285 0.5132 5.8687 5.4642 5.1300 5.4530
Maia-2 0.5008 0.5158 0.5364 0.5146 4.7900 4.4389 4.1936 4.5316
Maia-2-Individual 0.5071 0.5212 0.5400 0.5199 4.7264 4.4113 4.1760 4.4903

Maia4All 0.5261 0.5408 0.5554 0.5381 4.4018 4.1048 3.9219 4.1899

seconds remaining. The filtration is significant to eliminate the noise introduced by rushed decisions
under time constraints, which could skew the true representation of a player’s strength and style. We
report all hyperparameters involved in training in Appendix Table 4.

Evaluation Protocol. We evaluate Maia4All with top-1 move-matching accuracy, which is essentially
an extensive human study: we observe what humans would play in natural situations recorded by
the Lichess Database, and see if it matches the predicted move of our system. We also measure
the perplexity of move predictions, which reflects the model’s confidence in its predictions. A
lower perplexity indicates the model is more confident and accurate in human move prediction, as
it corresponds to a higher likelihood (lower log-likelihood) of the correct human move. We report
the results with three categories: Skilled (Blitz rating up to 1600, which slightly exceeds the initial
rating of 1500), Advanced (Blitz rating between 1600 and 2000), and Master (Blitz rating over 2000,
roughly comprising the top 10% of playersDuplessis).

Baselines. Maia (McIlroy-Young et al., 2020) is a set of 9 separate models, each trained on a different
set of players at different skill levels from 1100 to 1900. Maia-1100 models the weaker players,
Maia-1500 the intermediate players, and Maia-1900 the higher-skill players. We choose one of the
Maia models for each population such that it is the nearest to their strength level for fair comparison.
Since Maia-Individual (McIlroy-Young et al., 2022) is designed for data-rich settings, the published
results of Maia-Individual indicate that it requires 5,000 games per player to show improvement over
Maia. However, Maia4All, as a method for low-resource individual behavior modeling, at most has
access to 100,000 positions (≈ 2,500 games). Therefore, we do not include Maia-Individual as a
baseline. Since Maia-2 is trained towards adapting to diverse populations with a unified model, we
use pre-trained EP for the conditioning on different populations.

4.2 RESULTS

Maia2. As shown in Table 1 and Table 2, Maia-2 consistently outperforms Maia on both evaluation
metrics under all settings. While top-1 accuracy gains are important, they may overshadow larger
improvements in prediction quality. Such results show that Maia-2 can not only more accurately
predict human behaviors but also be much more certain about its predictions. It is important to note
that each Maia model is specifically trained for its respective strength level, relying solely on games
where the active and opponent strength levels match in its training data. On the contrary, the unified
modeling approach with player-aware attention in Maia-2 allows it to utilize a broader spectrum of
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Figure 3: Performance on prototypical players with 100,000 positions ≈ 2500 games.

games, featuring a variety of strength level pairings, for training purposes. Such results support our
design choice of choosing Maia-2 as the population model.

Maia-2-Individual. As shown in Table 1 and Table 2, directly fine-tuning from the population model
(corresponds to Figure 1. (b)) barely improves human move prediction accuracy and perplexity
under low-resource and relatively data-rich settings, which further motivate the two-stage fine-tuning
procedure and the prototype-informed initialization.

Maia-2-Prototype. Previous work (McIlroy-Young et al., 2022) shows that population models can
be fine-tuned to individual players, but require 5,000–10,000 games (worth around 200,000–400,000
positions) per player for performance to exceed the population model. At 1,000 games (worth around
40,000 positions) the fine-tuning was worse than the population model, likely due to over-fitting.
As shown in Figure 3, Maia-2-Prototype outperforms both Maia and Maia-2 on both metrics with
significant improvement. Moreover, we use at most 100,000 positions (around 2,500 games) per
player for Maia-2-Prototype training, where 2,500 is somewhere between Maia can (1,000) and
can not (5,000) show improvement by fine-tuneing. Such results demonstrate our proposed Maia-
2-Prototype requires much less historical data to exhibit much stronger performance in modeling
the decision-making style of individual players. The superior performance of Maia-2-Prototype also
shows that the prototype player embeddings and the individual-oriented parameters are well-learned
and ready to be used in the downstream Prototype Matching Net and prototype-informed initialization.

Maia4All. Similarly, we limit Maia4All to access 100,000 historical moves during fine-tuning to
demonstrate the reduced size of historical data to achieve sufficient improvement. As shown in
Table 2, Maia4All outperforms Maia with over 2 percentage points in accuracy and around 1.2 in
perplexity (whereas Maia barely shows any improvement at this amount of data). These results
demonstrate Maia4All’s capability to adapt to unseen players with relatively rich data, and the amount
of data needed is significantly lower.

When even fewer historical behaviors are accessible, Maia4All can still adapt to unseen players
with considerable improvement in move prediction accuracy and perplexity. In particular, with
only 800 positions (20 games, which is considered incredibly few for style modeling), Maia4All
can transfer its predictions to unseen players with over 1.9 more percentage point and 1.1 lowered
perplexity with prototype informed initialization. Note that the number of accessible positions is
at most 20,000 position (worth 500 games) and Maia fine-tuning with 1,000 games is still showing
negative improvement, which indicates fine-tuning Maia with our limited historical behaviors will
result in even worse results than the original model.

Prototype-Informed Initialization. Strength-Init and Prototype-Init in Table 3 denote strength and
prototype-informed initialization without further fine-tuning. Prototype-Init significantly performs
better than Strength-Init on both metrics under all data scarcity settings. Strength-FT denotes the
fine-tuned model based on Maia-2-Prototype with strength-informed initialization, and Maia4All can
be regarded as Prototype-FT with the same naming strategy. The consistent superior performance of
Maia4All over Strength-FT not only shows the effectiveness of the Prototype Matching Meta Net,
but also supports that the better initialization provided by a discriminative task can be crucial to the
final performance of the generative task.
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Table 3: Performance of strength and prototype informed initialization.
Move Prediction Accuracy Move Prediction Perplexity

#Positions 100000 20000 8000 2000 800 100000 20000 8000 2000 800
#Games ≈2500 ≈500 ≈200 ≈50 ≈20 ≈2500 ≈500 ≈200 ≈50 ≈20

Strength-Init 0.5008 0.5008 0.5008 0.5008 0.5008 4.8344 4.8344 4.8344 4.8344 4.8344
Prototype-Init 0.5180 0.5180 0.5175 0.5173 0.5167 4.5360 4.5360 4.5333 4.5400 4.5459
Strength-FT 0.5336 0.5308 0.5298 0.5279 0.5249 4.2599 4.3077 4.3238 4.3658 4.4151

Maia4All 0.5381 0.5365 0.5348 0.5334 0.5322 4.1899 4.2295 4.2431 4.2669 4.2988
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Figure 4: Effects of the distribution and number of prototypes to be matched.

Prototype Matching. The distribution of the prototypes to be matched is a hyperparameter. As
shown in Figure 4, if we only include the prototypes from a biased distribution of the population, i.e,
only select from low/medium/high-level players, it will result in lowered move prediction accuracy
and raised perplexity compared to uniformly select N prototypes from each strength level. Such
results support our design choices of selecting the prototypes uniformly to cover the population space.

The number of prototypes N per strength level is also a hyperparameter. Choosing an appropriate
N needs to compromise between the representativeness of prototypes for each range, i.e., more
prototypes can better cover the player embedding space, and the difficulty in the prototype matching,
i.e., more prototypes means more candidates to be classified against. This is evidenced by the results
shown in Figure 4. We evaluate the top 1 matching accuracy of prototypical players under low-
resource settings (800 positions). Increasing N from 10 to 150 yields gradually lowered performance
in prototype matching, while the best-performing Maia4All is achieved with a tradeoff between
prototype matching accuracy and player embedding space coverage.

Note that the prototype matching network can be directly used for the behavioral stylometry (McIlroy-
Young et al., 2021), i.e., identifying players given their historical behaviors. Since we freeze the
shared parameters θ′ and only finetune player embeddings for unseen players, the player embeddings
are directly comparable. Therefore, our design supports behavioral stylometry off the shelf. With
only 800 positions (around 20 games), our model can identify the player with 89% accuracy with 1
shot from 1100 candidates (100 players per strength level with 11 levels).

5 CONCLUSION

We introduce Maia4All, a model designed to learn and adapt to individual decision-making styles
efficiently, even with limited data. Maia4All achieves this by leveraging a two-stage fine-tuning
paradigm and using a meta-network to initialize and refine these embeddings with minimal data.
Our experimental results show that Maia4All can accurately predict individual moves and profile
behavioral patterns with high fidelity, establishing a new standard for personalized human-like AI
behavior modeling in chess. Our work provides an example of how population AI systems can
flexibly adapt to individual users using a prototype model as a bridge, which could lead to better
and more accessible human-AI collaboration in other fields like education, healthcare, and strategic
decision-making.
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A REPRODUCTIBILITY

Table 4: Hyperparameter Settings.
Initial learning rate 1e−4

Weight decay 1e−5

Batch size (positions) 8192
Minimum move ply 10
Maximum move ply 300
Remaining seconds threshold 30
#Backbone blocks KConv 12
#Attention block KAtt 2
#Input channels Cinput 18
#Intermediate channels Cmid 256
#Encoded channels Cpatch 8
Player embedding dimension d 128
Attention head dimension dh 64
Attention intermediate dimension datt 1024
#Attention heads h 16
player per range N 100

A.1 POSITION REPRESENTATION AND ENCODING

We follow the well-established prior works McIlroy-Young et al. (2020); Silver et al. (2017) to
represent chess positions as multi-channel 8× 8 matrices, including:

• Piece Representation: The first 12 channels categorize the board’s pieces by type and color,
with one channel each for white and black Pawns, Knights, Bishops, Rooks, Queens, and
Kings. A cell is marked 1 to denote the presence of a piece in the corresponding location,
and 0 otherwise.

• Player’s Turn: A single channel (the 13th) indicates the current player’s turn, filled entirely
with 1s for white and 0s for black, providing the model with context on whose move is being
evaluated.

• Castling Rights: Four channels (14th to 17th) encode the castling rights for both players,
with the entire channel set to 1 if the right is available or 0 otherwise.

• En Passant Target: The final channel (18th) marks the square available for en passant capture,
if any, with 1 and 0s elsewhere.

One important departure from previous work is that we only use the current chess position, and not
the last few chess positions that occurred in the game (models have typically incorporated the six
most recent positions in the game). Many games with perfect information, including chess, can
be modeled as alternating Markov games Littman (1994); Silver et al. (2016), where future states
are independent of past states given the current game state. Therefore, the current chess position
theoretically encapsulates all the information necessary to make future decisions. Although human
decision-making in chess may sometimes subtly depend on the historical lead-up to the current
position, these effects are anecdotally small.

In exchange, we gain two large practical benefits. First, modeling AI-human move matching
in a Markovian way vastly improves training efficiency by reducing the computational load via
significantly smaller data usage for each decision. Second, it also enhances flexibility, enabling our
resulting model to make predictions even without historical data, which is particularly advantageous
in situations where only the current position is available, like chess training puzzles or any position
that didn’t necessarily occur in a full game.
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